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LONG TIME BEHAVIOR OF PARTICLE SYSTEMS IN THE MEAN
FIELD LIMIT

EMANUELE CAGLIOTI∗ AND FRÉDÉRIC ROUSSET†

Abstract. We present a review of some recent results concerning the long time behavior of
particle systems in the mean field limit. In particular we will consider the Vlasov limit for a system
of particles interacting via a two body potential, the case of the vortex model, and the case of the
piston. In all these cases the particle system is described, in the mean field limit, by a suitable
nonlinear Liouville equation. The main problem we are interested in is the comparison between the
limit dynamics and the behavior of the particle system when N is large.
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1. Introduction
Many systems of particles are described, in the mean field limit, by a suitable

nonlinear Liouville Equation: i.e. by a Liouville equation for a suitable phase space
density f, in which the hamiltonian is a suitable functional of f itself.

This is the case, for instance, of the mean field limit for a system of interacting
particles which is described by the Vlasov equation; of the vortex model in the mean
field limit which is described by the 2D Euler Equations; and of the piston which, in a
suitable hydrodynamical limit, is described by a Vlasov-like equation with a singular
interaction.

In general the validity of the approximation is proved for finite times or at most
for times of the order of log N, where N, is the number of particles.

A very interesting problem concerns the long time behavior of these systems.
In particular one would like to write down the 1/N corrections to the asymptotic
Vlasov-like dynamics.

Here we briefly summarize some physical results on this problem and then we
consider the following simpler but strictly related problem from a rigorous point of
view.

If the particles are initially extracted from a stationary stable distribution of
the nonlinear Liouville equation, for how long a time does the particles’ distribution
remain close to the initial one?

In Section 2 we will consider in some details the Vlasov case, reviewing some
rigorous results on the subject and summarizing briefly some recent attempts to write
down corrections to the Vlasov equation. In sections 3 and 4, respectively, we will
briefly consider the case of the vortex model and of the piston.

2. The Vlasov case
A system of particles x1, v1, ..., xN , vN , interacting via a two-body potential V, in

the mean-field limit, is described by the Vlasov equation

∂tf + v · ∇xf + F [ρf ] · ∇vf = 0 (2.1)
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where f(t, x, v) ∈ R, x ∈ Tm, v ∈ Rm, and the density ρf and the force F [ρf ] are
given by

ρf (t, x) =
∫

v

f(t, x, v) dv, F [ρf ](t, x) = −∇V ? ρf = −
∫

y

∇V (x− y)ρf (t, y) dy.

More precisely, if x1, v1, ..., xN , vN , satisfy

ẋi = vi, (2.2)

v̇i =
1
N

N∑

j=1

F (xi − xj) (2.3)

then (here we consider the case in which the force F is Lipschitz)

µN (t) =
1
N

N∑

k=1

δ(xk(t), vk(t))

is a weak solution of 2.1.
Moreover the following classical result holds (see, for instance, [36]) :

Theorem 2.1. Assume that ∇V is Lipschitz, then there exists C > 0, κ > 0 such
that for any bounded measures µ0

1, µ0
2, the two measure solutions of (2.1) µ1(t), µ2(t)

with initial data µ0
1 and µ0

2 enjoy the estimate

||µ1(t)− µ2(t)||Lip ≤ Ceκt||µ0
1 − µ0

2||Lip, ∀t ≥ 0, (2.4)

Where the bounded Lipshitz norm of measures is defined by

||µ||Lip = sup
ϕ∈Lip, ||ϕ||Lip≤1

< µ, ϕ > .

The distance on the probability measures induced by this norm is equivalent to the
Wasserstein distance and in particular metricizes the weak convergence.

Consequently, this Theorem yields that for finite times if µN converge to µ0 in
the bounded Lipshitz norm (equivalent to the weak convergence) then also µN (t)
converges to µ(t) in the same norm.

This also immediately implies that the particle system will remain close to the
solution of the Vlasov equation for time of the order of log N.

Before the description of the stability results, let us briefly summarize some recent
physical results on the problem.

The problem of describing the finite N corrections to the Vlasov Equation has
been widely considered in the physical literature.

In particular in [37], [3], [4], the Hamiltonian Mean-Field Model (HFM) has been
studied. In this case particles on a circle interact via the repulsive mean-field force F =
sin(x−y). In [37] the scenario described above is proposed and analyzed. Furthermore,
from numerical simulations, there is evidence of the fact that the system converges
to the thermodynamic equilibrium in times TN of order Nα, with the non-trivial
exponent α ' 1.7.

In [4], by an analysis of the Vlasov equation linearized around a stable stationary
solution, the fact that TN should be larger than N is justified, while in [3] a Fokker
Planck equation for the momentum of a particle in an equilibrium bath is derived.
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Let us now describe our stability results.
We focus now on the one-dimensional case (m = 1) to simplify the presenta-

tion, even if the results are actually valid in the general case. We consider a sta-
tionary distribution f0(v) ≥ 0, compactly supported, which is a stationary solution
of the Vlasov equation. At the initial time we can choose randomly the particles
(x0

i , v
0
i )i∈N with respect to the probability measure ⊗Nf0(v) dxdv (we also assume

that
∫

x,v
f0(v) dxdv = 1). For every α ∈ (0, 1/2), there exists C > 0 such that for

almost every choice of the particles, we have the estimate

||µN [X0]− f0dxdv||Lip ≤ C

N
1
2−α

, (2.5)

where

µN [X0] =
1
N

N∑

i=1

δ(x0
i ,v0

i ).

The use of Theorem 2.1 gives that the empirical measure µN (t) of the particles evolv-
ing according to (2.1), (2.3), with initial value (x0

i , v
0
i ) will stay close to f0(v)dxdv

in the bounded Lipschitz norm of measures on a time scale of order lnN . When the
distribution f0 is a stable distribution of (2.1), we expect this time scale to be much
longer. Indeed, we have proven in [6], [7] :

Theorem 2.2. Assuming that ∂xV ∈ C1,1 and that V̂l ≥ 0 where V̂l are the Fourier
coefficients of V , we have for some β > 0,

||µN (t)− f0dxdv||Lip ≤ CNβ , ∀t ∈ [0, TN ]

where TN is given by
• if f0 = g(v2/2) with g ∈ C2 and g nonincreasing , TN ≥ C N

1
8−η,

• if f0 = g(|v|), and g ∈ L∞, is nonincreasing, TN ≥ C N
1
14−η and if moreover

Leb {f0 = ||f0||∞} > 0 then TN ≥ N
1
10−η

where η > 0 can be chosen arbitrarily small.

The complete proof of this Theorem can be found in [6], [7]. The expression of β
is given explicitly. The monotonicity property of f0 is the classical Penrose criterion
of stability. Note that this Theorem is purely deterministic, the particles are just
extracted randomly at the initial time, and then we use a stability result for the
equation. With this kind of argument, we cannot go beyond the time scale N

1
2 . We

refer to [6] for an explicit counterexample. In particular it is easy to see that it is
possible to choose initial conditions for the particle system whose distance from an
homogeneous solution is of order N−1/2 which at a time of the order of N1/2 are at a
distance of order 1 from this solution; see [6] for an explicit counterexample. Similar
counterexamples can be constructed also in the interacting case. In particular in [14]
Nonlinear Landau Damping has been proven for a suitable class of initial data. As
a consequence(see section 4), one can show that initial data for the Vlasov-Poisson
equation close in the bounded Lipschitz norm to a stationary stable solution, evolve,
after a suitable time, far from it.

If f0 is C2, the proof relies on the Energy-Casimir method that is the conservation
of the quantity

HC(f) =
1
2

∫

x,v

fv2 dxdv +
1
2

∫

x

ρf (x) V [ρf ](x) dx +
∫

x,v

q(f) dxdv
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for every function q where

ρf (x) =
∫

v

f dv, V [ρf ](x) =
∫

x

V (x− y)ρf (y) dy.

The idea of the method is to choose q in a suitable way so that f0 becomes a nonde-
generate extremum of the functional. This idea was introduced by Arnold in hydro-
dynamics [1] and also very much used in plasma physics; see [21], [34] for example.
In plasma physics, this method is also known as the relative entropy method; see [2]
for example. Since here we are studying a measure solution µ, this quantity, which
is very useful to prove stability results when we are dealing with functions, is not
well-defined. The main idea is to use a duality argument to get that every measure
solution of the Vlasov equation enjoys for every T > 0, the estimate

||µ(T )||Lip ≤ ||µ(0)||Lip ||RT [µ]||

where

||RT [µ]|| = sup
||g||L1(0,T,Lip)≤1

||RT [µ](g)||Lip,

where for every g ∈ L1(0, T, Lip), RT [µ](g) = ϕ(0, x, v) with ϕ(t, x, v) the solution of
the equation

L∗ϕ + F [µ] ∂vϕ = g, F [µ] = − < µ(t), ∂xV (x− ·) >,

with the final condition ϕ(T, x, v) = 0, and where L∗ is the adjoint of L, the linearized
Vlasov operator about f0 :

Lf = ∂tf + v∂xf + F∂vf0, F = −
∫

x,v

∂xV (x− y)f(y, v)dvdy.

There are two steps in the estimate of ||RT [µ]||. The first one is to get a good estimate
of

∫

x,v

|g′0|ϕ2dxdv.

This is done by constructing a functional which is conserved by L∗. This functional
is deduced from the conservation of the Hamiltonian-Casimir by the direct equation.
The second step is to use this last weighted L2 norm to deduce a Lipschitz estimate
on ϕ thanks to the characteristics method.

If f0 is merely L∞, the previous method fails and the proof of the estimate relies
on the Marchioro-Pulvirenti method [28] . In this paper the stability of perturbations
f(t) of f0 is obtained by using two ingredients. The first one is that f is conserved
along the characteristic flow of the Vlasov equation (2.1)

ẋ = v, v̇ = F

which is measure preserving. The second one is that the minimum of the kinetic
energy among the functions f which have level sets of same measure as f0 is reached
at f0. The fact that the total energy is a Lyapunov functional gives a control of the
kinetic energy by the positivity of the potential energy, and this allows us to get the
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stability result. This powerful argument cannot be applied in the case where f = µ is
a measure (a sum of dirac masses) since we cannot define the values of µ. To overcome
this difficulty, we consider the force created by the particles

F (t, x) = − 1
N

N∑

i=1

∂xV (x− xi(t))

as an external forcing. Then, we consider the solution f of the transport equation

∂tf + v∂xf + F (t, x)∂vf = 0

with initial value f0. This evolution preserves the measure of the level sets but not the
energy. Nevertheless, as long as the force F remains small, the empirical measure of
the particles remains close to f in the bounded Lipschitz norm of measure. Moreover,
for the particles the total energy is conserved. This allows us to get a stability result
by a perturbation of the Marchioro Pulvirenti argument.

3. The vortex model
We consider a regularized version of the vortex model: we consider the equation

∂tω + u · ∇ω = 0, (3.1)

u is given by

u = K ? ω, K = ∇⊥V (|x|),

where V (|x|) = ln(|x|)χ(|x|) with χ a smooth function which vanishes in a vicinity of
the origin to remove the singularity. This equation is therefore a regularized version
of the Euler equation in vorticity form. The particle system associated to this model
is

x′i(t) =
1
N

∑

j 6=i

K(xi(t)− xj(t)), i = 1, · · · , N.

For measure solutions of (3.1), the same result as Theorem 2.1 is available when V is
Lipschitz (see [29] page 186 for example).

The convergence of the true vortex model (without smoothing) to the 2D Euler
Equations is not an easy task due to the singularity of the interaction between the
vortices. It was proven in [17] that it is possible to prove the convergence for a
special choice of the particles at the initial time which is natural in numerical analysis
(particles on a regular grid).

In this setting, we are still interested in the time evolution of N particles extracted
from a stationary stable distribution of (3.1) ω0 ≥ 0, which is compactly supported.
In particular, it would be interesting to know if asymptotically the particles system
reaches the microcanonical distribution [22, 27, 8, 9, 24, 32], and how this distribution
can be reached. In a recent paper, [10], an equation has been proposed to describe
the 1/N correction to the 2D Euler Equations for the vortex model. This term would
give a non-trivial evolution on the set of stationary solution of the Euler equations
and is proportional to 1/N.

For what concerns an estimate of the time in which the system remains close to
the initial distribution we are able to prove that:
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Theorem 3.1. Assuming that K ∈ C1,1, we have for some β > 0 the estimate

||ωN (t, dx)− ω0||Lip ≤ CNβ , ∀t ∈ [0, TN ]

with

ωN (t, dx) =
1
N

N∑

i=1

δxi(t)

where TN is given by
• if ω0(x) = Ω(|x|2) with Ω ∈ C2 and Ω nonincreasing, TN ≥ N

1
8−η,

• if ω0(x) = Ω(|x|) with Ω ∈ L∞ and Ω nonincreasing, TN ≥ N
1
10−η

Again, we can give an explicit expression of β. The proof follows the same lines
as for the Vlasov case. In particular, we use the Energy-Casimir method in the first
case and the Marchioro-Pulvirenti argument in the second case. The part of the total
energy in the Vlasov case is played by the moment of inertia

M(ω(t)) =
∫

ω(t, x)|x|2 dx.

4. The piston
The time evolution of a system consisting of a piston of mass M moving parallel

to the x-axis in a cube of size L containing N = L3 non-interacting point particles
of unit mass has been studied extensively [11, 12, 13, 15, 16, 18, 20, 23, 25, 26, 33].
By rescaling space and time by L the problem reduces to that of a one-dimensional
system with N/2 particles in both the intervals [0, X], [X, 1] where X(t) is the position
of the piston. The left (right) particles move freely between collisions with the wall
at x = 0 (x = 1) and the piston at x = X(t). When a particle collides with one of the
two walls its velocity is reversed. The collision with the piston, which is also elastic,
is described by the following collisions rules:

v′ = −(1− ε) v + (2− ε)V
V ′ = εv + (1− ε) V (4.1)

where ε = 2
M+1 , V = Ẋ(t) and V ′ are the velocity of the piston before and after the

collision, respectively, and v, v′ are the velocities of the particle before and after the
collision, repectively. The collisions preserve the kinetic energy, 1

2

∑N
i=1 v2

i + 1
2MV 2,

while the momentum is not preserved by the collisions with the walls at x = 0 and
x = 1.

In [25, 11, 12] this model was studied in the case where M ∼ N2/3, and the
velocity of the particles is of order 1. In the limit N →∞, see [11, 12], this system is
described by a nonlinear Liouville equation with a singular interaction term.

We denote by f(x, v) the phase space density and by X and V the position and
the velocity of the piston, respectively. Out of the collisions set (x = 0, x = 1, x = X)
f evolve freely:

∂tf + v∂xf = 0. (4.2)

We can rewrite (4.2) as

f(x, v, t) = f(x− v(t− τ), v, τ), (4.3)
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for any x, v, τ < t, such that there is no collisions of the trajectory with the walls or
with the piston. On the walls, f satisfies the following boundary conditions:

f(0, v) = f(0,−v) for v > 0; (4.4)
f(1, v) = f(1,−v) for v < 0; (4.5)

while the boundary conditions on the piston are:

f(X−, v) = f(X−, 2V − v) for v < V ; (4.6)
f(X+, v) = f(X+, 2V − v) for v > V. (4.7)

Finally the velocity of the piston is determined by the condition PL(V ) = PR(V ),
where PL and PR denote the pressure exerted on the piston by the particles of the
left and right compartment, respectively:

PL(V ) = 2
∫

v>V

dvf(X−, v) (v − V )2 , (4.8)

PR(V ) = 2
∫

v<V

dvf(X+, v) (v − V )2 . (4.9)

The proof in [25, 11, 12] is valid for a time interval in which any (almost any) particle
does not collide with the piston more than twice.

For this Vlasov-like equation there exists a class of stationary stable solutions
similar to the one described here.

More precisely, for any X̄ ∈ (0, 1), and nonnegative nonincreasing bounded func-
tions gL(|v|), gR(|v|) with finite kinetic energy and such that

∫
dvgL(|v|) =

∫
dvgR(|v|) (pressure balance),

X = X̄ and

f =
{

gL(|v|) if x ∈ (0, X̄)
gR(|v|) if x ∈ (X̄, 1)

is a stable stationary solution of (4.2), see [5].
According to the numerical simulations, if particles at time t = 0 are extracted

from a stationary stable solution, see [13, 5], (different from the global Maxwellian
equilibrium), then they remain close to it for a time of order Nα, where α ∈ [2/3, 5/6].
Moreover, on the same time scale the N-particles density converge, to the Maxwellian
distribution.

In [19] the approach to the equilibrium has been studied for large values of N,
and M >> 1. In particular the system is found to approach the equilibrium in a time
of the order of the mass of the piston M and an equation for the motion of the piston
on this time scale is derived.

A similar behavior has been observed in [30] for a gas of hard disks interacting
with the piston. In particular in this paper time correlation function for the position
of the piston has been computed by means of molecular dynamics simulations.

The case in which N is finite and M →∞ has been studied in [35]. In this paper
it has been proved that on a time scale of the order of

√
M the piston behaves as a

particle in a given potential field whose form is determined by the initial data. In [31]
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the same limit has been considered for a general gas. Under an ergodic hypothesis on
the particles of the gas a similar picture has been rigorously derived.

The stability analysis performed in the present paper in the case of the Vlasov
equation and of the regularized 2D Euler Equations use some regularity properties of
these dynamics. The case of the piston is much more singular than the one considered
here; nevertheless we have some hope that using a technique similar to the one in [7]
it is possible to prove a similar result.
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