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BREAKDOWN OF HOMOGENIZATION FOR THE RANDOM
HAMILTON-JACOBI EQUATIONS*

WEINAN Ef, JAN WEHR#, AND JACK XINS$

Abstract. We study the homogenization of Lagrangian functionals of Hamilton-Jacobi equations
(HJ) with quadratic nonlinearity and unbounded stationary ergodic random potential in R d>1.
We show that homogenization holds if and only if the potential is bounded from above. When the
potential is unbounded from above, homogenization breaks down, due to the almost sure growth
of the running maxima of the random potential. If the unbounded randomness appears in the
advection term, homogenization may or may not hold depending on the structure of the flow field.
In (compressible) unbounded gradient flows, homogenization holds in spite of the unboundedness.
In (incompressible) unbounded shear flows, homogenization breaks down again due to unbounded
running maxima of the flows. Results for random advection follow from a transformation of the
problem to that of HJ with random potential. Analogous effective behavior is present for front
speeds in reaction-diffusion-advection equations with unbounded random advection, and may have
broader implications for wave propagation in random media.
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1. Introduction

Stochastic Hamilton-Jacobi equations (HJ) appear as useful prototype models for
wave propagation and growth phenomena in random media, see [3, 14, 15] among
others. The effective large space-time behavior can be captured by studying the
homogenization limit (e — 0) of the associated random Lagrangian functional:

t

§'(etw) = inf, | L(E(s)/e () w)ds. (L1)

where A={¢cW1>([0,#; RY):£(0)=0,£(t) =x}; L=L(v,q,w), x,q€ R? (d>1), is
the Lagrangian (Legendre transform) of a convex random Hamiltonian H(x,p,w) to
be specified. The earlier works [11, 10] showed that if the Lagrangian (Hamiltonian) is
convex in ¢ (p) with superlinear growth in large |¢| (|p|), and uniformly bounded in z,
then S¢ converges almost surely to a deterministic function, S*(z,t) =tu*(7), where
w*=p*(q) is a convex function with superlinear growth in ¢. The Legendre transform
of u* gives the effective Hamiltonian H* = H*(p) which defines the homogenized HJ
equation u;+H*(Vzu)=0. For affine initial data u(z,0)=p-z, the solution is a
propagating front u(z,t)=p-x— H*(p)t, where H*(p) is the effective front speed in
unit direction p.

In this paper, we consider Hamiltonians or Lagrangians which are un-
bounded in z; for example, the x dependence can be an unbounded Gaussian pro-
cess. We are interested in the existence of the homogenization limit (1.1). It turns
out that the existence of the limit is quite subtle because of the unbounded random-
ness. When the Hamiltonian is of the form: H(z,p,w)=|p|?/2+V (z,w), p,x € R%,
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the homogenization limit exists if and only if the random potential is bounded from
above. In the case when the Hamiltonian contains a compressible random advec-
tion, H(z,p,w)=|p|?/2+pb(x,w), z,p € R, the homogenization limit holds irrespec-
tive of the unboundedness of b(x). We shall present elementary proofs of these state-
ments. Similar findings exist for random front speeds in related Burgers and reaction-
diffusion-advection equations [4, 12, 13, 9]. Hence the phenomena demonstrated here
may have broad implications for wave propagation in random media.

A simple scaling transform e:% shows that (1.1) is equivalent to studying the
limit Sy, (x,t)/n, where:

nt

Sn(x,t)=§i€njn ; L(£(s),€'(s),w) ds, (1.2)

and A, ={£e Wb ([0,nt]; R"):£(0)=0,&(nt) =nx}.

The plan for the paper is as follows. In Section 2, we will show that the limit (1.2)
exists and is deterministic for the quadratic Hamiltonian H (z,p,w)=|p|*/2+V (z,w)
for a class of random potentials V' which are bounded above. By a transformation,
we prove homogenization for the Hamiltonian H (x,p,w)=|p|*/2+b(z,w)-p, where b
is a random gradient field with appropriate smoothness properties.

More precisely, the homogenization problem in the case of a gradient flow is re-
duced to that of a Hamiltonian of the type mentioned above with a random potential
V(z)=—3|b/*(x), which is always bounded above. In Section 3, we study a general
class of random potentials unbounded from above in R?, and show that homoge-
nization breaks down. Instead, the behavior of the system on each length scale is
dominated by the maximum of the potential on this scale. The Hamiltonian of shear
flows is reduced to such a regime as well.

We thus see through these case studies that large space-time effects of randomness
can take two very different forms:

1. Homogenization. In this case, the behavior of the system on large scales is
described by an effective Lagrangian (or Hamiltonian) which is nonrandom. The
disorder gets averaged, and the extreme nature of the random media is tamed. An
elementary (and linear) analog of this phenomenon in classical probability theory is
the strong law of large numbers [2].

2. Domination by finite-volume maxima of the random potential. In this case,
homogenization breaks down, and on an arbitrarily large scale, the behavior of the
system is dictated by the maximum value of the disorder on that scale. The extreme
nature of the random media prevails. A relevant problem of classical probability the-
ory is the study of extrema of stochastic sequences and processes [6]. For example, the
maximum M, of n independent unit normal random variables behaves asymptotically
as v/2logn and, in particular, diverges as n — oco. We will see that similar divergence
of maxima of random fields underlies the phenomenon described here.

The two types of behavior of random systems are incompatible with each other.
For the class of Hamilton-Jacobi equations studied here, the behavior depends on
a simple mathematical criterion: boundedness of the potential (or transformed po-
tential) from above. The one-sided boundedness of spatial potential is the sharp
extension of the boundedness assumption in [11, 10].

A discussion of the equivalence of Hamiltonians and Lagrangians in the sense
of homogenization is given in Section 4. In particular, such equivalence means that
the minimizing paths of their Lagrangians obey the same equation of motion, and
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that their action functionals differ asymptotically by an amount independent of the
particle paths connecting the same initial and end points.

If the Hamiltonian is also random in time, then temporal fluctuations with finite
correlation lengths may promote mixing and facilitate averaging (homogenization).
Recently, existence and estimates of front speeds in unbounded temporal random flows
have been studied for reaction-diffusion-advection equations [13, 7, 9]. It is worthwhile
for a future work to study whether HJ averaging in unbounded time-random regime
behaves similarly.

2. Potential bounded from above and homogenization

2.1. Hamiltonians in classical mechanics. Let V(z),z€ R? be a sta-
tionary, ergodic random field, such that, for a certain constant Vg, V(z) <Vp with
probability one. Here ergodicity means ergodicity with respect to the translation
group R, We assume that E[|V(x)|] < cc.

Let us consider the Hamiltonian H (z,p) = % +V(x) of a classical particle moving
in the field of the potential V. The corresponding Lagrangian is L(z,q) = @ —V(x).
Let us fix € R? and ¢t >0. The action integral for a particle moving from the origin
to the point nz in time nt along the path s+—£(s), 0 <s<nt equals

B, = / L(£(s).£(s)) ds.

We study the minimum S, (¢,z) of ®,, over all paths ¢ such that £(0) =0 and {(nt) =
nx.

PROPOSITION 2.1. There exists a nonrandom number S*(t,z) such that with proba-
bility one

lim

lim 75”(;’%) — 5*(t,). (2.1)

Proof. We apply Kingman’s subadditive ergodic theorem [2, 10] to the family
Sm.n(t,x), where m and n are nonnegative integers such that m <n, defined as

Smnltid)=  min / L(e(t),£(0) dr, (2.2)

E(mt)=mx;§(nt)=nz | ¢

with the minimum taken over all paths £ connecting mx to nx in the time (n—m)t.
The theorem [2, 10] says the following. Suppose that S, , are random variables
satisfying:

(1) S0,0=0, Sm.n <Sm.k+Skn, for m<k<n;

(2) {Sm.m+k, m>0,k>0} equals {Sy+1,m+k+1,m >0,k >0} in distribution;
(3) E[Sg 1] <+00; an = E[So n] < 00;

then the following hold:

(£37)
n

(1) a= 1ufnn~>oo S(T’L'”
bility one;

(3) if E[Ss]=a>—00, lim,,_.oc E[|So,n/n—Sx|]=0. O

=inf,>1 %= €[-00,00); (2) Soo =lim, o0 exists with proba-
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For [ <m <n, we have clearly from (2.2):
S0.m(t,2) + Smn (t,2) > So.n (t, ).

Next, for a linear path £(s) =s%, we obtain

nl|z|*t "o s
o, =0 [ v
= [ v,

which, by the assumption of integrability of V(x), implies that
E[[So,5(t,2)[] <+oo.

On the other hand, since the kinetic part of the action integral is positive, the upper
bound on V implies that

E[S()’n (t,.’L’)] > —ntVo.

The family S,,, thus satisfies the assumptions (1)—(3) of the subadditive ergodic
theorem, implying existence of the finite limit of S‘;l—" This limit is invariant under
translations of the realization of V' by vectors proportional to z; hence its value is

constant with probability one.

2.2. Advection in gradient flows. Let us consider Hamiltonians of the form
H(z,p)= % +p-b(z), p, z€ RY. Here b(x)=VU(x), where U(z) is a scalar random
vector field whose realizations are of class C2, and let us assume that the scalar
random field

Vila)= b ()

satisfies all the conditions on classical potentials in the previous subsection (clearly,
V1 is bounded above). Examples of such fields b include Gaussian random fields with
appropriate covariance.

The Lagrangian corresponding to the above H is

L) = la—ba)? =0 —g-b(a) + PO (2.3

2 2
As in the previous section, consider a path £(s),0<s<nt, such that £(0)=0 and
&(nt)=nx. For such a path, the contribution from the second term to the Lagrangian
integral equals

| bete € ds= o)

This shows that this term is a null Lagrangian, i.e., that the Lagrangian (2.3) leads
to the same Euler-Lagrange equations of motion as the Lagrangian of the potential
system:

_laP
Ll(x,q)fovl( )
where Vi (z)=—2[b/*(z). Thus the result of the previous section applies and implies

that the homogenization holds for such Hamiltonian of advection type, even though
the flow field is unbounded.
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3. Unbounded potentials and domination by finite-volume maxima

In this section we consider again a particle moving in a potential V', which is a
realization of a stationary random field, but this time the support of the distribution
of V(z) is unbounded from above. We also assume that the covariance of V' decays
sufficiently fast. We will show that unboundedness of V' leads to a different behavior
of the system, where the homogenization limit fails.

3.1. One dimensional potentials. Consider a particle moving in a potential
field V in one dimension, according to the equations of classical mechanics. Let V
be a realization of a stationary random process. For simplicity, we take V to be
the Ornstein-Uhlenbeck process, i.e., the Gaussian process with mean zero and the
covariance

B[V (2)V (1)) = g exp(~lz ).

Let us fix ,6>0. For any n, the trajectory of the particle, starting from the
point 0 at time t=0 and arriving at the point na at time nt, has the classical action
equal to:

Sn:min/om B(ZZ)Q—V(U(T)) dr,

where the infimum is taken over all C? functions u(7) such that u(0) =0 and u(nt) =
nz. Our goal is to study the asymptotic behavior of Sn as n—oo. Clearly, the
function u, which minimizes the action integral, is monotone increasing and satisfies

% #0 for all 7.
We can thus rewrite the action in terms of the minimum over the inverse functions

7(u):
s=min [ 3 (45) vt o

where the minimum is over all C? functions 7(u) such that 7(0)=0 and 7(nz)=nt.
It follows from the principle of energy conservation that the solution of the above
variational problem satisfies

dr 1

du \/2[E,—V(u)’

where F, is the total energy of the particle and therefore

s.= |
0

E,—V(u) V(u)

2 V2(En=V(u))

du

and

nr 1
/ —du=nt.
0 V2(En—V(u)
In particular, E,, >V (u) for all u € [0,nz] for the particle to be able to reach the point
nx. We rewrite the formula for S,, as follows:

5.= |
0

E,—V(u) E,—V(u) E,

_ du.
2 B, V) V2B, Vi)
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The first two terms in the integrand are identical and their integral can be estimated
by Jensen’s inequality (using concavity of the root function):

é/m 2(En—V(u))du§\/7;/nz2(En—V(u))du=\/2En—27;/mv(u)du,
0 0 o

By ergodicity of the Ornstein-Uhlenbeck process, we have

1 nx
— V(u)du—0,
nxr Jo
with probability 1 as n— oo and therefore the integral of the first two terms in the
expression for S, is bounded by 3v/E, nx for large n. The integral of the third term
is simply — FE,nt, so for large n we obtain

1
—tE, <=8, <3z\/E, —tE,.
n

As mentioned above, E, >sup,¢(one V (u). Since the realizations of the Ornstein-
Uhlenbeck process V(u),u>0, are unbounded from above with probability one, it
follows that — 7%}3 — 1 with probability 1. In particular, 57" is unbounded, which

implies that the Hamilton-Jacobi equation with the potential V' does not homoge-
1_2

nize in the usual sense [11, 10]. Moreover, since for Ej, >sup,cnq V(1) + 35 we

nx 1 . oy .
have fo NETR L] du < nt, it follows from the condition satisfied by E, that E,, <

supue[oﬁnm]V(u)—l—%. Consequently, S,, is asymptotically equivalent to —tV*(nx),
where V* (y):supue[o)y]V(u) is the running maximum of the Ornstein-Uhlenbeck
process. Asymptotic equivalence of the two sequences means that their ratio con-
verges to a positive constant.

We will invoke the following classical result about the running maximum of the
Ornstein-Uhlenbeck process. It follows from the one dimensional versision of Theorem
6.9.5 in chapter 6 of [1].

THEOREM 3.1. The running mazimum of V*(y) of the Ornstein-Uhlenbeck process
satisfies the limit theorem:

Vi(y)—b

Prob [ Y Sx} —exp(—e™7)
y

as y— 0o, where

1
a, 1 ~by ~(2logy)?,
with ~ denoting asymptotic equivalence.

The theorem says that the renormalized random variables V*(y) converge in dis-
tribution to the double exponential distribution. It follows that

V*(y)

T — 1, asy—oq,
(2logy)2

in probability, implying that
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in probability.
The standard homogenization limit fails as claimed. Instead, the modified limit
holds in probability:

Sn
——— — — 1.
n(2logn)t/2
The divergence of homogenization in particular means that for affine data, the growth
rate of HJ solutions in time is faster than linear. We shall come back to this point for
front solutions in Section 3.3.

Generalization to other random potentials is straightfoward. In the above anal-
ysis, we have only used the fact that V is a mean-zero Gaussian process to which
Theorem 6.9.5 of [1] applies. For example, the divergence results hold for stationary
Gaussian processes with the covariance function r(7) satisfying

r(1)=1=Cl7|* +o(|7%)

as 7 — 0 for some a € (0,2], and r(7) € L2(R!). The Ornstein-Uhlenbeck process satis-
fies this condition with aa=1. Processes which satisfy it with a=2 have differentiable
realizations.

3.2. Unbounded potential in several dimensions. We show that the
behavior of a particle in a multi-dimensional random potential unbounded from above
is similar to that in one dimension. As before, we study the action S,, of the particle
which goes from the origin to the point nx in time nt, where z is a fixed vector in
RY. Let 7 denote the point in the ball B(0,n|z|) where V reaches its maximum,
equal to V. We also denote the minimum of V' in the same ball by V,,,. To obtain
an upper bound on S,,, consider a path which first goes from the origin to =} in time
dnt, moving with a constant velocity (equal to ;}t ), next spends time (1 —2d0)nt at =},
and finally goes from z} to nx in the remaining time dnt, moving with the constant

*
nz—zn

velocity —5—

. For such paths, we get:

£
ont

)
e nl) s,
n

2
Sn<;5nt( > —5ntV*n—(1—2§)ntVn*+;5nt<

It follows that
5 2
1 LIy A (1—25)tV;".

Sn
n — 2 0t

Because the process has mean zero, V,, =—V* in distribution. Applying the asymp-
totic law of V,* (Theorem 6.9.5, [1]), we have the upper bound:

Sn < Bl - ltV*

n — Ot 4 =l
for 6 small enough. By almost sure logarithmic divergence of V;:l 2| 88 M— 00 (true
for a Gaussian process), we conclude that S, /n— —oco almost surely, and standard
homogenization limit again fails. It will be interesting to establish a precise divergence
result as in the one space dimensional case. However, the source of divergence is the
same: dominance of the running maxima of an unbounded random process.
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3.3. Front divergence in shear flows. Let b(z)=(Va(z'),0), z'=
(z2,+,x4), 0e R-1, namely a shear flow in the direction z;. The HJ equation
associated with the Hamiltonian H(z,p)=|p|*/2+0b-p is:

us +b(z) - Vou+|Veu|?/2=0. (3.1)

Consider a solution that represents a front moving in the x; direction in the form
u(z,t) =z — $t+w(2’,t). Then w satisfies the HJ equation:

wi+ |V w|? /24 Va(2') =0, (3.2)

which is in the classical potential form. If V5 obeys the assumptions in previous sub-
sections and is unbounded from above, —w(a’,t)/t diverges for large time ¢, and the
front speed is not asymptotically constant. Instead there exists front speed accelara-
tion due to the dominance of running maxima of process V5. Shear flow is a special
incompressible (divergence free) flow. It is interesting to study other types of random
incompressible flows that may lead to divergence.

4. Discussion of Hamiltonians and Lagrangians
2
The equation of motion for the Hamiltonian H; = & +b(x)p, x, pe R, is:

§"(s) =b(§())V'(£(s))-

As discussed earlier, the same equation also arises from another Hamiltonian: Hs, =

% +Vi(z), where Vi (x)= —@. In this sense, the advection model is equivalent to
a potential model, and homogenization of the two models is closely related.

In the study of homogenization of the related partial differential equations, we are
not only interested in the ordinary differential equations satisfied by the minimizing
paths, but also in the asymptotic behavior of the corresponding action integrals. The
Lagrangians corresponding to Hy and Hy (their Legendre transforms) are respectively

La(r,0)= 5 (0 b(z)?

and

1
Ly(w.0) = 5 (a+1(2).
That the Hamiltonians H; and Hs lead to the same equations of motion implies
that the difference of the corresponding action functionals,

AnwxaﬁfwnLuaﬁfw»w&

=z

does not depend on the path £(s). Taking the linear function £(s)= %

s, we obtain:

t/”wxa$f@»fbmaﬁ£@»u&a/mMumM
0 0

Divided by n, this expression converges with probability one to the expected value of
b(0) times x. Consequently, homogenization or breakdown of homogenization holds
for Hy and Hs simultaneously. In a general classical mechanics Hamiltonian (as well as
in a shear flow Hamiltonian), the potential can be unbounded from above. In contrast,
the transformed potentials from the gradient flow Hamiltonians are nonpositive.
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5. Concluding remarks

In conclusion, the mechanism behind absence of homogenization in the random
potential system is that the potential is unbounded from above and that the behavior
of the system is dominated by the large fluctuations in the potential. In contrast, the
Hamiltonian of unbounded random advection of gradient type is equivalent to a clas-
sical mechanics Hamiltonian with a potential which, though unbounded from below,
is bounded from above, and so satisfies a homogenization principle. It is an interest-
ing future work to unravel more delicate conditions of stochastic HJ homogenization
for other Hamiltonians in unbounded random media. A related problem is to study
Hamiltonians with unbounded temporal fluctuations. For reaction-diffusion fronts
in incompressible random advection, temporal randomness is found to regularize the
dominance of extreme events and promote mixing; hence the speed of propagation is
asymptotically a deterministic constant [13, 7, 9]. It is conceivable that similar results
(or homogenization) hold for HJ equations in unbounded time-dependent random me-
dia under suitable conditions.
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