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THE WILLMORE FUNCTIONAL AND INSTABILITIES IN THE
CAHN-HILLIARD EQUATION∗
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Abstract. In this paper we are interested in the finite-time stability of transition solutions of the
Cahn-Hilliard equation and its connection to the Willmore functional. We show that the Willmore
functional locally decreases or increases in time in the linearly stable or unstable case respectively.
This linear analysis explains the behavior near stationary solutions of the Cahn-Hilliard equation.
We perform numerical examples in one and two dimensions and show that in the neighbourhood
of transition solutions local instabilities occur in finite time. We also show convergence of solutions
of the Cahn-Hilliard equation for arbitrary dimension to a stationary state by proving asymptotic
decay of the Willmore functional in time.
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1. Introduction
We consider the Neumann problem for the Cahn-Hilliard equation{

ut= ∆(−ε2∆u+F ′(u)), x∈Ω,
∂u
∂n = ∂

∂n (−ε2∆u+F ′(u)) = 0, x∈∂Ω
(1.1)

with Ω⊆Rd a bounded domain and d≥1, though we shall focus primarly on the
cases d= 1 and 2. F is a double well potential with F ′(u) = 1

2 (u3−u) and 0<ε<<1
is a small parameter. Note that the function F ′ is of bistable type. Considering
only constant solutions u= c of (1.1), these are classified in the following way. If
F ′′(u)<0 then u corresponds to the so called spinodal interval (|u|< 1√

3
) and it is

an unstable stationary state. Otherwise u corresponds to the metastable intervals
(i.e. u∈ (−1,− 1√

3
) or u∈ ( 1√

3
,1)) and is asymptotically stable, see [18] for a detailed

description. The Cahn-Hilliard equation is a classic model for phase separation and
subsequent phase coarsening of binary alloys. There the solution u(x,t) represents
the concentration of one of the two metallic components of the alloy. For further
information about the physical background of the Cahn-Hilliard equation we refer,
for instance, to [9, 28, 29, 23]. Numerical studies about the behavior of solutions of
(1.1) can be found, e.g., in [14, 17], or [26]. Solutions of (1.1) have a time-conserved
mean value ∫

Ω

u(x,t)dx=
∫

Ω

u(x,t= 0)dx, for all t>0. (1.2)
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A way of deriving equation (1.1) has been suggested by Fife in [18]. One takes the
Ginzburg-Landau free energy

E[u](t) =
∫

Ω

(
ε2

2
|∇u(x,t)|2 +F (u(x,t))

)
dx (1.3)

and looks for constrained (mass-conserving) gradient flows of this functional. The
Cahn-Hilliard Equation (1.1) is obtained by taking the gradient flow of (1.3) in the
sense of the H−1(Ω) inner product. The mass constraint is a consequence of the
natural boundary conditions for (1.1).

Using the ideas of [24] it is not hard to see that the Cahn-Hilliard equation pos-
sesses a global attractor. Zheng proved in [39] convergence to equilibria for solutions
of (1.1) in two and three dimensions. In [32] the authors proved that solutions of the
Cahn-Hilliard equation converge to equilibria in dimensions d= 1,2 and 3. In one space
dimension the equilibria are isolated [27] and the global attractor is finite-dimensional.
Further, Grinfeld and Novick-Cohen give a full description of the stationary solutions
of the viscous Cahn-Hilliard equation in one space dimension; compare [21, 22]. So
far equilibria have been determined and their properties studied only in the one di-
mensional case. It is a major problem to characterize the equilibria in more than
one dimension. The reason is that the limit set of the solutions can be large. How-
ever, some papers such as [35, 36, 37, 19, 12] still provide certain special types of
equilibrium solutions. A special type of stationary solution of (1.1) is the so-called
transition solution, which continuously connects the two stable equilibria, -1 and 1.
In one dimension the so called kink solution u0 = tanh x

2ε is such a stationary solution
of the Cahn-Hilliard equation. The radially-symmetric analogue in two dimensions
are the so called bubble solutions. In [8] asymptotic stability was shown for the kink
solution for fixed ε= 1, i.e., small perturbations of u0 in some suitable norm will decay
to zero in time. Further studies for the one-dimensional case describe the motion of
transition layers; compare [1, 7, 3, 20]. In [2] Alikakos and Fusco proved spectral es-
timates of the linearized fourth order Cahn-Hilliard operator in two dimensions near
bubble solutions. Some of their results are discussed later in Section 3.

In this paper we investigate the stability of transition solutions of the Cahn-
Hilliard equation in finite time and its connection to the Willmore functional. The
backward second-order diffusion (for |u|< 1√

3
) in the equation gradually affects the

solution, which can result in phenomena like local instabilities or oscillating patterns,
controlled by the fourth-order term on scales of order ε. We are going to show that
in the neighbourhood of transition solutions small instabilities occur in finite time.
In general it is natural to study stationary solutions of the Cahn-Hilliard equation by
analyzing the energy functional (1.3). The energy functional decreases in time since

d

dt
E[u](t)+

∫
Ω

|∇(−ε2∆u(x,t)+F ′(u(x,t)))|2 dx= 0. (1.4)

Because of this monotonicity the energy functional is not suitable for the study of
local (in space and time) behavior of the Cahn-Hilliard equation. Instead we present
analytical and numerical evidence that the numerically observed instabilities are con-
nected with the evolution of the Willmore functional. The Willmore functional of the
Cahn-Hilliard Equation (1.1) is given by

W [u](t) =
1
4ε

∫
Ω

(ε∆u(x,t)− 1
ε
F ′(u(x,t)))2dx, (1.5)
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and is considered to describe the geometric boundary of two different stable states
and the movement of curves under anisotropic flows. It has its origin in differential
geometry where it appears as a phase field approximation for solutions of the so
called Willmore problem (cf. [38]). The Willmore problem is to find a surface Γ in an
admissible class embedded in R3 which minimizes the mean curvature energy

∫
Γ
H2 dS

under certain constraints on the surface, where H= (κ1 +κ2)/2 is the mean curvature
and κ1,κ2 are the principal curvatures of Γ. For the analytical and computational
modelling of a minimizing surface of the Willmore problem the phase field method
is considered among other approaches. In [13] the authors consider solutions of a
constrained minimization problem for (1.5) of the form uε(x) = tanh d(x)√

2ε
+εh with

fixed mass and fixed energy (1.3), where d is the signed distance function to the zero
level set of uε and h is an arbitrary function in C2(Ω) independent of ε. They show that
the level sets {uε= 0} converge uniformly to a critical point of the Willmore problem
as ε→0. Also in this range of considerations falls a modified De Giorgi conjecture.
The authors of [30] considered functionals Fε :L1(Ω)→R for domains Ω∈R2 and R3

with

Fε[u](t) =E[u](t)+4W [u](t)

if u∈L1(Ω)∩W 2,2(Ω) and Fε[u](t) =∞ if u∈L1(Ω)\W 2,2(Ω). They showed that this
sequence of functionals evaluated in characteristic functions χ= 2χE−1, with E⊂Ω
a subset, Γ− converges in L1(Ω) as ε→0 to a functional F [χ] given by

F [χ](t) =σHn−1(∂E∩Ω)+σ

∫
∂E∩Ω

|H∂E |2 dHn−1.

Here σ=
∫ 1

−1

√
2F (where F is the double well potential), H∂E denotes the mean

curvature vector of ∂E and Hn−1 is the n−1 dimensional Hausdorff measure. This
result indicates that possible instabilities of (1.1) disappear for the limit ε→0. We
will encounter this observation again in our numerical examples for small values of
ε. For additional considerations of Γ− limits of this type see [31] and especially [11].
In the following we use the Willmore functional to detect local instabilities in finite
time of transition solutions of (1.1) for small values of ε<<1. As said above, in one
space dimension they are given by the kink solutions of the form tanh d(x)√

2ε
. In two

dimensions we consider their radially-symmetric analogues called bubble solutions.
To get an insight into the behavior of the Willmore functional for solutions of (1.1)

we start with an asymptotic analysis. In Section 2 we study the asymptotic limit of
solutions of the Cahn-Hilliard equation for arbitrary space dimension d≥1 by showing
asymptotic decay of the Willmore functional in time. The main challenge of the proof
of convergence in this paper is that we avoid using the Lojasiewicz inequality as before,
say in [32]. It was shown in [25] that gradient flows in Rd (and even in L2, compare
[33]) fulfill the Lojasiewicz inequality, which implies convergence to equilibrium of
solutions of the gradient system. For the application to the Cahn-Hilliard equation
it takes a serious effort to prove validity of the Lojasiewicz inequality for gradient
flows in H−1, as proved in [32]. We circumvent this difficulty and prove the following
Theorem.
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Theorem 1.1. Let u be the solution of the Cahn-Hilliard equation with initial data
u0 =u0(x), either posed as a Cauchy problem in Ω =Rd, d≥1, or in a bounded domain
Ω with Neumann boundary conditions. We assume∫

Ω

F ′(u)dx= 0 for all t>0. (1.6)

For Ω =Rn further suppose{
ε2∆u0−F ′(u0) and ∇(ε2∆u0−F ′(u0)) are
spatially exponentially decaying as |x|→∞. (1.7)

Then it follows that

lim
t→∞

W [u](t) = 0.

Remark 1.2.

• Note that the Assumption (1.6) in Theorem 1.1 is no restriction on F. Since∫
Ω
F ′(u)dx is a constant, we can rewrite the equation as

ut= ∆(−ε2∆u+F ′(u)− 1
|Ω|

∫
Ω

F ′(u)dx)

= ∆(−ε2∆u+ f̃(u)),

with
∫

Ω
f̃(u)dx= 0 where f̃(u) is equal to F ′(u) shifted by the constant

1
|Ω|
∫

Ω
F ′(u)dx. In the case of Neumann boundary conditions it further follows

from (1.1) that

∂u

∂n
=
∂(−ε2∆u+ f̃(u))

∂n
= 0.

Thus shifting F ′(u) by a constant does not change the equation and Assump-
tion (1.6) is reasonable.

• Note that condition (1.7) extends its validity from the initial conditions u0 to
u(.,t) for arbitrary times t>0 due to the mass conservation (1.2) of solutions
of (1.1).

The challenge of proving convergence of the Willmore functional is that it is gen-
erally not monotone in time. To overcome this we construct a nonnegative functional
balancing the Willmore functional with the energy functional so that the strong decay
property of the energy takes the main role controlling increasing parts appearing in
the Willmore functional.

The next step is to analyze the behavior of the Willmore functional and its con-
nection to the behavior of solutions of (1.1) in finite time. For this sake we consider
the linearized Cahn-Hilliard equation. In fact the behavior of solutions of the non-
linear equation is similar in the neighbourhood of stationary solutions to that of the
linear equation. Sander and Wanner discussed in [34] that solutions of (1.1) which
start near a homogeneous equilibrium within the spinodal interval remain close to the
corresponding solution of the linearized equation with high probability (depending
on how likely it is to find an appropriate initial condition) for an unexpectedly long
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time. In particular we are interested in instabilities that appear both locally in time
and space. To motivate this better let us consider the Cahn-Hilliard equation near a
constant equilibrium state ũ on the whole space Ω =Rd. Set u= ũ+δv, δ∈R small;
then the perturbation v fulfills in first approximation

vt=−ε2∆2v+a∆v in Rd,t>0,
v(t= 0) =v0(x) in Rd,

with a=F ′′(ũ) = 1
2 (3ũ2−1). The above equation reads after Fourier transform

v̂t(ξ,t) = (−ε2 |ξ|4−a |ξ|2)v̂, ξ∈Rd,t>0,
v̂(t= 0) = v̂0(ξ), ξ∈Rd.

This equation can be explicitly solved:

v̂(ξ,t) = exp(−|ξ|2 (ε2 |ξ|2 +a)t)v̂0(ξ).

If a=F ′′(ũ)<0 (this means that ũ lies in the spinodal interval (−1/
√

3,1/
√

3)) then
v̂(ξ,t)→∞ for ξ∈

{
|ξ|<

√
|a|/ε

}
∩suppv̂0, i.e., frequencies less than

√
|a|/ε become

amplified if they are present in the initial datum. In our case we consider solutions in
the neighbourhood of transition solutions, i.e. transition solutions perturbed where
they assume values from the spinodal interval. Referring again to [30], the linear
instability explained above is also valid for the nonlinear Cahn-Hilliard equation for a
finite time until the effect of the nonlinearity becomes strong enough to stabilize the
solution again. This results in instabilities local in space and time. In Section 3, spec-
tral estimates for transition solutions tracing back to Alikakos, Bates and Fusco (cf.
[1, 2]) are presented for one and two dimensions. Further, the important role of the
Willmore functional for finite-time stability/instability analysis for the Cahn-Hilliard
equation is motivated. For ε fixed we linearize the Willmore functional at a station-
ary solution of the Cahn-Hilliard Equation (1.1) perturbed by an eigenvector of the
linearized Cahn-Hilliard operator. We show that the Willmore functional decreases
in time for eigenvectors corresponding to a negative eigenvalue and increases in the
case of a positive eigenvalue. In other words,

d

dt
W [v](t)≤0⇐⇒ λ<0⇐⇒ linearly stable,

d

dt
W [v](t)≥0⇐⇒ λ>0⇐⇒ linearly unstable,

where v= ũ+δv0, with ũ a stationary solution of (1.1) and v0 the eigenvector to
the eigenvalue λ of the linearized equation. Roughly said, this means that linear
instabilities — which correspond to positive eigenvalues of the Cahn-Hilliard equation
— can be detected by considering the evolution of the Willmore functional.

In Section 4 we perform numerical computations for (1.1) near transition solu-
tions in one and two dimensions. We remark that in the past 20 years numerical
approximations of the solutions of the Cahn-Hilliard equation — for purposes differ-
ent from ours — have been studied by many authors, see [16] and [17] for further
references. We use a semi-implicit approximation in time and finite elements for the
space discretization in this paper. We start the computation at t= 0 with a transition
solution perturbed within its transition area with values from the spinodal interval of
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the equation. Motivated by the linear stability analysis of Section 3 we discuss stabil-
ity in terms of the Willmore functional. We say a function u(x,t) shows an unstable
behavior at time 0<t0<∞ if

d

dt
W [u](t0)>0.

Conversely, we say the function u(x,t) is stable for all times 0<t<t0 if

d

dt
W [u](t)≤0.

Organization of the paper. In Section 2 we prove Theorem 1.1. The linear
analysis of the Willmore functional is given in Section 3. Finally, in Section 4 we
perform numerical computations for the Cahn-Hilliard Equation (1.1) near transition
solutions in dimensions 1 and 2.

2. Proof of Theorem 1.1
In this section we present the proof of Theorem 1.1, which will be split into various

lemmas and propositions. In the following the long time asymptotic behavior of solu-
tions of the Cahn-Hilliard equation is studied by exploring the Willmore functional.
We consider the d-dimensional case of the Cahn-Hilliard equation. All following ar-
guments hold true both for the Neumann boundary problem and the Cauchy problem
in Rd with certain conditions on the spatial decay of the solutions. We start by in-
troducing some useful properties of the functionals in our setting of the stationary
profile.

Lemma 2.1. Let u be the solution of the Cahn-Hilliard equation as posed in Theorem
1.1. Then for any test function φ=φ(x,t)∈C∞0 (Ω×(0,∞)) we have

d

dt

∫
Ω

φ

(
ε2

2
|∇u|2 +F (u)

)
dx+

∫
Ω

φ|∇(ε2∆u−F ′(u))|2 dx

=
∫

Ω

φt

(
ε2

2
|∇u|2 +F (u)

)
dx+

1
2

∫
Ω

∆φ(F ′(u)−ε2∆u)2dx

−ε2
∫

Ω

∇(∇φ ·∇u) ·∇(ε2∆u−F ′(u))dx.

Lemma 2.2. Let u be the solution of the Cahn-Hilliard equation as posed in Theorem
1.1. Then we have

d

dt

∫
Ω

(ε∆u− 1
ε
F ′(u))2dx+2ε2

∫
Ω

|∆(ε∆u− 1
ε
F ′(u))|2dx

= 2
∫

Ω

F ′′(u)(ε∆u− 1
ε
F ′(u))∆(ε∆u− 1

ε
F ′(u))dx,

and

d

dt

∫
Ω

(∆(ε∆u− 1
ε
F ′(u)))2dx+2ε2

∫
Ω

(∆2(ε∆u− 1
ε
F ′(u)))2dx

= 2
∫

Ω

F ′′(u)∆(ε∆u− 1
ε
F ′(u))∆2(ε∆u− 1

ε
F ′(u))dx.
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The proofs of Lemma 2.1 and 2.2 are straightforward. Note that both lemmas
hold for Ω a bounded domain as well as Ω unbounded provided condition (1.7) from
Theorem 1.1 holds.

Proposition 2.3. Let f,g∈C1([0,∞)) be nonnegative functions with g′(t)≤0 every-
where, suppf ⊂ suppg, supt∈suppg

f
g and supt∈suppg

(f ′)+

g bounded, where (f ′)+(t) =
max{f ′(t),0}. Under the same assumptions as in Theorem 1.1 and for a sufficiently
large constant C we have

d

dt

[∫
Ω

f(t)(ε∆u− 1
ε
F ′(u))2dx+

C

ε2

∫
Ω

g(t)
(
ε2

2
|∇u|2 +F (u)

)
dx
]
≤0.

In particular, ε3W [u](t)+CE[u](t)≤ ε3W [u0]+CE[u0].

Proof. Consider the functional

U [u](t) =
∫
f(t)(ε∆u− 1

ε
F ′(u))2dx+

C

ε2

∫
g(t)

(
ε2

2
|∇u|2 +F (u)

)
dx.

By using the identity in Lemma 2.2 for the first term in U [u](t) and Lemma 2.1 for
the second term, we derive

d

dt
U [u](t) =f ′(t)

∫
(ε∆u− 1

ε
F ′(u))2dx+

C

ε2
g′(t)

∫
ε2

2
|∇u|2 +F (u)dx

+f(t)
[
2
∫
F ′′(u)(ε∆u− 1

ε
F ′(u))∆(ε∆u− 1

ε
F ′(u))dx

−2ε2
∫
|∆(ε∆u− 1

ε
F ′(u))|2dx

]
− C
ε2
g(t)

∫
|∇(−ε2∆u+F ′(u))|2dx.

(2.1)

For the case Ω =Rd we need the following lemma to deal with the last term in (2.1).

Lemma 2.4 (modified Poincare inequality on Rd). Let a>0,C1>0,C2>0 be
fixed constants. Then there exists a positive constant C0 =C0(a,C1,C2) such that for
any functions f in

Va,C1,C2 ={f ∈H1(Rd) :
∫

Rd
f dx= 0, |f(x)|≤C1e

−a|x||f |L2 ,

|f ′(x)|≤C2e
−a|x||f |L2 for x∈Rd},

we have

|f |L2(Rd)≤C0|∇f |L2(Rd).

Taking into account condition (1.7) for the spatial decay of the involved quantities
and by using Lemma 2.4 for Ω =Rd, the right side of (2.1) can be bounded by(

(f ′(t))+− Cg(t)
C0

)∫
(ε∆u− 1

ε
F ′(u))2dx

+2f(t) sup
|u|≤2

|F ′′(u)|
∫
|ε∆u− 1

ε
F ′(u)| · |∆(ε∆u− 1

ε
F ′(u))|dx

−2f(t)ε2
∫
|∆(ε∆u− 1

ε
F ′(u))|2dx+

C

ε2
g′(t)E[u](t).
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This term is non-positive when C is chosen to be large enough such that

f(t)2 sup
|u|≤2

|F ′′(u)|2−
(

(f ′(t))+− Cg(t)
C0

)
(−2f(t)ε2)≤0,

that is, choosing C>
C0f(t)(sup|u|≤2 |F

′′(u)|)2

2ε2g(t) + C0(f ′(t))+

g(t) for t∈ suppg.

Remark 2.5. Note that the Poincare inequality on Rd is not valid in general. Con-
sider for example the function ha(x) =a

n+2
2b xe−a|x|

b

with a>0 and some fixed b>0.
Then

∫
h2
adx=O(1) and

∫
h′2a dx=O(a

2
b ) as a→0+. Therefore,

|h′a|L2

|ha|L2
=O(a

1
b )→0

as a tends to zero, which contradicts the Poincare inequality.

Finally we come to the proof of the main result of this section, Theorem 1.1.

Proof. [Proof of Theorem 1.1.]
Step 1: Let

f(t) =


1+t

2 , 0≤ t≤1,
2− t, 1≤ t≤2,
0, t≥2,

and

g(t) =
{

1, t≤2,
0, t≥3.

Let C be a fixed constant chosen as in Proposition 2.3. The functional

U [u](t)≡4εf(t)W [u](t)+
C

ε2
g(t)E[u](t)

is decreasing in time and U [u](t= 1)≤U [u](t= 0). That is,

W [u](t= 1)+
C

4ε3
E[u](t= 1)≤ 1

2
W [u](t= 0)+

C

4ε3
E[u](t= 0).

Step 2: For each n∈N, setting f(t−n+1) and g(t−n+1) as in Proposition 2.3,
we can again find inequalities for n−1≤ t≤n and obtain

W [u](t=n)+
C

4ε3
E[u](t=n)≤ 1

2
W [u](t=n−1)+

C

4ε3
E[u](t=n−1). (2.2)

Set αn=W [u](t=n). Then (2.2) can be rewritten as

αn≤
1
2
αn−1 +

C

4ε3

∫ n

n−1

∫
Ω

|∇(−ε2∆u+F ′(u))|2dxdt,

where we used the decay property (1.4) of the energy functional from Section 1.



M. BURGER, S.Y. CHU, P. MARKOWICH AND C.B. SCHÖNLIEB 317

Step 3: We want to show that αn tends to zero as n tends to infinity. By an
iterative argument we get

αn≤
(

1
2

)n
α0

+
C

4ε3
((1

2

)n−1∫ 1

0

∫
Ω

|∇(−ε2∆u+F ′(u))|2dxdt

+
(

1
2

)n−2∫ 2

1

∫
Ω

|∇(−ε2∆u+F ′(u))|2dxdt

+ ·· ·+ 1
2

∫ n−1

n−2

∫
Ω

|∇(−ε2∆u+F ′(u))|2dxdt

+
∫ n

n−1

∫
Ω

|∇(−ε2∆u+F ′(u))|2dxdt
)
.

Using a standard fact from analysis formulated in the following Lemma 2.6, it follows
that αn converges to 0 for n→∞.

Lemma 2.6. Let (an),(bn) be two nonnegative sequences such that their sums
∑
nan

and
∑
n bn are convergent. Then

lim
n→∞

n∑
i=0

aibn−i= 0.

We conclude our proof in step 4.
Step 4: It remains to prove that for any sequence (tn) tending to infinity, W [u](tn)

converges to zero. To do so it suffices to prove that for any fixed integer q>0,
(W [u](t= n

q ))n converges to zero. Repeating the computations of Step 3 for the
inequality (2.2) for all rational values of t in between n−1 and n, the proof is similar
and we omit the details here.

Remark 2.7. Note that the proof of Theorem 1.1 also trivially provides decay of ut
in H−2, namely,

‖ut‖H−2 =‖∆(−ε2∆u+F ′(u))‖H−2

≤C‖−ε2∆u+F ′(u)‖L2

→0 as t→∞.

So we have shown that the Willmore functional asymptotically decreases to zero
under the assumptions of Theorem 1.1. This additionally proves that ut→0 for t→∞
in H−2(Ω) for every ε>0 and arbitrary dimension d.

3. Linear stability / instability
In this section we consider the small time behavior of solutions of the Cahn-

Hilliard equation. We relate local-in-time instabilities of solutions with the Willmore
functional by comparing the eigenvalues of the linearized operator with the evolution
of the Willmore functional. We begin with a short discussion of spectral estimates
and conclude with presenting the new result.
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For the one dimensional case Alikakos, Bates and Fusco showed in [1] that there
is exactly one unstable eigenvalue of the linearized Cahn-Hilliard eigenvalue problem.
For simplicity let D= [0,1]. They consider the problem linearized at an invariant
manifoldM formed by the translation of a self-similar solution uξε(x) =uε(x−ξ)∈M
with parameter ξ: {

−ε2H ′′′′+(F ′′(uξε)H
′)′=λ(ε)H, 0<x<1,

H=H ′′= 0, x= 0,1. (3.1)

The first eigenvalue is simple and exponentially small for small ε>0:

0<λξ1(ε) =O
( (uξxx(0))2

ε3

)
=O

(e− 2νδξ
ε

ε7

)
, (3.2)

where δξ is a small positive constant given in the proof of (3.2) in [1] and ν is a generic
constant; see [10]. The remaining spectrum is bounded from above by

λξi (ε)≤−C<0, i= 2,3,. ..

where C is positive and independent of ε,ξ. Both results are contained in [1].
In two dimensions Alikakos and Fusco [2] proved that there is a two-dimensional

invariant manifold with exponentially small eigenvalues where the solutions asymp-
totically develop droplets on the boundary with a speed which is exponentially small.
These superslow solutions are called bubble solutions and correspond to an approx-
imate spherical interface drifting slowly towards the boundary, without changing its
shape. Solutions like that are typical in the final stages of evolution of (1.1) for
general initial conditions. Further, they showed that the dimension of eigenspaces of
superslow eigenvalues of the linearized Cahn-Hilliard equation on D⊆Rd is at most
d for d>1. For simplicity of explanation we consider the eigenvalue problem of the
linearized fourth order Cahn-Hilliard operator in D⊆R2. The results in higher dimen-
sions are analogous to this case. Let U(η) be the unique increasing bounded solution
of U ′′−F (U) = 0 on R, and V (η) a bounded function that satisfies the orthogonality
condition ∫ ∞

−∞
f ′′(U(η))U̇2(η)V (η)dη= 0,

where f(u) =F ′(u). We consider a one-parameter family of functions uξε(x) repre-
sented by

uξε(x) =
{
U(x−ρε )+εV (x−ρε )+O(ε2), |y−ρ|≤λ,
qε(x), |y−ρ|>λ,

where y= |x−ξ|, ρ>0 and qε(x) is an arbitrary function with f ′(qε(x))≥ c>0. The
function uξε(x) represents a bubble with center ξ∈D and radius ρ. The eigen-
value problem of the Cahn-Hilliard operator linearized in uξε(x), i.e., Lξ = ∆(−ε2∆+
F ′′(uξε)), is given by

Lξ(φ) =λφ, x∈D⊆R2, (3.3)

with Neumann boundary conditions

∂φ

∂n
=

∂

∂n
(−ε2∆φ+F ′′(uξε)φ) = 0, x∈∂D.
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In [2] Alikakos and Fusco stated the following result.

Theorem 3.1. Let λε1≥λε2≥λε3≥··· be the eigenvalues of (3.3). Let ρ>0,δ >0 be
fixed. Then there exists an ε0>0 and constants c,C,C ′>0, independent of ε, such
that for 0<ε<ε0 and ξ∈D with d(ξ,∂D)>δ, the following estimates hold true:

Ce−
c
ε ≥λε1≥λε2≥−Ce−

c
ε ,

λε3≤−C ′ε.

The first two eigenvalues λε1,λ
ε
2 are superslow and the others are negative.

Now we present the connection between linear stability properties of the Cahn-
Hilliard equation and the Willmore functional. In the following we provide a linear
stability analysis around an equilibrium state u0 satisfying

−ε2∆u0 +F ′(u0) = 0.

More precisely, we look for a solution of the form

u(x,t) =u0(x)+δv(x,t)+O(δ2)

for sufficiently small 0<δ�1 and some perturbation v(x,t). Due to mass conservation
we assume that v has mean zero for all times,∫

Ω

v(x,t)dx= 0 ∀t>0.

We obtain the first-order evolution with respect to δ via the linearized equation

vt= ∆(−ε2∆v+F ′′(u0)v) := ∆L0v. (3.4)

We now compute the asymptotic expansion of the Willmore functional as δ→0. It
can be expanded as

W [u] =W [u0]+δW ′[u0]v+
δ2

2
W ′′[u0](v,v)+O(δ3), (3.5)

where the first and second order derivatives are taken as variations

W ′[u0]v=
∫

(−ε2∆u0 +F ′(u0))(−ε2∆v+F ′′(u0)v)dx

and

W ′′[u0](v,w) =
∫

(L0v)(L0w)dx+
∫

(−ε2∆u0 +F ′(u0))F ′′′(u0)vwdx.

Since u0 is a stationary solution, we have

W ′[u0]v= 0 and W ′′[u0](v,v) =
∫

(L0v)2dx.

Now let v0 be an eigenfunction of the linearized fourth-order Cahn-Hilliard operator,
i.e., there is λ 6= 0 such that

∆(L0v0) =λv0,
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with Neumann boundary condition ∂v0
∂n |∂Ω = 0 and a mean v0 of zero. Note that λ

is real, since v0 solves a symmetric eigenvalue problem in the scalar product of H−1,
defined here as the dual of H1(Ω)∩

{
u :
∫

Ω
udx= 0

}
. The standard linear stability

analysis yields that the perturbation of u0 by δv0 is linearly stable for λ<0 and
unstable for λ>0. These two cases can be translated directly into the local-in-time
behavior of the Willmore functional, whose time derivative at time t= 0 is given by

d

dt
W [u(t)]|t=0 = δW ′[u0]vt|t=0 +δ2W ′′[u0](v,vt)|t=0 +O(δ3)

= δ2

∫
(L0v0)(L0vt)dx+O(δ3)

= δ2

∫
(L0v0)(L0∆L0v0)dx+O(δ3)

= δ2

∫
(L0v0)(L0(λv0))dx+O(δ3)

=λδ2

∫
(L0v)2dx+O(δ3).

This means that, to leading order, the time derivative of W [u] has the same sign as
λ, i.e., the Willmore functional is locally increasing in time in the unstable case and
locally decreasing in the stable case.

4. Nonlinear stability / instability
We expect the behavior of solutions of the nonlinear Equation (1.1) to be dom-

inated by the behavior of the linear equation in the neighbourhood of stationary
solutions; compare Section 1. Therefore, numerical examples may very well give us
a good idea about the behavior of solutions and their connection to the Willmore
functional even for the nonlinear case. In the following a semi-implicit finite ele-
ment discretization for the Cahn-Hilliard equation is briefly described and numerical
examples are discussed.

4.1. Numerical Discretization. To discretize a fourth-order equation with
boundary conditions as above it is often convenient to write it as a system of two
equations of second order. In our case of the Cahn-Hilliard equation this results in
the following system:

ut= ∆v
v=−ε2∆u+F ′(u),

with Neumann boundary conditions

∂u

∂n
=
∂v

∂n
= 0,x∈∂Ω.

The following issues have to be taken into consideration.
• Explicit schemes for fourth order equations restrict time steps to be of order
O(h4), where h is the spatial grid size.

• Fully implicit schemes are unconditionally stable. The disadvantage is the
high computational effort for solving nonlinear equations.

• Semi-implicit schemes are a compromise between explicit and implicit dis-
cretization. Shortly said, semi-implicit means that the equation is split into
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a convex and a concave part and discretized implicitly and explicitly, respec-
tively; see ([6], [15]). Therefore, the restriction on the step sizes is less severe,
and we do not have to solve nonlinear equations.

For these reasons we use the following semi-implicit approximation:

u(t,x)−u(t−∆t,x)
∆t

= ∆v(t,x)

v(t,x) =−ε2∆u(t,x)+F ′(u(t−∆t,x))
+F ′′(u(t−∆t,x)) ·(u(t,x)−u(t−∆t,x)).

Note that F ′ is Taylor-expanded at the solution of the previous time step u(t−∆t).
For the space discretization we use linear finite elements on an equidistant grid in one
dimension and on a rectangular grid in two dimensions.

4.2. Numerical examples. In the following examples we consider the so-
lution of the Cahn-Hilliard equation in one and two dimensions for different initial
states in a neighbourhood of a transition solution. In the one dimensional case the
so called kink solution is given by u0(x) = tanh( x2ε ). As a first approach in the one
dimensional analysis we take as initial value u(x,t= 0) =u0(x)+p(x). The function p
denotes a particular kind of zero-mean perturbation, namely

p(x) =

{
a ·sin(fπ x

Cε ) x∈ (−C ·ε,C ·ε)
0 otherwise,

with amplitude a>0, frequency f >0 and support (−C ·ε,C ·ε) with C>0. The
amplitude a is chosen such that values of u within the support of the perturbation lie
in the spinodal interval of the equation (which is the back diffusion interval).

Varying the parameter ε and the support, the amplitude and the frequency of p,
we want to observe how the solutions evolve in time. The behavior of the solutions is
further compared with the evolution of the corresponding energy functional and the
Willmore functional.

We begin with a fixed ε= 0.1. For the first two examples in Figure 4.1 and 4.2
a fixed step size in space and time discretization was used. For spatial step size
we took ∆x= 0.05 ·ε and for the timesteps ∆t= 103 ·ε. The parameters amplitude
and frequency of the perturbation are also fixed to 1. The difference between the
two examples is the support of the perturbation; on which the convergence process
depends.

In the first example an unstable state occurs. This means that over a certain time
interval the perturbation locally grows. The second example is stable in the numerical
computations.

In the first case the supporting interval for the perturbation is (−15ε,15ε) (Figure
4.1), and we begin with an initial state having two peaks on both sides of zero. As time
proceeds the peaks grow in the beginning, resulting in an unstable transient state.
After this unstable state the solution converges to the kink solution. In the case of
the supporting interval (−3ε,3ε) in Figure 4.2, the solution converges uniformly to
the kink solution without a transitional state.

Comparing the time evolution of our first two examples with the corresponding
energy functionals and Willmore functionals, we can easily see differences in the graphs
of functionals. We can see that in the unstable case the energy functional almost has
a saddle point; in the stable case it is rapidly decreasing. Also, instabilities seem to
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(a) t=1 (b) t=500

(c) t=1000 (d) t=1999

(e) Energy functional (f) Willmore functional

Fig. 4.1. (a)-(d): Evolution of the solution in time for ε= 0.1 and a zero-mean perturbation
supported on (−15ε,15ε) with a= 1, f = 1 and with corresponding energy functional (e) and Willmore
functional (f)

correspond to peaks in the graph of the Willmore functional over time. The Willmore
functional increases over a finite time interval in contrast to the stable case where it
decreases for all times t. Another interesting phenomenon can be seen by starting with
modified versions of the perturbation p. For example we could shift the sinusoidal
perturbation to the left or to the right of zero to start with an asymmetric initial
state. The example in Figure 4.3 is a result of a shift of the perturbation used in
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(a) t=1 (b) t=50

(c) t=100 (d) t=499

(e) Energy functional (f) Willmore functional

Fig. 4.2. (a)-(d): Evolution of the solution in time for ε= 0.1 and a zero-mean perturbation
supported on (−3ε,3ε) with a= 1, f = 1 and with corresponding energy functional (e) and Willmore
functional (f)

the example of Figure 4.1. The shift of the perturbation leads to a shift of the kink
solution asymptotically in time as a consequence of conservation of mass. Considering
again the Willmore functional, an increase in time, visibly caused by a transitional
instability, occurs.

Considering the behavior of the perturbed solution in several numerical tests, we
can further make claims on how the perturbation has to look such that an unstable
state occurs. For a fixed ε<<1 we can see that the length of the supporting interval
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(a) t=1 (b) t=30

(c) t=130 (d) t=1999

(e) Energy functional (f) Willmore functional

Fig. 4.3. (a)-(d): Evolution of the shifted solution in time for ε= 0.1 and a zero-mean pertur-
bation supported on (−15ε,15ε) with a= 1, f = 1 and with corresponding energy functional (e) and
Willmore functional (f)

is most relevant. Extending the supporting interval of the perturbation brings with
it an extension of the time interval and the size of the instability as a consequence;
compare Figure 4.4, right diagram. If the supporting interval is too small, no unstable
state can be seen; compare Figure 4.2. Also, the amplitude and the frequency of the
perturbation have an influence on the occurrence and size of the instability. With
growing amplitude of the perturbation, the time interval and the size of the insta-
bility change; compare Figure 4.4, left diagram. If the amplitude exceeds a certain
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(a) (b)

Fig. 4.4. Length of time interval and maximal amplitude of the instability for different am-
plitudes of the perturbation (a) and different supporting intervals of the perturbation (b). ε = 0.1
fixed.

Fig. 4.5. Length of the time interval of the instability for different values of ε for a perturbation
supported on (−15ε,15ε) with a= 1, f = 1.

threshold, the solution will not converge to the kink solution anymore. Furthermore,
the higher the frequency of the perturbation, the faster the solution converges to the
kink solution. Therefore, the higher the frequency of the perturbation, the smaller
the time interval of the instability. Because of the important role of the support of
the perturbation, it seems that perturbations with high frequency bring no additional
information for the study of the time-local instability.

By changing the parameter ε, one can see that with decreasing ε the time interval
of the instability decreases. In Figure 4.5 the point in time of the maximal amplitude
of the instability is shown for different ε. The maximal amplitude of the instability
stays approximately the same.

In the two dimensional case the analogue of the kink solutions are the so-called
bubble solutions. In Figure 4.6 the evolution of a solution of the two dimensional
Cahn-Hilliard equation near a bubble solution over a finite time interval is shown.
In this example we used equidistant space and time discretization ∆x= ∆y= ε and
∆t= ε4. As initial value we take a radial-symmetric bubble solution perturbed by
a sine wave in the x1–direction. For a better comparison with the one dimensional



326 WILLMORE AND CAHN-HILLIARD

(a) t=21 (b) t=600

(c) t=21 (d) t=600

(e) Bubble solution (f) Willmore functional

Fig. 4.6. Surface plot (a)-(b) and vertical cut (c)-(d) of the solution for ε= 0.1 perturbed with
a sinusoidal wave in x–direction. (e) shows the bubble solution and (f) the Willmore functional

case a vertical cut in x2 = 0.5 of the solution is shown. Again the solution exhibits
a local growth of amplitude before converging uniformly to the stationary solution.
Especially near x1 = 0.5, the solution incipiently tends away from the bubble solution.
As predicted, this phenomenon causes an increase of the Willmore functional in a
short time interval before it decays to 0.
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5. Conclusion and outlook
We considered local instability and asymptotic behavior of the Cahn-Hilliard

equation in the neighbourhood of certain transition solutions. We found that studying
instabilities of the Cahn-Hilliard equation in finite time is closely connected to study-
ing the monotonicity behavior of the Willmore functional. In Section 2 the large-time
limit of the Willmore functional was shown to be zero in a general setting. With this
result, the convergence of ut→0 in H−2(Ω) and in L2(Ω) for solutions u of the Cahn-
Hilliard equation in arbitrary space dimensions was also proved. The main challenge
of our proof of convergence is that we avoid using the Lojasiewicz inequality, as used
in previous works. The asymptotic decay rate in arbitrary dimensions is, however still
a challenging problem. Further, we find that the Willmore functional is a good sur-
veying quantity to study structures of instability patterns of the solutions. In Section
3 a formal computation for the Willmore functional, asymptotically expanded in the
eigenvectors, strengthed our conjecture about the connection between the Willmore
functional and the stability of solutions of the Cahn-Hilliard equation. Motivated by
the linear analysis, in Section 4 local instabilities in finite time of solutions of the non-
linear Cahn-Hilliard equation near transition solutions were found numerically in one
and two dimensions and compared with the behavior of the corresponding Willmore
functional. We found the Willmore functional to be monotonically decreasing if the
solution converges to the equilibrium state without transitional instability and having
maxima when local-time instabilities occur. Therefore, the Willmore functional could
be used for the mathematical and numerical analysis of the Cahn-Hilliard equation,
e.g., by providing a more efficient tool for determining stability/instability of solu-
tions. Further, it can be useful in applications of the Cahn-Hilliard equation such as
in image processing (cf. [4, 5]). Therein the processed image is derived by evolving a
modified Cahn-Hilliard equation until its steady state. The Willmore functional could
thereby serve as a surveilling quantity reporting how far away from the steady state
the solution is.
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