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NONLINEAR FOKKER-PLANCK NAVIER-STOKES SYSTEMS∗

PETER CONSTANTIN†

Abstract. We consider Navier-Stokes equations coupled to nonlinear Fokker-Planck equations
describing the probability distribution of particles interacting with fluids. We describe relations
determining the coefficients of the stresses added in the fluid by the particles. These relations
link the added stresses to the kinematic effect of the fluid’s velocity on particles and to the inter-
particle interaction potential. In equations of type I, where the added stresses depend linearly on
the particle distribution density, energy balance requires a response potential. In equations of type
II, where the added stresses depend quadratically on the particle distribution, energy balance can be
achieved without a dynamic response potential. In unforced energetically balanced equations, all the
steady solutions have fluid at rest and particle distributions obeying an uncoupled Onsager equation.
Systems of equations of type II have global smooth solutions if inertia is neglected.
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1. Introduction
Fluids with complex rheological properties are of great scientific interest and

have a rich phenomenology. Their mathematical description remains challenging.
With the exception of ([19]) most of the progress is rather recent. Global existence
of weak solutions, with mollified velocities and linear Fokker-Planck equations with
additional boundary conditions has been obtained in ([1]). Global existence for shear
flow Hookean dumbell models was proved in ([10]). The local existence of various
systems has been obtained ([4], [11], [16]). Global existence for small data for linear
Fokker-Planck coupled with Navier-Stokes equations was obtained in [13]. The recent
work ([18]) is the only global regularity result for large data that I am aware of. It
applies to the case of a coupled linear Fokker-Planck and Stokes system. The study
of time asymptotics is also in its early development stage. High intensity asymptotics
for uncoupled Smoluchowski equations have been studied in ([2], [5], [14], [15]). The
long time effects of shear in Doi-Smoluchowski equations have been investigated in
([6], [7]). The long time asymptotics of coupled systems using entropy methods have
been studied in ([12]).

In this paper we consider a complex fluid with microscopic inclusions. The fluid is
governed by the incompressible Navier-Stokes equation, and the microscopic insertions
influence the fluid through an added macroscropic stress. The fluid’s velocity u(x,t)
obeys thus the three dimensional Navier-Stokes equations

{ ∇x ·u=0,
∂tu+u ·∇xu−ν∆xu+∇xp=divxσ+F.

(1.1)

Derivatives with respect to coordinates x∈R3 will be indicated by a subscript x.
F (x,t) are given smooth body forces, ν >0 is the kinematic viscosity. The expression
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divxσ,

divxσ =∇x ·σ =
3∑

j=1

∂σij

∂xj
,

represents the forces due to the presence of microscopic insertions: the tensor σij(x,t)
is the additional stress in the fluid. The insertions are objects parameterized by a
microscopic variable m which belongs to a connected smooth Riemannian manifold
M of dimension d. In the case of rod-like particles, M is the unit sphere in three
dimensions, and m∈S2⊂R3 represents the director of the rods. More complicated
particles require more degrees of freedom for the configuration space M . For instance,
articulated rods with several articulations, require a phase space which is a product
of spheres. We will use local coordinates m=m(φ) with φ=(ϕ1,.. .,ϕd)∈Rd. In
the paper we use the fact that a smooth Riemannian metric gij exists on M . As
is customary gij will denote the inverse of gij ([8]). Compactness of M will also be
assumed, for the sake of simplicity, although a non-compact manifold could be allowed
as well. (In the case of non-compact M some of the assumptions on the coefficients
would have to be augmented and some arguments would have to be modified, mostly
technical changes). Derivatives with respect to the microscopic variable are designated
by the subscript g:

∇gh=(∂ϕ1h,...∂ϕd
h).

When f,h are scalars and V is a (0,1) tensor on M we define

divg(V f)=
1√
g

d∑

α,β=1

∂ϕα

(√
ggαβVβf

)

and recall that the volume element on M is locally

dm=
√

gdφ,

the Laplace-Beltrami operator is

∆gh=divg∇gh

and
∫

M

hdivg(V f)dm=−
∫

M

f(V ·∇gh)dm

holds for smooth functions where V ·∇gh=gαβVβ
∂h

∂ϕα
. We will attempt to distinguish

between Greek alphabet indices α,β,... running from 1 to d and related to the micro-
scopic variables m, and Roman alphabet indices i,j,... related to the spatial variable
x and running from 1 to 3.

One of the fundamental assumptions of the current literature on the subject is
that the added stresses σ(x,t) do not depend explicitly on the microscopic variable
m. Consequently, the velocity u=u(x,t) does not depend on the variable m.

The microscopic insertions at time t and macroscopic place x are described by the
probability f(x,m,t)dm. The suspension stress tensor is then given by an expansion

σ(x,t)=σ(1)(x,t)+σ(2)(x,t) (1.2)
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where

σ
(1)
ij (x,t)=

∫

M

γ
(1)
ij (m)f(x,m,t)dm (1.3)

and

σ
(2)
ij (x,t)=

∫

M

∫

M

γ
(2)
ij (m,n)f(x,m,t)f(x,n,t)dmdn. (1.4)

This, and more general expansions for σ are encountered in the polymer literature
([3]). The structure coefficients in the expansion, γ

(1)
ij ,γ

(2)
ij are smooth, time indepen-

dent, x independent, and do not depend on f . In this work we will use models in
which the particles interact through potentials that depend linearly and nonlocally
on the particle density distribution f ([17]). Because of this, an expansion (1.2) with
only two terms is sufficient. One could consider interaction potentials that depend
nonlinearly on f and with them, higher nonlinear dependence of σ on f , as well as
explicit dependence of σ on ∇xu. In the dilute cases, when the interaction of particles
is modelled by an f -independent (zeroth power) expression, as in the dumbell, FENE
and polynomial force models, then the customary expression for σ is linear in f , and
is given for instance, for rod-like particles by

σ
(1)
ij (x,t)=

kT

4π

∫

S2

(
mimj− δij

3

)
f(x,m,t)dm (1.5)

where kT is an energy scale associated to the microscopic suspension.
Modelling the added stresses is a complicated task. The purpose of this work is

twofold. First, we discuss models from an energy principle point of view, and we reveal
necessary relationships dictated by energy requirements. We distinguish between the
two types of relationship between σ and f . We refer to the case in which σ(2) =0,
so that σ depends linearly on f as “equations of type I”, and to the case in which
σ(2) 6=0 as “equations of type II”. The second purpose of the article is to prove a
global existence result for equations of type II.

The evolution of the density f is governed by a nonlinear Fokker-Planck equation

∂tf +u ·∇xf +divg(Gf)= ε∆gf. (1.6)

Here ε≥0 is an inverse time scale associated to diffusion of the microscopic par-
ticles. The tensor G is made of two parts

G=∇gU +W. (1.7)

The (0,1) tensor field W is obtained from the macroscopic gradient of velocity in a
linear smooth fashion, given locally as

W (x,m,t)=(Wα(x,m,t))α=1,...,d =




3∑

i,j=1

cij
α (m)

∂ui

∂xj
(x,t)




α=1,...,d.

(1.8)

The smooth coefficients cij
α (m) do not depend on the solution, time or x and, like the

coefficients γ
(1)
ij ,γ

(2)
ij are a constitutive part of the model.
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In the case of rod-like particles W is the projection of ∇xu(x,t)m onto the tangent
plane to S2 at m:

W (x,m,t)=(∇xu(x,t))m−((∇xu(x,t))m ·m)m. (1.9)

This determines the coefficients cij
α (m) for this case. The field W represents the

rotation and stretching of microscopic insertions due to macroscopic flow; in jargon,
this is termed a macro-micro interaction. In the same vein, σ is a micro-macro
interaction. There are two types of potentials. The nonlocal microscopic interaction
potential is ([17])

(Kf)(x,m,t)=
∫

M

K(m,q)f(x,q,t)dq. (1.10)

Here K(m,q) is a smooth, time independent, x independent, symmetric function K :
M×M→R. This is yet another constitutive parameter in the system; the potential
Kf represents a micro-micro interaction.

The model for the total potential U depends on equation type. In order to have
an energy principle, even in the absence of interparticle interactions (K =0), it turns
out that the coefficients γ

(1)
ij are determined by the coefficients cij

α . Therefore, if the
macro-micro effect W is imposed by kinematic physical considerations, (as is the case
in (1.9)), then a linear constitutive form σ(1) of the added stresses is dictated by
energetics requirements alone, irrespective of particle interaction potentials. In order
to restore an energy balance for equations of type I, in the presence of interparticle
interactions, the total potential U is given by

U(x,m,t)=
1
τ

((Kf)(x,m,t)+δV (x,m,t)) (1.11)

where τ is a time scale associated with the microscopic interactions and the term δV
obeys the equation

∂tδV +u ·∇xδV +W ·∇gδV =−W ·∇g(Kf). (1.12)

This potential is a macro-micro term, and is evolutionary: It arises in response to
the micro-micro interactions, and plays an absolutely crucial role in the energetics of
type I equations. Because of (1.11) and (1.12) it follows that

∂tU +u ·∇xU +W ·∇gU =
1
τ

Dt(Kf). (1.13)

This shows that the potential U evolves incorporating both macroscopic and micro-
scopic effects. We denote a−1

ετ =a−1

the nondimensional ratio of microscopic time scales and denote by V

V =Kf +δV (1.14)

the nondimensional total potential, so that U
ε =aV .

In the case of type II equations one can satisfy the energetic requirements in the
presence of interparticle interactions by relating the coefficients γ(2) to K.
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2. Energetics For Type I Equations
We start with a concrete example: rod-like particles with M =S2 with σ =σ(1)

given in (1.5). Then the system has a Lyapunov functional, the energy

E =
1
2

∫
|u(x,t)|2dx+F (2.1)

with free energy F given by

F =
kT

20π

∫ ∫

S2

{
f logf−a

(
δV +

1
2
fKf

)}
dmdx. (2.2)

Theorem 2.1. Let (u,f,δV ) be a smooth solution of the system (1.1, 1.6, 1.12) with
constitutive relations (1.5, 1.7, 1.9, 1.10, 1.11) and F =0. Then

d

dt
E(t)=−ν

∫
|∇xu(x,t)|2dx− kTε

20π

∫ ∫

S2

f |∇g (logf−aV )|2dmdx. (2.3)

Proof. The identity

divgW (x,m,t)=−5(∇xu(x,t))m ·m (2.4)

follows from the definition (1.9). Using the definition (1.5), it follows that
∫ ∫

S2

f(x,m,t)divgW (x,m,t)dmdx=
20π

kT

∫
u(x,t) ·∇xσ(x,t)dx. (2.5)

Multiplying the equation (1.1) by u, integrating by parts and using the identity (2.5)
we obtain the Navier-Stokes energy balance

d

2dt

∫
|u|2dx+ν

∫
|∇xu(x,t)|2dx=

kT

20π

∫ ∫

S2

(fdivgW )dmdx. (2.6)

Let us denote now

Dt =∂t +u ·∇x

and

E(t)=
∫ ∫

S2

(
εf logf− 1

τ
fδV − 1

2τ
fKf

)
dmdx. (2.7)

Note that

F =
kT

20πε
E . (2.8)

Using the fact that
∫ ∫
S2

Dtfdmdx=0, the fact that ∇x ·u=0, the relation (1.11), the

fact that K is a symmetric operator and that Dt commutes with K we have that

d

dt
E=

∫ ∫

S2

{
(Dtf)(εlogf−U)−fDtU +

1
τ

fDtKf

}
dmdx
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and thus, in view of (1.13)

d

dt
E=

∫ ∫

S2

{(Dtf)(εlogf−U)+fW ·∇gU}dmdx.

The equation (1.6) has the structure

Dtf =divg(f(∇g(εlogf−U)−W )).

Using it, we have

d

dt
E=−

∫ ∫

S2

f |∇g(εlogf−U)|2dmdx+

+
∫ ∫

S2

{divg(UfW )−εdivg(fW )logf}dmdx.

Therefore

d

dt
E=−

∫ ∫

S2

f |∇g(εlogf−U)|2dmdx−ε

∫ ∫

S2

(fdivgW )dmdx. (2.9)

Multiplying by kT
20πε and using U

ε =aV we obtain

d

dt
F =−kTε

20π

∫ ∫

S2

f |∇g (logf−aV )|2dmdx− kT

20π

∫ ∫

S2

(fdivgW )dmdx. (2.10)

Adding to (2.6) we finish the proof.

Note that when F =0 the only steady solutions have no flow, (u=0 or any con-
stant, by Galilean invariance), and solve Onsager’s equation ([17], [2])

logf =aV − logZ (2.11)

with Z a constant serving as normalizing factor. Let us use the calculation above as
a guide to understand the energetics for more general type I equations. Assume thus
that σ =σ(1) with σ(1) given in (1.3). Then the Navier-Stokes energy balance is, after
one integration by parts,

d

2dt

∫
|u|2dx+ν

∫
|∇xu|2dx=

−
∫ ∫

M




3∑

i,j=1

∂ui

∂xj
(x,t)γ(1)

ij (m)


f(x,m,t)dxdm. (2.12)

This balance occurs no matter what is the equation for f . Let us assume first that
the equation for f is the simplest possible, with only a macro-micro interaction W ,

Dtf = ε∆gf−divg (Wf)
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with W given by (1.8). Then the evolution of the entropy is

d

dt

∫ ∫

M

f logfdmdx=−ε

∫ ∫

M

|∇gf |2f−1dmdx−
∫ ∫

M

(divgW )fdmdx.

Because

divgW =
3∑

ij=1

divg(cij)
∂ui

∂xj
(2.13)

we see that the system has a Lyapunov functional of the form

kinetic energy+λ entropy

if and only if there exist constants λ and µ so that

γ
(1)
ij =−λdivgc

ij +µδij (2.14)

holds. This happens in the case of rigid rods where (1.9) produces the balance (2.4)
which is of the form above. Thus, energy requirements impose that the coefficients of
(1.8) determine those of (1.3). Once the relation (2.14) has been established then the
general type I calculation is very similar to the concrete example and gives:

Theorem 2.2. Type I equations (1.1, 1.6, 1.12), with constitutive equations (1.2,
1.3, 1.7, 1.8, 1.10, 1.11), with F =0, σ(2) =0 and (2.14), have a Lyapunov functional

E =
1
2

∫
|u|2dx+λ

∫ ∫

M

{
f logf−a

(
δV +

1
2
Kf

)
f

}
dmdx. (2.15)

If u,f,δV is a smooth solution then

dE

dt
=−ν

∫
|∇xu|2dx−λε

∫ ∫

M

f |∇g(logf−aV )|2dmdx (2.16)

holds. If the smooth solution is time independent, then u=0, δV = δV|t=0 and f solves
the Onsager equation

logf =aV +log(Z−1) (2.17)

with an appropriate normalizing constant Z.

Proof. We form the integral E as in (2.7):

E(t)=
∫ ∫

M

(
εf logf− 1

τ
fδV − 1

2τ
fKf

)
dmdx. (2.18)

The calculation leading to (2.9) can be repeated verbatim and leads to

d

dt
E=−

∫ ∫

M

f |∇g(εlogf−U)|2dmdx−ε

∫ ∫

M

(fdivgW )dmdx. (2.19)

Using (2.13), (2.14 ) and the fact that (∇xu) is traceless we have

−λfdivgW =f
3∑

ij=1

γ
(1)
ij (m)

∂ui

∂xj
. (2.20)

We obtain (2.16) by multiplying (2.19) by λε−1 and adding to (2.12).
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3. Energetics For Type II Equations
In this case the energy balance in the Navier-Stokes equations is modified because

of the presence of the terms in σ(2). The balance (2.12) becomes

d

2dt

∫
|u|2dx+ν

∫
|∇xu|2dx=

−
∫ ∫

M




3∑

i,j=1

∂ui

∂xj
(x,t)γ(1)

ij (m)


f(x,m,t)dxdm

−
∫ ∫

M

∫

M




3∑

i,j=1

∂ui

∂xj
(x,t)γ(2)

ij (m,n)


f(x,m,t)f(x,n,t)dxdmdn. (3.1)

This balance holds in a type II equation, irrespective of the form of the equation
obeyed by f . If this equation is of the form

Dtf = εdivg (f∇g (logf−aKf))−divg(Wf) (3.2)

(i.e. δV =0), then one can maintain energy balance if (2.14) holds, and if there exists
a constant η so that

γ
(2)
ij (m,n)=−aλcij

α (m)gαβ(m)∂βK(m,n)+ηδij . (3.3)

Theorem 3.1. Type II equations (1.1, 3.2) with constitutive equations (1.2, 1.3, 1.4,
1.8, 1.10), with F =0, (2.14, 3.3) have a Lyapunov functional

E(t)=
1
2

∫
|u|2dx+λ

∫ ∫

M

{
f logf− a

2
(Kf)f

}
dxdm. (3.4)

If (u,f) is a smooth solution then

dE

dt
=−ν

∫
|∇xu|2dx−λε

∫ ∫

M

f |∇g (logf−aKf)|2dmdx. (3.5)

If the smooth solution is time independent, then u=0 and f solves the Onsager equa-
tion

logf =aKf +log(Z−1) (3.6)

with an appropriate normalizing constant Z.

Proof. Using (3.2) we have

d

dt

∫ ∫

M

{
f logf− a

2
(Kf)f

}
dmdx=−ε

∫ ∫

M

f |∇g(logf−aKf)|2dmdx

+
∫ ∫

M

{aW ·∇g (Kf)−divgW}fdmdx. (3.7)
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The condition (3.3) implies that

λaW ·∇g (Kf)=−
3∑

ij=1

∂ui

∂xj

∫

M

γ
(2)
ij (m,n)f(x,n,t)dn. (3.8)

Multiplying (3.7) by λ, adding to (3.1) and using (3.8) and (2.20) finishes the proof.

Remark 3.1. We note that, for type II equations, knowledge of the micro-micro
potential K and of the nature of the macro-micro effect (1.8) i.e., the coefficients cij

α ,
coupled with energetic balance, determine the coefficients γ

(1)
ij and γ

(2)
ij .

4. A Global Regularity Result For Type II Equations
We consider a nonlinear Fokker-Planck system

∂tf +u ·∇xf +divg(Wf)+
1
τ

divg(f∇g(Kf))= ε∆gf (4.1)

where W is given in (1.8) and K in (1.10). We use the time scales τ and ε−1 separately,
so that we can state a theorem that allows for the limit cases ε=0, τ =∞. The velocity
is related to f via the Stokes equations:

−ν∆xu+∇xp=divxσ+F, ∇x ·u=0. (4.2)

The added stresses are given by the type II relation (1.2, 1.3, 1.4). We take periodic
boundary conditions for the Stokes equations.

Theorem 4.1. Let ε≥0, τ ∈ (0,∞]. If the initial distribution f(x,m,0) is smooth,
positive and normalized,

∫

M

f0(x,m)dm=1,

and the initial velocity is smooth, then the system (4.1), (4.2), with constitutive rela-
tions (1.8), (1.10), (1.2, 1.3, 1.4) has global smooth solutions.

This theorem was proved in ([18]) for ε>0,τ =∞, M =S2 using the nonlinear dissipa-
tive structure of the Fokker-Planck equation. Our proof does not use this dissipation.

Proof. We consider the L2(M) selfadjoint pseudodifferential operator ([9])

R=(−∆g +I)−
s
2 (4.3)

with s> d
2 +1. We will use the following properties of R:

[R,∇x]=0, (4.4)

R∇g :L1(M)→L2(M) is bounded, (4.5)

R∇g :L2(M)→L∞(M) is bounded, (4.6)

[∇gc,R
−1] :Hs(M)→L2(M) is bounded, (4.7)

for any smooth function c :M→R, and

R :L2(M)→Hs(M) is bounded. (4.8)
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We differentiate (4.1) with respect to x, apply R, multiply by R∇xf and integrate on
M. Let us denote by

N(x,t)2 =
∫

M

|R∇xf(x,m,t)|2dm (4.9)

the square of the L2 norm of R∇xf on the unit sphere. The following lemma is the
main tool for regularity:

Lemma 4.2. Let u(x,t) be a smooth, divergence-free function and let f solve (4.1).
There exists an absolute constant c>0 (depending only on dimensions of space, the
coefficients cij

α and M , but not on u, f , ε, τ) so that

(∂t +u ·∇x)N ≤ c(|∇xu|+ 1
τ

)N +c|∇x∇xu| (4.10)

holds pointwise in (x,t).

Proof. The normalization
∫

M

f(x,m,t)dm=1

and smoothness of f(x,t) are easy to prove, and we will omit the proof. The evolution
equation of N is

1
2

(∂t +u ·∇x)N2 =−D+I +II +III +IV (4.11)

with

D = ε

∫

M

|∇gR∇xf |2dm (4.12)

I =−∂uj

∂xk

∫

M

(
R

∂f

∂xj

)(
R

∂f

∂xk

)
dm (4.13)

II =−
2∑

α=1

(∇x
∂ui

∂xj
)
∫

M

(Rdivg(cij
α f))(∇xRf)dm, (4.14)

III =−
2∑

α=1

∂ui

∂xj

∫

M

(Rdivg(cij
α∇xf))(R∇xf)dm, (4.15)

and

IV =−1
τ

∫

M

Rdivg(∇x{f∇g(Kf)})R∇xfdm. (4.16)
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Now we start estimating terms. D≥0 will be discarded. Clearly

|I|≤ c|∇xu|N2. (4.17)

In order to bound II we use (4.5) to bound

‖R∇g(cij
α f)‖L2(M)≤ c‖f‖L1(M) = c

so that we have

|II|≤ c|∇x∇xu|N. (4.18)

In order to bound III we need to use the commutator carefully. We start by writing

Rdivg(cij
α∇xf)=Rdivg(cij

α R−1R∇xf)=

divg(cij
α R∇xf)+

[
Rdivgc

ij
α ,R−1

]
R∇xf.

The second term obeys

‖[Rdivgc
ij
α ,R−1

]
R∇xf‖L2(M)≤ cN

because, in view of (4.7) and (4.8) one has that
[
Rdivgc

ij
α ,R−1

]
:L2(M)→L2(M) is bounded.

The first term needs to be integrated against R∇xf and integration by parts gives
∫

M

(divg(cij
α R∇xf))R∇xfdm=

1
2

∫

M

(divgc
ij
α )|R∇xf |2dm.

We obtain thus

|III|≤ c|∇xu|N2. (4.19)

The term IV is split in two, IV =A+B

A=−1
τ

∫

M

Rdivg({(∇xf)∇g(Kf)})R∇xfdm (4.20)

and

B =−1
τ

∫

M

Rdivg({f∇g(K∇xf)})R∇xfdm. (4.21)

The (0,1) tensor Φ(x,m,t)=(∇gKf)(x,m,t) is smooth in m for fixed x,t and

‖Φ(x,·,t)‖W s,∞(M)≤ cs

holds for any s, with cs depending only on the kernel K. We write the term A

A=− 1
τ

∫
M

Rdivg({(∇xf)Φ})R∇xfdm

= 1
τ

∫
M

R−1(R∇xf){Φ ·∇gR
2∇xf))dm

=− 1
2τ

∫
M

divg {Φ}|R∇xf |2dm+ 1
τ

∫
M

(R∇xf)
[
R−1,Φ∇g

]
R(R∇xf)dm.
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In view of (4.7), (4.8), the operator
[
R−1,Φ∇g

]
R :L2(M)→L2(M)

is bounded with norm bounded by an a priori constant. It follows that

|A|≤ c

τ
N2(x,t)

holds. The term B is easier to bound, because

(K∇xf)(x,m,t)=
∫

M

R−1K(m,n)R∇xf(x,n,t)dn

and thus

‖(∇gK∇xf)(x,·,t)‖L∞(M)≤ cN(x,t).

Using (4.5) it follows that

|B|≤ c

τ
N2(x,t)

and consequently

|IV |≤ c

τ
N2(x,t). (4.22)

Putting together the inequalities (4.17), (4.18), (4.19) and (4.22) we finish the
proof of the lemma.

We return to the proof of the theorem. The Stokes system (4.2) is elliptic, and it
is well known that

‖∇u‖L∞(dx)≤C‖σ‖L∞(dx)

{
1+log+‖∇xσ‖Lq(dx)

}
+‖F‖Lq(dx) (4.23)

holds for q >3. Also

‖∇x∇xu‖Lq(dx)≤C
{‖∇xσ‖Lq(dx) +‖F‖Lq(dx)

}
(4.24)

holds for any 1<q <∞. Now it follows from (1.2, 1.3, 1.4) that

|σ(x,t)|≤ c (4.25)

holds with a constant that depends only on the coefficients γ
(1)
ij ,γ

(2)
ij . Differentiating

in x (1.3) and (1.4) it follows that

|∇xσ(x,t)|≤ cN(x,t) (4.26)

holds with a constant c that depends only on the smooth coefficients γ
(1)
ij ,γ

(2)
ij . Indeed,

in the case of σ(2) for example

∇xσ(2)(x,t)=
∫

M

∫

M

(
R−1

m γ(2)(m,n)
)

(Rm∇xf(x,m,t))f(x,n,t)dmdn+
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+
∫

M

∫

M

(
R−1

n γ(2)(m,n)
)

(Rn∇xf(x,n,t))f(x,m,t)dmdn

where we used Rm and Rn to denote R acting in the m variables or n variables. The
inequality (4.26) follows from the smoothness of the coefficients γ and the positivity
and normalization of f . Now the proof follows along the classical lines: we prove
easily a local existence and smoothness result of the system. We deduce from (4.10,
4.23, 4.24, 4.25, 4.26) that, for q >3, the norm

y(t)=‖N(·,t)‖Lq(dx)

obeys

dy

dt
≤ c(1+log+y)y+Cy+M

with constant c,C,M . This proves that this norm is bounded apriori by a finite
function of time, for all time. Once this is achieved, higher derivatives are controlled
inductively. We omit further details.

5. Conclusions
Type I nonlinear Fokker-Planck equations (1.6) coupled with Navier-Stokes equa-

tions (1.1) are equations in which the added stresses σ depend in a linear fashion (1.3)
on the density of particles. Such systems are energetically balanced if (2.14) holds
and if the dynamical response potential δV obeying (1.12) is included in the system.
Type II nonlinear Fokker-Planck equations (4.1) coupled with Navier-Stokes equations
are equations in which the added stresses (1.2, 1.3, 1.4) depend quadratically on the
density of particles. Such systems are energetically balanced if both (2.14) and (3.3)
hold. Energetically balanced means in both situations that the natural total energy
of the system is dissipated in the absence of external or boundary forcing. Steady
solutions of unforced energetically balanced systems have necessarily the fluid at rest,
and solve the steady uncoupled Onsager equation for the particle distribution. The
energy balance is sufficient to determine the coefficients of the stresses added by the
microscopic insertions in the fluid. This provides a guiding principle for modelling
that is independent of closure strategies.

Type II equations have global smooth solutions if inertia is neglected, so that the
fluid’s equation is Stokes’ equation (4.2). In the coupled system (4.1, 4.2) the particle
distribution density f =f(x,m,t) obeys a transport equation Dtf +divg(Wf)∼0 if
we neglect both particle diffusion and interparticle potential interaction. The field W
is proportional to ∇xu (1.8), the fluid’s physical space gradient. The Stokes equation
with periodic boundary conditions imposes a balance ∇xu=Hσ with H a singular
integral operator of Calderon-Zygmund type. Therefore the equation for f appears
close to Dtf +divg((H(σ)f))∼0. The constitutive relations for σ are of the type
σ =γ(1)(f)+γ(2)(f⊗f). Substituting, we see that the equation for f has the appear-
ance of a nonlocal inviscid Burgers equation. Why does it not shock, then? The
important facts for global regularity are: the smoothing properties in microscopic
variables of the transformation f 7→σ, and the tensorial nature of (1.8) where ∇xu
acts on particles multiplicatively. The presence of inertia is difficult to handle but
some two dimensional and filtered three-dimensional type II equations have global
smooth solutions (work in preparation).
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