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LOCAL SMOOTH SOLUTIONS OF THE INCOMPRESSIBLE K-ε
MODEL AND THE LOW TURBULENT DIFFUSION LIMIT∗

JULIEN MATHIAUD†

Abstract. The aim of this paper is to study the local in time well posedness of the incompressible
k-ε model in a 3d periodic domain. In the case when turbulent diffusion is much smaller than
dissipation, asymptotic expansions are also derived, supposing that the velocity of the fluid can be
neglected.
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1. Introduction

The k-ε model is widely used in various physical models to assess isotropic turbu-
lence effects (see [19]). It is based on two scalar quantities characterizing turbulence:
the kinetic turbulent energy and the rate of dissipation of turbulent energy. This
model, proposed by Launder and Spalding ([12]), was designed to model the evo-
lution of large turbulent structures and their effect on the large scale mean flow.
Its main applications can be found in aerodynamics, for instance to study the influ-
ence of turbulence on airfoil boundary layers (cf. [4] and [7]). It is also considered
for modelling turbulent mixing induced by Rayleigh-Taylor, Kelvin-Helmholtz and
Richtmyer-Meshkov instabilities, for instance in an astrophysical context.

As a matter of fact, observations of the famous supernova 1987A have indicated
that radioactive cobalt is far more thoroughly distributed among the explosive debris
in the envelope than was predicted by model calculations of thin-shell nucleosynthe-
sis in the pre-supernova star. It suggests the occurrence of large-scale mixing in the
ejecta during the explosion [10, 1]. The most promising mechanism for explaining
mixing in the ejecta is a combination of the Rayleigh-Taylor and Kelvin-Helmholtz
instabilities. The Rayleigh-Taylor instability can arise in the supernova envelope when
the outwardly moving shock wave from the initial explosion propagates through lay-
ers of the star with radial stratification of the heavy elements. As the shock passes
through the composition interfaces (i.e., oxygen/silicon, helium/carbon+oxygen and
hydrogen/helium), a rarefaction front moves back into the star, resulting in an ef-
fective reversal of gravity as low-density composition is pressure-accelerated into the
underlying high-density composition. Any perturbation at the interface (i.e., velocity
perturbation or spatial perturbation) will get amplified by the Rayleigh-Taylor and
Richtmyer-Meshkov instabilities and result in the overturning of light and heavy ele-
ments. This results in the mixing of heavy elements throughout the envelope of the
supernova remnant, with associated observational consequences in the light curve. A
further mixing will occur as the dense “tongues” of the heavy elements experience dif-
ferential shear with the lighter elements, resulting in Kelvin-Helmholtz instabilities.
Thus the fingers of heavy and light fluid that developed initially get far more dis-
torted and the mixing layer increases its width. Eventually these instabilities become
so nonlinear that the mixing layer appears to become fully turbulent. The properties
of turbulently mixed layers may be equally important in understanding how inter-
stellar clouds get reprocessed back into the interstellar medium. Efficient mixing of
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cloud and inter-cloud matter has been shown to occur after clouds get crushed by the
interaction of strong shocks from supernova remnants [8] [9].

Here we study the mathematical properties of the incompressible model. Let us
emphasize that this model is widely used in industrial codes because of its physical
relevance and its simplicity. In order to introduce the mathematical setting and write
the model equations, let us first introduce some notations. The domain will be a 3-
dimensional box T

3 =R
3/(2πZ)3 with periodic boundary conditions in order to avoid

additional difficulties (specific physical modelling and mathematical tools are needed
to handle boundaries but here we choose not to deal with boundary layers for sake of
simplicity). The system of equations can be written as follows (cf.[19]):

∂U

∂t
+U ·∇U +∇P −ν∆U −∇·R=0, (1.1)

∇·U =0, (1.2)

∂k

∂t
+U ·∇k− cµ

2

k2

ε
|∇U +∇UT |2−∇·

(

cµ
k2

ε
∇k

)

+ε=0, (1.3)

∂ε

∂t
+U ·∇ε− c1

2
k|∇U +∇UT |2−∇·

(

cε
k2

ε
∇ε

)

+c2
ε2

k
=0, (1.4)

U(0,x)=U0(x), k(0,x)=k0(x), ε(0,x)=ε0(x), (1.5)

where U :=U(t,x)∈R
3 denotes the large scale flow, k :=k(t,x) the kinetic turbulent

energy, ε :=ε(t,x) its dissipation rate. P =P (t,x) stands for the mean pressure of the
fluid; as usual in incompressible fluid models, it may be interpreted as a lagrangian
multiplier of the constraint (1.2). Moreover, R :=R(t,x) denotes the Reynolds stress
tensor, given by

R=−2

3
kI +cµ

k2

ε
(∇U +∇UT ). (1.6)

Finally, ν denotes the constant positive molecular viscosity of the fluid, while c1, c2,
cµ and cε are given positive constants that allow to capture the large scale features of
turbulence (typical numerical values taken in realistic computations are: c1 =0.126,
c2 =1.92, cµ =0.09 and cε =0.07).

For a survey about uniqueness and existence results concerning the Navier-Stokes
equation without the k-ε extension, we refer to [16]. Some inequalities on k and ε can
be found in [14] and [19]: they are extended here using the same ideas. There also exist
some results on a modified k-ε model (the so-called φ-θ model) given by Mohammadi
and Lewandowski ([15]) when U is supposed to be known so that one has only to solve
the equations on φ and θ (which are very close to (1.3) and (1.4)); nonetheless the
solutions which are found are more general than the ones found here — in a weaker
sense — and still unique. More recently, the elliptic problem associated to k and ε has
been studied ([6, 13]): this problem arises in geophysics when one intends to study
stationary mean flows. Weak solutions have been found: the main difficulty is to deal

with the control of the singularity of the turbulent viscosity cµ
k2

ε , when k and ε both
tend to zero, as we will also see in this paper.

As far as we know, the following is the first result on smooth solutions for the
coupled equations (1.1)–(1.6).

The aim of this article is to provide a first study of this problem:
1. First we prove the following result for short enough time:
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Theorem 1.1 (existence and uniqueness of smooth solutions).
The following two results hold:

(a) Let the initial data U0, k0, ε0 be in Hs for s>4+3/2 (s∈N) with k0 and
ε0 bounded away from zero by a positive constant. Then there exists a
positive T and a strong1 solution (U,k,ε) to system (1.1)–(1.6) on [0,T ]
which belongs to C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)) such that k and
ε remain positive on [0,T ].

(b) Moreover let (U1,k1,ε1) and (U2,k2,ε2) be two solutions of system (1.1)–
(1.6) in the sense of distributions. We suppose that they belong to
C([0,T ];H2(T3))∩C1([0,T ];L2(T3)) and that k1, ε1, k2 and ε2 are posi-
tive functions.
If U0

1 =U0
2 , k0

1=k0
2, ε0

1=ε0
2, then U1=U2, k1=k2, ε1=ε2 on [0,T ].

2. Then we study a particular regime when turbulent diffusion effects are small
compared with dissipation and when the mean flow is supposed to be at rest
(so that U is considered to be identically 0). Rescaling the k−ε system is
classical in order to obtain further information. For instance, S. Lasserre pro-
vides a study of the system depending on the pair of variables (k,ln(kσk/σε/ε))
([11]) to study compact solutions, but here we want to stay as close as possi-
ble to the original equations to preserve the parabolic behavior and also to be
in accordance with physical data. We consider the following non-dimensional
system (see the beginning of Sec. 4):

∂k

∂t
−η∇·

(

k2

ε
∇k

)

+Aε=0, (1.7)

∂ε

∂t
−η∇·

(

cε

cµ

k2

ε
∇ε

)

+c2A
ε2

k
=0, (1.8)

with A=ε0T/k0, η = cµ(k0)2T/(ε
0L2), k0 denoting the typical kinetic turbu-

lent energy, ε0 the rate of kinetic turbulent energy dissipation, T and L the
typical time and length scales of the physical situation.

We make an asymptotic expansion with respect to η for this model since for
some typical physical set of values, η is negligible while A’s value is of order 1. The
difference between the solution (k,ε) of equations (1.7)–(1.8) and the first terms of its
η expansion (k0 +ηk1, ε0 +ηε1) can be controlled through the following result:

Theorem 1.2 (Asymptotic expansion). Let k0, ε0 belong to H7(T3)) and be
bounded away from zero by positive constants, and let k and ε be positive solutions
of (1.7) and (1.8) bounded away from zero in C1([0,T ];H5(T3)). Then there exists a
positive time T ′≤T and a constant C such that for all t≤T ′

‖k−k0−ηk1‖L∞(T3)(t)≤C η
3
2 , ‖ε−ε0−ηε1‖L∞(T3)(t)≤C η

3
2 ,

where k0,k1,ε0,ε1 are solutions of the following systems of ordinary differential and
partial differential equations:

1. Zeroth order system

∂k0

∂t
+Aε0 =0, k0(0,.)=k0(.),

∂ε0

∂t
+c2A

ε2
0

k0
=0, ε0(0,.)=ε0(.).

1By strong we mean a classical C1
t
(C2

x
) solution
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2. First order system

∂k1

∂t
−∇·

(

k2
0

ε0
∇k0

)

+Aε1 =0, k1(0,.)=0,

∂ε1

∂t
−∇·

(

cε

cµ

k2
0

ε0
∇ε0

)

+c2A

(

2ε0ε1

k0
− ε2

0k1

k2
0

)

=0, ε1(0,.)=0.

From a mathematical viewpoint, the main difficulty in the proof of Theorems
1 and 2 is the control of the positivity of k and ε, since the mathematical model
degenerates when k or ε vanish: because of the ε (resp. c2ε

2/k) term in Equ. (1.3)
(resp.(1.4)), we cannot ensure strict positivity of k (resp. ε).

Three classical mathematical tools are used all along the article to carry on the
study. The first one is the maximum principle for parabolic PDE’s. The second one
is the use of energy methods for parabolic PDE’s to obtain a priori estimates. The
last one is the use of Sobolev embeddings (see [2] and [21]) and Gagliardo-Niremberg
inequalities in order to control the different norms. Since we need smoothness of the
solutions in order to be able to use these inequalities, our study is for data which
belong to Hs with 4+3/2 so that the L∞-norms of the gradients of the data are
bounded by the Hs-norms.

In Sec. 2 we give an a priori estimate and in Sec. 3 we solve the problem of
existence and uniqueness of solutions of (1.1)–(1.6), proving the first theorem; in Sec.
4 we perform the expansion with respect to η and prove the second theorem. All
the results are given for small times, since there is no hope in controlling the strict
positivity of k and ε for long times.

2. Preliminary results

We establish a priori estimates on U , k and ε solutions of system (1.1)–(1.6). In
all the computations, we consider solutions (U,k,ε) belonging to C([0,T ];Hs(T3))∩
C1([0,T ];Hs−2(T3)) for some T >0 and for any integer s such that s>4+3/2 (and
consequently belonging to C2([0,T ];Hs−4(T3)) at least). All the integrals are com-
puted on T

3; k and ε are supposed to be strictly positive quantities for t∈ [0,T ]. We
systemically use Sobolev embedding Hs(T3) →֒Cs−2(T3) so that the (s−2)th space
derivatives of U , k and ε are L∞-bounded by the Hs norm of U , k and ε (see [2]) in
dimension 3.

2.1. A priori estimates on the Navier-Stokes equations. We obtain the
following estimates on smooth solutions of the incompressible Navier-Stokes equation:

Proposition 2.1 (Estimates on U). Let U , k and ε be solutions of (1.1)–(1.6)
which belong to C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)), with k and ε strictly positive
and s≥4+3/2. We have:

d

dt
||U ||2Hs ≤C Q4s+8(U,k,ε)(t),

where C is a generic constant and Q1,... ,Qn are functions defined by:

Q1(U,k,ε)(t)=1+||U(t)||Hs + ||k(t)||Hs +||ε(t)||Hs +
1

kmin(t)
+

1

εmin(t)
,

Qn =(Q1)
n
,
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where we note

kmin(t)= min
x∈T3

k(t,x), kmax(t)= max
x∈T3,0≤s≤t

k(s,x),

εmin(t)= min
x∈T3,0≤s≤t

ε(s,x), εmax(t)= max
x∈T3,0≤s≤t

(ε(s,x)),

and Dih denotes the ith derivative of a function h.

Proof. First note that is enough to prove,

d

dt
||DsU ||2L2 ≤C Q4s+8(U,k,ε)(t)

since for any integer s′ <s the result on Ds′

U is easier to prove (Sobolev embeddings
give better results, especially in the L∞-norm for lower order derivatives, so that we

clearly have
d

dt
||Ds′

U ||2L2 ≤C Q4s+8(U,k,ε)(t))).

From now on, α=(α1,α2,α3)∈N
3 denotes a multi-index of differentiation such that

∂α =∂α1

x1
∂α2

x2
∂α3

x3
, |α|=

3
∑

i=1

αi

denoting its length. β≤α means that ∀i, βi ≤αi, while β+γ =α means ∀i, βi +γi =
αi. We first obtain estimates on ∂αU (|α|=s): we differentiate the Navier-Stokes
equations and take ∂αU as test vector field.

1

2

d

dt
||∂αU ||2L2 +ν||D1(∂αU)||2L2 =(A)+(B)+(C)+(D), (2.1)

with:

(A)=−b(U,∂αU,∂αU), (B)=−b(∂αU,U,∂αU),

(C)=−
∑

β+γ=α,s>|β|,|γ|≥1

b(∂βU,∂γU,∂αU),

(D)=

∫

∂αU ·
(

∇·∂α
(k2

ε
(∇U +∇UT )

)

)

dx,

where b(u,v,w) is the trilinear form linked to the incompressible Navier-Stokes equa-
tion and defined on (H1(T3))3 by

b(u,v,w)=
∑

1≤i,j≤3

∫

ui∂ivjwj dx

(see [3] or [23] for notations and properties). Using ∇·U =0, one may note that
the term in which pressure and ∇x ·(kI) appear vanished after integrating by parts.
Moreover, (A) vanishes, since its last two arguments are equal and the first one is
divergence free. (B) and (C) can be estimated by C ||U ||3Hs , thanks to Sobolev em-
beddings (C denotes a generic constant). For instance, for the (C) term, either β
or γ+1 is less than s−2 (s≥5 and |β|+ |γ|=s), so that ∂βU or ∂i (∂

γU) are L∞-
bounded by ||U ||Hs (we recall that a function is continuous and its norm is controlled
by its Hs norm in the 3-D torus as soon as s> 3

2 : one can prove it using Fourier series,
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for instance ([21])), and since the two other terms of the trilinear form belong to L2

at least, the trilinear form is well-defined and bounded by C ||U ||3Hs .
There remains the last term (D): integrating by parts and using the symmetry of

∇U +∇UT , one gets (there are no boundary terms, since we use periodic boundary
conditions):

∫

∂αU ·
(

∇·∂α
(k2

ε
(∇U +∇UT )

)

)

dx

=−
∫

∂α

(

k2

ε
(∇U +∇UT )

)

:∂α∇U +∇UT

2
dx.

Then, studying the terms coming from ∂α((∇U +∇UT )k2/ε), we get three kinds of
terms which satisfy the following inequalities (with β+γ =α, s≥|β|, |γ|≥0):

• when γ =α and β =0:

−1

2

∫

k2

ε
∂γ(∇U +∇UT ) :∂α(∇U +∇UT )dx≤0;

• when 2≤|γ|≤s−1:

Thanks to Young’s inequality, one gets

−1

2

∫

∂β

(

k2

ε

)

∂γ(∇U +∇UT ) :∂α(∇U +∇UT )dx

≤ 8

ν

(

||∂β

(

k2

ε

)

∂γ(∇U +∇UT )||L2

)2

+
ν

8
||∂α(∇U +∇UT )||2L2

≤ 8

ν

(

||∂β

(

k2

ε

)

∂γ(∇U +∇UT )||L2

)2

+
ν

4
||D1(∂αU)||2L2 ;

• when |γ|≤1:

−1

2

∫

∂β

(

k2

ε

)

∂γ(∇U +∇UT ) :∂α(∇U +∇UT )dx

≤ ν

4
||D1(∂αU)||2L2 +

8

ν

(

||∂β

(

k2

ε

)

∂γ(∇U +∇UT )||L2

)2

.

In order to complete the proof, one has to note that in the last two cases, either
∂β(k2/ε) or ∂γ(∇U +∇UT ) belong to L∞(T3) because of the embedding H2(T3) →֒
L∞(T3). Therefore, we obtain

1

2

d

dt
||∂αU ||2L2 +ν||D1(∂αU)||2L2

≤ ν

2
||D1(∂αU)||2L2 +C

(

||U ||3Hs + ||k
2

ε
||2Hs ||U ||2Hs

)

.

Differentiating k2/ε, one gets after some computations that

||k
2

ε
||Hs ≤C

(

||k(t)||Hs + ||ε(t)||Hs +
1

kmin(t)
+

1

εmin(t)

)2s+3

,

since 1/ε is in Hs (because ε is in Hs and bounded below by a strictly positive
constant so that 1/ε in L∞ and consequently in L — the Torus is bounded) and Hs
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is an algebra. Using the definition of Qn, we get a bound for ∂αU :

d

dt
||∂αU ||2L2 ≤C Q4s+8(U,k,ε)(t).

This result holds for all the derivatives, so this completes the proof.

2.2. A priori estimates on k and ε. We are now able to control positive
lower bounds k and ε through the following lemma.

Lemma 2.1 (Maximum principle). Let U , k and ε be solutions of System (1.1)–
(1.6) which belong to C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)), with k and ε bounded
below by a strictly positive constant. Let k0, ε0 belong to Hs(T3)) and be bounded
away from zero by strictly positive constants. We have for all t≥0:

1

kmin(t)
− 1

kmin(0)
≤C

t

k2
min(t)

sup
0≤t′≤t

||ε(t′,.)||Hs ,

1

εmin(t)
− 1

εmin(0)
≤C

t

kmin(t)ε2
min(t)

sup
0≤t′≤t

||ε(t′,.)||2Hs .

Proof. We only prove the result for kmin. One has to note that k belongs to
C2([0,T ];H2(T3)) and consequently to C2([0,T ];C(T3)) since k is a solution of the
problem so that kmin is continuous. For all t≤T , δ >0 and u≤ t we define the
following function,

rδ(u,x)= δ(1+u)+C
u

k2
min(t)

sup
0≤t′≤t

||ε(t′,.)||Hs − 1

k(u,x)
+

1

kmin(0)
,

which belongs to C1([0,t);Hs−2(T3)), where C is the Sobolev constant of the embed-
ding Hs(T3) →֒L∞(T3) (s>3/2). One has to note that, thanks to the definition of
kmin,

∀x∈T
3, rδ(0,x)≥ δ >0.

Let us suppose that rδ vanishes at some point in (0,t)×T
3 and let us denote by t1

the first time such that there exists x1∈T
3 satisfying rδ(t1,x1)=0 (note that t1 is

uniquely defined, whereas x1 may not be unique).
Since 0<t1 <t, ∂tk

−1(t1,x1) is well defined. Moreover, thanks to the definition of
t1, we get that (t1,x1) is a local minimum in space of rδ and consequently a minimum
of x 7→−k−1(t1,x) and a minimum of k. As a result, ∇k(t1,x1)=0 and ∆k(t1,x1)≥0
(T3 is an open set). Hence the k equation at point (t1,x1) gives:

∂k

∂t
(t1,x1)≥−ε(t1,x1).

Using Sobolev embeddings, one gets for all the minima at time t1

∂k

∂t
(t1,x1)≥−C||ε(t1,.)||Hs , so that

∂

∂t

(

1

k

)

(t1,x1)≤C
||ε(t1,.)||Hs

kmin(t1)2
.

Finally, we get

∂

∂t
rδ(t1,x1)≥ δ+C

1

k2
min(t)

sup
0≤t′≤t

||ε(t′,.)||Hs −C
||ε(t1,.)||Hs

kmin(t1)2

≥ δ+0 (thanks to the definition of kmin)

>0.
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Therefore, the function u 7→ rδ(u,x1) is negative for u<t1 in the neighborhood of t1.
t1 is the first time for which rδ vanishes and rδ is necessarily positive on ]0,t1[×T

3

by continuity, we obtain a contradiction and as a consequence rδ is a strictly posi-
tive function on [0,t[×T

3 and a positive function by continuity at time t for all x.
Eventually, letting δ tend to zero by continuity, we get:

1

k(u,x)
≤C

u

k2
min(t)

sup
0≤t′≤t

||ε(t′,.)||Hs +
1

kmin(0)

≤C
t

k2
min(t)

sup
0≤t′≤t

||ε(t′,.)||Hs +
1

kmin(0)

(thanks to the definition of kmin). Taking the maximum in space and time, one gets
the result.

In addition, we obtain the following estimates for k and ε (strict positivity of both
k and ε is necessary for the inequalities).

Proposition 2.2 (a priori estimates on k and ε). Let U , k and ε be solutions
of (1.1)–(1.6) which belong to C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)), with k and ε
strictly positive and s≥4+3/2. We have:

d

dt
||k||2Hs ≤CQ4s+9(U,k,ε),

d

dt
||ε||2Hs ≤CQ4s+9(U,k,ε).

Proof. We only give a proof of the second inequality (the same tools are used to
obtain the first result). In order to prove it, we only prove that

d

dt
||Dsε||2L2 ≤CQ4s+9(U,k,ε),

since for lower order derivatives the same inequality is easier to prove (Sobolev em-
beddings give better results especially in the L∞-norm for lower order derivatives).
Differentiating the ε equation s times in the direction α∈N

3, multiplying by ∂αε, and
integrating by parts the diffusive term, one gets:

1

2

d

dt
||∂αε||2L2 +(A)+(B)+(C)+(D)=0,

with:

(A)=

∫

∂α(U ·∇ε)(∂αε)dx,

(B)=−
∫

c1

2
∂α(k|∇U +∇UT |2)(∂αε)dx ,

(C)=

∫

(∂α ·∇ε)∂α

(

cµ
k2

ε
∇ε

)

dx,

(D)=

∫

∂αε∂α

(

ε2

k

)

dx.

The (A) term can be treated like the trilinear term of the Navier-Stokes equation
using that U is divergence free,

∫

(U ·(∂α∇ε))(∂αε)dx=0,
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so that all the other terms of A contain derivatives of ε of order less than s, which,
using Sobolev embedding, leads to |(A)|≤C||U ||Hs ||ε||2Hs .

By integrating by parts the (B) term, one gets that

|(B)|≤C||ε||Hs+1 ||k|∇U +∇UT |2||Hs−1 .

Using that Hs is an algebra since s>3/2, we finally obtain:

|(B)|≤C||Ds+1ε||L2 ||k||Hs ||U ||2Hs .

After some computations one obtains the following result on (D):

|(D)|≤C (||ε||Hs + ||k||Hs)
2s+4≤CQ2s+4(U,k,ε)(T ).

Finally, there remains to study the diffusive term (C) whose most important term
satisfies (using the positivity of k2/ε):

∫

∂α∇ε ·
(

cµ
k2

ε
∂α(∇ε)

)

dx≥ cµ
k2

min(t)

||ε(t,.)||Hs

||∂α(∇ε)||2L2 .

The other terms of (C) are bounded by

1

2
rcµ

k2
min(t)

||ε||Hs

||∂α(∇ε)||2L2 +
1

rcµ
2
||ε||Hs

k2
min(t)

||k
2

ε
||2Hs ||ε||2Hs ,

Using Young’s inequality and Sobolev embeddings for all r>0.

Since we already know that

||k
2

ε
(t,.)||Hs ≤C

(

||k(t)||Hs + ||ε(t)||Hs +
1

kmin(t)
+

1

εmin(t)

)2s+3

,

we obtain for another constant C depending only on the number of terms coming from
(C) (choosing a good r to eliminate the highest derivatives):

(C)≥ 1

2

k2
min(t)

||ε(t,.)||Hs

||Ds+1ε||2L2 −CQ4s+9(U,k,ε)(t).

Combining the results for (A), (B), (C) and (D) one gets:

1

2

d

dt
||∂αε||2L2 ≤CQ4s+9(U,k,ε)(t).

(Note that the (B) term is controlled by the (C) term, using again ab≤a2 +b2.)

2.3. Positive lower bounds for k and ε. We establish an a priori estimate
for the turbulent fields k and ε and then prove that solutions of the system can be
controlled locally in time.

Proposition 2.3. Let s∈N such that s≥4+3/2 and U , k and ε be smooth solutions
of (1.1)–(1.6) in C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)). Let k0, ε0 belong to Hs(T3))
and be bounded away from zero by strictly positive constants. Then there exists a
positive time T ′ (T ′≤T ) such that k, ε remain strictly positive on [0,T ′] (bounded
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below by a strictly positive constant) and such that U , k and ε have finite Hs norm.

Proof. Thanks to the previous results we obtain

d

dt
(||ε||2Hs + ||k||2Hs + ||U ||2Hs)≤CQ4s+9(U,k,ε),

so that

||ε||2Hs(t)+ ||k||2Hs(t)+ ||U ||2Hs(t)≤||ε||2H3(0)+ ||k||2H3(0)+ ||U ||2H3(0)

+C

∫

0tQ4s+9(U,k,ε)(s)ds. (2.2)

We introduce the following continuous increasing and positive function f ,

f(t)=1+ sup
0≤t′≤t

||k(t′,.))||2Hs + sup
0≤t′≤t

||ε(t′,.)||2Hs + sup
0≤t′≤t

||U(t′)||2Hs

+
1

kmin(t)
+

1

εmin(t)
.

Using (2.2) and the maximum principle to control
1

kmin(t)
+

1

εmin(t)
, one gets:

f(t)≤f(0)+C
( t

k2
min(t)

sup
0≤u≤t

||ε(u,.)||Hs (2.3)

+
t

kmin(t)ε2
min(t)

sup
0≤u≤t

||ε(u,.)||2Hs +

∫ t

0

f4s+9
)

≤f(0)+3Ctf4s+9(t), (2.4)

because

• ∀t′≤ t,

||k(t′)||Hs + ||ε(t′)||Hs + ||U(t′)||Hs

≤3
(

1+ sup
0≤u≤t

||k(u)||2Hs + sup
0≤u≤t

||ε(u)||2Hs + sup
0≤u≤t

||U(u)||2Hs

)

,

• ∀t,
1

kmin(t)
− 1

kmin(0)
≤C

t

k2
min(t)

sup
0≤u≤t

||ε(u,.)||Hs ,

• ∀t,
1

εmin(t)
− 1

εmin(0)
≤C

t

kmin(t)ε2
min(t)

sup
0≤u≤t

||ε(u,.)||2Hs .

If we denote by T ′(M) the first time f(t) is equal to M , we obtain that
T ′(M)≥ (M −f(0))/(3CM4s+9). Then, studying the ratio (M −f(0))(3CM4s+9),
one concludes that f cannot blow up on [0,T ′] with T ′ defined by T ′ =
min(T,1/(24Cf(0)4s+9)) (k,ε and U are defined on [0,T ]). This completes the proof
of the proposition.
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3. Existence and uniqueness of solutions for the whole system

Thanks to the ideas used to obtain the a priori estimates, we are able to prove
Theorem 1.1.

3.1. Existence. We only give a sketch of proof for the existence. We use an
iterative method to obtain the result. We denote by Un, kn and εn (kn and εn are
supposed to be strictly positive) the n-th iterate of U , k and ε defined on [0,tn]: the
time of existence depends on n; we have to prove that it can be bounded below. U0,
k0 and ε0 are the initial data defined above.

3.1.1. Iterative process. We obtain Un+1, kn+1 and εn+1 through the
following iterative process:

∂Un+1

∂t
+Un ·∇Un+1 +∇Pn+1−ν∆Un+1

=∇·
(

−2

3
knI +cµ

(kn)
2

εn
(∇Un+1 +∇Un+1T

)
)

, (3.1)

∇·Un+1 =0, (3.2)

∂kn+1

∂t
+Un+1 ·∇kn+1−∇·

(

cµ
(kn)

2

εn
∇kn+1

)

=
cµ

2

(kn)
2

εn
|∇Un+1 +∇Un+1T |2−εn, (3.3)

∂εn+1

∂t
+Un+1 ·∇εn+1−∇·

(

cε
(kn)

2

εn
∇εn+1

)

=
c1

2
kn|∇Un+1 +∇Un+1T |2−c2

(εn)2

kn
, (3.4)

Un+1(0,x)=U0(x), (3.5)

kn+1(0,x)=k0(x), (3.6)

εn+1(0,x)=ε0(x). (3.7)

3.1.2. Solving the iterative scheme. To solve the iterative scheme, we
need to solve the following equations:

1. The first one is a linear parabolic equation with a Lagrange multiplier (P ):

∂U

∂t
+b ·∇U +∇P −ν∆U =∇·

(

a(∇U +∇UT )
)

,

∇·U =0,

U(0,x)=U0(x),

with a,b in C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)) and a strictly positive (we
omit the term ∇·(−2knI/3), since it can be considered a part of the pressure).
This equation has a unique solution in C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3))
for some T depending on the data a and b (see [16] p. 69).
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Then for the solution of (3.1), (3.2) and (3.5), we obtain an Hs estimate
for all s>3+3/2 thanks to Sobolev embeddings and using the fact that U is
divergence free: there exists an integer p(s) and a constant Cs,0 which depend
on s such that:

d

dt
(||Un+1||2Hs)+

ν

2
||D(s+1)Un+1||2L2

≤Cs,0

(

1+||Un+1||2Hs +||εn||2Hs +||kn||2Hs +
1

kn
min(t)

+
1

εn
min(t)

)p(s)

. (3.8)

We keep a part of diffusion because Un+1 appears in the equations of kn+1

and εn+1.

2. The others are linear parabolic equations with variable diffusion coefficients:

∂k

∂t
+b ·∇k−∇·(a∇k)= c,

∂ε

∂t
+b ·∇ε−∇·

(

cε

cµ
a∇ε

)

=d,

with a , b, c and d in C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)), b strictly positive
and ∇·b=0.

So we need to solve this parabolic system while conserving the strict positivity; the
classic theory on parabolic systems give us a solution to the problem in Hs (see [22]).
Finally there exists an integer q(s), a parameter p and a constant Cs,1 which depend
on s such that:

d

dt
||kn+1||2Hs ≤Cs,1

[

1

p

(

1+ ||kn+1||2Hs + ||Un||2Hs |+ ||εn||2Hs + ||kn||2Hs

+
1

kn
min(t)

+
1

εn
min(t)

)q(s)

+p||D(s+1)Un+1||2L2 ,

]

(3.9)

d

dt
||εn+1||2Hs ≤Cs,1

[

1

p

(

1+ ||εn+1||2Hs + ||Un||2Hs |+ ||εn||2Hs + ||kn||2Hs

+
1

kn
min(t)

+
1

εminn(t)

)q(s)

+p||D(s+1)Un+1||2L2 .

]

. (3.10)

The strict positivity can be controlled through a maximum principle as was done
before if Un, kn , εn, 1/kn and 1/εn are bounded on [0,tn]. So we obtain an Hs control
of the solutions thanks to the three inequalities (3.8)–(3.9)–(3.10) and the maximum
principle (the terms of order s+1 vanish, using a parameter p small enough).

There exists an integer r and a constant Cs,2 both depending on the Sobolev
index s such that the quantity fn defined as

fn(t)= sup
0≤t′≤t

||Un||2Hs + sup
0≤t′≤t

||εn||2Hs + sup
0≤t′≤t

||kn||2Hs +
1

kn
min

+
1

εn
min

obeys to the following equation,

fn+1(t)−fn+1(0)≤Cs,2 t(fn(t)+fn+1(t))
r(s)

, (3.11)
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as long as fn and fn+1 exist. If fn is bounded on [0,tn] by M , then on [0,min(tn,tn+1)]
we get,

fn+1(t)≤f1(0)+Cs,2 t(M +fn+1(t
′))

r(s)

(fn(0) is independent of the iterate number n). Using the same argument as in the a

priori estimate one gets that for all t≤T =(M −f1(0))/(C(2M)r(s)), fn+1 is bounded
by M . Finally, we ensure that the time of existence does not vanish when n goes to
∞ and that the time of existence of the iterates is controlled. Moreover, for all n we
have that:

• Un, kn and εn belong to C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)) where T is a
time of existence for all iterates,

• they are bounded in L∞([0,T ];Hs(T3)),

• their (time) derivatives are bounded in L∞([0,T ];Hs−2(T3)), and

• kn and εn are bounded below by a strictly positive given constant.

3.1.3. Passing to the limit. Finally, it can be proven by decreasing the time
T, if necessary, that the iterative scheme converges using that, for this time,

∑

n≥1

(

||Un−Un+1||2L∞([0,T ];L2) + ||εn−εn+1||2L∞([0,T ];L2)

+||kn−kn+1||2L∞([0,T ];L2)

)

<+∞ (3.12)

(see the proof below).
The convergence of the series ensures that Un, kn and εn converge in L∞([0,T ];L2)

and consequently in C([0,T ];L2) since all the terms are continuous. They also converge
in C([0,T ];Hs′

) for s′ <s, since they are bounded in L∞([0,T ];Hs) (one can prove
this using the Gagliardo-Niremberg inequality — see [18]) Using classical arguments
on the regularity of Sobolev spaces (see [18] or [20])) and distribution theory, we
see that the limits of the sequences Un, kn and εn are solutions of the problem in
C([0,T ];Hs(T3))∩C1([0,T ];Hs−2(T3)): for instance, since Hs′

and Hs′−1 are algebras
for s′ near enough s>4+ 3

2 , in the k equation we get that Un+1 ·∇kn+1 converges in

L∞([0,T ];Hs′−1)) to U ·∇k and consequently converges in a distribution sense.
Concerning the pressure term, it can be recovered from the Navier-Stokes equa-

tions as usual (see [3] for instance: the series of pressures is also bounded, since U , k
and ε are bounded). Therefore, the theorem is finally proven.

We now prove that the series is indeed convergent:

Lemma 3.1 (Convergence of the series). For T small enough, the infinite sum
(3.12) is finite.

Proof. If we define (αn)n≥0 = ||Un−Un+1||2L2 + ||εn−εn+1||2L2 + ||kn−kn+1||2L2 ,
the terms (αn)n≥0 verify the following inequality,

d

dt
αn+1≤C(αn+1 +αn)

r(s)
, (3.13)

with C depending on s and the initial data of k, U and ε and also depending on the
Hs bounds of (kn)n∈N, (εn)n∈N and (Un)n∈N, and r strictly positive integer depending
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on s (the inequality is once again obtained using a priori estimates). Since (αn)n≥0

is a sequence bounded in Hs for instance by a C ′ constant, we obtain

d

dt
αn+1≤CC ′r(s)−1 (αn+1 +αn) , (3.14)

thanks to a Sobolev embedding. Finally, using that αn(0)=0, for all n we obtain that

(αn+1)(t)≤
∫ t

0

αn(s)CC ′r(s)−1 exp(CC ′r(s)−1(t−s))ds,

and that the sequence

βn=||Un−Un+1||2L∞([0,T ];L2) + ||εn−εn+1||2L∞([0,T ];L2) + ||kn−kn+1||2L∞([0,T ];L2)

is controlled by

βn+1≤βn

(

exp(CC ′r(s)−1T )−1
)

.

Then, for T small enough, βn is clearly a convergent series and the lemma is proven.

3.2. Uniqueness. As the solutions are regular enough (they belong indeed to
the functional space C([0,T ];H2(T3))∩C1([0,T ];L2(T3))), the U ·∇U term does not
prevent us from proving uniqueness. So adapting the proofs of uniqueness of parabolic
equations (see [22] and Navier-Stokes equations (see [16]) leads to uniqueness.

More precisely, we will just prove an inequality for the Navier-Stokes equation for
two solutions of the problem u and v with same initial data. We denote by ku, εu

(resp. kv, εv)) the solutions of the problems associated with u and v.
Using classical arguments for the Navier-Stokes equation without a second mem-

ber ([23]), we get (with w=u−v) :

d

dt
||w||L ≤C||w||L||v||4L4 +

∫

∇x ·
(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

·w, (3.15)

and for some C, au =
ku

εu
and av =

kv

εv
.

First, one gets:
∫

∇x ·
(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

·w

=−1

2

∫

(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

: (∇w+∇wT ). (3.16)

Using some equalities, one gets:
(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

: (∇w+∇wT )

=−au(∇w+∇wT ) : (∇w+∇wT )+(au−av)(∇w+∇wT ) : (∇v+∇vT ),

so that
∫

∇x ·
(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

·w

≤ 1

2
||(∇w+∇wT ) : (∇v+∇vT )||L∞

∫

|au−av|

≤ 1

2
×4max(||u||Hs ,||v||Hs)||au−av||L1 .



J. MATHIAUD 375

One can notice that

au−av =
ku

εu
− kv

εv

=
ku−kv

εu
+kv

(

1

εu
− 1

εv

)

.

Using Sobolev embeddings, that 1/εu and 1/εv are bounded below by a strictly
positive constant, that ku and kv are L∞-bounded and some algebra manipulations,
one gets that:

||au−av||L1 ≤ (max
T

ku +max
T

kv)×max
T

1

εu
||ku−kv||L1

+(max
T

kv)2max
T

1

εu
×max

T

1

ε v
||εu−εv||L1 .

Using the fact that L1 norms are controlled by L-norms on the Torus, one gets that
there exists a constant C depending on maxTku, maxTkv, maxT

1
εu

and maxT
1
ε v

, such
that

∫

∇x ·
(

au(∇u+∇uT )
)

−
(

av(∇v+∇vT )
)

·w

≤C(||ku−kv||L2 + ||εu−εv||L2) (3.17)

Finally, there exists some C depending on maxTku, maxTkv, maxT
1
ε u

and

maxT
1
ε v

and the Hs norms of ku,kv,εu,εv, such that:

d

dt
||w||L ≤C(||w||2L + ||ku−kv||L2 + ||εu−εv||L2). (3.18)

We would be able to prove the same kind of inequality for k and ε equations, i.e.,

d

dt
||ku−kv||L ≤C(||w||2L + ||ku−kv||L2 + ||εu−εv||L2), (3.19)

d

dt
||εu−εv||L ≤C(||w||2L + ||ku−kv||L2 + ||εu−εv||L2), (3.20)

which is enough to prove the uniqueness of solutions by summing these three inequal-
ities.

4. Study of a simplified k-ε model

Here we simplify the model by assuming the system is initially at rest so that
U =0 — as is the case, for instance, in the early development of a Rayleigh-Taylor or
Richtmyer-Meshkov mixing layer (see [5]). Consequently, we only take account of the
following simplified k-ε equations:

∂k

∂t
−∇x ·

(

cµ
k2

ε
∇k

)

+ε=0, k(0,x)=k0(x)∈H7(T3), (4.1)

∂ε

∂t
−∇·

(

cε
k2

ε
∇ε

)

+c2
ε2

k
=0, ε(0,x)=ε0(x)∈H7(T3). (4.2)

We make a dimensional analysis which leads us to compute an asymptotic expansion.
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4.1. Dimensional analysis. We analyze the different terms of the equations
by making a change of variables:

• x →֒ x̃=
x

L
, with L a typical length scale,

• t →֒ t̃=
t

T
, with T a typical time scale,

• ε →֒ ε̃=
ε

ε0
, with ε0 a typical rate of dissipation of turbulent energy scale,

• k →֒ k̃ =
k

k0
, with k0 a typical turbulent energy scale.

Thanks to the change of variables, we obtain:

∂k

∂t
−η∇.

(

k2

ε
∇k

)

+Aε=0 ,
∂ε

∂t
−η∇·

(

cε

cµ

k2

ε
∇ε

)

+c2A
ε2

k
=0,

where A=
ε0T

k0
and η = cµ

(k0)2T

ε0L2
are dimensionless numbers.

For instance, we have the following numerical data (in c.g.s. system,) for Rayleigh-
Taylor instabilities in dense hot plasma (see [24]):

k0 =1016cm2/s2 T =10−3s A=0.5
ε0 =5.1018cm2/s3 L=107cm η∼10−5.

As can be noticed, η is small for the physical applications we study. This is why
we expand ε and k in formal series (see next subsection).

We can also write η as cµA

(

(k0)
3
2

ε0L

)2

, with
(k0)

3
2

ε0
representing the typical length

of turbulent vortices (see [17]). So a small η is equivalent to neglecting diffusion of
vortices because they are too small. Another equivalent approach is to say (writing

η as
cµ

A
×(T

√
k0

L
)2) that the typical time of creation of the vortices

L√
k0

is large

enough so that vortices cannot diffuse turbulence.

4.2. Bounds for k and ε. We obtain bounds for the solutions of the simplified
system which are independent of η and which allow us to control nonlinear terms.

Proposition 4.1 (Maximum principle for k and ε). Let k0, ε0 belong to H7(T3)
and be bounded below by a strictly positive constant. Let k and ε be strictly positive
solutions of (1.7) and (1.8) and belong to C1([0,T ];H5(T3)). Then we get that ∀x∈T

3

and ∀t∈ [0,T ]

k(t,x)≤kmax(0),

ε(t,x)≤εmax(0),

k(t,x)≥kmin(0)−A εmax(0) t,

ε(t,x)≥εmin(0)/

(

1−c2
εmin(0)

εmax(0)
log

(

1− t A εmax(0)

kmin(0)

))

.
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Proof. We only prove the result of the lower bound of ε (we admit the three other
results, for which the maximum principle for parabolic equations is more simple to
use). Let’s introduce δ >1 and the function

rδ(t,x)=

(

1−c2
εmin(0)

εmax(0)
log

(

1− t A εmax(0)

kmin(0)

))

δ

εmin(0)
− 1

ε(t,x)
.

First one remarks that

rδ(0,x)=
δ

εmin(0)
− 1

ε(0,x)
>0 since δ >1.

Moreover, rδ belongs to C1([0,T ],C2(T3)), since ε has C1([0,T ];H5(T5)) regularity.
Because [0,T ]×T

3 is a compact set, rδ admits a minimum on [0,T ]×T
3; so there

exists x and s for which the minimum is reached. This minimum is also a local
minimum of ε in space; as a consequence, ∇ε(s,x)=0 and ∆ε(s,x)≥0 (T3 is an open
set).

So the ε equation at point (s,x) gives us

∂ε

∂t
−η

k2

ε
∆ε+c2A

ε2

k
=0,

and we get, using the strict positivity of ε and k:

∂ε(s,x)

∂t
≥−c2A

ε2

k
and

∂1/ε(s,x)

∂t
≤ c2A

1

k
.

Finally,

∂rδ

∂t
(s,x)≥

(

c2A
δ

kmin(0)
/

(

1− t A εmax(0)

kmin(0)

))

−c2
A

k

>c2A
1

kmin(0)− t A εmax(0)
−c2

A

k
(since δ >1)

>0 (using the inequality controlling the lower bound of k),

so the minimum can only be reached in s=0, since if s>0, for s′ <s such s′−s is
small enough, rδ(s

′,x)<rδ(s,x).
As a consequence, rδ is strictly positive for all t, and, letting δ tend to one, one

gets the result.

Let us observe that we also obtain a time of strict positivity T independent of
η whose value is kmin/(Aεmax) and for which k and ε remain positive. Nonetheless,
this time is of the same order as of the typical time (see numerical data above).

4.3. Asymptotic analysis of the system. The values used in physics lead
us to make an asymptotic series expansion in η (η tends to zero) in order to approach
the real solution; we write k and ε as:

k =

∞
∑

n=0

knηn, ε=

∞
∑

n=0

εnηn.

We first establish properties of the differential systems obtained by expanding in a
series expansion in η. Then the real solution is compared with the truncated series.
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Moreover, we obtain that the more η decreases, the more the real solution remains
positive. Replacing k and ε by their expansion we get the following systems. We limit
our study to second order even if it can be extended further: although the main result
concerns only zeroth and first order systems, we need the second order to prove it.

zeroth order system

∂k0

∂t
+Aε0 =0, k0(0,.)=k0(.),

∂ε0

∂t
+c2A

ε2
0

k0
=0, ε0(0,.)=ε0(.).

First order system

∂k1

∂t
−∇·

(

k2
0

ε0
∇k0

)

+Aε1 =0, k1(0,.)=0,

∂ε1

∂t
−∇·

(

cε

cµ

k2
0

ε0
∇ε0

)

+c2A

(

2ε0ε1

k0
− ε2

0k1

k2
0

)

=0, ε1(0,.)=0.

Second order system

∂k2

∂t
−∇·

(

k2
0

ε0
∇k1 +

2k0k1

ε0
∇k0 − k2

0ε1

ε2
0

∇k0

)

+Aε2 =0,

∂ε2

∂t
− cε

cµ
∇·

(

k2
0

ε0
∇ε1 +

2k0k1

ε0
∇ε0 − k2

0ε1

ε2
0

∇ε0

)

+c2A

(

2ε0ε2

k0
− ε2

0k2

k2
0

−2
ε0ε1k1

k2
0

+
ε2
0k

2
1

k3
0

+
ε2
1

k0

)

=0,

k2(0,.)=0, ε2(0,.)=0.

After some computations we obtain the following solutions of these systems.

Proposition 4.2 (Solutions of the systems). Let k0, ε0 belong to H7 and be
strictly positive. Define k0 and ε0 by:

k0(t,x)=k0(x)

(

1+(c2−1)A
ε0(x)

k0(x)
t

)

1
1−c2

,

ε0(t,x)=ε0(x)

(

1+(c2−1)A
ε0(x)

k0(x)
t

)

c2
1−c2

;

k0 and ε0 are solutions of the zero-order system, belong to C∞([0,∞[; H7(R))
and remain strictly positive.

k1 and ε1 exist, are unique and belong to C∞([0,∞]; H5(R)). Moreover their
growth and those of their derivatives is at worst polynomial in time.

k2 and ε2 exist, are unique and belong to C∞([0,∞]; H3(R)). Moreover their
growth and those of their derivatives is at worst polynomial in time.

Proof. For the zero-order system it is immediate ([11, 19]), by doing the compu-
tations, that the given functions are solutions.
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For the first order system, define B, the matrix

B=

(

0 A

−c2A
ε2
0

k0
c2A

2ε0

k2
0

)

, and v(x)=

(

k1(x)
ε1(x)

)

.

Using k0 and ε0 properties, we get B∈C∞([0,∞];H7(R)).
Besides, v satisfies

dv(x)

dt
+B(t,x)v(x)=f(t,x), v(0,x)=

(

0
0

)

(f depends uniquely on k0 and ε0 and belongs to C∞([0,∞]; H5(R))). The classical
theory of ODE’s gives us existence and uniqueness of k1 and ε1. Moreover, since
the growth of B and f is at worst polynomial (they both depend on ε0 and k0), this
ensures the growth of k1, ε1, and their derivatives are at worst polynomial.

The proof for the second order system is similar.

4.4. A priori estimates. We now compare k and ε with their second order
expansion with respect to η in the H2-norm. Let us define

K =k−
2

∑

n=0

ηnkn and E =ε−
2

∑

n=0

ηnεn.

We obtain the following equations for K and E:

∂K

∂t
+η∇·(F1)+AE =0 , K(0,.)=0, (4.3)

∂E

∂t
+

cε

cµ
η∇·(F2)+c2A×(F3)=0 , E(0,.)=0, (4.4)

with:

(F1)=

(

k2
0

ε0
∇k0 +η

(

k2
0

ε0
∇k1 +

(

2k0k1

ε0
− k2

0ε1

ε2
0

)

∇k0

)

− k2

ε
∇k

)

,

(F2)=

(

k2
0

ε0
∇ε0 +η

(

k2
0

ε0
∇ε1 +

2k0k1

ε0
∇ε0 − k2

0ε1

ε2
0

∇ε0

)

− k2

ε
∇ε

)

,

(F3)=

(

ε2

k
− ε2

0

k0
+η

(ε2
0k1

k2
0

− 2ε0ε1

k0

)

+η2
(ε2

0k2

k2
0

− ε2
1

k0
− 2ε0ε2

k0
+2

ε0ε1k1

k2
0

− ε2
0k

2
1

k3
0

)

)

.

We define T 7→B(T ) by

B(T )−1 = inf
0≤t≤T,x∈T3

(k(t,x),k0(t,x),ε(t,x),ε0(t,x)),

which is bounded, since k and ε are bounded and strictly positive on [0,T ].
We assess the norm of the different terms to obtain energy estimates for the whole

system. To simplify computations, we suppose η <1 (η tends to zero..). We get:
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Lemma 4.1. Let k0, ε0 belong to H7 and be strictly positive. Let k and ε be strictly
positive solutions of (1.7) and (1.8) and belong to C1([0,T ];H5(T3)). There exists
a positive function f depending in a polynomial way on time 2 but independent of η
such that:

|(F1)(t,x)|+ |(F2)(t,x)|≤B(T )5f(T )
[

(‖K‖H2 +‖E‖H2)6 +η2
]

,

|D1(F1)(t,x)|+ |D1(F2)(t,x)|≤B(T )5f(T )

[

η2

+
(

1+ |D2K(t,x)|+ |D2E(t,x)|
)

×
(

||K||H2 + ||E||H2

)7
]

,

|(F3)(t,x)|+ |D1(F3)(t,x)|≤B(T )5f(T )

[

(

‖K‖H2 +‖E‖H2

)6

+η3

]

,

|D2(F3)(t,x)|≤B(T )5f(T )

[

η3

+
(

1+ |D2K|(t,x)+ |D2E(t,x)|
)

×
(

‖K‖H2 +‖E‖H2

)7
]

.

Proof. We prove the result for |(F3)|. Using the mean value theorem we get,

1

k
=

1

k0
− k−k0

k2
0

+
(k−k0)

2

k0(t,x)3
+c(t,x)(k−k0)

3 with |c(t,x)|≤B(T )3.

We put this formula in (F3) and replace k by K +k0 +ηk1 +η2k2 , ε by E +ε0 +ηε1 +
η2ε2. All zero, first and second order terms independent of K and E vanish. The
remaining terms which do not depend on K and E are preceded by η3 at least and their
growth in time is at worst polynomial thanks to results obtained on k0,k1,k2,ε0,ε1,ε2

(it gives us the bound η3B(T )6f(T )).
Also, E2, E, E2K3, EK3, K3, E2K2, EK2, K2, E2K, EK and K terms ap-

pear: these terms are multiplied by functions depending on k0−ε2 and η which
can be majored independently of η as η≤1 and whose growth is at worst poly-
nomial, thanks to results obtained on k0,...,ε2 (it gives us the other bound:
B(T )5f(T )

[

(‖K‖H2 +‖E‖H2)6
]

).
So we get the result; we use the same method for the others results.

Proposition 4.3 (H2 estimates). Let k0, ε0 belong to H7 and be strictly pos-
itive. Let k and ε be strictly positive solutions of (1.7) and (1.8) and belong to
C1([0,T ];H5(T3)). There exists an f depending in a polynomial way of time but
independent of η such that:

d

dt
||D2K||2L2 ≤B(T )5f(t)

[

(

‖K‖2
H2 +‖E‖2

H2

)9
+η3

]

, (4.5)

d

dt
||D2E||2L2 ≤B(T )5f(t)

[

(

‖K‖2
H2 +‖E‖2

H2

)9
+η3

]

, (4.6)

d

dt
(‖K‖2

H2 +‖E‖2
H2)≤B(T )5f(t)

[

(

‖K‖2
H2 +‖E‖2

H2

)9
+η3

]

. (4.7)

2by this we mean f ≤C(1+ t)n for some integer n
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Proof. First, one can easily note that using equations (4.3) and (4.4), one gets:

d

dt
||K||2L2 ≤|∇(F1)|

∫

|K|+A

∫

|KE|,

d

dt
||E||2L2 ≤|∇(F2)|

∫

|K|+A

∫

|E|×|(F3)|,

d

dt
||D1K||2L2 ≤|∇(F1)|

∫

|∆K|+A

∫

|∇K ·∇E|,

d

dt
||D1E||2L2 ≤

(

cε

cµ
|∇(F2)|

∫

|∆E|+c2A|∇(F3)|
∫

|∇E|
)

.

Thanks to the bounds on (F1), (F2) and (F3) and their derivatives, as soon as
you are able to prove (4.5) and (4.6) you obtain inequality (4.7).

We prove only the result in the L2-norm of D2K (inequality (4.5)), since the other
proofs are very similar. We differentiate two times in α∈N

3(|α|=2) the K equation
and we multiply it by ∂αK. Integrating by parts the second term, one gets:

d

dt

∫

|∂αK|2 =−η

∫

(∂α(F1)) ·∂α∇K−A

∫

∂αK∂αE.

Studying precisely ∂α(F1), terms in K of third order of order are those coming from

∂α(
k2

ε
∇k) and especially

k2

ε
∂α∇k.

Using again the mean value theorem on 1/ε , 1/ε2 , 1/ε3, we obtain that the terms
of ∂αF1 include k2/ε(∂α∇K), linear terms in ∆K and ∆E (these functions are only
multiplied by first derivatives of E and K, E and K and independent functions of η),
other terms in ∇K, ∇E, K and E and finally terms in η2f(t) (f(t) can be bounded
independently of E , K and η thanks to bounds on terms k0,k1,k2,ε0,ε1,ε2).

Making use of the diffusive term k2/ε(∂α∇K) to control all terms of strictly
inferior order via Sobolev embeddings, we get the result on ∂αK. This proof holds
for all second derivatives, so for the H2-estimate is obtained. Now we are able to
prove Theorem 1.2.

Proof. 1.2 Define S(t)=‖K‖2
H2(t)+‖E‖2

H2(t). Note that S(0)=0. Thanks to
Proposition 4.3, there exists f a function of time bounded by C(1+ t)n such that we
have (we recall that we have already supposed that η≤1):

S′(t)≤B(T )5f(t)
[

S(t)9 +η3
]

≤H(T )
[

S(t)9 +η3
]

≤H(T )
[

S(t)9 +1
]

, (4.8)

with H(T )=B(T )5 sup0≤t≤T f(t).
Let T1 be the first time such that S(T1)=1 (T1 is independent of η thanks to inequality
4.8). For all t≤T1, S9(t)≤S(t) and S′(t)≤H(T )

[

S(t)+η3
]

, so

∀t≤T1 , S(t)≤η3(exp(H(T )t)−1) (using Gronwall lemma). (4.9)
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So we get:

∀t≤T1 , ‖K‖H2(t)≤
√

exp(H(T )t)−1η
3
2 ,

∀t≤T1 , ‖E‖H2(t)≤
√

exp(H(T )t)−1η
3
2 .

Then using Sobolev embeddings, since H2(T3) →֒L∞(T3), one gets:

∀t≤T1 , ‖k−k0−ηk1−η2k2‖∞(t)≤C
√

exp(H(T )t)−1 η
3
2 ≤C η

3
2 ,

∀t≤T1 , ‖ε−ε0−ηε1−η2ε2‖∞(t)≤C
√

exp(H(T )t)−1 η
3
2 ≤C η

3
2 .

Using the fact that k2 and ε2 are bounded by polynomial functions of time, which are
bounded on [0,T ] (see Proposition 4.2), one gets the theorem.

From this theorem we obtain the following result:

Corollary 4.4. The theorem holds for T1 =T if η is small enough.

Proof. In order to prove the corollary, using inequality (4.9) at time T1 one
gets:

1≤η3(exp(H(T )T1)−1).

Thus:

T1≥
1

H(T )
ln

(

1+
1

η3

)

.

Hence when η is small enough, T1 =T . This ends the proof of the corollary.
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pact Pour Les Modèles de Turbulence Compressible, PhD thesis, University of Paris VI,
2005.

[12] B. Launder and D. Spalding, Mathematical Models of Turbulence, Academic press, 1972.
[13] J. Lederer and R. Lewandowski, A RANS 3d model with unbounded eddy viscosities, Ann. Inst.
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