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EXACT ARTIFICIAL BOUNDARY CONDITIONS FOR

QUASILINEAR ELLIPTIC EQUATIONS IN UNBOUNDED DOMAINS∗

HOUDE HAN† , ZHONGYI HUANG‡ , AND DONGSHENG YIN§

Abstract. To study the numerical solutions of quasilinear elliptic equations on unbounded
domains in two or three dimensional cases, we introduce a circular or spherical artificial boundary.
Based on the Kirchhoff transformation and the Fourier series expansion, the exact artificial boundary
condition and a series of its approximations of the given quasilinear elliptic problem are presented.
Then the original problem is equivalently or approximately reduced to a bounded computational
domain. The well-posedness of the reduced problems are proved and the convergence results of our
numerical solutions on bounded computational domain are given.
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1. Introduction

In this paper, we consider the numerical solution of the exterior quasilinear elliptic
problem

{

−∇·
(

a(x,u)∇u
)

= f in Ωc ≡R
d\Ω,

u|∂Ω = 0,
(1.1)

where Ω⊂R
d (d=2 or 3) is a bounded domain and a(·,·) and f are functions with

various properties which will be specified later. Certainly, the problem (1.1) is not
well posed. We need an additional boundary condition at infinity:

{

u(x) is bounded, as |x|→+∞ (for d=2),
u(x)→0, as |x|→+∞ (for d=3).

(1.2)

Problem (1.1)–(1.2) has many physical applications in, for example, the field
of heat transfer, where a is the thermal conductivity of the medium and u is the
temperature field; the field of magnetostatics, where a is the magnetic permeability
and u is the magnetic scalar potential; and the field of compressible flow, where a is
the density and u is the velocity potential. There are many numerical results about
problems of this kind with bounded domains [2, 4, 12, 13].

Suppose that the given function a(·,·) satisfies (cf. [10, 12]):

0<C0≤a(x,u)≤C ∀u∈R, and for almost all x∈Ωc (1.3)

with two constants C0,C ∈R, and

∣

∣a(x,u)−a(x,v)
∣

∣≤CL|u−v| ∀u,v∈R and for almost all x∈Ωc, (1.4)
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with a constant CL >0. In the following, we suppose that the function f ∈L2(Ωc) has
compact support, i.e., there is a constant R0 >0, such that

suppf ⊂ΩR0
=

{

x∈R
d
∣

∣ |x|≤R0

}

. (1.5)

Furthermore, we assume that

a(x,u)≡a0(u) when |x|≥R0. (1.6)

We introduce an artificial boundary in R
d:

ΓR =
{

x∈R
d
∣

∣ |x|=R
}

, (1.7)

with R≥R0. ΓR divides Ωc into two parts, the bounded part Ωi =
{

x∈Ωc
∣

∣ |x|<R
}

and the unbounded part Ωe =
{

x
∣

∣ |x|>R
}

. Then the problem (1.1)–(1.2) can be
rewritten in the coupled form:

{

−∇·(a(x,u)∇u) = f in Ωi ⊂R
d,

u|∂Ω = 0,
(1.8)







−∇·(a0(u)∇u) = 0 in Ωe ⊂R
d,

|u(x)| is bounded as |x|→+∞ (for d=2),
|u(x)| → 0 as |x|→+∞ (for d=3).

(1.9)

Moreover

u(x) and a0(u)
∂u

∂n
are continuous on the artificial boundary ΓR. (1.10)

The problem (1.8)–(1.9) is a coupled problem, neither (1.8) nor (1.9) can be solved
independently without the connecting condition (1.10). In the case that a(x,u)≡a
is independent of x and u when |x|≥R0 >0, Wu, Kang and Yu have obtained the
artificial boundary conditions on the circle {x∈R

2 | |x|=R≥R0} [14]. In that case,
the problem is simplified to the linear exterior elliptic problem. For additional related
work, one can refer to the review paper [7] and the two books [5, 15]. In this paper,
we shall derive the artificial boundary conditions for more general quasilinear elliptic
equations in two or three dimensional spaces.

First, we introduce the so-called Kirchhoff transformation [11]

w(x)=

∫ u(x)

0

a0(ξ) dξ for x∈Ωe, (1.11)

then we get

∇w=a0(u)∇u. (1.12)

This means, from (1.9), that w satisfies the following problem:






−∆w = 0 in Ωe ⊂R
d,

|w(x)| is bounded as |x|→+∞, (for d=2)
|w(x)| → 0 as |x|→+∞. (for d=3)

(1.13)

The remainder of this paper is organized as follows: In Section 2, we give the ex-
act quasilinear artificial boundary conditions for two and three dimensional cases. In
Section 3, we give the equivalent variational problems and the finite element approx-
imations. The well-posedness and the convergence results of the reduced problems
are proved. Finally, in Section 4, we present some numerical examples to show the
efficiency and feasibility of our method.
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2. Exact quasilinear artificial boundary conditions

In this section, we shall derive the exact quasilinear artificial boundary conditions
from the well-known exact artificial boundary conditions for Laplace’s Equation [5,
7, 9, 15].

2.1. Exact quasilinear artificial boundary condition in R
2. Suppose

that w(x) is the solution of the problem (1.13). If the value w||x|=R is given, namely

w
∣

∣

|x|=R
=w(R,θ), (2.1)

then the problem (1.13) and (2.1) is well posed. For the solution in polar coordinates,
w(r,θ), of the problem (1.13) and (2.1), we have the Fourier expansion [5, 9, 15]:

w(r,θ)=
c0

2
+

∞
∑

n=1

(

R

r

)n

(cn cosnθ+dn sinnθ), (2.2)

with

cn =
1

π

∫ 2π

0

w(R,θ)cosnθdθ, n=0,1,... (2.3)

dn =
1

π

∫ 2π

0

w(R,θ)sinnθdθ, n=1,2,... (2.4)

It is easy to get

∂w

∂r
(r,θ)

∣

∣

∣

r=R
=−

1

Rπ

∞
∑

n=1

n

∫ 2π

0

w(R,ϕ)cosn(ϕ−θ)dϕ. (2.5)

From (1.12), we obtain

∂w

∂r
=a0(u)

∂u

∂r
. (2.6)

Combining (2.5) and (2.6), we get the exact boundary condition of u on ΓR,

(

a0(u)
∂u

∂r
(r,θ)

)

∣

∣

∣

r=R
=−

1

Rπ

∫ 2π

0

∞
∑

n=1

(

∫ u(R,ϕ)

0

a0(y)dy

)

ncosn(ϕ−θ)dϕ

≡K∞(u(R,θ)). (2.7)

Substituting (2.7) into (1.8), we have











−∇·(a(x,u)∇u) = f, in Ωi ⊂R
2,

u
∣

∣

∂Ω
= 0,

a0(u)
∂u

∂n

∣

∣

∣

ΓR

= K∞(u).

(2.8)

Therefore, the solution of problem (2.8) is the restriction of the solution of problem
(1.1) and (1.2) on the bounded domain Ωi.
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2.2. Exact quasilinear artificial boundary condition in R
3. For the

problem (1.13) with d=3, if the value w||x|=R is given in the spherical coordinates,
namely

w||x|=R =w(R,θ,ϕ), (2.9)

where

x1 = rsinθcosϕ, 0≤θ≤π,

x2 = rsinθsinϕ, 0≤ϕ≤2π,

x3 = rcosθ,

then the solution of the problem (1.13) and (2.9), w(r,θ,ϕ), has the following expan-
sion [5, 8, 15]:

w(r,θ,ϕ)

=
c00

2

R

r
+

∞
∑

n=1

(

R

r

)n+1
[

cn0

2
P 0

n(cosθ)+
n

∑

m=1

Pm
n (cosθ)(cnmcosmϕ+dnm sinmϕ)

]

with

cnm =
(2n+1)(n−m)!

2π(n+m)!

∫ 2π

0

∫ π

0

w(r,ξ,η)Pm
n (cosξ)cosmη sinξdξdη, (2.10)

dnm =
(2n+1)(n−m)!

2π(n+m)!

∫ 2π

0

∫ π

0

w(r,ξ,η)Pm
n (cosξ)sinmη sinξdξdη. (2.11)

Here P 0
n(t)=Pn(t) is the Legendre polynomial of degree n,

P 0
n(t)=Pn(t)=

1

2nn!

dn

dtn
(t2−1)n, (2.12)

and Pm
n (t) is the Legendre function,

Pm
n (t)=(1− t2)

m

2

dm

dtm
Pn(t). (2.13)

Furthermore, we have

∂w

∂r

∣

∣

∣

ΓR

=−
c00

2R

−
∞
∑

n=1

n+1

R

[

cn0

2
P 0

n(cosθ)+
n

∑

m=1

Pm
n (cosθ)(cnm cosmϕ+dnm sinmϕ)

]

.

(2.14)

Using (2.10) and (2.11) and the addition formula of Legendre functions [6], we get

∂w

∂r
(r,θ,ϕ)

∣

∣

∣

ΓR

=−

∫ 2π

0

∫ π

0

∞
∑

n=0

w(R,ξ,η)
(n+1)(2n+1)

4πR
Pn(cosγ)sinξdξdη, (2.15)

where

cosγ =cosξcosθ+sinξ sinθcos(η−ϕ). (2.16)
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From (2.6), we obtain the exact boundary condition of u on ΓR,
(

a0(u)
∂u

∂r

)

∣

∣

∣

ΓR

=−
1

4πR

∫ 2π

0

∫ π

0

∞
∑

n=0

(

∫ u(R,ξ,η)

0

a0(y)dy

)

(n+1)(2n+1)Pn(cosγ)sinξdξdη≡K∞(u).

(2.17)

Substituting (2.17) into (1.8), we have











−∇·
(

a(x,u)∇u
)

= f in Ωi ⊂R
3,

u
∣

∣

∂Ω
= 0,

a0(u)
∂u

∂n

∣

∣

∣

ΓR

= K∞(u).

(2.18)

3. Finite element approximation

3.1. The equivalent variational problems. First, let us focus on the prob-
lem (2.8) in R

2. We will use Wm,p(Ω) denoting the standard Sobolev spaces,
‖·‖m,p,Ω and | · |m,p,Ω denoting the corresponding norms and semi-norms. In particu-
lar, we denote Hm(Ω)=Wm,2(Ω), ‖·‖m,Ω =‖·‖m,2,Ω and | · |m,Ω = | · |m,2,Ω.

Let us introduce the space

V =
{

v∈H1(Ωi)
∣

∣ v|∂Ω =0
}

(3.1)

and the corresponding norms

‖v‖0,Ωi
=

√

∫

Ωi

|v|2dx, ‖v‖1,Ωi
=

√

∫

Ωi

(|v|2 + |∇v|2) dx.

The boundary value problem (2.8) is equivalent to the following variational problem:
{

Find u∈V, such that
A(u;u,v)+B(u;u,v)=F (v) ∀v∈V,

(3.2)

with

A(w;u,v)=

∫

Ωi

a(x,w)∇u ·∇vdx, (3.3)

B(w;u,v)=

∫ 2π

0

∫ 2π

0

a0

(

w(R,ϕ)
) ∂u

∂ϕ
(R,ϕ)

∂v

∂θ
(R,θ)

∞
∑

n=1

cosn(ϕ−θ)

nπ
dϕdθ, (3.4)

F (v)=

∫

Ωi

f(x)v(x)dx. (3.5)

Lemma 3.1. There is a constant C >0, such that

∀u,v,w∈V, |B(w;u,v)|≤C‖u‖1,Ωi
‖v‖1,Ωi

and B(v;v,v)≥0.

Proof. Using the equivalent norm theorem in [1], we have, for s∈R,

v∈Hs(ΓR)⇐⇒v =
c0

2
+

+∞
∑

n=1

(cn cosnθ+dn sinnθ),
c2
0

2
+

+∞
∑

n=1

(1+n2)s(c2
n +d2

n)<+∞.
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For u,v∈V , assume that

u(R,ϕ)=
α0

2
+

∞
∑

n=1

(αn cosnϕ+βn sinnϕ),

v(R,θ)=
c0

2
+

∞
∑

n=1

(cn cosnθ+dn sinnθ),

Then we obtain

∂u

∂ϕ
(R,ϕ)=

∞
∑

n=1

n(−αn sinnϕ+βn cosnϕ),

∂v

∂θ
(R,θ)=

∞
∑

n=1

n(−cn sinnθ+dn cosnθ).

Combining property (1.3), Cauchy’s inequality and the trace theorem [1], we get

|B(w;u,v)|≤C1

[

∞
∑

n=1

n(α2
n +β2

n)

]1/2[

∞
∑

n=1

n(c2
n +d2

n)

]1/2

≤C1‖u‖1/2,ΓR
‖v‖1/2,ΓR

≤C2‖u‖1,Ωi
‖v‖1,Ωi

, ∀u,v,w∈V.

On the other hand, for any given v∈V , let us consider the following auxiliary problem
in Ωe:







−∇·(a0(u)∇u) = 0 in Ωe,
u|ΓR

= v|ΓR
,

u(x) is bounded as |x|→+∞.
(3.6)

From the analysis in Section 2, we know that the solution u of the above problem
(3.6) satisfies

a0(u)
∂u

∂r

∣

∣

∣

ΓR

=K∞(u)≡K∞(v).

If we multiply Equation (3.6) by u and integrate over Ωe, we arrive at

B(v;v,v)=

∫

Ωe

a0(u) |∇u|2dx≥0.

In practice, we need to truncate the series in (2.7) for some nonnegative integer
N ∈Z,

(

a0(u)
∂u

∂r
(r,θ)

)

∣

∣

∣

r=R
=KN (u), (3.7)

where

KN (u)=−
1

Rπ

∫ 2π

0

N
∑

n=1

(

∫ u(R,ϕ)

0

a0(y)dy

)

ncosn(ϕ−θ)dϕ. (3.8)
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So we only use the summation of the first N terms in (2.7). We now focus on the
approximate problem:















−∇·
(

a(x,uN )∇uN
)

= f in Ωi ⊂R
2,

uN
∣

∣

∂Ω
= 0,

a0(u
N )

∂uN

∂n

∣

∣

∣

ΓR

= KN (uN ).

(3.9)

Certainly, problem (3.9) is equivalent to the following variational problem:

{

Find uN ∈V such that
A(uN ;uN ,v)+BN (uN ;uN ,v)=F (v) ∀v∈V,

(3.10)

with

BN (w;u,v)=
N

∑

n=1

1

nπ

∫ 2π

0

∫ 2π

0

a0

(

w(R,ϕ)
) ∂u

∂ϕ
(R,ϕ)

∂v

∂θ
(R,θ)cosn(ϕ−θ) dϕdθ. (3.11)

Similar to Lemma 3.1, we have:

Lemma 3.2. ∃ C >0, s.t. ∀u,v,w∈V , |BN (w;u,v)|≤C‖u‖1,Ωi
‖v‖1,Ωi

.

3.2. Finite element approximation. Suppose Th is a regular and quasi-
uniform triangulation on Ωi, s.t.

Ωi =
⋃

K∈Th

K, (3.12)

where K is a (curved) triangle; h denotes the maximum side of the triangles. Let

Vh =
{

vh ∈V
∣

∣

∣
v|K is a linear polynomial ∀K ∈Th

}

. (3.13)

We then consider the approximate problem of (3.10),

{

Find uN
h ∈Vh such that

A(uN
h ;uN

h ,vh)+BN (uN
h ;uN

h ,vh)=F (vh) ∀vh ∈Vh.
(3.14)

From the theory of existence and uniqueness in [10], we have

Lemma 3.3. Problems (3.2), (3.10) and (3.14) have unique solvability.

From now on, let u,uN ∈H2(Ωi), and uN
h ∈Vh be the solutions of problems (3.2),

(3.10), and (3.14), respectively. To get the convergence result, cf. [10], we will also
assume that

Vh ⊂V
⋂

W 1,q(Ωi), and q =d+ε for some ε∈ (0,1). (3.15)

Furthermore, we require that {Vh}h→0 is a family of finite-dimensional subspaces of
V

⋂

C(Ωi), such that

∀v∈V
⋂

C(Ωi), ∃{vh}h→0 : vh ∈Vh, ‖v−vh‖1,Ωi
→0, as h→0, (3.16)

and ‖vh‖1,q,Ωi
≤C(v) ∀h, (3.17)

where C(v)>0 is independent of h.
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Remark 3.1. The continuous piecewise polynomial spaces, such as (3.13), satisfy

the condition (3.15). And if we let vh =Πhv, where Πh :V →Vh is the interpolation

operator, we have

‖vh‖1,q,Ωi
≤‖Πhv−v‖1,q,Ωi

+‖v‖1,q,Ωi
≤C(v).

From the convergence theory in [10], it is easy to obtain the following convergence
result:

∀N ≥0, lim
h→0

‖uN
h −uN‖1,Ωi

=0 and uN ∈V
⋂

W 1,q(Ωi). (3.18)

Furthermore, we can get the following lemma:

Lemma 3.4. We have the following convergence result:

lim
N→∞

‖u−uN‖1,Ωi
=0. (3.19)

Proof. First, from Proposition (1.3) and Lemma 3.1, we have

‖uN‖2
1,Ωi

≤C
[

A(uN ;uN ,uN )+B(uN ;uN ,uN )
]

=C
[

F (uN )+B(uN ;uN ,uN )−BN (uN ;uN ,uN )
]

≤C
[

‖f‖0,Ωi
·‖uN‖1,Ωi

+
∣

∣B(uN ;uN ,uN )−BN (uN ;uN ,uN )
∣

∣

]

.

For uN ∈V , assume that

wN (r,ϕ)=

∫ uN (r,ϕ)

0

a0(ξ) dξ =
α0

2
+

∞
∑

n=1

(

R0

r

)n

(αn cosnϕ+βn sinnϕ) ∀r≥R0,

uN (R,θ)=
c0

2
+

∞
∑

n=1

(cn cosnθ+dn sinnθ).

We obtain that

∣

∣B(uN ;uN ,uN )−BN (uN ;uN ,uN )
∣

∣

=

∣

∣

∣

∣

∣

∫ 2π

0

∫ 2π

0

∂wN

∂ϕ
(R,ϕ)

∂uN

∂θ
(R,θ)

∞
∑

n=N+1

cosn(ϕ−θ)

nπ
dϕdθ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=N+1

(

R0

R

)n

nπ(αncn +βndn)

∣

∣

∣

∣

∣

≤π

(

R0

R

)N+1
[

∞
∑

n=N+1

n(α2
n +β2

n)

]1/2[

∞
∑

n=1

n(c2
n +d2

n)

]1/2

≤C1

(

R0

R

)N+1
∥

∥wN
∥

∥

1

2
,ΓR0

‖uN‖ 1

2
,ΓR

≤C2

(

R0

R

)N+1

‖uN‖2
1,Ωi

.
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Because R>R0, we know that
{

uN
}∞

N=0
is bounded in V . Therefore, we have a

subsequence
{

uNn

}

such that uNn ⇀ū∈V . Furthermore, ∀v∈V
⋂

C∞(Ωi),

|A(ū;ū,v)+B(ū;ū,v)−F (v)|

≤
∣

∣A(ū;ū,v)−A
(

ū;uNn ,v
)
∣

∣+
∣

∣A
(

ū;uNn ,v
)

−A
(

uNn ;uNn ,v
)
∣

∣

+|B(ū;ū,v)−BNn
(ū;ū,v)|+

∣

∣BNn
(ū;ū,v)−BNn

(

ū;uNn ,v
)
∣

∣

+|BNn
(ū;uNn ,v)−BNn

(uNn ;uNn ,v)|

≤
∣

∣A
(

ū;ū−uNn ,v
)
∣

∣+
∣

∣BNn
(ū;ū−uNn ,v)

∣

∣+C
[

‖ū−uNn‖0,Ωi
·‖uNn‖1,Ωi

·‖v‖1,∞,Ωi

+

(

R0

R

)Nn+1

‖ū‖1,Ωi
·‖v‖1,Ωi

]

→0, as n→∞.

Consequently, we get

A(ū;ū,v)+B(ū;ū,v)=F (v) ∀v∈V
⋂

C∞(Ωi).

As V
⋂

C∞(Ωi) is a dense set of V , we know that ū is a solution of problem (3.2).
From the unique solvability of problem (3.2), we know that any weak cluster point of
the sequence

{

uN
}∞

N=0
coincides with the solution. Consequently, uN ⇀u. On the

other hand, we have

‖u−uN‖2
1,Ωi

≤C1A(u,u−uN ,u−uN )

=C1

[

A(uN ,uN ,u−uN )+BN (uN ,uN ,u−uN )−B(u,u,u−uN )−A(u,uN ,u−uN )
]

≤C2

[

‖u−uN‖0,p,Ωi
·‖uN‖1,q,Ωi

·‖u−uN‖1,Ωi
+‖u−uN‖ 1

2
,ΓR

·‖u−uN‖1,Ωi

+

(

R0

R

)N+1

‖u‖1,Ωi
·‖u−uN‖1,Ωi

]

.

Using the compactness of the embedding operator H1(Ωi) →֒Lp(Ωi) and of the trace

operator γ :W 1,q(Ωi)→H
1

2 (ΓR), we arrive at

lim
N→∞

‖u−uN‖1,Ωi
=0.

Finally, we get the following convergence result:

Theorem 3.1. Let u∈H2(Ωi), and let assumptions (3.15)–(3.17) be satisfied. Then

we have:

lim
h→0,N→∞

∥

∥u−uN
h

∥

∥

1,Ωi

=0. (3.20)

Remark 3.2. For the three dimensional spaces case, we can get similar convergence

results.
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4. Numerical example

In this section, we give some numerical examples to show the feasibility and
efficiency of our method. We choose the linear finite element space as given in (3.13).

Example 4.1. First, let us consider the problem

{

−∇·
(

a(x,u)∇u
)

= f(x) for x∈Ωc ≡R
2\Ω,

u|∂Ω = 0,
(4.1)

where Ω=
{

x=(r,θ)∈R
2

∣

∣ r≤1
}

, and for x=(r,θ)∈Ωc,

a(x,u)=

{

1+r2 + 1
1+u2 , 1≤ r≤2;

5+ 1
1+u2 , r>2;

f(x)=

{

4−r2, 1≤ r≤2;
0, r>2.

It is easy to check that a(·,·) and f satisfy the conditions (1.3)–(1.6). Here we
let R=3, i.e., we introduce an artificial boundary ΓR =

{

x∈R
2
∣

∣ |x|=3
}

, and we solve

the problem on the domain Ωi =
{

x∈R
2
∣

∣1≤|x|≤3
}

. Furthermore, we let ∆r= 2
M ,

∆θ = 2π
3M for some integer M ∈N. In this case, because u(r,θ) is independent of θ, we

can only use N =0 to get the optimal approximation results, cf. Table 4.1. The exact
solution ‘u’ is solved with N =100 and a very fine mesh: ∆r= 1

64 , ∆θ = π
192 .

Table 4.1. Spatial discretization error test at N =0 for example 4.1.

mesh size △r 1/4 1/8 1/16 1/32
∥

∥uN
h −u

∥

∥

H1(Ωi)
2.34E-1 1.18E-1 6.01E-2 3.03E-2

convergence order 1.0 1.0 1.0
∥

∥uN
h −u

∥

∥

L2(Ωi)
1.85E-1 5.03E-2 1.230E-2 2.36E-3

convergence order 1.9 2.0 2.4

Example 4.2. Then, let us consider the problem

{

−∇·
(

a(x,u)∇u
)

= f(x) for x∈Ωc ≡R
2\Ω,

u|∂Ω = 0,
(4.2)

where Ω=
{

x=(r,θ)∈R
2

∣

∣ r≤1
}

, and for x=(r,θ)∈Ωc,

a(x,u)=

{

1+(2−r)sin2θ+exp(−u2), 1≤ r≤2;
1+exp(−u2), r>2;

f(x)=

{

(2−r)|θ−π|2, 1≤ r≤2;
0, r>2.

It is also easy to check that a(·,·) and f satisfy the conditions (1.3)–(1.6). Here
we also set R=3, i.e., we solve the problem on the domain Ωi =

{

x∈R
2
∣

∣1≤|x|≤3
}

.
Furthermore, we let ∆r= 2

M , ∆θ = 2π
3M for some integer M ∈N. In this case, we find

that we can use N =10 to get the almost optimal convergence rate, cf. Figure 4.1.
The exact solution ‘u’ is solved with N =100 and very fine mesh: ∆r= 1

64 , ∆θ = π
192 .
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Fig. 4.1. The convergence rate of the artificial boundary with different truncation terms for

example 4.2. Here E =
‚

‚uN

h
−u

‚

‚

H1(Ωi)
.

Example 4.3. Finally, let us consider the problem
{

−∇·
(

a(x,u)∇u
)

= f(x), for x∈Ωc ≡R
2\Ω,

u|∂Ω = g(x),
(4.3)

where Ω=
{

x=(x1,x2)∈R
2

∣

∣ x2
1 +x2

2≤1
}

, and for x=(x1,x2),

a(x,u)=

{

4−|x|2 + 1
1+u2 , 1≤|x|≤2;

1
1+u2 , |x|>2;

f(x)=

{

2x2|x|
2 4−|x|2(1+|x|2)−x2

2

(|x|4+x2
2
)2

, 1≤|x|≤2;

0, |x|>2;

g(x)=tan(x2), for x∈∂Ω.

The exact solution of (4.3) is

u(x)=tan

(

x2

|x|2

)

. (4.4)

It easy to see that a(·,·) does not satisfy the condition (1.3). But we can see that our
numerical results are also very much satisfied, cf. Figure 4.2–4.3 and Table 4.2. In our
numerics, we set R=2, i.e., we introduce an artificial boundary ΓR =

{

x∈R
2
∣

∣ |x|=2
}

,

and we solve the problem on the domain Ωi =
{

x∈R
2
∣

∣1≤|x|≤2
}

. Furthermore, we
let ∆r= 1

M , ∆θ = 2π
6M for some integer M ∈N. The numerical results are given in

Table 4.2 and Figures 4.2–4.3.
Remark 4.1. If we use the higher order finite element spaces and the solution has

higher regularities, we can get a higher order convergence rate.
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Fig. 4.2. Example 4.3: the errors on the artificial boundary with different mesh sizes. Here we

let N =10, ∆r = 1
M

, ∆θ = 2π

6M
.
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Fig. 4.3. Example 4.3: the errors on the artificial boundary with different N . Here we let

M =32, ∆r = 1
M

, ∆θ = 2π

6M
.

5. Conclusion

In this paper, we propose the exact artificial boundary conditions of a generic
quasilinear elliptic equation on unbounded domains in R

2 (or R
3). We assume that
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Table 4.2. Spatial discretization error test at N =10 for example 4.3.

mesh size △r 1/4 1/8 1/16 1/32
∥

∥uN
h −u

∥

∥

H1(Ωi)
1.71E-1 8.48E-2 3.81E-2 1.82E-2

convergence order 1.0 1.2 1.1
∥

∥uN
h −u

∥

∥

L2(Ωi)
6.61E-2 1.68E-2 4.19E-3 1.03E-3

convergence order 2.0 2.0 2.0

the source term has compact support. After we introduce a circular or spherical
artificial boundary, we get a boundary problem on a disc or a ball enclosed by the
artificial boundary which is exactly the restriction of the original problem on this
bounded domain. Based on the Kirchhoff transformation, Fourier series expansion and
the special functions techniques, we obtain the exact artificial boundary conditions
and a series of approximating artificial boundary conditions. We also prove the well-
posedness and the convergence results of the reduced problems with the artificial
boundary conditions. Our numerical examples show the efficiency of our method.
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