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RAYLEIGH-BÉNARD CONVECTION: DYNAMICS AND

STRUCTURE IN THE PHYSICAL SPACE∗

TIAN MA† AND SHOUHONG WANG‡

Abstract. The main objective of this article is part of a research program to link the dynamics
of fluid flows with the structure of these fluid flows in physical space and the transitions of this
structure. To demonstrate the main ideas, we study the two-dimensional Rayleigh-Bénard convection,
which serves as a prototype problem. The analysis is based on two recently developed nonlinear
theories: geometric theory for incompressible flows [T. Ma and S. Wang, Mathematical Surveys
and Monographs, American Mathematical Society, Providence, RI, 119, 2005] and bifurcation and
stability theory for nonlinear dynamical systems (both finite and infinite dimensional) [T. Ma and S.
Wang, World Scientific, 2005]. We have shown in [T. Ma and S. Wang, Commun. Math. Sci., 2(2),
159–183, 2004] that the Rayleigh-Bénard problem bifurcates from the basic state to an attractor AR

when the Rayleigh number R crosses the first critical Rayleigh number Rc for all physically sound
boundary conditions, regardless of the multiplicity of the eigenvalue Rc for the linear problem. In this
article, in addition to a classification of the bifurcated attractor AR, the structure of the solutions in
physical space and the transitions of this structure are classified, leading to the existence and stability
of two different flows structures: pure rolls and rolls separated by a cross the channel flow. It appears
that the structure with rolls separated by a cross-channel flow has not been carefully examined
although it has been observed in other physical contexts such as the Branstator-Kushnir waves in
atmospheric dynamics [G.W. Branstator, J. Atmos. Sci., 44, 2310–2323, 1987] and [K. Kushnir, J.
Atmos. Sci., 44, 2727–2742, 1987].
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stability, roll structure
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1. Introduction

The Rayleigh-Bénard convection problem was originated in the famous exper-
iments conducted by H. Bénard in 1900. Bénard investigated a fluid with a free
surface heated from below in a dish and noticed a rather regular pattern of hexagonal
convection cells. Based on the pioneering studies by Lord Rayleigh [13], the convection
occurs only when a non-dimensional parameter called the Rayleigh number,

R=
gαβ

κν
h4, (1.1)

exceeds a certain critical value, where g is the acceleration due to gravity, α the
coefficient of thermal expansion of the fluid, β= |dT/dz|=(T̄0− T̄1)/h the vertical
temperature gradient with T̄0 the temperature on the lower surface and T̄1 on the
upper surface, h the depth of the layer of the fluid, κ the thermal diffusivity and ν
the kinematic viscosity. There have been intensive studies of this problem; see among
others Chandrasekhar [2] and Drazin and Reid [3] for linear theories, and Kirchgässner
[6], Rabinowitz [12], and Yudovich [16, 17], and the references therein for nonlinear
theories.

Recently, the authors have developed a bifurcation theory [9] for nonlinear partial
differential equations, which has been used to develop a nonlinear analysis for the
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Rayleigh-Bénard convections [8]. This bifurcation theory is centered on a new notion
of bifurcation, called attractor bifurcation, for nonlinear evolution equations. The
main ingredients of the theory include a) the attractor bifurcation theory, b) steady
state bifurcation for a class of nonlinear problems with even order non-degenerate
nonlinearities, regardless of the multiplicity of the eigenvalues, and c) new strategies
for the Lyapunov-Schmidt reduction and the center manifold reduction procedures.

In particular, based on this bifurcation theory, for the Rayleigh-Bénard convection
problem, we have shown [8, 9] that the problem bifurcates from the trivial solution to
an attractor AR when the Rayleigh numberR crosses the first critical Rayleigh number
Rc, for all physically sound boundary conditions and regardless of the multiplicity of
the eigenvalue Rc for the linear problem.

The main objectives of this article are 1) to classify the solutions in the bifurcated
attractor AR, and 2) to study the structure (and the transitions of this structure) of
the solutions of the Bénard problem in physical space. The first objective is an im-
portant part of the above-mentioned new bifurcation and stability theory. The second
objective is part of a program recently initiated by the authors to develop a geometric
theory of two-dimensional incompressible fluid flow in physical space; see [10]. This
program of study consists of research in two directions: 1) the study of the structure
(and its transitions/evolutions) of divergence-free vector fields (kinematics), and 2)
the study of the structure (and its transitions) of velocity fields for 2-D incompressible
fluid flows governed by the Navier-Stokes equations or the Euler equations. The study
in this article is in the second direction, linking kinematics to dynamics.

To demonstrate ideas, in this article we only consider the two-dimensional Bénard
convection problem. The three-dimensional case is technically more involved, and
shall be reported elsewhere. From the physical point of view, two-dimensional Boussi-
nesq equations can be considered as idealized models for many physical phenomena,
including 1) the Walker circulation over the tropics [14], which has the same topologi-
cal structure as the cells given in Fig. 4.3 in Thm. 4.2, and 2) the Branstator-Kushnir
waves of atmospheric dynamics [1, 7], which have similar topological structure as
given in Fig. 4.2 in Thm. 4.1.

We end this introduction with a few remarks. First, the main idea of the study is
1) to explicitly reduce the bifurcation problem to a bifurcation problem on the center
manifold, and 2) to solve this reduced problem using an S1 attractor bifurcation
theorem and structural stability theorems for 2D incompressible flows. The types of
solutions in this S1 attractor depend on the boundary conditions. With the periodic
boundary condition (2.7) in the x1 direction in this article, the bifurcated attractor
consists of only steady states. When the boundary conditions for the velocity field are
free-slip boundary conditions and Ω=(0,L)2×(0,1) with 0<L2< (2− 3

√
2)/( 3

√
2−1),

using the same method established in this article, we can prove that the bifurcated
attractor is still an S1 attractor, consisting of exactly eight singular steady states (with
four saddles and four minimal attractors) and eight heteroclinic orbits connecting
these steady states. The bifurcated attractor and its detailed classification provide a
global dynamic transitions in both the physical and phase spaces.

Second, the method and ideas presented in this article are crucial to obtain these
results, which cannot be obtained using only the classical bifurcation theories. For the
case studied in this article, the classical bifurcation theory with symmetry arguments
implies that the bifurcation attractor in the main theorems, theorems 4.1 and 4.2,
contains a circle of steady states. We need, however, the new bifurcation theory to
prove in particular that the bifurcated attractors are exactly of type S1. Furthermore,



TIAN MA AND SHOUHONG WANG 555

for general boundary conditions such as the free-slip boundary conditions mentioned
above, no symmetry can be used, and the classical amplitude equation methods fails
to derive the dynamics.

Third, the newly developed geometric theory for incompressible flows is crucial
for the structure (and its stability) of the solutions in the physical spaces obtained in
the main theorems.

Fourth, it appears that the structure with rolls separated by a cross-channel flow
has not been carefully examined, although it has been observed in other physical
contexts such as the Branstator-Kushnir waves in atmospheric dynamics [1, 7].

Finally, as previously mentioned, this article is part of a research program initiated
in the mid-1990s to make connections between the dynamics and the structure in
physical spaces.

This article is organized as follows. First, the functional setting and the attractor
bifurcation theorem for the Bénard convection problem obtained in [8] are introduced
in Section 2. Section 3 recapitulates 1) the approximation of the center manifold
function, 2) an S1-attractor bifurcation theorem, and 3) structural stability theorems
for incompressible flows. The main theorems of this article are stated in Section 4,
and proved in Section 5.

2. Bénard problem

2.1. Boussinesq equations. The Bénard problem can be modeled by the
Boussinesq equations. In this paper, we consider the Bénard problem in a two-
dimensional (2D) domain R

1×(0,h)⊂R
2 (h>0). The Boussinesq equations, which

govern the motion and states of the fluid flow, are as follows; see among others
Rayleigh [13], Drazin and Reid [3] and Chandrasekhar [2]:

∂u

∂t
+(u ·∇)u−ν∆u+ρ−1

0 ∇p=−gk[1−α(T − T̄0)], (2.1)

∂T

∂t
+(u ·∇)T −κ∆T =0, (2.2)

divu=0, (2.3)

where ν,κ,α,g are constants defined as in (1.1), u=(u1,u2) the velocity field, p the
pressure function, T the temperature function, T̄0 and T̄1 constants representing the
lower and upper surface temperatures at x2 =0 and x2 =h respectively, and k=(0,1)
the unit vector in the x3 direction.

To make the equations non-dimensional, let

x=hx′,

t=h2t′/κ,

u=κu′/h,

T =βh(T ′/
√
R)+ T̄0−βhx′2,

p=ρ0κ
2p′/h2 +p0−gρ0(hx

′
2 +αβh2(x′2)

2/2),

Pr =ν/κ.

Here the Rayleigh number R is defined by (1.1), and Pr =ν/κ is the Prandtl number.
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Omitting the primes, the equations (2.1)-(2.3) can be rewritten as follows

1

Pr

[
∂u

∂t
+(u ·∇)u+∇p

]
−∆u−

√
RTk=0, (2.4)

∂T

∂t
+(u ·∇)T −

√
Ru3−∆T =0, (2.5)

divu=0. (2.6)

The non-dimensional domain is Ω=R
1×(0,1)⊂R

2. We consider periodic bound-
ary condition in the x1 direction:

(u,T )(x1,x2,t)=(u,T )(x1 +kL,x2,t) ∀k∈Z. (2.7)

At the top and bottom boundary (x2 =0,1), different combinations of top and
bottom boundary conditions are normally used in different physical settings such as
rigid-rigid, rigid-free, free-rigid, and free-free. For instance, we have

Dirichlet boundary condition (rigid-rigid):

T =0, u=0 at x2 =0,1. (2.8)

Free-free boundary condition:

T =0, u2 =0
∂u1

∂x2
=0 at x2 =0,1. (2.9)

Free-rigid boundary condition:




T =0, u=0 at x2 =0,

T =0, u2 =0,
∂u1

∂x2
=0 at x2 =1.

(2.10)

The initial value conditions are given by

(u,T )=(u0,T0) at t=0. (2.11)

2.2. Functional setting. For simplicity, we proceed in this article with the
set of boundary conditions given by (2.7) and (2.8), and similar results hold true as
well for other combinations of boundary conditions.

Let

H={(u,T )∈L2(Ω)3 | divu=0, u2|x2=0,1 =0, u1 is periodic in the x1 direction},
V ={(u,T )∈H1

0 (Ω)3 | divu=0, (u,T ) is periodic in the x1 direction},
H1 =V ∩H2(Ω)3.

Let G :H1→H, and Lλ =−A+Bλ :H1→H be defined by

G(ψ)=(−P [(u ·∇)u],−(u ·∇)T ),

Aψ=(−P (∆u),−∆T ),

Bλψ=λ(P (Tk),u2),

for any ψ=(u,T )∈H1. Here λ=
√
R, and P the Leray projection to L2 fields.

Then the Boussinesq equations (2.4)–(2.8) can be rewritten in the following op-
erator form

dψ

dt
=Lλψ+G(ψ), ψ=(u,T ). (2.12)
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2.3. Attractor bifurcation of the Bénard problem. Let {Sλ(t)}t≥0 be
an operator semi-group generated by the equation (2.12). Then the solution of (2.12)
can be expressed as

ψ(t,ψ0)=Sλ(t)ψ0, t≥0.

Definition 2.1. A set Σ⊂H is called an invariant set of (2.12) if S(t)Σ=Σ for
any t≥0. An invariant set Σ⊂H of (2.12) is called an attractor if Σ is compact, and
there exists a neighborhood U ⊂H of Σ such that for any ψ0∈U we have

lim
t→∞

distH(ψ(t,ψ0),Σ)=0.

Definition 2.2.
1. We say that the equation (2.12) bifurcates from (ψ,λ)=(0,λ0) to invariant

sets Ωλ, if there exists a sequence of invariant sets {Ωλn
} of (2.12) such that

0 /∈Ωλn
and

lim
n→∞

λn =λ0,

lim
n→∞

max
x∈Ωλn

|x|=0.

2. If the invariant sets Ωλ are attractors of (2.12), then the bifurcation is called
an attractor bifurcation.

We are now in position to state the attractor bifurcation theorem for the Bénard
problem (2.4)-(2.8). The linearized equations of (2.4)-(2.6) are given by





−∆u+∇p−
√
RTk=0,

−∆T −
√
Ru2 =0,

div u=0,

(2.13)

where R is the Rayleigh number. These equations are supplemented with the same
boundary conditions (2.7) and (2.8) as the nonlinear Boussinesq system. This eigen-
value problem for the Rayleigh number R is symmetric. Hence, we know that all
eigenvalues Rk with multiplicities mk of (2.13) with (2.7) and (2.8) are real numbers,
and

0<R1< ···<Rk<Rk+1< ··· .

The first eigenvalue R1 is a function of the period L. The critical Rayleigh number
Rc is given by

Rc =min
L>0

R1(L). (2.14)

Let the multiplicity of Rc bem1 =m (m even), and the first eigenspace be denoted
by E0. Then we have the following attractor bifurcation theorem.

Theorem 2.3. [8, 9] For the Bénard problem (2.4-2.8), the following assertions hold
true.

1. When R≤Rc, the steady state (u,T )=0 is globally asymptotically stable in
H.
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2. The equations bifurcate from ((u,T ),R)=(0,Rc) to attractors ΣR for R>
Rc, with m−1≤dimΣR ≤m, and ΣR is an (m−1) dimensional homological
sphere, i.e., ΣR has the same homology as Sm−1.

3. For any (u,T )∈ΣR, the velocity field u can be expressed as

u=

m∑

k=1

αkek +o

(
m∑

k=1

αkek

)
,

where ek are the velocity fields of the first eigenvectors in E0.

4. For any open bounded neighborhood U ⊂H of (u,T )=0, the attractor ΣR at-
tracts U \Γ in H, where Γ is the stable manifold of (u,T )=0 with codimension
m in H.

Remark 2.4. Results similar to this attractor bifurcation theorem hold true as well
for 3D Bénard problems; see [8, 9].

3. Preliminaries

3.1. Center manifold functions. To study the structure of the bifurcated
attractors of (2.4-2.8), it is necessary to consider the reduction of nonlinear evolution
equations to center manifolds. To this end, we introduce in this section a method to
derive a first order approximation of the central manifold functions. This method was
introduced and used in [9].

Let H and H1 be two Hilbert spaces, and let H1 →֒H be a dense and compact
inclusion. We consider the nonlinear evolution equation,





du

dt
=Lλu+G(u,λ),

u(0)=u0,
(3.1)

where u : [0,∞)→H is the unknown function, λ∈R is the system parameter, and Lλ :
H1→H are parameterized linear completely continuous fields depending continuously
on λ∈R

1, which satisfy




Lλ =−A+Bλ is a sectorial operator,

A :H1→H is a linear homeomorphism, and

Bλ :H1→H are parameterized linear compact operators.

(3.2)

It is easy to see [5, 11] that Lλ generates an analytic semigroup {e−tLλ}t≥0. Then we
can define fractional power operators Lα

λ for any 0≤α≤1 with domain Hα =D(Lα
λ)

such that Hα1
⊂Hα2

if α1>α2, and H0 =H.
Furthermore, we assume that the nonlinear term G(·,λ) :Hα →H, for some

0≤α<1, is a family of parameterized Cr bounded operators (r≥1) continuously
depending on the parameter λ∈R

1, such that

G(u,λ)=o(‖u‖Hα
), ∀λ∈R

1. (3.3)

In this paper, we are interested in the case where Lλ =−A+Bλ are sectorial
operators such that there exist an eigenvalue sequence {ρk}⊂C

1 and an eigenvector
sequence {ek,hk}⊂H1 of A:





Azk =ρkzk, zk =ek + ihk,

Reρk →∞ (k→∞),

|Imρk/(aReρk)|≤ c,
(3.4)
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for some a,c>0, such that {ek,hk} is a basis of H.
Condition (3.4) implies that A is a sectorial operator. For the operator Bλ :H1→

H, we also assume that there is a constant 0<θ<1 such that

Bλ :Hθ −→H is bounded, ∀ λ∈R
1. (3.5)

Under conditions (3.4) and (3.5), the operator Lλ =−A+Bλ is a sectorial operator.
Let H1 and H be decomposed into

{
H1 =Eλ

1 ⊕Eλ
2 ,

H= Ẽλ
1 ⊕ Ẽλ

2 ,
(3.6)

for λ near λ0∈R
1, where Eλ

1 , Eλ
2 are invariant subspaces of Lλ, such that

dimEλ
1 <∞,

Ẽλ
1 =Eλ

1 ,

Ẽλ
2 =closure of Eλ

2 in H.

In addition, Lλ can be decomposed into Lλ =Lλ
1 ⊕Lλ

2 such that for any λ near λ0,
{
Lλ

1 =Lλ|Eλ

1

:Eλ
1 −→ Ẽλ

1 ,

Lλ
2 =Lλ|Eλ

2
:Eλ

2 −→ Ẽλ
2 ,

(3.7)

where all eigenvalues of Lλ
2 possess negative real parts, and the eigenvalues of Lλ

1

possess nonnegative real parts at λ=λ0.
Thus, for λ near λ0, equation (3.1) can be written as





dx

dt
=Lλ

1x+G1(x,y,λ),

dy

dt
=Lλ

2y+G2(x,y,λ),

(3.8)

where u=x+y∈H1, x∈Eλ
1 , y∈Eλ

2 , Gi(x,y,λ)=PiG(u,λ), and Pi :H→ Ẽλ
i are

canonical projections. Furthermore, let

Eλ
2 (α)= closure of Eλ

2 in Hα,

with α<1 given by (3.3).
The following center manifold theorem is classical; see [5, 15].

Theorem 3.1. Assume (3.3)–(3.7) hold true. Then there exists a neighborhood of
λ0 given by |λ−λ0|<δ for some δ>0, a neighborhood Bλ ∈Eλ

1 of x=0, and a C1

function Φ(·,λ) :Bλ →Eλ
2 (θ) depending continuously on λ, such that

1. Φ(0,λ)=0, Φ′
x(0,λ)=0;

2. the sets

Mλ =
{
(x,y)∈H |x∈Bλ, y=Φ(x,λ)∈Eλ

2 (θ)
}
,

called the center manifolds, are locally invariant for (3.1); i.e. for each u0∈
Mλ

uλ(t,u0)∈Mλ, ∀ 0≤ t<t(u0)

for some t(u0)>0, where uλ(t,u0) is the solution of (3.1);



560 RAYLEIGH-BÉNARD CONVECTION

3. if (xλ(t),yλ(t)) is a solution of (3.8), then there is a βλ>0 and kλ>0 with
kλ depending on (xλ(0),yλ(0)) such that

‖yλ(t)−Φ(xλ(t),λ)‖H ≤kλe
−βλt.

Also, it is classical that the bifurcation problem of (3.1) reduces to the bifurcation
problem for the following finite dimensional system:

dx

dt
=Lλ

1x+g1(x,Φλ(x),λ), (3.9)

for x∈Bλ ⊂Eλ
1 .

Now we give a formula to calculate the center manifold functions. Let the non-
linear operator G be given by

G(u,λ)=Gk(u,λ)+o(|u|k), (3.10)

for k≥2, where Gk(u,λ) is a k-multilinear operator:

Gk :H1×···×H1→H,

Gk(u,λ)=Gk(u,...,u,λ).

The following theorem was proved in [9].

Theorem 3.2. Under the conditions (3.3)-(3.7) and (3.10), the center manifold
function Φ(x,λ) can be expressed as

Φ(x,λ)=(−Lλ
2 )−1P2Gk(x,λ)+O(|Reβ(λ)| ·‖x‖k)+o(‖x‖k), (3.11)

where Lλ
2 is given by (3.7), P2 :H→ Ẽ2 is the canonical projection, x∈Eλ

1 , and β(λ)=
(β1(λ),... ,βm(λ)) is the tuple of eigenvalues of Lλ

1 .

Remark 3.3. Consider the case where Lλ :H1→H is symmetric. Then the eigen-
values are real, and the eigenvectors form an orthogonal basis of H. Therefore, we
have

u=x+y∈Eλ
1 ⊕Eλ

2 ,

x=

m∑

i=1

xiei ∈Eλ
1 ,

y=

∞∑

i=m+1

xiei ∈Eλ
2 .

Then near λ=λ0, the formula (3.11) can be expressed as follows.

Φ(x,λ)=
∞∑

j=m+1

Φj(x,λ)ej +O(|Reβ(λ)| ·‖x‖k)+o(‖x‖k), (3.12)

where

Φj(x,λ)=− 1

βj(λ)

∑

1≤j1,...,jk≤m

aj
j1···jk

xj1 ···xjk
,

aj
j1···jk

=(Gk(ej1 ,... ,ejk
,λ),ej)H .
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In many applications, the coefficients aj
j1···jk

can be computed, and the first m eigen-
values β1(λ),... ,βm(λ) satisfy

|Reβ(λ0)|=

√√√√
m∑

j=1

(Reβj(λ0))2 =0.

Hence (3.12) gives an explicit formula for the first approximation of the center mani-
fold functions.

3.2. S1-attractor bifurcation. In this section, we study the structure of
the bifurcated attractor of (3.9) when m=2. Namely, we consider the following two-
dimensional system:

dx

dt
=β(λ)x−g(x,λ), x∈R

2. (3.13)

Here β(λ) is a continuous function of λ satisfying

β(λ)





<0 if λ<λ0,

=0 if λ=λ0,

>0 if λ>λ0,

(3.14)

and




g(x,λ)=gk(x,λ)+o(|x|k),

gk(·,λ) is a k-multilinear field,

C1|x|k+1≤ (gk(x,λ),x),

(3.15)

for some integer k=2m+1≥3, and some constant C1>0.
The following theorem was proved in [9], which shows that under conditions (3.14)

and (3.15), the system (3.13) bifurcates to an S1-attractor.

Theorem 3.4. Let the condition (3.14) and (3.15) hold true. Then the system (3.13)
bifurcates from (x,λ)=(0,λ0) to an attractor Σλ, which is homeomorphic to S1, for
λ0<λ<λ0 +ε for some ε>0. Moreover, one and only one of the following is true.

1. Σλ is a periodic orbit,

2. Σλ consists of an infinite number of singular points, or

3. Σλ contains at most 2(k+1)=4(m+1) singular points, consisting of 2N sad-
dle points, 2N stable node points, and n (≤4(m+1)−4N) singular points
with index zero, as shown in Fig. 3.1.

3.3. Structural stability theorems. In this subsection, we recall some re-
sults on structural stability for 2D divergence-free vector fields developed in [10], which
are crucial to study the asymptotic structure in the physical space of the bifurcated
solutions of the Bénard problem.

Let Cr(Ω,R2) be the space of all Cr (r≥1) vector fields on Ω=R
1×(0,1) which

are periodic in the x1 direction with period L, and let Dr(Ω,R2) be the space of all Cr

divergence-free vector fields on Ω=R
1×(0,1) which are periodic in the x1 direction

with period L and satisfy the no-normal-flow condition in the the x2 direction:

Dr(Ω,R2)=
{
v∈Cr(Ω,R2) |v2 =0 at x2 =0,1

}
.



562 RAYLEIGH-BÉNARD CONVECTION

p1

p2

p3

p4

p5

p6

Fig. 3.1. Ωλ has 4N +n (N =1 and n=2 shown here) singular points, where p1 and p4 are
saddles, p3 and p6 are nodes, and p2 and p5 are singular points with index zero.

Furthermore, let

Br
0(Ω,R2)=

{
v∈Dr(Ω,R2) |v=0 at x2 =0,1

}
,

Br
1(Ω,R2)=



v∈D

r(Ω,R2)
∣∣∣

v=0 at x2 =0,

v2 =
∂v1
∂x2

=0 at x2 =1



.

Definition 3.5. Two vector fields u,v∈Cr(Ω,R2) are called topologically equivalent
if there exists a homeomorphism of ϕ :Ω→Ω which takes the orbits of u to orbits of
v and preserves their orientation.

Definition 3.6. Let X=Dr(Ω,R2) or X=Br
0(Ω,R2). A vector field v∈X is called

structurally stable in X if there exists a neighborhood U ⊂X of v such that for any
u∈U , u and v are topologically equivalent.

Let v∈Dr(Ω,R2). We recall next some basic facts and definitions on divergence-
free vector fields.

1. A point p∈Ω is called a singular point of v if v(p)=0; a singular point p of v
is called non-degenerate if the Jacobian matrix Dv(p) is invertible; v is called
regular if all singular points of v are non-degenerate.

2. An interior non-degenerate singular point of v can be either a center or a
saddle, and a non-degenerate boundary singularity must be a saddle.

3. Saddles of v must be connected to saddles. An interior saddle p∈Ω is called
self-connected if p is connected only to itself, i.e., p occurs in a graph whose
topological form is that of the number 8.

Let v∈Br
0(Ω,R2); then we know that each point on x2 =0,1 is a singular point

of v in the usual sense. To study the structure of v, we need to classify the boundary
points as follows.
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Definition 3.7. Let u∈Br
0(TM) (r≥2).

1. A point p∈∂M is called a ∂-regular point of u if ∂uτ (p)
∂n

6=0; otherwise, p∈∂M
is called a ∂-singular point of u.

2. A ∂-singular point p∈∂M of u is called non-degenerate if

det




∂2uτ (p)

∂τ∂n

∂2uτ (p)

∂n2

∂2un(p)

∂τ∂n

∂2un(p)

∂n2


 6=0. (3.16)

A non-degenerate ∂-singular point of u is also called a ∂-saddle point of u.

3. u∈Br
0(TM) (r≥2) is called D-regular if a) u is regular in

◦

M , and b) all
∂-singular points of u on ∂M are non-degenerate.

The following theorem provides necessary and sufficient conditions for structural
stability of a divergence-free vector field.

Theorem 3.8. [10] Let u∈Br
0(TM) (r≥2). Then u is structurally stable in Br

0(TM)
if and only if

1) u is D-regular,

2) all interior saddle points of u are self-connection, and

3) each ∂-saddle point of u on ∂M is connected to a ∂-saddle point on the same
connected component of ∂M .

Moreover, the set of all structurally stable vector fields is open and dense in
Br

0(TM).

Remark 3.9. For vector fields with free-rigid boundary conditions, the conditions for
structural stability differ slightly. More precisely, u∈Br

1(TM) (r≥2) is structurally
stable in Br

1(TM) if and only if

1) all singular points of u in Ω and on x2 =1 are regular, and all ∂-singular
points on x2 =0 are ∂-regular,

2) all interior saddle points of u are self-connected, and

3) each saddle of u on x2 =1 is connected to saddles on x2 =1, and each ∂-saddle
point of u on x2 =0 is connected to a ∂-saddle point on x2 =0.

Remark 3.10. For vector fields satisfying free-free boundary conditions, we set

Br
2(Ω,R2)=

{
v∈Dr(Ω,R2)

∣∣∣ v2 =
∂v1
∂x2

=0 at x2 =0,1

}
,

Br
3(Ω,R2)=

{
v∈Dr

2(Ω,R
2)

∣∣∣
∫

Ω

udx=0

}
.

Then u∈Br
2(Ω,R2) (respectively u∈Br

3(Ω,R2)) is structurally stable in Br
2(Ω,R2)

(respectively in Br
2(Ω,R2)) if and only if

1) u is regular,

2) all interior saddle points of u are self-connected, and

3) each boundary saddle of u is connected to boundary saddles on the same con-
nected component of ∂Ω (respectively each boundary saddle of u is connected
to boundary saddles not necessarily on the same connected component).
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The difference between these two cases is due to the zero-average condition in
the definition in Br

3(Ω,R2), which implies that Br
3(Ω,R2) does not contain the har-

monic field v0 =(α,0) for any constant α 6=0. Hence, an orbit connecting two saddles
on different components of the boundary cannot be broken with a perturbation in
Br

3(Ω,R2) into orbits connecting only saddles on the same connected component of
the boundary.

4. Structure of bifurcated solutions for the Bénard problem

In this section, we study the topological structure of the bifurcated attractor
and the asymptotic structure of solutions for the Bénard problem. It is known that
for each type of boundary conditions, there is a minimal period Lc satisfying (2.14).
Hereafter, we always take Lc to be the period of (2.7).

The main theorem in this article is as follows.

Σ R

Fig. 4.1. All points on the bifurcated attractor ΣR =S1 are steady state solutions.

Theorem 4.1. For the Bénard problem (2.4)-(2.8), the following assertions hold
true.

1. For R>Rc, the equations bifurcate from the trivial solution ((u,T ),R)=
(0,Rc) to an attractor ΣR, homeomorphic to S1, which consists of steady
state solutions as shown in Fig. 4.1, where Rc is the critical Rayleigh num-
ber.

2. For any ψ0 =(u0,T0)∈H \(Γ∪E), there exists a time t0≥0 such that for
any t≥ t0, the vector field u(t,ψ0) is topologically equivalent to the structure
as shown in either Fig. 4.2(a) or Fig. 4.2(b), where ψ=(u(t,ψ0),T (t,ψ0)) is
the solution of (2.4)-(2.8) with initial data ψ0, Γ is the stable manifold of the
trivial solution (u,T )=0 with codimension 2, and

E=

{
(u,T )∈H

∣∣∣
∫ 1

0

u1dx2 =0

}
.
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(b)

(a)

Fig. 4.2. Here the horizontal axis is the x1-axis, and the vertical axis is the x2-axis. With the
Dirichlet boundary conditions on x2 =0,1, the flow is not moving on both the top x2 =1 and the
bottom x2 =0 boundaries.

Fig. 4.3. Here the horizontal axis is the x1-axis, and the vertical axis is the x2-axis. With the
free slip boundary conditions on x2 =0,1, the flow does move on both the top x2 =1 and the bottom
x2 =0 boundaries.

The zonally moving meandering flow shown in Fig. 4.2 appears often in many
physical problems such as the Bransdator-Kushnir waves in atmospheric circulation
[1, 7].

Thm. 4.1 is also valid for the Bénard problem (2.4)-(2.7) with (2.10). However
the case with the free-free boundary condition is different. More precisely, for the
free-free boundary condition, it is easy to see that for any constant α, the harmonic
field ψ0 =((α,0),0) is a solution of (2.4)-(2.6). Therefore, we have to consider the
problem (2.4)-(2.7) with (2.9) in the following function spaces:

H̃=

{
(u,T )∈L2(Ω)3 | divu=0,

∫

Ω

udx=0

}
,

H̃1 ={(u,T )∈ H̃∩H2(Ω)3 satisfying (2.7) and (2.9)}.
Then we have the following theorem.

Theorem 4.2. For the Bénard problem (2.4)-(2.7) with boundary condition (2.9),
the following assertions hold true.
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1. For R>Rc, the equations bifurcate from the trivial solution ((u,T ),R)=
(0,Rc) to an attractor ΣR, homeomorphic to S1, which consists of steady
state solutions, where Rc =27π4/4 is the critical Rayleigh number.

2. For any ψ0 =(u0,T0)∈ H̃ \Γ, there exists a time t0≥0 such that for any t≥ t0,
the vector field u(t,ψ0) is topologically equivalent to the structure as shown in
Fig. 4.3, where ψ=(u(t,ψ0),T (t,ψ0)) is the solution of (2.4)-(2.7) with (2.9),
and Γ is the stable manifold of the trivial solution (u,T )=0 with codimension

2 in H̃.

5. Proof of main theorems

5.1. Eigenvectors of the linear Boussinesq equations. We shall only
prove Thm. 4.1. The proof of Thm. 4.2 is essentially the same, and we omit the details.
We proceed by first considering the eigenvalues and eigenvectors of the linearized
equations of (2.4)–(2.6):





△u−∇p+
√
RTk=β(R)u,

△T +
√
Ru2 =β(R)T,

divu=0,

(5.1)

supplemented with the boundary conditions (2.7) and (2.8).
For ψ=(u1,u2,T )∈H1, we take the separation of variables as follows:

ψ=

(
−sin

2kπx1

L
h′(x2),

2kπ

L
cos

2kπx1

L
h(x2),cos

2kπx1

L
θ(x2)

)
,

ψ̃=

(
cos

2kπx1

L
h′(x2),

2kπ

L
sin

2kπx1

L
h(x2),sin

2kπx1

L
θ(x2)

)
.

Then it follows from (5.1) that (h,θ) satisfies the following differential equations




(
d2

dx2
2

−a2
k

)2

h−
√
Rakθ=β(R)

(
d2

dx2
2

−a2
k

)
h,

−
(
d2

dx2
2

−a2
k

)
θ−

√
Rakh=−β(R)θ,

(5.2)

supplemented with the following boundary conditions

θ=0, h=h′ =0 at x2 =0, 1, (5.3)

where ak =2kπ/L and L=Lc satisfies (2.14).
The eigenvalue problem (5.2) with (5.3) is symmetric, and has a complete eigen-

value and eigenvector sequences for given k and R:





βk1(R)>βk2(R)> ··· ,
lim

j→∞
βkj(R)=−∞,

hkj ∈H4(0,1)∩H2
0 (0,1) j=1,2,... ,

θkj ∈H2(0,1)∩H1
0 (0,1) j=1,2,... .

(5.4)

Moreover,

{(hkj ,θkj) | j=1,2,...}
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constitutes an orthogonal basis of L2(0,1)×L2(0,1).

Thus, we obtain the following complete set of eigenvectors for (5.1) with boundary
conditions (2.7) and (2.8):

ψkj =

(
−sin

2kπx1

L
h′kj(x2),

2kπ

L
cos

2kπx1

L
hkj(x2),cos

2kπx1

L
θkj(x2)

)
, (5.5)

ψ̃kj =

(
cos

2kπx1

L
h′kj(x2),

2kπ

L
sin

2kπx1

L
hkj(x2),sin

2kπx1

L
θkj(x2)

)
, (5.6)

where 0≤k<∞, 1≤ j <∞. When k=0, we derive from (5.1), (5.5) and (5.6) that

{
ψ0j =(0,0,sinjπx2),

ψ̃0j =(h′0j(x2),0,0).
(5.7)

5.2. Singularity cycle. We shall show that the bifurcated attractor ΣR of
(2.4)-(2.8) given in Thm. 2.3 contains a cycle of steady state solutions.

First, we note that the equations (2.4)-(2.8) are invariant under the following
translation:

ψ(x1,x2, t)→ψ(x1 +α,x2, t) ∀α∈R.

Hence, if ψ0(x) is a steady state solution, then ψ0(x1 +α,x2) are steady state solutions
as well. It is easy to see that the set

S ={ψ0(x1 +α,x2) | α∈R}

is a cycle S1 in H1. Therefore, each steady state of (2.4)-(2.8) generates a cycle of
steady state solutions.

Let

H ′ ={(u, T )∈H | u1(−x1,x2)=−u1(x1, x2)},
H ′

1 =H1∩H ′.

It is easy to check that H ′ and H ′
1 are invariant spaces for the operator Lλ +G given

by (2.12) in the sense that

Lλ +G :H ′
1→H ′,

where λ=
√
R. On the other hand, it is clear that the sequence {ψkj | k=

0,1,... and j=1,2,...} defined by (5.5) is a basis of H ′. Since the first eigenvalue
Rc of (2.13) is simple, the first eigenvalue β1(Rc) of Lλ in H ′

1 is also simple, where

β1(Rc)=β11(Rc)=0,

and β11(Rc) is defined by (5.4). Hence by the classical Krasnoselskii bifurcation
theorem, we know that the operator Lλ +G bifurcates from (ψ,λ)=(0,

√
Rc) to a

singular point in H ′
1. Namely, the Bénard problem (2.4)-(2.8) bifurcates from (ψ,R)=

(0,Rc), a steady state solution. Therefore, the bifurcated attractor ΣR contains at
least a cycle of steady state solutions.
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5.3. S1-attractor: ΣR =S1. To prove that ΣR =S1, by Thm. 3.4, it suf-
fices to verify that the equations of (2.4)-(2.8) reduced to the center manifold satisfy
conditions (3.14) and (3.15).

For any ψ=(u,T )∈H, we have

ψ=
∑

k≥0,j≥1

(
xkjψkj +ykjψ̃kj

)
.

Since L is the minimal period satisfying (2.14), ψ11 and ψ̃11 are the first eigenvectors
of (5.1). Therefore the reduced equations of (2.4)-(2.8) are given by





dx11

dt
=β1(R)x11 +

1

‖ψ11‖2
H

(G(ψ,ψ), ψ11),

dy11
dt

=β1(R)y11 +
1

‖ψ11‖2
H

(G(ψ,ψ),ψ̃11).

(5.8)

Here for ψ1 =(u,T1), ψ2 =(v,T2), and ψ3 =(w,T3),

(G(ψ1,ψ2),ψ3)=−
∫

Ω

[(u ·∇v)w+(u ·∇T2)T3]dx.

Let the center manifold function be denoted by

Φ=
∑

(k,j) 6=(1,1)

(
Φkj(x11,y11)ψkj +Φ̃kj(x11,y11)ψ̃kj

)
. (5.9)

Note that for any ψi ∈H1 (i=1,2,3),

(G(ψ1,ψ2),ψ2)=0,

(G(ψ1,ψ2),ψ3)=−(G(ψ1,ψ3,),ψ2).

Then by ψ=x11ψ11 +y11ψ̃11 +Φ, we have

(G(ψ,ψ),ψ11)=(G(ψ̃11,ψ̃11),ψ11)y
2
11

−(G(ψ11,ψ11),ψ̃11)x11y11

−(G(ψ11,ψ11),Φ)x11

+(G(ψ̃11,Φ)+G(Φ,ψ̃11),ψ11)y11

+(G(Φ,Φ),ψ11), (5.10)

(G(ψ,ψ),ψ̃11)=(G(ψ11,ψ11),ψ̃11)x
2
11

−(G(ψ̃11,ψ̃11),ψ11)x11y11

−(G(ψ̃11,ψ̃11),Φ)y11

+(G(ψ11,Φ)+G(Φ,ψ11),ψ̃11)x11

+(G(Φ,Φ),ψ̃11). (5.11)

It is easy to check that for k 6=0,2,




(G(ψ11,ψ11),ψkj)=0,

(G(ψ̃11,ψ̃11),ψkj)=0,

(G(ψ̃kj ,ψ̃11),ψ11)=0,

(G(ψ̃kj ,ψ11),ψ̃11)=0,

(5.12)
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and for any k≥0, j≥1, we have




(G(ψ11,ψ11),ψ̃kj)=0,

(G(ψ̃11,ψ̃11),ψkj)=0,

(G(ψkj ,ψ̃11),ψ11)=0,

(G(ψkj ,ψ11),ψ̃11)=0.

(5.13)

By (5.9), (5.12) and (5.13), the equalities (5.10) and (5.11) can be rewritten as

(G(ψ,ψ),ψ11)=−
∞∑

j=1

[(G(ψ11,ψ11),ψ0j)Φ0j +(G(ψ11,ψ11),ψ2j)Φ2j ]x11

−
∞∑

j=1

[(G(ψ̃11,ψ11),ψ̃0j)+(G(ψ̃0j ,ψ11),ψ11)y11Φ̃0j

−
∞∑

j=1

[(G(ψ̃11,ψ11),ψ̃2j)+(G(ψ̃2j ,ψ11),ψ̃11)y11Φ̃2j

+(G(Φ,Φ),ψ11), (5.14)

(G(ψ,ψ),ψ̃11)=−
∞∑

j=1

[(G(ψ̃11,ψ̃11),ψ0j)Φ0j +(G(ψ̃11,ψ̃11),ψ2j)Φ2j ]y11

−
∞∑

j=1

[(G(ψ11,ψ̃11),ψ̃0j)+(G(ψ̃0j ,ψ̃11),ψ̃11)x11Φ̃0j

−
∞∑

j=1

[(G(ψ11,ψ̃11),ψ̃2j)+(G(ψ̃2j ,ψ̃11),ψ11)x11Φ̃2j

+(G(Φ,Φ),ψ̃11). (5.15)

Since the center manifold functions contains only higher order terms

Φ(x11,y11)=O(|x11|2,|y11|2),

we derive that
{

(G(Φ,Φ),ψ11)=o(|x11|3,|y11|3),
(G(Φ,Φ),ψ̃11)=o(|x11|3,|y11|3).

(5.16)

Then direct calculation yields that

(G(ψ̃2j ,ψ11),ψ̃11)=−(G(ψ̃2j ,ψ̃11),ψ11)

=
π

2

∫ 1

0

[−h′11(h′2jh
′
11 +2h2jh

′′
11)

+h11(h
′
2jh11 +2h2jh

′
11)

+θ11(h
′
2jθ11 +2h2jθ

′
11)]dx2

=
π

2

∫ 1

0

d

dx2
(−h2j(h

′
11)

2 +h2jh
2
11 +h2jθ

2
11)dx2

=0. (5.17)
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It is clear that for any k≥0 and j≥1,

‖ψkj‖2
H =‖ψ̃kj‖2

H . (5.18)

Hence the reduced equations (5.8) can be expressed as follows:

dx11

dt
=β1(R)x11−

1

‖ψ11‖2
H

∞∑

j=1

[(G(ψ11,ψ11),ψ0j)Φ0jx11

+(G(ψ11,ψ11),ψ2j)Φ2jx11 +(G(ψ̃11,ψ11),ψ̃2j)y11Φ̃2j

+(G(ψ̃11,ψ11),ψ̃0j)y11Φ̃0j +(G(ψ̃0j ,ψ11),ψ̃11)y11Φ̃0j ]

+o(|x11|3,|y11|3), (5.19)

dy11
dt

=β1(R)y11−
1

‖ψ11‖2
H

∞∑

j=1

[(G(ψ̃11,ψ̃11),ψ0j)Φ0jy11

+(G(ψ̃11,ψ̃11),ψ2j)Φ2jy11 +(G(ψ11,ψ̃11),ψ̃2j)x11Φ̃2j

+(G(ψ11,ψ̃11),ψ̃0j)x11Φ̃0j +(G(ψ̃0j ,ψ̃11),ψ11)x11Φ̃0j ]

+o(|x11|3,|y11|3). (5.20)

By Thm. 3.2 and (3.12), we have

Φ0j =
−1

‖ψ0j‖2
Hβ0j

[(G(ψ11,ψ11),ψ0j)x
2
11 +(G(ψ̃11,ψ̃11),ψ0j)y

2
11]

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)),

Φ2j =
−1

‖ψ2j‖2
Hβ2j

[(G(ψ11,ψ11),ψ2j)x
2
11 +(G(ψ̃11,ψ̃11),ψ2j)y

2
11]

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)),

Φ̃0j =
−1

‖ψ̃0j‖2
Hβ0j

[(G(ψ11,ψ̃11)+G(ψ̃11,ψ11),ψ̃0j)x11y11]

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)),

Φ̃2j =
−1

‖ψ̃2j‖2
Hβ2j

[(G(ψ11,ψ̃11)+G(ψ̃11,ψ11),ψ̃2j)x11y11]

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)),

Φkj =o(x2
11 +y2

11) ∀k 6=0,2,

Φ̃kj =o(x2
11 +y2

11) ∀k 6=0,2,

where βkj(R) are as in (5.4).

Also by direct computation, we obtain that

(G(ψ11,ψ11),ψ0j)=(G(ψ̃11,ψ̃11),ψ0j),

(G(ψ11,ψ11),ψ2j)=−(G(ψ̃11,ψ̃11),ψ2j),

(G(ψ11,ψ̃11)+G(ψ̃11,ψ11),ψ̃0j)=0,

(G(ψ11,ψ̃11),ψ̃2j)=(G(ψ̃11,ψ11),ψ̃2j)=(G(ψ11,ψ11),ψ2j).
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Hence we have

Φ0j =
−1

‖ψ0j‖2
Hβ0j

(G(ψ11,ψ11),ψ0j)(x
2
11 +y2

11)

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)), (5.21)

Φ2j =
−1

‖ψ2j‖2
Hβ2j

(G(ψ11,ψ11),ψ2j)(x
2
11−y2

11)

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)), (5.22)

Φ̃0j =o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)), (5.23)

Φ̃2j =
−2

‖ψ2j‖2
Hβ2j

(G(ψ11,ψ11),ψ2j)x11y11

+o(x2
11 +y2

11)+O(β1(R)(x2
11 +y2

11)). (5.24)

Inserting (5.21)-(5.24) into (5.19) and (5.20), we have

dx11

dt
=β1(R)x11−αx11(x

2
11 +y2

11)

+o(x3
11 +y3

11)+O(β1(R)(x3
11 +y3

11)), (5.25)

dy11
dt

=β1(R)y11−αy11(x2
11 +y2

11)

+o(x3
11 +y3

11)+O(β1(R)(x3
11 +y3

11)), (5.26)

where

α=
−1

‖ψ11‖2
H

∞∑

j=1

[
(G(ψ11,ψ11),ψ0j)

2

‖ψ0j‖2
Hβ0j(R)

+
(G(ψ11,ψ11),ψ2j)

2

‖ψ2j‖2
Hβ2j(R)

]
.

We know that

β1(R)=β11(R)>βkj(R) ∀(k,j) 6=(1,1),

β11(Rc)=0.

Hence near R=Rc,

βkj(R)<0 ∀(k,j) 6=(1,1).

Consequently, α>0 and (5.25) and (5.26) satisfy (3.15).
Also, we know that [8, 9]

β1(R)





<0 if R<Rc,

=0 if R=Rc,

>0 if R>Rc.

Therefore (3.15) holds true.

5.4. Asymptotic structure of solutions. By [4], we know that for
any initial value ψ0 =(u0,T0)∈H, there is a time τ ≥0 such that the solution
ψ=(u(t,ψ0),T (t,ψ0)) is C∞ for t>τ , and is uniformly bounded in Cr-norm for any
given r≥1. Hence, by Thm. 2.3, we have

lim
t→∞

min
φ∈ΣR

‖ψ(t,ψ0)−φ‖Cr =0. (5.27)
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We infer then from (5.25) and (5.26) that for any steady state solution Φ=(e,T )∈ΣR

of (2.4)-(2.8), the vector field e=(e1,e2) can be expressed as




e1 = rcos
2π

L
(x1 +θ) h′11(x2)+v1(x11,y11,β1),

e2 =
2π

L
rsin

2π

L
(x1 +θ) h11(x2)+v2(x11,y11,β1),

(5.28)

for some 0≤θ≤2π. Here



r=
√
x2

11 +y2
11 =

√
β1(R)+o(

√
β1(R)) if R>Rc,

vi(x11, y11, β1)=o(
√
β1(R)) for i=1, 2.

(5.29)

On the other hand, it is known that the first eigenfunction h11(x2) of (5.2) and
(5.3) at R=Rc is given by

h11(x2)≃cosα0(x2−
1

2
)−0.06coshα1(x2−

1

2
)cosα2(x2−

1

2
)

+0.1sinhα1(x2−
1

2
)sinα2(x2−

1

2
), (5.30)

where α0≃3.97, α1≃5.2 and α2≃2.1. This function is schematically given by Fig.
5.1; see [2].

0 11/2

Fig. 5.1.

Now we show that the vector field

e0 =

(
rcos

2πx1

L
h′11(x2),

2πr

L
sin

2πx1

L
h11(x2)

)
(5.31)

is D-regular in Ω=R
1×(0,1).

To this end, by (5.30) we see that

h′′11(x2) 6=0 at x2 =0,
1

2
,1,

h′11(
1

2
)=0, h′′11(

1

2
) 6=0.
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Hence

det De0(x1,x2) 6=0,

for any (x1,x2)=(kL/2,1/2) with k=1, 2, ... , and

det




∂2e10
∂x1∂x2

∂2e10
∂x2

2

∂2e20
∂x1∂x2

∂2e20
∂x2

2




=−2πr

L
sin2 2πx1

L
h′′11(x2) 6=0,

for any (x1,x2)=((2k+1)L/4,0) or (x1,x2)=((2k+1)L/4,1) with k=1, 2, ... . There-
fore, the vector field (5.31) is D-regular, and consequently, the vector fields e in (5.28)
are D-regular for any Rc<R<Rc +ε for some ε>0.

Next we show that the following subspace of H

E={ (u,T )∈H1

∣∣∣
∫ L

0

∫ 1

0

u1dx=0}

is invariant for (2.4)-(2.8). In fact, we can verify that

∫ L

0

∫ 1

0

P [(u ·∇)u] · idx=0 ∀u∈H1, (5.32)

where i=(0,1)t is the unit vector in the x1 direction, and P the Leray projection.
Indeed, by the Helmholtz decomposition, we have

[(u ·∇)u] · i=P [(u ·∇)u] · i+ ∂φ

∂x1
,

for some φ∈H1(Ω). Hence,

∫ L

0

∫ 1

0

P [(u ·∇)u] · idx=

∫ L

0

∫ 1

0

(u ·∇)u1dx=0.

The invariance of E for (2.4)-(2.8) implies that for the vector field e given in
(5.28), we have

∫ 1

0

v1dx2 =0. (5.33)

Hence in the Fourier expansion of e in (5.5) and (5.6), the coefficients of ψ̃0j are zero.
By the connection lemma in [10], it follows from (5.33) that the vector field e=(e1,e2)
of (5.28) is topologically equivalent to the vector field e0 given by (5.31), which has
the topological structure as shown in Fig. 4.3.

For any initial value ψ0 =(u0,T0)∈H \E,

ψ0 =
∑

k

αkψ̃0k +Φ0,

Φ0∈E,
ψ̃0k =(sinπx2,0,0), k=2m+1,m=0,1,... .
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By (5.32), we see that for the operator G in (2.12),

(G(ψ),ψ̃0k)=0,

which implies that the solution of (2.4)-(2.8) with (2.11) has the form

ψ(t,ψ0)=
∑

k

αke
tβ0k ψ̃0k +Φ̃(t,ψ0), (5.34)

where Φ̃∈E, and β0k<0 near R=Rc.
Let

K=min{ k | αk 6=0 and k is odd},
and let ψ(t,ψ0)=(u(t,ψ0),T (t,ψ0)) be the solution of (2.4)-(2.8) given by (5.34). Then
by (5.27), the vector field u(t,ψ0) is topologically equivalent to the following vector
field for any t>t0 with t0>0 sufficiently large,

ũ=e+(αke
−tβ0k sinkπx2,0), (5.35)

where e is as in (5.28).
The vector field e is D-regular and topologically equivalent to the vector field as

shown in Fig. 4.3. Therefore, using the method for breaking saddle connections in
[10], it is easy to show that the vector field ũ given by (5.35) is topologically equivalent
to the structure as shown in Fig. 4.2(a) if αk<0, and to the structure as shown in
Fig. 4.2(b) if αk>0, for any t>t0 sufficiently large.

Thus the proof of Thm. 4.1 is complete.
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