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SECOND-ORDER SLOPE LIMITERS FOR THE SIMULTANEOUS
LINEAR ADVECTION OF (NOT SO) INDEPENDENT VARIABLES∗

QUANG HUY TRAN†

Abstract. We propose a strategy to perform second-order enhancement using slope-limiters
for the simultaneous linear advection of several scalar variables. Our strategy ensures a discrete
min-max principle not only for each variable but also for any number of non-trivial combinations
of them, which represent control variables. This problem arises in fluid mechanics codes using the
Arbitrary Lagrange-Euler formalism, where the additional monotonicity property on control variables
is required by physical considerations within the remap step.
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1. Introduction
We are concerned with the design of a second-order accurate scheme for the

numerical solution of the system of linear advections

∂tΨ+u∂xΨ=0, (1.1)

where u∈R is a given velocity field and Ψ=(ψ1,... ,ψP )∈R
P
+, with P ∈N, is the

vector of positive unknowns. Although the components of Ψ, called main variables,
are independent from each other at the continuous level, our objective is to ensure a
min-max principle at the discrete level not only for the main variables but also for a
set of physically meaningful control variables

G(Ψ)=(G1(Ψ),... ,GQ(Ψ))∈R
Q, Q∈N. (1.2)

The motivation for such a requirement usually comes from the context of the industrial
application at hand and from the observation that, as a result of multiplication of (1.1)
by ∇ΨG, the control quantities are also transported by the advection system

∂tG(Ψ)+u∂xG(Ψ)=0. (1.3)

A simple but prominent example corresponds to P =2, Q=1 and G(Ψ1,Ψ2)=Ψ1 +
Ψ2, which is called the sum-problem and will be addressed in Section 2.

In order to state the problem more accurately, let us recall some background
material for the scalar linear advection

∂tψ+u∂xψ =0, (1.4)

in which the velocity u is assumed to be uniform and positive. Over a uniform grid
with mesh-size ∆x, the cells of which are indexed by i, and for a time-step ∆t, we
consider the explicit second-order accurate update formula [9]

ψ̂i =ψi−λ
{[

ψi +
1−λ

2 Dψ
i

]
−

[
ψi−1 + 1−λ

2 Dψ
i−1

]}
, (1.5)
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570 SLOPE-LIMITERS FOR THE LINEAR ADVECTION OF SEVERAL VARIABLES

where Dψ
i is the approximate slope (multiplied by ∆x) of ψ in cell i, and

λ=
u∆t

∆x
(1.6)

is the CFL ratio. It is well-known [4, 7] that if the slopes are suitably chosen via an
appropriate limiter function

Dψ
i = D̃ψ

i ≡Λ(ψi−ψi−1,ψi+1−ψi), (1.7)

then the discrete min-max principle

ψ̂i ∈⌊ψi−1,ψi⌉ (1.8)

holds under the CFL condition λ<1. We systematically use the notation ⌊a,b⌉ for the
convex interval spanned by the real numbers a and b. We recall that the conditions
on the limiter function (dL,dR)∈R

2 7→Λ(dL,dR)∈R for the min-max principle (1.8)
to hold are

2

λ
d−L ≤ Λ(dL,dR) ≤

2

λ
d+

L (1.9a)

2

1−λ
d−R ≤ Λ(dL,dR) ≤

2

1−λ
d+

R, (1.9b)

for all pairs of “candidate” slopes (dL,dR), where we use the notations r− =min(r,0)
and r+ =max(r,0) for the negative and positive part of any real number r. This
automatically implies

Λ(dL,dR)=0, if dLdR ≤0. (1.10)

Furthermore it is customary, albeit not compulsory, to impose additional constraints
such as

Λ(d,d)=d, for all d∈R, (1.11)

to ensure consistency with exact second-order reconstruction and

Λ(dL,dR)=Λ(dR,dL), for all (dL,dR)∈R
2, (1.12)

to require symmetry. Examples will be provided in the upcoming section.
Of course, we are going to apply scheme (1.5) to numerically solve system (1.1)

component-wise. If the slopes are limited as in (1.7), i.e.,

Dψp

i = D̃ψp

i ≡Λ(ψp
i −ψp

i−1,ψ
p
i+1−ψp

i ) (1.13)

for 1≤p≤P , then there holds discrete min-max principle component-wise

ψ̂p
i ∈⌊ψp

i−1,ψ
p
i ⌉. (1.14)

As for the control variables, which are necessarily computed as

Gq
i =Gq(Ψi), Ĝq

i =Gq(Ψ̂i) (1.15)

for 1≤ q≤Q, there is no reason that we should have the desired min-max principle

Ĝq
i ∈⌊Gq

i−1,G
q
i ⌉, (1.16)
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insofar as the components of Ψ do not “see each other”.
The min-max principle on control variables is a major challenge in many fluid

mechanics codes using an ALE (Arbitrary Lagrange-Euler) method [2, 3], the remap
phase of which consists in simultaneously advecting several supposedly independent
variables. Such a requirement is essential for robustness. However, except for a
partially successful attempt by VanderHeyden and Kashiwa [10] for a restricted setting
of the fraction problem, we do not have knowledge of any thoroughly satisfactory
solution. The present contribution demonstrates that the component-wise limitation
(1.13) can be actually replaced by a more general framework

Dψp

i =Λp(Ψi−1,Ψi,Ψi+1) (1.17)

which does guarantee (1.14) and (1.16) under the same CFL condition λ<1. This
newly proposed procedure can be extended to the case of a space-dependent velocity
field u=u(x), the sign of which is not necessarily constant. From a practical point of
view, the new slopes (1.17) will be obtained from the old ones, computed by (1.13),
through a projection mechanism which creates the opportunity for the various (main
and control) variables to see each other. This projection mechanism is optimally
designed in order for the new slopes to be as “close” as possible to the old slopes in
some sense, so that sharp profiles can still be captured.

In order to convey the geometric insights that are at the root of the seemingly
complex algebraic formalism of this work, we focus on the two simplest but most
important examples encountered in the context of Euler-like fluid models: the sum
problem Section 2 for a flame model [1] and the fraction problem Section 3 for a
two-phase flow model [2]. Sec. 4 is devoted to the general problem, along with the
numerical results for an example selected from real-life applications.

2. The sum problem
We consider the densities of two species, say, CH4 and CO2, as well as their sum,

which represents the carbon tracer. Let us put

Ψ=(α,β)∈R
2
+, G(Ψ)=α+β∈R+. (2.1)

2.1. Uniform velocity. Assume u(x)=u>0. From the current time level to
the next one, the update formulae for (α,β) are

α̂i =αi−λ{[αi+
1−λ

2 Dα
i ]−[αi−1+

1−λ
2 Dα

i−1]} (2.2a)

β̂i =βi −λ{[βi+
1−λ

2 Dβ
i ]−[βi−1+ 1−λ

2 Dβ
i−1]}, (2.2b)

where λ is defined in (1.6). Consider the initial slopes

D̃α
i =Λ(αi−αi−1,αi+1−αi), D̃β

i =Λ(βi−βi−1,βi+1−βi), (2.3)

inspired from the scalar case (1.7) and computed component-wise via a standard
limiter function Λ, such as (see [4, 7] for more details)

• the minmod limiter

minmod(dL,dR)=max{d−L ;d−R}+min{d+
L ;d+

R}; (2.4)

• the van Leer limiter

VL(dL,dR)=
2d−Ld−R
d−L +d−R

+
2d+

Ld+
R

d+
L +d+

R

(2.5)

(being understood that at most one summand is not zero);
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• the superbee limiter

SB(dL,dR)=maxmod(minmod(2dL,dR),minmod(dL,2dR)), (2.6)

where minmod was defined in (2.4), and

maxmod(eL,eR)=min{e−L ,e−R}+max{e+
L ,e+

R} (2.7)

• the hyperbee limiter

HB(dL,dR)=maxmod(minmod(ΦdL,dR),minmod(dL,ΦdR)), (2.8)

where Φ=min{ 2
λ , 2

1−λ};

• the ultrabee limiter

UB(dL,dR)=minmod( 2
λdL, 2

1−λdR), (2.9)

which is the “strongest” limiter that meets conditions (1.9); unlike the previ-
ous limiters, it does not satisfy the additional Propositions (1.11) and (1.12).

The following Lemma recalls a useful property, which expresses the basic fact
given a pair of slopes that ensures the min-max principle component-wise, any pair
with smaller amplitudes is also suitable for the min-max principle.

Lemma 2.1. If the slopes (Dα
j ,Dβ

j ) in (2.2) satisfy

[D̃α
j ]−≤Dα

j ≤ [D̃α
j ]+, [D̃β

j ]−≤Dβ
j ≤ [D̃β

j ]+ (2.10)

for j = i−1 and j = i, then α̂i ∈⌊αi−1,αi⌉ and β̂i ∈⌊βi−1,βi⌉.

Proof. This is a consequence of Sweby’s analysis [7], by which an appropriate
choice of the limiter function Λ allows one to express α̂i as a convex combination of
αi−1 and αi (likewise for β̂i). Conditions (2.10) say that the new slopes must be of
the same sign as the old ones, while having smaller absolute values.

The sum variable G is computed by Gi =αi +βi and Ĝi = α̂i + β̂i. Because the
scheme is nonlinear due to the use of limiter, it will be a mistake to take it for granted
that the min-max principles on α and β always imply that on G: this is true only
when the min (resp. max) of the sum is equal to the sum of the min values (resp.
max values), which means that α and β both increase or both decrease from i−1 to
i, as highlighted by the following Proposition.

Proposition 2.2. If (αi−αi−1)(βi−βi−1)≥0 and if the slopes (Dα
j ,Dβ

j ) satisfy

(2.10) for j = i−1 and j = i, then Ĝi ∈⌊Gi−1,Gi⌉.

Proof. In the quarter-plane (α,β)∈R+×R+, let us depict the points

Mi−1 =(αi−1,βi−1), Mi =(αi,βi), M̂i =(α̂i,β̂i). (2.11)

as in Figure 2.1. The min-max principles α̂i ∈⌊αi−1,αi⌉ and β̂i ∈⌊βi−1,βi⌉, which

follow from Lemma 2.1, amount to saying that M̂i belongs to the rectangle Ri whose
opposite vertices are Mi−1 and Mi and whose sides are parallel to the horizontal and
vertical axes. Draw the lines Gi−1 and Gi defined by α+β =Gi−1 and α+β =Gi.

If (αi−αi−1)(βi−βi−1)≥0, then the rectangle Ri is entirely included in the
strip defined by the parallel lines Gi−1 and Gi. Therefore, the isoline of α+β
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passing through M̂i lies between Gi−1 and Gi, which is algebraically equivalent to

Ĝi ∈⌊Gi−1,Gi⌉.
If (αi−αi−1)(βi−βi−1)<0, the lines Gi−1 and Gi cut the rectangle Ri into three

pieces, and it may happen that M̂i lies outside the strip, which violates the desired
min-max principle.

(αi−αi−1)(βi−βi−1)≥0 (αi−αi−1)(βi−βi−1)<0

α

β β

α

Gi−1

Mi−1

Gi

¥

M̂i

Mi−1

Gi−1

Mi

Gi

¥

M̂i

Mi

Fig. 2.1. Geometric analysis of the min-max principle for the sum problem.

To know what should be done for the case (αi−αi−1)(βi−βi−1)<0, we introduce

Gm
i =min{Gi−1,Gi}, GM

i =max{Gi−1,Gi}, (2.12)

and seek sufficient conditions in terms of (Dα,Dβ) so that Gm
i ≤ Ĝi ≤GM

i at a given
cell i. Unless otherwise indicated, it is assumed that λ<1.

Lemma 2.3. For a given cell i, if

2
λ (Gi −GM

i ) ≤ Dα
i +Dβ

i ≤ 2
λ (Gi −Gm

i ), (2.13a)

− 2
1−λ (Gi−1−Gm

i ) ≤Dα
i−1 +Dβ

i−1≤− 2
1−λ (Gi−1−GM

i ), (2.13b)

then Gm
i ≤ Ĝi ≤GM

i .

Proof. Subtracting the convex decomposition Gm
i =(1−λ)Gm

i +λGm
i from the

sum of (2.2a) and (2.2b), we obtain

Ĝi−Gm
i =(1−λ)[Gi−Gm

i − λ
2 (Dα

i +Dβ
i )]+λ[Gi−1−Gm

i + 1−λ
2 (Dα

i−1 +Dβ
i−1)].

(2.14)

To ensure Ĝi−Gm
i ≥0, we split the right hand side into two parts and impose posi-

tivity to each summand. This leads to the right part of (2.13a) and the left part of

(2.13b). We proceed similarly to impose negativity to Ĝi−GM
i .

The benefit of this splitting approach lies in the fact that the resulting conditions
(2.13) are local: they do not couple the slopes at cell i with those at cell i−1, thus
giving rise to a tractable procedure. It could be legitimately feared that imposing
positivity separately in (2.14) yields excessively strong conditions, which might dete-
riorate accuracy. The miracle is that accuracy is preserved at a very good level, as
shown by numerical results.
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We are now in a position to formulate the new limitation procedure, which ensures
the min-max principle for all cells.

Theorem 2.4. Given an initial choice (D̃α
i ,D̃β

i ) in accordance with (2.3), let Gi ⊂R
2

be the set of all pairs (Dα
i ,Dβ

i ) subject to the 6 linear inequality constraints

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi ≤Dα
i +Dβ

i ≤Mi, (2.15)

with

mi =max{ 2
λ [Gi−Gi−1]

− ; 2
1−λ [Gi+1−Gi]

−} (2.16a)

Mi = min{ 2
λ [Gi−Gi−1]

+ ; 2
1−λ [Gi+1−Gi]

+}. (2.16b)

For all i∈Z, define

(Dα
i ,Dβ

i )=

{
(D̃α

i ,D̃β
i ) if D̃α

i D̃β
i >0

ΠGi
(D̃α

i ,D̃β
i ) otherwise

(2.17)

where ΠGi
(.) denotes the projection onto the convex set Gi ⊂R

2. Then, we have the
min-max principles

α̂i ∈⌊αi−1,αi⌉, β̂i ∈⌊βi−1,βi⌉, Ĝi ∈⌊Gi−1,Gi⌉, (2.18)

at every cell i when updating (α,β) with scheme (2.2).

Proof. The set Gi is obviously convex and nonempty, because it contains (0,0).

Therefore, definition (2.17) makes sense. Note that its shape depends on (D̃α
i ,D̃β

i ).

At a fixed cell i, if D̃α
i D̃β

i >0, we necessarily have (αi−αi−1)(βi−βi−1)>0 on
the grounds of the properties of standard limiter functions. According to Proposition
2.2, the default values (Dα

i ,Dβ
i )=(D̃α

i ,D̃β
i ) are suitable. If D̃α

i D̃β
i ≤0, we are going

to check conditions (2.13). From (2.15) and (2.16), we infer that

2
λ [Gi−Gi−1]

−≤mi ≤Dα
i +Dβ

i ≤Mi ≤
2
λ [Gi−Gi−1]

+. (2.19)

We claim that [Gi−Gi−1]
− =Gi−GM

i and [Gi−Gi−1]
+ =Gi−Gm

i . To see this, we
simply have to distinguish the two cases Gi−1≤Gi and Gi−1 >Gi. This establishes
(2.13a).

If D̃α
i−1D̃

β
i−1 >0, we also necessarily have (αi−αi−1)(βi−βi−1)>0 thanks to the

properties of standard limiter functions. By virtue of Proposition 2.2, we conclude
that there is no need to check (2.13b). If D̃α

i−1D̃
β
i−1≤0, we write (2.15) and (2.16)

for cell i−1 and observe that

2
1−λ [Gi−Gi−1]

−≤mi−1≤Dα
i−1 +Dβ

i−1≤Mi−1≤
2

1−λ [Gi−Gi−1]
+, (2.20)

and once again argue that [Gi−Gi−1]
− =Gi−GM

i and [Gi−Gi−1]
+ =Gi−Gm

i to
derive (2.13b).

The coding of the projection operator ΠGi
in this problem can be made efficient

through the explicit formulae provided by Proposition 2.5. Figure 2.2 illustrates a
few situations for a locally increasing or decreasing behavior of G. Note that if a local
extremum occurs, i.e., (Gi−1−Gi)(Gi+1−Gi)>0, by (2.16) we have mi =Mi =0,

hence DG
i =Dα

i +Dβ
i =0. This testifies to a clipping mechanism on G in the proposed

procedure.
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Dβ
i Dβ

i

Mi Mi
D̃α

i D̃α
i

D̃β
i

D̃β
i

Dα
i Dα

i

mimi

Gi−1≤Gi ≤Gi+1 Gi−1≥Gi ≥Gi+1

•

•

◦

◦

Fig. 2.2. Projection of ( eDα
i , eDβ

i ) onto the convex set Gi for the sum problem.

Proposition 2.5. The projection operator ΠGi
introduced in (2.17) can be carried

out by the closed-form formulae

Dα
i = D̃α

i −{[D̃α
i ]+ +[D̃β

i ]−−Mi}
+−{[D̃α

i ]−+[D̃β
i ]+−mi}

− (2.21a)

Dβ
i = D̃β

i −{[D̃α
i ]−+[D̃β

i ]+−Mi}
+−{[D̃α

i ]+ +[D̃β
i ]−−mi}

−. (2.21b)

Proof. equations (2.21) are the algebraic translation of the geometric ideas pre-
sented in Figure 2.2.

At this point, we wish to provide an intuitive argument on why the new slope-
limiting procedure does not deteriorate too much accuracy. From formulae (2.21), we
see that

• either (Dα
i ,Dβ

i )=(D̃α
i ,D̃β

i ), that is, we are optimal with respect to the main
variables (α,β);

• or DG
i =Dα

i +Dβ
i is saturated at mi or Mi; by virtue of their values (2.17), this

amounts to saying that DG
i =UB(Gi−Gi−1,Gi+1−Gi) where UB denotes the

UltraBee limiter function defined in (2.9). As a consequence, we are optimal
with respect to the control variable G.

Numerical experiments presented in Section 2.3 will corroborate the above heuristic
explanation.

2.2. Variable velocity field. The velocities ui+1/2 =u(xi+1/2) are given
at the edges. We choose to discretize the advection equation ∂tψ+u∂xψ =0 by the
explicit scheme

ψ̂i = ψi−λ−
i−1/2

1−|λ|i
2 Dψ

i −λ+
i−1/2

{
ψi−

(
ψi−1 + 1−|λ|i−1

2 Dψ
i−1

)}

−λ+
i+1/2

1−|λ|i
2 Dψ

i +λ−
i+1/2

{
ψi−

(
ψi+1−

1−|λ|i+1

2 Dψ
i+1

)}
, (2.22)
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where

λi±1/2 =
ui±1/2∆t

∆x
, |λ|i =λ+

i−1/2−λ−
i+1/2. (2.23)

Scheme (2.22) appears to be one of the many possible second-order extensions [5] of
the first-order explicit scheme

ψ̂i =ψi−λ+
i−1/2(ψi−ψi−1)−λ−

i+1/2(ψi+1−ψi). (2.24)

Before discussing about the min-max principle, we feel it essential to draw the
reader’s attention on what is exactly meant by “second-order” for a variable velocity
field. A straightforward calculation shows that the modified equation equivalent to
the first-order scheme (2.24) formally reads

∂tψ+u∂xψ =
∆x

2
(∂xu)(∂xψ)+u

∆x

2
∂x{[1−|λ(u)|]∂xψ}. (2.25)

By taking into account the slope corrections, we find that the modified equation for
(2.22) actually reads

∂tψ+u∂xψ =
∆x

2
|λ(u)|(∂xu)(∂xψ). (2.26)

Therefore, unless ∂xu=0 in which case second-order accuracy rigorously holds true,
there is no hope to get rid of all the first-order terms in the right-hand side of (2.25),
and the scheme is only quasi second-order in space. As pointed out by LeVeque [5,
§9.3.1], this phenomenon is commonplace and occurs for all allegedly “second-order”
accurate schemes with a variable velocity. There does exist a genuinely second-order
accurate scheme for the variable-velocity case that can be derived from the Lax-
Wendroff approach [5, Exercise 9.2], the results of which are typically similar [5, §9.3.1]
but the stencil of which does not fit into the context of ALE codes.

For clarity of language, let us give names to the various situations that may occur
depending on the sign configuration S(i) in the neighborhood of cell i.

I. ui−1/2 >0 and ui+1/2≥0 (left to right propagation);
II. ui−1/2≤0 and ui+1/2 <0 (right to left propagation);

III. ui−1/2≤0 and ui+1/2≥0 (source);
IV. ui−1/2 >0 and ui+1/2 <0 (sink).

The min-max principle on ψ reads

ψ̂i ∈





⌊ψi−1,ψi⌉ if S(i)=I,

⌊ψi+1,ψi⌉ if S(i)=II,

⌊ψi−1,ψi,ψi+1⌉ if S(i)=III∪ IV.

(2.27)

The aim of the game is the same as before: we transport ψ =α and ψ =β by (2.22)
but require the min-max principle (2.27) on ψ =α, β and G. Of course, we rely on the
same kind of analysis as in the uniform velocity case, although the discussion becomes
much more involved.

For simplicity, we make additional assumptions in order to have statements similar
to the uniform case.

1. The CFL condition is about half the previous one. For all cell i, we have

|λi−1/2|+ |λi+1/2|<1. (2.28)
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2. The standard limiter function Λ used to compute the initial slopes (2.3) at
cell i is of strength lesser than 2/(1−|λ|i), i.e.,

|Λ(di−1/2,di+1/2)|≤
2

1−|λ|i
min{|di−1/2|,|di+1/2|}, (2.29)

where di−1/2 =ψi−ψi−1 and di+1/2 =ψi+1−ψi. This rules out the ultrabee
limiter (2.9), but authorizes minmod (2.4), van Leer (2.5), superbee (2.6) and
even hyperbee (2.8).

3. There is no sequence of source-sink (C–D) or sink-source (D–C) configuration
over two consecutive cells. Put another way,

6 ∃i∈Z | λi−1/2λi+1/2 <0 and λi+1/2λi+3/2 <0. (2.30)

Such a “saw-tooth” sequence can be avoided by refining the mesh sufficiently,
provided that the velocity field u(x) depends continuously on x.

In preparation for Theorem 2.6, we set

Φi =min{ 2
|λ|i

, 2
1−|λ|i

} (2.31)

and introduce the local bounds

Gm
i =1{S(i)=I} min{Gi−1,Gi}

+ 1{S(i)=II} min{Gi+1,Gi}+1{S(i)=III∪IV} min{Gi−1,Gi,Gi+1} (2.32a)

GM
i =1{S(i)=I} max{Gi−1,Gi}

+ 1{S(i)=II}max{Gi+1,Gi}+1{S(i)=III∪IV}max{Gi−1,Gi,Gi+1}, (2.32b)

where 1{.} is the characteristic function. Once all the Gm and GM have been com-

puted over the domain, we consider the set Gi of all pairs (Dα
i ,Dβ

i ) that satisfy:

• For case I (left-to-right propagation)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi ≤Dα
i +Dβ

i ≤Mi, (2.33)

with

mi = Φimax{Gm
i −Gi ; Gi −GM

i+1} (2.34a)

Mi = Φi min{Gi −Gm
i+1 ; GM

i −Gi}. (2.34b)

• For case II (right-to-left propagation)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi ≤Dα
i +Dβ

i ≤Mi, (2.35)

with

mi = Φimax{Gm
i −Gi ; Gi −GM

i−1} (2.36a)

Mi = Φi min{Gi −Gm
i−1 ; GM

i −Gi}. (2.36b)

• For case III (source)

[D̃α
i ]−≤Dα

i ≤ [D̃α
i ]+, [D̃β

i ]−≤Dβ
i ≤ [D̃β

i ]+, mi ≤Dα
i +Dβ

i ≤Mi, (2.37)

with

mi = Φimax{Gi−GM
i−1 ;Gi−GM

i ;Gm
i −Gi ;Gm

i+1−Gi} (2.38a)

Mi = Φi min{Gi−Gm
i−1 ;Gi−Gm

i ;GM
i −Gi ;G

M
i+1−Gi}. (2.38b)
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• For case IV (sink), Gi =R
2.

Theorem 2.6. Given an initial choice (D̃α
i ,D̃β

i ) in accordance with (2.3), (2.29), let
Gi ⊂R

2 be the convex set introduced above. For all i∈Z, define

(Dα
i ,Dβ

i )=

{
(D̃α

i ,D̃β
i ) if D̃α

i D̃β
i >0

ΠGi
(D̃α

i ,D̃β
i ) otherwise

(2.39)

where ΠGi
(.) denotes the projection onto the convex set Gi ⊂R

2. Then, under assump-
tions (2.28) and (2.30), we have the min-max principle (2.27) for ψ =α, β and G at
every cell i when updating (α,β) with scheme (2.22).

Proof. Since the proof is lengthy and relatively tedious, we are going to sketch
out its beginning in order for the readers to grasp the key ideas. Applying the update
formula (2.22) to ψ =α and β, then adding the equations together and substracting
by Gm

i and GM
i yields

Ĝi−Gm
i =Am

i +Bm
i−1 +Cm

i+1, Ĝi−GM
i =AM

i +BM
i−1 +CM

i+1, (2.40)

with

Am
i =(1−λ+

i−1/2 +λ−
i+1/2)(Gi−Gm

i )−(λ+
i+1/2 +λ−

i−1/2)
1−|λ|i

2 DG
i (2.41a)

Bm
i−1 =λ+

i−1/2(Gi−1−Gm
i )+λ+

i−1/2
1−|λ|i−1

2 DG
i−1 (2.41b)

Cm
i+1 =λ−

i+1/2(Gi+1−Gm
i )+λ−

i+1/2
1−|λ|i+1

2 DG
i+1, (2.41c)

and

AM
i =(1−λ+

i−1/2 +λ−
i+1/2)(Gi−GM

i )−(λ+
i+1/2 +λ−

i−1/2)
1−|λ|i

2 DG
i (2.42a)

BM
i−1 =λ+

i−1/2(Gi−1−GM
i )+λ+

i−1/2
1−|λ|i−1

2 DG
i−1 (2.42b)

CM
i+1 =λ−

i+1/2(Gi+1−GM
i )+λ−

i+1/2
1−|λ|i+1

2 DG
i+1, (2.42c)

using the shorthand notation DG =Dα +Dβ . In conformity with the splitting philos-
ophy already explained for the uniform velocity case, we separately impose

Am
i ≥0, Bm

i−1≥0, Cm
i+1≥0 (2.43a)

AM
i ≤0, BM

i−1≤0, CM
i+1≤0. (2.43b)

We then express (2.43) in terms of DG according to the sign configuration. In case

I (resp. II), we drop out the identically vanishing and useless inequalties on Cm,M
i+1

(resp. Bm,M
i−1 ) and we shift the index for the inequalties on Bm,M

i−1 (resp. Cm,M
i+1 ) in

order to ensure the min-max principle at the “receiving” neighbor i+1 (resp. i−1).
In case III, we have to keep all the conditions and shift the index for them, because
a source does have an influence on two receiving neighbors. In case IV, there is no
need to change DG

i because a sink does not have any influence on its neighbors and
the min-max principle at a sink is actually ensured by conditions imposed to the two
neighbors.

Despite its apparent complexity, this procedure lends itself very well to numerical
implementation. Instead of finding the image of the projection by hand, we can resort
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Fig. 2.3. Main variables α (upper panels) and β (lower panels) for the sum problem.
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to a subroutine for quadratic minimization under linear inequality constraints. This
will be addressed in Section 4.
Remark 2.7. It can be shown that in the (Dα

i ,Dβ
i )-plane, the set of points defined

by the inequalities mi ≤Dα
i +Dβ

i ≤Mi in cases I, II and III always contain the strip

max{[Gi−Gi−1]
−,[Gi+1−Gi]

−}≤
Dα

i +Dβ
i

Φi
≤min{[Gi−Gi−1]

+,[Gi+1−Gi]
+}.

Therefore, if we consent to project onto a smaller convex set, it is possible to find the
new slopes by explicit formulae similar to (2.21). The price to be paid is a slightly
larger amount of dissipation.

2.3. Numerical results. In Figures 2.3 and 2.4, we compare the results of
three different schemes and the exact solution for an experiment over the space-
time domain (x,t)∈ [0,500m]× [0,200s] with the positive velocity field u=2m/s. The
piecewise linear initial data

[
α
β

]
(x,t=0)=

[
0.725
0.025

]
1{x<10}+

[
1.025−0.03x

−0.025+0.005x

]
1{10<x<30}

+

[
0.3125−0.00625x
−0.8125+0.03125x

]
1{30<x<40}

+

[
0.0625
0.4375

]
1{40<x<50}+

[
0

0.5

]
1{50<x}

(2.44)

have been tailored in such a way that:

• α is decreasing and β is increasing, therefore we have (αi−αi−1)(βi−βi−1)≤
0 for all cell i in the domain, which activates the slope-projection mechanism
all the time;

• both α and β are discontinuous at x=50m, while being continuous with
respect to x everywhere else;

• G=α+β exhibits a local minimum at x=30m; moreover, G remains contin-
uous across x=50m.

The spatial domain is discretized by a uniform grid of size ∆x=1m. At the inlet
boundary x=0m, we maintain (α,β) at their left-most initial values (0.725, 0.025).
No special treatment is necessary at the outlet boundary x=500m. Simulations are
run with two values for the CFL ratio: λ=0.8 and λ=0.4.

The curves for the first-order accurate scheme are very much smeared out and
are very sensitive to λ. Those for the two second-order accurate schemes are in very
good agreement with the exact solution. What we mean by “old second-order” is
the scheme with the initial slopes, computed component-wise. Of course, the “new
second-order” is endowed with our coupling device for the slopes.

A close inspection of the curves reveals that in the vicinity of x=450m (which is
equal to 50m+2m/s×200s), the old second-order accurate scheme exhibits spurious
oscillations on the control variable G, as evidenced by the close-up in the lower panels
of Figure 2.4. The smaller λ is, the stronger are the oscillations. As far as the new
second-order is concerned, there is no violation of the min-max principle.

In order to assess how much the accuracy is sacrificed, we proceed to a study of
convergence. Figure 2.5 displays the L1 total relative error (that is, the sum of the L1

relative errors on the two components α and β) of the computed solution versus the
mesh size ∆x on a log-log scale. The mesh size takes the decreasing values 2, 1, 0.5,
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Fig. 2.5. Accuracy measurements for the sum problem.

0.25 and 0.125. We observe that the curves corresponding to the “old” scheme and
the “new” one are very close to each other, and lie very far from that of the first-order
scheme. This favorable feature is corroborated by Table 2.1, where we compute the
order of convergence of the schemes by least-square fit.

λ=0.8 λ=0.4
1st order 0.66739 0.68137

old 2nd order 1.37746 1.34669
new 2nd order 1.24037 1.26302

Table 2.1. Orders of convergence for the sum problem.

3. The fraction problem
We now turn to the transport of a total density and a partial density, the quotient

of the latter by the former being a mass fraction. More specifically, we put

Ψ=(ρ,κ)∈R
2
+, Y (Ψ)=

κ

ρ
∈ [0,1]. (3.1)

3.1. Uniform velocity. From a time level to the next one, the update
formulae for (ρ, κ) are

ρ̂i =ρi −λ{[ρi+
1−λ

2 Dρ
i ]−[ρi−1+ 1−λ

2 Dρ
i−1]} (3.2a)

κ̂i =κi−λ{[κi+
1−λ

2 Dκ
i ]−[κi−1+

1−λ
2 Dκ

i−1]}, (3.2b)

where λ is defined in (1.6). Consider the initial slopes

D̃ρ
i =Λ(ρi−ρi−1,ρi+1−ρi), D̃κ

i =Λ(κi−κi−1,κi+1−κi). (3.3)

For the same reasons as in Lemma 2.1, we have the following result.

Lemma 3.1. If the slopes (Dρ
j ,Dκ

j ) in (3.2) satisfy

[D̃ρ
j ]−≤Dρ

j ≤ [D̃ρ
j ]+, [D̃κ

j ]−≤Dρ
j ≤ [D̃κ

j ]+ (3.4)

for j = i−1 and j = i, then ρ̂i ∈⌊ρi−1,ρi⌉ and κ̂i ∈⌊κi−1,κi⌉.
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The control fraction Y is computed by Yi =κi/ρi and Ŷi = κ̂i/ρ̂i. Contrary to the
intuition, it will be erroneous to think that carrying out the slope reconstruction on
ρ and Y solves the problem. Indeed, the min (resp. max) of a product is not the
product of the min values (resp. max values).

Mi

Yi−1

(ρi−ρi−1)(κi−κi−1)≤0 (ρi−ρi−1)(κi−κi−1)>0

Mi

Yi

Yi−1

Mi−1

Yi

Mi−1

ρ

κ κ

ρ

¥

M̂i

M̂i

¥

Fig. 3.1. Geometric analysis of the min-max principle for the fraction problem.

Proposition 3.2. If (ρi−ρi−1)(κi−κi−1)≤0 and if the slopes (Dρ
j ,Dκ

j ) satisfy (3.4)

for j = i−1 and j = i, then Ŷi ∈⌊Yi−1,Yi⌉.

Proof. In the quarter-plane (ρ,κ)∈R+×R+, let us depict the points

Mi−1 =(ρi−1,κi−1), Mi =(ρi,κi), M̂i =(ρ̂i,κ̂i). (3.5)

as in Figure 3.1. The min-max principles ρ̂i ∈⌊ρi−1,ρi⌉ and κ̂i ∈⌊κi−1,κi⌉, which

follow from Lemma 3.1, amount to saying that M̂i belongs to the rectangle Ri whose
opposite vertices are Mi−1 and Mi and whose sides are parallel to the horizontal and
vertical axes. Draw the lines Yi−1 and Yi defined by κ/ρ=Yi−1 and κ/ρ=Yi.

If (ρi−ρi−1)(κi−κi−1)≤0, then the rectangle Ri is entirely included in the cone
of lines defined by the rays Yi−1 and Yi. Therefore, the isoline of κ/ρ passing through

M̂i lies between Yi−1 and Yi, which is algebraically equivalent to Ŷi ∈⌊Yi−1,Yi⌉.
If (ρi−ρi−1)(κi−κi−1)>0, the rays Yi−1 and Yi cut the rectangle Ri into three

pieces, and it may happen that M̂i lies outside the cone, which violates the desired
min-max principle.

To know what should be done for the case (ρi−ρi−1)(κi−κi−1)>0, we introduce

Y m
i =min{Yi−1,Yi}, Y M

i =max{Yi−1,Yi}, (3.6)

and seek sufficient conditions at a given cell i under the assumption λ<1.

Lemma 3.3. For a given cell i, if

Y M
i Dρ

i + 2
λ (κi −Y M

i ρi) ≤ Dκ
i ≤ Y m

i Dρ
i + 2

λ (κi −Y m
i ρi), (3.7a)

Y m
i Dρ

i−1−
2

1−λ (κi−1−Y m
i ρi−1) ≤ Dκ

i−1 ≤Y M
i Dρ

i−1−
2

1−λ (κi−1−Y M
i ρi−1), (3.7b)

then Y m
i ≤ Ŷi ≤Y M

i .

Proof. A straightforward calculation shows that

κ̂i−Y m
i ρ̂i =(1−λ)Am

i +λBm
i−1, κ̂i−Y M

i ρ̂i =(1−λ)AM
i +λBM

i−1, (3.8)



QUANG HUY TRAN 583

with

Am
i =(κi − Y m

i ρi) − λ
2 (Dκ

i − Y m
i Dρ

i ) (3.9a)

AM
i =(κi −Y M

i ρi) − λ
2 (Dκ

i −Y M
i Dρ

i ) (3.9b)

Bm
i−1 =(κi−1− Y m

i ρi−1)+
1−λ

2 (Dκ
i−1− Y m

i Dρ
i−1) (3.9c)

BM
i−1 =(κi−1−Y M

i ρi−1)+
1−λ

2 (Dκ
i−1−Y M

i Dρ
i−1). (3.9d)

In order to ensure κ̂i−Y m
i ρ̂i ≥0 and κ̂i−Y M

i ρ̂i ≤0, our strategy consists in splitting
the summands involved in (3.8). By forcibly imposing

Am
i ≥0, AM

i ≤0, Bm
i−1≥0, BM

i−1≤0, (3.10)

we end up with the set of inequalities (3.7).

Theorem 3.4. Given an initial choice (D̃ρ
i ,D̃κ

i ) in accordance with (3.3), let Yi ⊂R
2

be the set of all pairs (Dρ
i ,Dρ

i ) subject to the 8 linear inequality constraints

[D̃ρ
i ]−≤Dρ

i ≤ [D̃ρ
i ]+, [D̃κ

i ]−≤Dκ
i ≤ [D̃κ

i ]+, mi(D
ρ
i )≤Dκ

i ≤Mi(D
ρ
i ), (3.11)

with

mi(D
ρ
i )=max{Y M

i Dρ
i + 2

λ (κi−Y M
i ρi) ; Y m

i+1D
ρ
i −

2
1−λ (κi−Y m

i+1ρi)} (3.12a)

Mi(D
ρ
i )= min{ Y m

i Dρ
i + 2

λ (κi−Y m
i ρi) ; Y M

i+1D
ρ
i −

2
1−λ (κi−Y M

i+1ρi)}. (3.12b)

For all i∈Z, define

(Dρ
i ,Dκ

i )=

{
(D̃ρ

i ,D̃κ
i ) if D̃ρ

i D̃κ
i <0

ΠYi
(D̃ρ

i ,D̃ρ
i ) otherwise

(3.13)

where ΠYi
(.) denotes the projection onto the convex set Yi ⊂R

2. Then, we have the
min-max principles

ρ̂i ∈⌊ρi−1,ρi⌉, κ̂i ∈⌊κi−1,κi⌉, Ŷi ∈⌊Yi−1,Yi⌉, (3.14)

at every cell i when updating (ρ,κ) with scheme (3.2).

Proof. The proof is similar to that of Theorem 2.4.

The practical implementation of the projection onto Yi in this problem can be
done via the explicit formulae given in Proposition 3.5. Figure 3.2 displays a few
situations for a locally increasing or decreasing behavior of Y . It can be readily proven
that the constraints mi(D

ρ
i )≤Dκ

i ≤Mi(D
ρ
i ) correspond in reality to a triangle in the

(Dρ
i ,Dκ

i )-plane. The slopes of its sides are Yi−1, Yi and Yi+1. The side with slope Yi

passes through the origin and connects the points − 2
1−λ (ρi,κi) and 2

1−λ (ρi,κi).
Should a local extremum occur, i.e., (Yi−1−Yi)(Yi+1−Yi)>0, this triangle de-

generates into the segment joining these two points. Hence, Dκ
i =YiD

ρ
i whenever the

projection operator ΠYi
is activated, and we formally have DY

i =(Dκ
i −YiD

ρ
i )/ρi =0.

This testifies to a clipping mechanism on Y .

Proposition 3.5. The projection operator ΠYi
introduced in (3.13) can be carried

out via the following two-step procedure:
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Dκ
i Dκ

i

Yi−1≤Yi ≤Yi+1 Yi−1≥Yi ≥Yi+1
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D̃ρ
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Yi

D̃κ
i
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Yi−1

D̃κ
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i

•

•

Dρ
i Dρ

i

2
λ (ρi,κi)

− 2
1−λ (ρi,κi)

◦

◦

Fig. 3.2. Projection of ( eDρ
i , eDκ

i ) onto the convex set Yi for the fraction problem.

1. Compute

D̆κ
i = min{[D̃κ

i ]+ ; 2
λκi}+ max{[D̃κ

i ]− ;− 2
1−λκi} (3.15a)

D̆ρ
i = min{[D̃ρ

i ]+ ; 2
λρi} + max{[D̃ρ

i ]− ;− 2
1−λρi}. (3.15b)

2. Truncate

Dκ
i = D̆κ

i −min{[K↑
i ]+ ; [K↑

i −L↑
i ]

+}−max{[K↓
i ]− ; [K↓

i −L↓
i ]

−} (3.16a)

Dρ
i = D̆ρ

i −min{[R↑
i ]

+ ; [R↑
i −S↑

i ]+} −max{[R↓
i ]

− ; [R↓
i −S↓

i ]−}, (3.16b)

with

K↑
i = [D̆κ

i ]+−Yi[D̆
ρ
i ]+, K↓

i = [D̆κ
i ]−−Yi[D̆

ρ
i ]− (3.17a)

R↑
i = [D̆ρ

i ]+−
1

Yi
[D̆κ

i ]+, R↓
i = [D̆ρ

i ]−−
1

Yi
[D̆κ

i ]−, (3.17b)

and

L↑
i =minmod( 2

λ (κi−Yi−1ρi)+(Yi−1−Yi)[D̆
ρ
i ]+, (3.18a)

− 2
1−λ (κi−Yi+1ρi)+(Yi+1−Yi)[D̆

ρ
i ]+) (3.18b)

L↓
i =minmod( 2

λ (κi−Yi−1ρi)+(Yi−1−Yi)[D̆
ρ
i ]−, (3.18c)

− 2
1−λ (κi−Yi+1ρi)+(Yi+1−Yi)[D̆

ρ
i ]−) (3.18d)

S↑
i =minmod( 2

λ (ρi−
1

Yi−1
κi)+( 1

Yi−1
− 1

Yi
)[D̆κ

i ]+, (3.18e)

− 2
1−λ (ρi−

1
Yi+1

κi)+( 1
Yi+1

− 1
Yi

)[D̆κ
i ]+) (3.18f)

S↓
i =minmod( 2

λ (ρi−
1

Yi−1
κi)+( 1

Yi−1
− 1

Yi
)[D̆κ

i ]−, (3.18g)

− 2
1−λ (ρi−

1
Yi+1

κi)+( 1
Yi+1

− 1
Yi

)[D̆κ
i ]−). (3.18h)

Proof. The above formulae are the algebraic translation of the geometric ideas
sketched out in Figure 3.2.
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3.2. Variable velocity field. The setting is identical to that of the sum
problem. Introduce the local bounds

Y m
i =1{S(i)=I} min{Yi−1,Yi}

+1{S(i)=II} min{Yi+1,Yi}+1{S(i)=III∪IV} min{Yi−1,Yi,Yi+1} (3.19a)

Y M
i =1{S(i)=I} max{Yi−1,Yi}

+1{S(i)=II}max{Yi+1,Yi}+1{S(i)=III∪IV}max{Yi−1,Yi,Yi+1}. (3.19b)

Once all the Y m and Y M have been computed over the domain, we consider the set
Yi of all pairs (Dρ

i ,Dκ
i ) that satisfy:

• For case I (left-to-right propagation)

[D̃ρ
i ]−≤Dρ

i ≤ [D̃ρ
i ]+, [D̃κ

i ]−≤Dκ
i ≤ [D̃κ

i ]+, mi(D
ρ
i )≤Dκ

i ≤Mi(D
ρ
i ), (3.20)

with

mi(D
ρ
i )=max{Y M

i Dρ
i +Φi(κi−Y M

i ρi) ; Y m
i+1D

ρ
i −Φi(κi−Y m

i+1ρi)} (3.21a)

Mi(D
ρ
i )= min{Y m

i Dρ
i +Φi(κi−Y m

i ρi) ; Y M
i+1D

ρ
i −Φi(κi−Y M

i+1ρi)}. (3.21b)

• For case II (right-to-left propagation)

[D̃ρ
i ]−≤Dρ

i ≤ [D̃ρ
i ]+, [D̃κ

i ]−≤Dκ
i ≤ [D̃κ

i ]+, mi(D
ρ
i )≤Dκ

i ≤Mi(D
ρ
i ), (3.22)

with

mi(D
ρ
i )=max{Y M

i Dρ
i +Φi(κi−Y M

i ρi) ;Y m
i−1D

ρ
i −Φi(κi−Y m

i−1ρi)} (3.23a)

Mi(D
ρ
i )= min{Y m

i Dρ
i +Φi(κi−Y m

i ρi) ;Y M
i−1D

ρ
i −Φi(κi−Y M

i−1ρi)}. (3.23b)

• For case III (source)

[D̃ρ
i ]−≤Dρ

i ≤ [D̃ρ
i ]+, [D̃κ

i ]−≤Dκ
i ≤ [D̃κ

i ]+, mi(D
ρ
i )≤Dκ

i ≤Mi(D
ρ
i ), (3.24)

with

mi(D
ρ
i )=max{Y M

i−1D
ρ
i +Φi(κi−Y M

i−1ρi);Y
m
i Dρ

i −Φi(κi−Y m
i ρi);

Y M
i Dρ

i +Φi(κi−Y M
i ρi) ;Y m

i+1D
ρ
i −Φi(κi−Y m

i+1ρi)} (3.25a)

Mi(D
ρ
i )= min{Y m

i−1D
ρ
i +Φi(κi−Y m

i−1ρi);Y
m
i Dρ

i +Φi(κi−Y m
i ρi);

Y M
i Dρ

i −Φi(κi−Y M
i ρi) ;Y M

i+1D
ρ
i −Φi(κi−Y M

i+1ρi)}. (3.25b)

• For case IV (sink), Yi =R
2.

Theorem 3.6. Given an initial choice (D̃ρ
i ,D̃κ

i ) in accordance with (3.3), (2.29), let
Yi ⊂R

2 be the convex set introduced above. For all i∈Z, define

(Dρ
i ,Dκ

i )=

{
(D̃ρ

i ,D̃κ
i ) if D̃ρ

i D̃κ
i <0

ΠYi
(D̃ρ

i ,D̃κ
i ) otherwise

(3.26)

where ΠYi
(.) denotes the projection onto the convex set Yi ⊂R

2. Then, under as-
sumptions (2.28) and (2.30), we have the min-max principle (2.27) for ψ =ρ,κ and
Y at every cell i when updating (ρ,κ) with scheme (2.22).
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Proof. The proof is similar to that of Theorem 2.6.

Again, we recommend a minimization subroutine to perform the projection.

Remark 3.7. In the (Dρ
i ,Dκ

i )-plane, let A and B be the points located at

A=−
1

Φi
(ρi,κi), B=

1

Φi
(ρi,κi).

It can be shown that, the set of points defined by the inequalities mi(D
ρ
i )≤Dκ

i ≤
Mi(D

ρ
i ) in cases I, II and III is the segment AB if (Yi−Yi−1)(Yi−Yi+1)≥0. For

(Yi−Yi−1)(Yi−Yi+1)<0, this domain always contains the triangle ABC, in which the
slope of (AC) is Yi+1 and the slope of (CB) is Yi−1. Therefore, if we consent to project
onto a smaller convex set, it is possible to find the new slopes by explicit formulae
similar to (3.15)–(3.18).
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Fig. 3.3. Main variables ρ (upper panels) and κ (lower panels) for the fraction problem.

3.3. Numerical results. In Figures 3.3 and 3.4, we compare the results of
three different schemes and the exact solution for an experiment over the space-
time domain (x,t)∈ [0,1200m]× [0,400s] with the positive velocity field u=2m/s. The
initial data

[
ρ
Y

]
(x,t=0)=

[
100
0.1

]
1{x<100}+

[
120
0.5

]
1{100<x<200}

+

[
−600+3.6x
0.9−0.002x

]
1{200<x<250}

+

[
300

−1.1+0.006x

]
1{250<x<300}+

[
400
0.7

]
1{300<x}

(3.27)
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Fig. 3.4. Control variable Y =κ/ρ for the fraction problem.

have been tailored in such a way that:

• ρ and κ=Yρ are both increasing, therefore we have (ρi−ρi−1)(κi−κi−1)≥0
for all cell i in the domain, which activates the slope-projection mechanism
all the time;

• both ρ and κ are discontinuous at x=100m and at x=300m, while being
continuous with respect to x everywhere else;

• Y exhibits a local minimum at x=250m; moreover, Y is discontinuous at
x=100m but remains continuous across x=300m.

The space domain is discretized by a uniform grid of size ∆x=1m. At the inlet
boundary x=0m, we maintain (ρ,κ) at their left-most initial values (100,10). No
special treatment is necessary at the outlet boundary x=1200m. Simulations are run
with two values for the CFL ratio: λ=0.8 and λ=0.4.

The curves for the first-order scheme are very much smeared out and turn out
to be very sensitive to λ. Those for the two second-order accurate schemes are in
very good agreement with the exact solution. The labels “old second-order” and
“new second-order” have the same meaning as in section 2.3. We see that in the
vicinity of x=1100m (which is equal to 300m+2m/s×400m), the old second-order
accurate scheme does not comply with the min-max principle on the control variable
Y . The violation increases as the CFL ratio λ decreases. As for the new second-order
accurate scheme, it does not exhibit any oscillation on Y , as testified by the lower
panel of Figure 3.4.

The behavior of the accuracy is shown in the study of convergence of Figure 3.5,
where the total L1-relative error (that is, the sum of the L1-relative errors on the two
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Fig. 3.5. Accuracy measurements for the fraction problem.

components ρ and κ) of the computed solution is displayed versus the mesh size ∆x
on a log-log scale. The mesh size takes the sequence of decreasing values 2, 1, 0.5, 0.25
and 0.125. Again, there is no significant discrepancy between the curves corresponding
to the “old” scheme and the “new” one. According to Table 3.1, where we compute
the order of convergence of the schemes by least-square fit, the convergence of the new
second-order accurate scheme is somewhat slower than that of the old second-order
accurate scheme.

λ=0.8 λ=0.4
1st order 0.55155 0.55049

old 2nd order 1.14250 1.16673
new 2nd order 1.06267 1.07509

Table 3.1. Orders of convergence for the fraction problem.

4. The general problem

We go back to the problem stated in the Introduction. The ideas presented for
the sum problem and the fraction problem can be carried over to the case of several
control variables G, each of them being a first-order rational fraction with respect to
Ψ∈R

P
+, that is,

Gq(Ψ)=
aq
0 +aq

1ψ
1 + ...+aq

P ψP

bq
0 +bq

1ψ
1 + ...+bq

P ψP
, (4.1)

with bq
p ≥0 for all 1≤p≤P , 1≤ q≤Q. This class of homographic functions is wide

enough to represent a vast majority of control variables in real-life applications.

4.1. Uniform velocity. Assuming u>0, we define

(ψq
i )m =min{ψq

i−1,ψ
q
i }, (ψq

i )M =max{ψq
i−1,ψ

q
i }, (4.2)

and

(Gq
i )

m =min{Gq
i−1,G

q
i }, (Gq

i )
M =max{Gq

i−1,G
q
i }. (4.3)
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Our objective is to find the slopes Di =(D1
i ,... ,DP

i ), which should be as close as pos-

sible to the initial slopes D̃i =(D̃1
i ,... ,D̃P

i ) computed component-wise by a standard
limiter function, so that by updating Ψ with (1.5), we have not only

(ψq
i )m ≤ ψ̂q

i ≤ (ψq
i )M , (4.4)

but also

(Gq
i )

m ≤ Ĝq
i =Gq(Ψ̂i)≤ (Gq

i )
M . (4.5)

Getting rid of the denominator in Gq, the above condition can be cast into two
linear inequalities involving (Ψi−1,Ψi) and (Di−1,Di). The splitting strategy enables
us to break these inequalities into local conditions which do not couple Di−1 and Di.

These conditions, once gathered, express that we must project the initial guess D̃i

onto a convex set Gi ⊂R
P defined by 2P bound constraints (to ensure monotonicity

on Ψ) and 4Q non-trivial linear inequalities (to ensure monotonicity on G).

To carry out this projection, we reformulate the projection operator as a quadratic
minimization problem

min
Di∈Gi

1
2‖Di−D̃i‖

2 (4.6)

subject to linear inequality constraints. We recall that by virtue of Hilbert’s theorem
about projection onto a convex non-empty set, there is a unique solution to problem
(4.6). In the context of the applications we have in mind, the Euclidean norm does
make sense, insofar as the components of Ψ are homogeneous to a density. We advo-
cate the use of an existing subroutine, e.g., the QL algorithm by Schittkowski [6], the
advantage of which lies in its fast convergence. Moreover, it can be initialized with
Di = D̃i, which is not necessarily a feasible point.

Before launching the optimization procedure, however, we have to carefully de-
termine the regions in the Di-space for which the min-max principle on G is auto-
matically guaranteed and for which there is no need to perform projection (for the

sum problem, this region is Dα
i Dβ

i >0 and for the fraction problem, this is Dρ
i Dκ

i <0).
This crucial preliminary step is meant to maintain sharp profiles. It can only be done
on a case-by-case basis.

4.2. Variable velocity field. The ideas remain the same as in the uniform
velocity case, but the calculations are trickier. On one hand, the definitions of the
local bounds depend on the sign configuration at the edges of each cell. On the other
hand, the inequalities to be split now involve Di−1,Di and Di+1. As a consequence,
after imposing positivity or negativity to the summands separately, we end up with
more than 4Q non-trivial combinations for case III (source). Nevertheless, this is not
a difficulty because the hard part of the job is done by the optimization subroutine.

The extra time incurred by the latter depends on the size of P and Q. Numerical
experiments reveal that for a typical multi-specie flow model (P ≈10, Q≈5), such as
in [1,8], the CPU ratio never exceeds 2. Besides, we have to be aware of the fact that
the remap phase contributes little to the overall computational time of the nonlinear
Euler code. From this global point of view, the reward brought by the min-max
principle on the main and control variables is worth an increase by a factor 2 in the
CPU time of the remap phase, which is not really significant!
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4.3. A selected example. Consider the following “two-sum four-species”
problem. Let Ψ=(α,β,γ,δ)∈R

4
+ and

G(Ψ)=(e, f)=(7α+γ, 2β+2γ+δ). (4.7)

The densities α, β, γ, δ respectively correspond to the four species C7H16, O2, CO2,
H2O, related to each other through the reversible chemical reaction

C7H16 +11O2 ⇄7CO2 +8H2O (4.8)

which takes place at the known rate

R(α,β,γ,δ)=K+αβ11−K−γ7δ8. (4.9)

This implies the evolution equations

∂tα+u∂xα=− R(α,β,γ,δ) (4.10a)

∂tβ+u∂xβ =−11R(α,β,γ,δ) (4.10b)

∂tγ+u∂xγ = 7R(α,β,γ,δ) (4.10c)

∂tδ+u∂xδ = 8R(α,β,γ,δ). (4.10d)

By linear combinations of (4.10), it can be inferred that

∂te+u∂xe=∂tf +u∂xf =0, (4.11)

which highlights e and f as control variables. In the present case, e is the carbon
tracer, and f the oxygen tracer. Since the third component γ is involved in the
definition of both tracers e and f , this problem cannot be decomposed into two
independent one-sum problems.

As in Section 2, we consider the space-time domain (x,t)∈ [0,500m]× [0,200s],
over which linear advection is performed at the velocity u=2m/s. The initial data




α
β
γ
δ


(x,t=0)=




0.35
0.2

0.025
1.55


1{x<10}+




0.45−0.01x
0.175+0.0025x

0.0125+0.00125x
1.85−0.03x


1{10<x<30}

+




0.3−0.005x
−1.1+0.045x
−1.6+0.055x
1.1−0.005x


1{30<x<40}

+




0.1
0.7
0.6
0.9


1{40<x<50}+




0.05
0.75
0.95
0.1


1{50<x}

(4.12)

have been designed so that the slope-projection mechanism is always activated. The
main variables α, β, γ, δ are monotone and discontinuous at x=50m, while the control
variables e,f are continous across this point and exhibit local minima. The space
domain is discretized by a uniform grid of size ∆x=1m. Since we are primarily
interested in the transportation of data, we do not prescribe any chemical reaction
here. In other words, we set R =0. Nevertheless, in order to get closer to “real”
operating conditions, we run the simulations with the CFL ratio λ=0.1: indeed,
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Fig. 4.1. Main variables α,β,γ,δ for the two-sum four-species problem.
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Fig. 4.3. Accuracy measurements for the two-sum four-species problem.

chemical reactions usually induce very small time-steps of this order of magnitude.
At the inlet boundary x=0m, we maintain (α, β, γ, δ) at their left-most initial values
(0.35, 0.2, 0.025, 1.55). No special treatment is necessary at the outlet boundary x=
500m.

As shown in Figs 4.1 and 4.2, the first-order accurate scheme is so dissipative
that the local minima in e and f are not correctly captured. The two second-order
accurate schemes are in very good agreement with the exact solution, but the “old”
one using decoupled slopes has spurious oscillations in the region where the tracers
e,f have to remain constant. The “new” one enables us to avoid this phenomenon,
at the price of a less sharp capturing of the local minima.

The behavior of the total L1-relative error (that is, the sum of the L1-relative
errors on the four main variables α, β, γ, δ) is shown in the study of convergence of
Figure 4.3, equipped with a log-log scale. The difference between the “old” scheme and
the “new” one is now stronger and more visible than in the two previous problems (sum
and fraction). However, the accuracy remains at a very acceptable level, compared to
the first-order scheme. The numerical orders of convergence, obtained by regression,
are:

1st order 0.58790
old 2nd order 1.28209

new 2nd order 1.12846

5. Conclusion
We hope the slope-reconstruction methodology proposed in this paper, based on

a mathematically sound analysis while being not too much expensive, will be helpful
to the practitioners who have to daily face similar problems. Current works are in
progress in order to extend this approach to multi-dimensional problems in a rigorous
way.
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