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Abstract: A gauge invariant notion of a strong connection is presented and char-
acterized. It is then used to justify the way in which a global curvature form is
defined. Strong connections are interpreted as those that are induced from the base
space of a quantum bundle. Examples of both strong and non-strong connections are
provided. In particular, such connections are constructed on a quantum deformation
of the two-sphere fibration S2 —* RP2. A certain class of strong L^(2)-connections
on a trivial quantum principal bundle is shown to be equivalent to the class of con-
nections on a free module that are compatible with the ^-dependent hermitian metric.
A particular form of the Yang-Mills action on a trivial t/^(2)-bundle is investigated.
It is proved to coincide with the Yang-Mills action constructed by A. Connes and
M. Rieffel. Furthermore, it is shown that the moduli space of critical points of this
action functional is independent of q.

Introduction

Two of the mainstreams of Noncommutative Geometry concentrate around the no-
tions of a projective module [12, 14] and of a quantum group [24, 38]. Quite
recently (see [9, 22, 28]), the concept of a quantum principal bundle was system-
atically developed with quantum groups (Hopf algebras) in the role of structure
groups. Hence, since both projective modules and quantum principal bundles serve
as starting points for quantum geometric considerations, the conceptual framework
provided by the notion of a quantum principal bundle has a good chance of unifying
those two branches of Noncommutative Geometry.

In the classical differential geometry, it is hard to overestimate the interplay be-
tween Lie groups and K-thcory. Therefore, it is natural to expect that establishing
a similar interaction in the noncommutative case is necessary for better understand-
ing of quantum geometry. It is already known that the classification of quantum
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principal bundles over manifolds depends only on the classical subgroups of quan-
tum structure groups [19]. This leads to the following questions: Is the classification
of (general) quantum principal bundles over noncommutative spaces richer than
the classification of classical-group bundles over noncommutative spaces? Is there
a bimodule that can be obtained as the bimodule of intertwiners (noncommutative
analogue of equivariant vector valued functions on a total space) only from a bun-
dle with a noncommutative structure Hopf algebra? More generally, when does a
deformation of a group into a quantum group entail essential consequences in the
geometry (e.g., in the classification of bundles or in the Yang-Mills theory)?

Since this article is to a great extent a follow-up of [9], much of the mathe-
matical and physical motivations listed there can also be considered as motivations
for this work, and so will not be repeated here. Let us just emphasize that our
main purpose is to specify and analyze a class of connections on quantum principal
bundles (called strong connections) that enjoy some additional properties making
them more like their classical counterparts, and (taking advantage of the notion of a
strong connection) to discuss a link between the two approaches to noncommutative
differential geometry based on quantum principal bundles and protective modules.
The study of the precise relationship between those two approaches is thought of
as a move towards answering the questions mentioned above.

We begin this article by fixing the notation and recalling the fundamentals of
quantum bundles and Yang-Mills theory on projective modules. In the first section,
in addition to this vocabulary review, we also study the definition of a quantum
principal bundle using snake diagrams (see Remark 1.2 and Proposition 1.5). Taking
advantage of Remark 1.2, we prove (Corollary 1.3) that the fundamental vector
field compatibility condition (see Point 3 in Definition 1.1) implies its stronger
version. (The latter version of the fundamental vector field compatibility condition
was assumed in Example 4.11 [9].)

The formalism used in this paper is a generalization of the corresponding for-
malism used in classical differential geometry. The calculations showing this, though
often very instructive, are straightforward and we will not fully elaborate on that fact
later on. Differential geometry on quantum principal bundles is still in the process
of being born - the umbilical cord has hardly been cut yet - and it seems prema-
ture at this point to make precise categorical statements establishing the relationship
between classical and quantum differential geometries. As Yu. I. Manin mentioned
in a similar context (see p. 86 in [27]), "Here, one should not act too hastily since
even in supergeometry this program was started only recently and revealed both rich
content and some puzzling new phenomena."

In Sect. 2, we define and provide examples of strong connections. Proposition 2.2
allows one to interpret strong connections on trivial quantum bundles as those in-
duced from the base space, and to produce examples of strong connections in the
case of trivial quantum bundles with the universal calculus. In the Introduction to
the preliminary version of [9], one can read regarding inducing connection forms
from the base space that "...in the general non-commutative or quantum case there
would appear to be slightly more possibilities..." than in the classical case. Examples
of connections that are not strong (and thus realize the just mentioned "quantum
possibility") are supplied as well. More precisely, we construct both strong and non-
strong connections on a very simple (yet rich enough) example of a 'discrete bundle'
and on a quantum version of the two-sphere fibration S2 —> RP2. (As a byproduct
of our considerations we obtain a ^-deformation of the real projective space RP2.)
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It might be worthwhile to note that the latter construction does not employ the
trivial-bundle or the quantum-group-quotient techniques. We end this section with
presenting an example of a non-strong connection in the set-up of a strict monoidal
category dual to the category of sets with Cartesian product.

In the subsequent section, we describe the action of (global) gauge transforma-
tions on the space of connections on a bundle with the universal differential calculus,
and show that this action preserves the strongness of a connection.

In Sect. 4, we use the notion of a strong connection to justify the definition of a
global curvature form. (We need to assume that a connection is strong if we want
to show that its curvature form has certain properties that classical curvature forms
possess automatically; e.g., the usual relation to the square of the exterior covariant
derivative.)

In Sect. 5, we present a link between gauge theory on a quantum principal bundle
and Yang-Mills theory on a protective module. First we show how, in the case of
a free module, to incorporate the Yang-Mills action constructed in [13, 30] into the
quantum bundle picture. Then, to obtain a Hermitian metric compatible connection
on a free module from a strong L^(2)-connection on a trivial quantum principal
bundle, we mimic the classical geometry formula which permits one to determine
the values of a connection form on the Hopf algebra of smooth functions on a
matrix Lie group by knowing its values on the matrix of generators. (Note that
usually one thinks of a connection form as a map sending smooth vector fields to
elements of a Lie algebra, but we can also view it as a map from the Hopf algebra
of smooth functions on a Lie group into the space of smooth 1-forms.) It turns out
that the connections compatible with a particular ^-dependent Hermitian structure
can be identified with the strong t/^(2)-connections that satisfy a certain condition.
We close this section by concluding that, in the setting under consideration, the
moduli space of critical points of Uq(2) and f/(2)-Yang-Mills theory coincide.
Thus, at least in this case, the g-deformation of the structure group alone has no
essential bearing on the Yang-Mills theory. This seems to bring us a step closer to
answering the question posed at the end of the first paragraph: One should expect
geometrically interesting effects of the noncommutativiry of a Hopf algebra in Yang-
Mills theory only for non-trivial bundles (comodule algebras that are not crossed
product algebras) or non-strong connections.

Finally, in the Appendix, we examine the advantages of adding a twist to the
definition of a quantum associated bundle formulated in [9] and point out the pos-
sibility of using the axiomatic definition of a frame bundle to try to define its
noncommutative analogue (cf. Sect. 5.1 in [9]).

1. Preliminaries

The notation used throughout this article is quite standard and not much different
from that of [9]. Nevertheless, to eschew any possible misunderstanding or confu-
sion, we enclose a table of basic notations:

[ -]χ an equivalence class defined by X
δm,n equals 1 iff m = n, and 0 otherwise (Kronecker symbol)
g Lie algebra of a Lie group G
k field of characteristic zero (except for Proposition 1.13)
® tensor product over k
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τ flip (τ(u 0 v) := *; 0 w)
first order universal differential calculus (Ώi4 := KermA, da := 1 0 α — α 0 1)

£14 differential envelope of A
Ω(A) differential algebra over A (i.e. a quotient of ΩA by some differential ideal)

πiχ multiplication on X, or in X (We will simply write m for the multiplication
in a Hopf algebra.)

Δ comultiplication: Δ(a) — a^\) 0 a^) (Sweedler sigma notation with suppressed
summation sign, cf. Sect. 1.2 in [35])

Δn comultiplication applied n times (Due to coassociativity we do not have to
remember where Δ is put in consecutive tensor products; Δna = «(i) 0 0

Y\Y unit map of an algebra Y (often suppressed)
ε counit (unless otherwise obvious from the context)

S antipode, i.e. a^Sia^)) = e(α) = S(α(i))α(2)
A°v algebra identical with algebra A as a vector space but with the multiplication

defined by mA^ = mA o τ
pΛ right coaction: pτ?(x) = X(o) 0*(i) (Sweedler sigma notation for comodules

with suppressed summation sign, cf. p. 32-3 in [35])
ΔR right coaction on the "total space" of a quantum principal bundle
Δ® right coaction on a right-covariant differential algebra of the "total space"

given by Vm e N : Δ^(podpx -- dpm) = (po\o)d(p\\o) ^(,Pm)(O)0
(^oXu ί^mXi), where for any n e {0,...,m}, (pn\o)®(Pn\\) = ^Λ^« (A
differential algebra is right-covariant iff Δ& determined by the above formula
is well-defined; cf. (21) and Sect. 4.2 in [9].)

a φ := (id 0 m) o (id 0 S 0 id) o (τ 0 id) o zl2 (right adjoint coaction; aφα =

the space of right coinvariants (PcoA := {p e P\ΔRp = p®\})
* p convolution: V/eUomk(Q,X), geUomk(A, Y) : f*p g = m o (f<8>g) o p Λ ,

where (Q,PR) is a right ^4-comodule and m : J 0 7 —• Z is a multiplication
map (If p^ equals Δ&9 ΔR or zl, we will use *^, */? or * respectively to
denote the corresponding convolution.)

f~ι unless otherwise obvious from the context, convolution inverse of / , i.e.
f-\aω)f(a(2)) = (f-ι^f)(a) = ε(a) = (f^f-ι)(a) = f(a(l))f-ι(a(2)) (In
general, one has: x(0) 0 0 X(n) 0 / ( % + i ) M % + 2 ) ) 0 %+3) 0 0 X(m) =

* ^)(x(«+i)) ® % 2 ) ® - 0^(m-i) and ^ ^

All algebras are assumed to be unital and associative. Now, let us recall the basic
notions and constructions of [9] necessary to establish the language used in this
paper.

Definition 1.1 (4.9 [9]). Let P be an algebra over a field k, A a Hopf algebra over
the same field, NP C ΩιP a P-bίmodule defining the first order differential calculus
Ω\P), MA C Kerε an adR-invariant right ideal defining the bicovariant differential
calculus Ω\A), and

an algebra homomorphism making P a right A-comodule algebra Then (P,A,ΔR,
NP,MA) is called a quantum principal bundle iff.
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def
1. TR : P 0 P 3 11—> (m0id)o(id0Zl#)ί £ P ®A is a surjection (freeness),
2. A@(NP) C Np ®A (right covariance of the differential structure),
3. TR(Np)CP®MA (fundamental vector field compatibility condition),

4. KerTC PΩx(PcoA)P (exactness), where Ωι(PcoA) := ΩιPcoA/(NP ΠΩιPcoA)

and T : Ωι(P) 3 [(x]Np Ά ((ia^nA)oJR)oc e P 0 (Kerε/M^).

(The map πA : Kerε —> Keτε/MA is the canonical projection, and αeKerm/?.)

For simplicity, as well as to emphasize the analogy with the classical situation, a
quantum principal bundle is often denoted by P(B,A), where B := PcoA is the "base
space" of the bundle. The map T (denoted by ~NP in [9]) can be more explicitly
described by the formula

T(pdq) = pq{0) 0 [q{l)]MA - pq 0 1 . (cf. (24) in [9])

Remark 1.2. Let Ύu : KermP —> P 0 Kerε and TNM : Np -* P <g)MA be the appro-
priate restrictions of TR. It is straightforward to check that the following diagrams
are commutative diagrams (of left P-modules) with exact rows and columns:

0 > KerTt/ > KerT*

1 I
0 > Kermp > .

0

I
P

( i )

0 > P 0 K e r ε > P(

i
Coker T y > Coker TR

KerT

NP ΩιP Ω\P)

(2)

i
Coker Tχ

P0Kerε

i
Coker Tr/ Coker T
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Applying the Snake Lemma (e.g., see Sect. 1.2 in [5]) to both diagrams, we obtain
the following two exact sequences:

-» KerT* -> 0 -• CokerTf/ -> CokerT* -> 0 , (3)

0 -> KerT^M -• KerTf/ -> KerT -» CokerT^M -* CokerTf/ -> CokerT -> 0 . (4)

Observe that the freeness condition means exactly that CokerT/? = 0, which, by (3),
is equivalent to CokerT^ = 0 (see (33) in [9]). Note also that KerTJvM = NP Π

D

Corollary 1.3. Let {P,A,AR,Np,MA) be a quantum principal bundle Then TR{Np)
= P®MA (cf. Example 4.11 in [9] and the discussion below it).

Proof. From the exactness condition, we know that KerT = πP(PΩιB.P). On
the other hand, since PΩιB.PC KerT[/ and the map %u : KQTΎU —> KerT in (4)
is a restriction of %p to KerT^y, we can conclude that %u is surjective. Conse-
quently, by the freeness condition and the exactness of (4), CokerTΛΓM = 0, i.e.

D

The above corollary makes the following definition of a trivial quantum principal
bundle equivalent to the definition proposed in Example 4.11 in [9].

Definition 1.4. A quantum principal bundle (P,A,ΔR,NP,MA) is called trivial iff
there exists a convolution invertible map (trivialization) Φ G YLomk(A,P) such
that

ARoΦ = (Φ(g)id)ozl (5)

{i.e. Φ is right-covariant) and Φ(l) = 1. In such a case, P is also called a crossed
product or cleft extension {see p. 273 in [32]).

Definition 1.5 (1.1 [32]). Let P be a right A-comodule algebra and B be the alge-
bra of all right coinvariants. The comodule P is called an A-Galois extension iff
the canonical left P-algebra and right A-coalgebra map

TB := (m/>(g)id)o (id<S>B^R) P ®B P 3 P ®B q

is bijective.

Proposition 1.61. Let P, A and B be as above. A comodule algebra P is an A-
Galois extension if and only if P{B,A) is a quantum principal bundle with the
universal calculus.

lrΓhis proposition is implicitly proved in [7] (see Lemma 3 2 and the text above it) The dίagramatic
proof presented here was created during the author's discussion with Markus Pflaum
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Proof. Consider the following commutative diagram (of left ^-modules) with exact
rows and columns:

0 > PΩλB.P • KerT* >

i 1 I
0 y PΩlB.P y P®P y P ®B P > 0

IT, |τ, (6)
id

> 0

0 > CokerT* > CokerT5 > 0

Again, we can apply the Snake Lemma to obtain the exact sequence

0 -> PΩιB.P -> KQVΎR -> KerT5 -* 0 -» CokerT* -> CokerT5 -> 0 . (7)

Assume first that P is an v4-Galois extension. Then KerTg = 0 = CokerTg, and,
from the exactness of (7), we can infer that CokerT^ = 0 (freeness condition) and
KQTΎR =PΩιB.P. On the other hand, by the exactness of (3), we have KerTt/
= KerTfl. Hence the exactness condition follows, and we can conclude that P(B,A)
is a quantum principal bundle with the universal calculus.

Conversely, assume that P(B,A) is a quantum principal bundle with the universal
calculus. Then KerT^ = KerTc/ = PΩιB.P and CokerT}? = 0. Consequently, again
due to the exactness of (7), we have that KerT5 = 0 = CokerT5, i.e. P is an A-
Galois extension. D

Definition 1.7 ([9]). A left P-module projection Π on Ω\P) is called a connection

on P(B,A) W

1. K e r ϋ = Ώhor(^) O m ^ is called the space of vertical forms),
2. A@oΠ = (Π® id) o A® (right covariance).

Due to Proposition 4.10 in [9], a connection form can be defined in the following
way:

Definition 1.8. A k-homomorphism ω : A —> Ω\P) is called a connection form on
P(B,A) iff it satisfies the following properties:

1. ω(k θMA) = 0 (compatibility with the differential structure),
2. T o ω = (id 0 %A) O (1 0 (id — ε)) (fundamental vector field condition),
3. Agt o ω = (ω 0 id) o ad& (right adjoint covariance).

For every P(B,A), there is a one-to-one correspondence between connections and
connection forms. In particular, the connection Πω associated to a connection form
ω is given by the formula: Πω = mΩ\(P) o (id 0 ω) o T ((47) in [9]). Since Πω is
a left P-module homomorphism, to calculate Πω it suffices to know its values on
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exact forms, and on exact forms (47) [9] simplifies to

Πω od = iά*Rω. (8)

The following four definitions are based on Appendix A in [9].

Definition 1.9. Let Ω(P) be any differential algebra having Ωι(P) as in Defini-
tion 1.1 For all n G N, the space {PΩ\B)P)n is called the space of horizontal
n-forms and is denoted by Ω^oτ(P). The space of horizontal 0-forms is identified
with P.

Definition 1.10. Let Ω(B) be the differential algebra obtained by the restriction of
Ω(P) For all « G N , the space Ωn(B)P is called the space of strongly horizontal
n-forms and is denoted by Ω"hor(P). The space of strongly horizontal 0-forms is
identified with P.

Note that in the classical case ΩζOΐ(P) and Ω*hor(.P) coincide.

Definition 1.11. Let (V,ρR) be a right Λ°v-comodule algebra {see Remark A.I).
Then φ G Hom^(F, Ω(P)) is called a pseudotensorial form on P iff

A® o φ = (φ (g) id) o pR .

A pseudotensorial form taking values in Ω^or(P) (in Ω*hoτ(P)) is called a tensorίal
(strongly tensorial) form on P. The space of all pseudotensorial, tensorίal and
strongly tensorίal n-forms (n ^ 0) will be denoted by PTp(V,Ωn(P)\ Tp(V,Ωn(P))
and STp(V,Ωn(P)) respectively.

Definition 1.12 ((68) [9]). Let Π be a connection on P. The k-homomorphism D
from ΩΨ to Ωζ^P given by

D : PodPι '"dpn^ (id - Π)(dp0) (id - Π)(dpn), (9)

where n ^ 0, is called the exterior covarίant derivative associated to Π.

To complete this vocabulary review, we recall some basic definitions used in
the Yang-Mills theory on projective modules. We choose here right rather than left
modules, but one should bear in mind that the formulation of this formalism for left
modules is analogous.

Proposition 1.13 (cf. p. 369 in [34]). Let $ be an associative unital algebra over a
commutative ring k. Let J^k be a k-Lie subalgebra of the space of all k-derίvatίons
of 3$, and let $* be any right &-module admitting a connection. If Ω(8fl) is a
differential graded subalgebra o / ^ θ φ ^ ^ o m ^ Λ ^ J ) with the differential
(see the first section in [18]) given by:

(da)(Xo,Xu---,Xn)= Σ

then
Vξ£g,X,Ye£ek: (V2ξ)(X,Y) = ([Vx,Vγ] - V K n X ί ) , (10)

where, as in the classical differential geometry, Vz ξ denotes (Vξ)(Z).
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Proof. Straightforward. D

Definition 1.14 ([13, 30]). Let i f be a finite dimensional Lie subalgebra ofDerB,
let {Xι}ιe{\^ ?dimĵ } be a basis of if, and let Ω(B) be a differential algebra defined
as in Proposition 1.13. A bilinear form

5 Ω2(B)) x (EnάB(£) ®* Ω2(B))

is defined by

Definition 1.15 (cf. p. 553-4 in [12]). Let £ be a finitely generated projective right
B-module.

1. A linear map V : £ ®B Ω\B) -> £ ®B Ω*+ι(B) is called a connection on £

iff
V ξ G £, α G Ω(5) : V(ξ ®B α) =

2. 7%^ endomorphism V2 G Endβ(jg)((f 0^ ^(5)) is called the curvature of a
connection V.

3. IfB is a *-algebra and £ is equipped with a Hermίtίan metric (,) : £ x £-^B,
then we say that a connection on £ is compatible with this Hermίtian metric iff

\/ξ,ηe£ : d(ξ,η) = (Vξ,η) + (ξ,Vη). (11)

Remark 1.16. The group U{£) := {UeΈndB(£) \ Vξ,ηe£ : (Uξ,Uη) = (ξ,η)} of
unitary automorphisms of £ acts on the space of connections in the following way:
V i—> U\7U*. This action maps compatible connections to compatible connections
(see near the end of Sect. 1 in [13]). D

Remark 1.17 The sign in the formula (11) depends on whether we want d(a*)
= {da)* or d(a*) = —(da)*. We have " + " in (11) because here we choose that d
commute with *. D

Definition 1.18 ([13, 301). A trace FE : End5(<f) -> k is given by &Έ(ξ(ζ, •)) =
&~B(ζ9ζ)> where ?ΓB is a trace on B.

Corollary 1.19. Let £ = Bn for some « G N , and N G ΈnάB(Bn) = Mn(B). Then

where Tr is the usual matrix trace.

Proof. Straightforward. D

Definition 1.20 ([13, 301, cf. [12, 17, 18]). Let V be a connection on £. The func-
tion YM given by the formula

YM(V) = -^E{ΘV,ΘV}, (12)

where Θ is defined by Θ^(X9Y) = [Vχ,Vγ] — V[χ,rj, is called the Yang-Mills
action functional.
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Example 1.21. Let G be a compact Lie group and B = C°°(G). Let W be a
finite dimensional vector space, X(G,GL(W)) a principal bundle, S —
Γ(X(G,GL(W))XidW) the projective module of the smooth sections of the id-
associated vector bundle, and g a Riemannian metric on G. (The choice of a metric
on $ makes no difference.) Then, for any connection form ω on X(G, GL(W)), one
has YM(Vω) = - JGTr(Fω Λ * F ω ) , where Vω is the covariant derivative (connec-
tion on $) associated to ω, the symbol * denotes the Hodge star associated to g,
and Fω is the curvature 2-form of ω (see pp. 336, 337 and 360 in [4]). D

2. Strong Connections

We can now proceed to formulate the notion of a strong connection. This no-
tion will be used to justify the definition of a global curvature form. It will
also be needed for characterizing these connections on a trivial 6^(2)-bundle that
correspond to the hermitian connections on the free module associated with this
bundle.

Definition 2.1. Let (P,A,ARiNp,MA) be a quantum principal bundle. A connection
Π on P is called strong iff (id - Π)(dP) C Ωι

shoτ(P) (see also Remark 4.3).

For every connection Π, the left P-module homomorphism (id — Π) maps exact
1-forms to horizontal, but not necessarily to strongly horizontal, 1-forms. A strong
connection Π is defined by requiring that (id — 77) sends exact 1-forms to strongly
horizontal 1-forms. It turns out that, for the trivial quantum principal bundles, the
strongness of a connection means that the connection is induced from the base space
of a bundle. (A similar fact is described in Lemma 6.11 in [20].) More precisely,
let β G Homk(A, Ωι(B)) be the map given by the formula

j5 = Φ * ω * φ - 1 + Φ * ( ί / o φ - 1 ) . (13)

(This formula can be obtained by solving formula (37) in [9] for β and extending the
solution to a general differential calculus.) It is straightforward to check that in the
classical case the thus defined β corresponds exactly to the pullback of a connection
1-form with respect to the section associated with a given trivialization. Therefore,
we can think of β as a noncommutative analog of the aforementioned pullback of
a connection form (see also Remark 2.6). (For a discussion of connection forms
which can be understood as elements of Uomk(A/k, Ωι(B)), and which are also
called quantum group gauge fields, see Sect. 3 in [9].) With the help of (13), we
can characterize the class of strong connections on any trivial quantum principal
bundle in the following way:

Proposition 2.2. Let (P,A,AR,NP,MA) be a trivial quantum principal bundle with
a trivialization Φ and a connection form ω, and let β be as above. Then Πω is
strong if and only if β(A)C Ω\B).

Proof It is known (e.g., see (27) in [9]) that
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Using this fact, formulas (8), (5), (37) [9], and the Leibniz rule it can be calculated
that

(id - Πω)(dp) = Σ (dbi.Φte) - b0 * Φ)(aO) (14)

(This calculation appeared in the preliminary version of [9].) Clearly, β(A) C Ω\B)
implies that Πω is a strong connection. To prove the reverse implication, we will
use the following lemmas and corollary:

Lemma 2.3. Let {(Qi,Pί)}iei and (#,£#) be right A-comodules, and {F//}ί,/e/ be
vector spaces, where I is a non-empty finite set. Assume also that, for all i,j G /,
we have multiplication maps

mij - Qi ® Qj -> Vij9

mUjι : Qi <8> Vji - + * ,

satisfying the associativity condition

\/iJ, l e i : mijyι o (mzy 0 id) = mijΊ o (id 0 m y 7 ) ,

and that coactions {pi,p^}iej are compatible in the following sense:

Vz,y, / e /, qt E Qi9 qj e Qj, qi G Qi : pviqiqjqύ = ptei)pMj)pι(qι) -

Then, for any iJJ G /, if κ, G Homk(A,Qi)9 mj G Hom^(^, Qj) and λ\ G
, Qi) are homomorphisms with the right-covariance properties:

Pί ° Ki = {κt (g> id) o A ,

Py o ΠT = (Wj 0 id) o adR,

ίAe homomorphism Kι * tπy * A/ is right-invariant, i.e.

P% ° (Ki * tϋy * A/) = (Ki * tt7y * A/) 0 1 .

Proof A direct sigma notation computation proves this lemma. D

Corollary 2.4. Let ω be a connection form on a trivial quantum principal bundle
with a trίvialίzation Φ. The map β given by (13) takes values in right-invariant
differential forms, i. e.

Proof Taking advantage of the formula

AR o Φ~ι = ( φ - 1 0 S) o τ o A , ((28) in [9])

one can deduce from Lemma 2.3 that

Z l ^ o ( Φ * ω * Φ ~ 1 ) = ( Φ * ω * Φ ~ 1 ) ( g ) 1 . (15)

(Observe that, since

1 (g> S) o τ o A) * (AR o Φ) = ^ ^ oε = ( ^ o φ ) * ( ( φ " 1 0 S) o τ o J ) ,
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formula (28) in [9] follows by the same argument as used in the proof of
Proposition 3.2.) Furthermore, as

Δgt ° {d o Φ~x) = (d ® id) o ARo Φ~X

(see the beginning of Sect. 1 for this property of A^)

and ηpoε is αdfl-co variant - i.e. AR o ηP o ε = ((^P o ε) 0 id) o α ^ - it also follows
from Lemma 2.3 that

Δm o (Φ * (γ\P o ε) * (d o φ-χ)) = (Φ * (ηP o ε) * (d o Φ~1)) ® 1 . (16)

Combining formulas (15) and (16) we get the assertion of the corollary. D

Lemma 2.5. Let (Q,po) be a right A-comodule, and let {{QuPi)}ίe{\,2}> ̂ 12 and
πiγi be as in Lemma 2.3. If f\ G Hom^(β, Q\) is right-covariant (i.e. p\ of —
(f (g) id) o p0) and f2 G Hom^(^, Q2), then

(id*Pi fi)°f\ =/i *PO/2

Proof Straightforward. D

Assume now that Πω is strong. Then, by setting p — Φ(a) in (14), we obtain:

( i β*Φ)(^)Cί2 s

1

h o r (P). (17)

Furthermore, it is a general fact that

(id^φ-1)^^))^1^). (18)

Indeed, for any b G B, p G P,

(id *^ Φ~ι)(db.p) = (mΩKP) o (id 0 Φ~ι))(db{0).pi0) 0 6(i)/?(i)) = db.sΦ(p), (19)

where

sΦ : P 3 ^ A (id *Λ Φ- J ) (^) = A o ) ^ ^ ^ ! ) ) € 5 (20)

is a left ^-module homomorphism that can be interpreted as the section of P(B,A)
associated with the trivialization Φ (see the subsequent remark, cf. Sect. 3.1 in [10]).
Taking again advantage of the formula (28) in [9] (see the proof of Corollary 2.4)
we can infer that

ΔR o (id *R Φ~ι) = (id *£ Φ~x) 0 1

(cf. the second calculation in the proof of Proposition A.7 in [9]). Hence s<p in-
deed maps into B, and (18) follows as claimed. Combining (17) and (18) one can
conclude that

1 (21)
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On the other hand, taking into account Corollary 2.4, one can see that β * Φ is
right-covariant:

Amo(β*Φ) = {{ΔM o β) * (ΔR o Φ)) (cf. Lemma 4.0.2 in [35])

= ™Ω\P)®A o ((j8 0 1) 0 (Φ 0 id)) o Δ2 = ((β * Φ) 0 id) o A .

Hence, by Lemma 2.5,

(id *̂ > Φ " 1 ) o (β * Φ) = (β * Φ) * φ - 1 = jg ,

and (21) reduces to jB(Λ) C Ω\B), as needed. D

Remark 2.6. A natural question arises here as to whether or not one can, anal-
ogously to the classical case, use sφ directly to compute the pullback of ω. For
instance, in the case of the universal differential calculus, we can define the pull-
back of a differential 1-form on P with respect to sΦ to be

Clearly, since s Φ (Ω ! P)C ΩιB and there exists a non-strong connection on a trivial
quantum principal bundle with the universal differential calculus (see Example 2.7),
Proposition 2.2 allows one to conclude that, in general, sΦ o ω and β given by
(13) do not coincide. (Otherwise ω would always have to be a strong connection
form.) Furthermore, even if we assume that ω is a strong connection form, the
direct calculation of sΦ o ω shows why, in the noncommutative case, we cannot
claim sΦ o ω = β. An advantage of defining β by (13) rather than by sΦ o ω = β
is that β given by formula (13) transforms in a familiar manner under local gauge
transformations (see Sect. 3 and (38) in [9]).

Let us also remark that, assuming the existence of S~ι, one can define a quantum
principal bundle section which is a right, rather than left, 5-module homomorphism
from P to B:

sίφ := mp o ((ΦoS~ι) 0 id) o τ o Δ& .

Much as in the case of Sφ, it is straightforward to check that iφ is indeed a right
5-module homomorphism into B. From (28) in [9] (see the proof of Corollary 2.4),
it is also clear that Sφ satisfies the equation S φ o φ " 1 = ε. This formula and the anal-
ogous formula Sφ o Φ = ε for Sφ reflect the classical geometry relationship between
the section of a principal bundle and the map from the total space to the structure
group that are associated to the same trivialization. The pullback of a connection
form ω defined with the help of ϊφ has very similar properties to the pullback
of ω defined with the help of Sφ. Obviously, Sφ and ϊφ coincide in the classical
case. D

Due to Proposition 2.2 and Proposition 4.6 in [9] we know that every β G
Uomk(A,ΩιB) vanishing on k induces a strong connection on a trivial quantum
bundle with the universal differential calculus (cf. Sect. 6.4 in [20]). The quantum
Dirac monopole considered in [9] is an example of a strong connection on a quan-
tum bundle with a non-universal differential calculus (for a proof of this fact see
Corollary 6.4.4 in [6]). In what follows, we present an example of a weak (i.e. non-
strong) connection. This example points out an interesting fact that the noncommuta-
tivity alone of the "total space" P or the "structure group" A of a quantum principal
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bundle P(B,A) cannot be held responsible for the weakness of a connection. Nor,
for that matter, can we blame the noncocommutativity of A.

Example 2.7. Let 2^2 denote the two-element group represented by 0 and 2. Also,
let P:=Map(Z4,A:) and A:=Msφ(2Z2,k) be the standard commutative Hopf al-
gebras over k (e.g., see [15] or Sect. 2.2 in [1]), %: 2Έ2 ^ Z 4 be the inclusion,
and

B := {beP I ΔRb := ((id 0 ι*)oΔ)(b) = b 0 1}

be the corresponding quantum homogeneous space (see Sect. 5.1 in [9]). Since

Kerz*C

by Lemma 5.2 in [9], (P,v4,(id 0 ι*) o zl,0,0) is a quantum principal bundle with
the universal differential calculus. Now, let j : Έ4 —> 2Z2 be the surjection defined
by j(g) = δi,g Clearly, % oj = id and j(h~ιgh) = h~ιj\g)h for all geZ4, he2Z2.
(Although 2^2 and Έ4 are additive groups, to emphasize the usefulness of calcula-
tions shown in this example even in more general cases, as well as to shorten some
formulas, we use the shorter and more abstract multiplicative notation.) Hence, by
Proposition 5.3 in [9], we have the canonical connection form given by the formula
ω = (S * d) oj*. Our task is now to show that the connection defined by ω is weak.
Suppose that this is not the case, i.e. that (id - Πω)(dP)C Ωι

shoτP. Then, since it
can be calculated that, for all peP,

( i d - π ω ) ( d P ) = d

and Ω]P can be treated as the set of all functions on Z4 x Έ4 vanishing on the
diagonal (e.g., see Sect. 2.6 in [14]), we can conclude that, for any peP, g,reZ4,
he2Z2,

p(r) - p(ghj(h~ιg-]r)) = p(r) - p{gj{g-]r)).

In particular, it implies that

V he2Z2,geZ4 : j(hg) = hj(g)

(cf. Lemma 5.5.5 in [6]). But h = 2, g = 1 do not satisfy that equality and therefore
we have a contradiction proving that Πω is a weak connection.

Alternatively, since the pullback of the map Φ : Z4 —> 2^2 given by

for g ^ 1

otherwise

is a trivialization of the quantum bundle P{B,A) (see Definition 1.4), one can prove
that Πω is a weak connection by analyzing the map β associated to it (see (13))
and using Proposition 2.2. Note also that the trivial connection (see Example 4.5 in
[9]) induced by the trivialization Φ* is, by Proposition 2.2, strong. D
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Our next example is concerned with a construction of both strong and non-strong
connections on certain quantum analogues of the 2£2-fibration of the two-dimensional
sphere over the real protective space (S2 —> RP2).

Example 2.8. Let PF be a unital free *-algebra over C generated by {xm}me{i,2,3}>
(i.e. PF = C(xi,x2,*3,1)), let </o be a two-sided *-ideal of PF generated by

lxm - * * , Σaj*j - γ l \ > /wjG{l,2,3}, α ; ,rGlR, αy ,r > 0,

and let J\ be a two-sided *-ideal of PF generated by

m€{l}2,3},

(The second generator of Ĵ i resembles the right-hand side of the formula (164)
in [26] that describes the metric on the g-Minkowski space discussed in Sect. 7.2
of [26].) The algebras PF/J'O and PFjJ\ can be regarded as noncommutative two-
spheres. Indeed, PF/^o is "the most noncommutative two-sphere," and PFj*f\ cor-
responds to the equator sphere (c = oo) given by (7b) in [29] (see Remark 2.13).
Obviously, for q — ±1 , the algebra PFj<$\ corresponds to the usual S2. Since
both PF/J^O and PFjJ\ can be used in the same way to construct noncommu-
tative flbrations and connections, we denote, for the sake of brevity, PFjJ>v by
PV9 where ve{0,1}. We also put x0J = [x7l/0, xυ = [xj]^, aOj = aj9 je{l,2,3},

a\\ — 1, a\2 — 1, 1̂3 = 2, 1 + 2)2, ô — r? Π = 1> a n d thus define the coefficients
{flv/ , rv}vG{0,i},yG{i,2,3} Unless stated otherwise, all the following statements of this
example will be valid for any of the two values of v. The proposition below allows
one to turn Pv into a right ^-comodule algebra, where A = Map(Z2, C).

Proposition 2.9. Let PF and A be as above. Also, let ΔR be a coaction of A on PF

making it a right A-comodule algebra. If ΔR O * = (* 0 ~) o ΔR , where ~ denotes
the complex conjugation, and

ΔR :PF 3*y ^ X ; ® ( 1 -2δ)ePF®A, (22)

where δ is the map such that δ(~\) — 1 and δ(l) = 0, then ΔR(jPv)C

Proof. Clearly, ΔR(XJ —x*)eJv®A for any je {1,2,3}. Also, for any j,le
{1,2,3}, we have

ΔR(XJXI) = ΔR{xj)ΔR(xι) = xjxi 0 ( 1 - 2δ)2 = xμι®\.

Hence ΔR(J>V)(1 JV®A, as claimed. D

It follows now that a *-algebra homomorphism Δv : Pv -^ PV®A given by the
formula Δvxvj = χvy 0 (1 — 2δ) makes Pv a right yl-comodule algebra.
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Proposition 2.10. Let Pv be a right A-comodule algebra as above. Then (PV,A,AV,
0,0) is a quantum principal bundle with the universal differential calculus.

Proof. By Proposition 1.6, it suffices to show that the canonical map Tg :
PV®BVPV —• PV®A, where Bv \—Pv

coA, is bijective. First, however, let us prove the
following.

Lemma 2.11. Let Bv be as above. Then Bv is the space spanned by monomials
from Pv whose total degree is even, i.e.

Bv = { Σ Σ ah i2kχvίχ'"χvi2k^pv\ah ,2*eC,/i, . . . ,Z2*e{l,2,3} > . (23)
[k^Ml, ,12* J

Proof To simplify notation, let us denote the right-hand side of (23) by Bv. Thanks

to (22), it is clear that every element of Bv is right coinvariant. It is also clear that

every element of Pv can be written as b0 + Σy=i tyχvj f° r some {£/}/G{0, ,3} £ ^v

(Observe that any number ce<E can be expressed as c = cr~2γ^iz=x avix^eBv.) Fur-
thermore, since

3 3

Δvp-

v=1 /

we can conclude that Δvp = p®\ => p = boeBv. Hence Bv — Bv, as claimed. D

Now, consider a left Pv-module map TB : PV®A —> Pv<g>BvPv given by the formula:

for a = 1

rv z^/=i αv/ v̂z ^ 5 V ̂ vi) for α = d .

Recall that every element of Pv can be written as bo + Σ/=i ^y/ for some

{Z?/}/G{o, ,3} £ ^v Therefore, since Tg o Tg is a left Pv-module map, it suffices to
check that

ί ί ' \\ ( 3 "\

(t°Ts) 1 ®B, \ bo + ΣbjXvj = 1 ®B, \ bo + ΣbjXvj

for arbitrary {&/}/G{o, ,3} Q Bv With the help of Lemma 2.11, we have

(%°TB) I l ®5V I ̂ ?o + Σfyxvj I I

_ 3 ^

Γ
7=1

3 _
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3 ~

= bo ®BV 1 + Σbj(χvj ®BV 1 - 2xvjTB(l®δ))

3

*vj ®BV 1 — bjXvj ®BV 1 + r

v Σ (avibjXvjXvi <g>βv Xvi)
j=\ \ ι = l

= 1 ®BV ^ 0 + Σ Σ r72(*vi ®BV bjXvjX
2

vi

y=ii=i

Thus we have shown that Tg o ΎB = id. Furthermore, it is straightforward to verify
that JB o ΊB = id. Hence T^ is the inverse of ~l# and consequently TB is bijective, as
needed. D

Remark 2.12. Note that, since Map(Z 2,C) is finite dimensional, the injectivity of
ΊB follows immediately from its surjectivity and Theorem 1.3 in [32]. D

Remark 2.13. Recall that a classical point of an algebra B over a field k is defined
as an algebra homomorphism from B to k. For #Φ ± 1, the space of all classical
points of Pi is parameterized by all pairs (x,y)€ R2 subject to the relation x2 + y1 —
ri = 1. Any such pair yields an algebra homomorphism f : P\ —> C via the formulas
/ ( * n ) = x

? /(^12) = J7? f{χn) — O It is clear that the classical "subspace" of Pi is
precisely its equator. Hence the name "equator sphere." (To see the correspondence
between P\ and the C*-algebra defined by (7b) in [29], put μ = q and

x u = l-(B*-B), χ l 2 = ~ ( B * + B ) , x 1 3 = ~[~q A ( 2 4 )

cf. the beginning of Sect. 7 in [29].) The quantum sphere employed in Sect. 5.2
of [9] (c = 0 in [29]) can be, in the same manner, regarded as a "north pole
sphere". Now, the quantum principal bundles considered in Proposition 2.10 were
constructed to generalize the usual two-sphere fibration S2 —» RP2 (set q = ±1 in the
bundle (Pi,^4,Zli,0,0)) where %2 moves the points on the sphere to their antipodal
counterparts (see p. 69 in [37]), and on the north pole sphere used in [9], there is no
other classical point to which the north pole could be moved under the free action
of Έ2. This is why, in order to deform the fibration S2 —> RP2, we used here the
equator sphere instead.2 D

Proposition 2.14. Let PV(BV,A) be a quantum principal bundle as in Proposition
2.10 and Lemma 2.11. Also, let ωeUom^A,ΩιPv) be a homomorphism defined
by the formula

ί 0 for a = 1
ω(a) = { 1 V^3 , r c

[ ~2^2^/=i avixVidxvi for a = δ .

Then ω is a strong connection form on PV(BV,A).
2 1 am grateful to Stanisίaw Zakrzewski for explaining these things to me
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Proof To prove that ω is a connection form it suffices to verify that (Ύoω)δ
. (Other conditions of Definition 1.8 are immediately satisfied.) We have

ι=l

1 3

r - j Σ avixvi(xvi<

= 1 (8)5 .

Hence ω is indeed a connection form. Our next step is to show that ω is strong
(see Definition 2.1). With the help of formula (8) and the Leibniz rule, for any

{6/}/G{o, ,3} £ Bv, we have

/ 3 \ 3 3 3
(Πωod) bo + Σ¥v = ~2Σ bjxvjω(δ) = r;2Σ Σ avibjxvjxvίdxvi

\ j=ι J j=ι y=ii=i

= r v~ 2 Σ Σ avibj(d{xvjx
2

vι) - d(xvjxvi).xvi)

= Σ bjdxvj - r~2 Σ avibjd(xvjxVi).xvi .

7=1

Applying the Leibniz rule again, we obtain

(id-Πω)ld I b o j j

= dbo + Σ dbj-Xyj + r~2 Σ avibjd(xvjxvi).xvi GΩ ι

s h o τPv .
y=i ;,ye{i,2,3}

Taking advantage of the fact that any pePv can be expressed as b0 + Σ ^ i ^ v y

for some {^/}/G{O, ,3} Q Bv, we can conclude that ω is strong. D

Proposition 2.15. Let PV(BV,A) and ω be as in the proposition above. |4 homo-
morphism ώ £Hom<£(A, ΩιPv) defined by the formula

JO for a=\

\ ω(δ) + dx2

vl for a — b,

where le {1,2,3}, is a connection l-form of a connection that is not strong

Proof Let / be any fixed element of {1,2,3}. Since Ag%{dxvl) = dxvl 0 1 and

T(dxvl) = 0, it is clear that ώ is a connection l-form. To prove that Πω is not

a strong connection, we will demonstrate that (id — Πω)(dxvι) ^ ^ h o r P v . With the
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help of formula (8), we have:

(id - Πώ)(dxvι) = dxvι + 2xviώ(δ) = dxvi + 2xv!ω(δ) + 2xvιdx2

vl

= (id-Πω)(dxvl) + 2xvldx2

vl.

Therefore, as Πω is a strong connection, it is enough to show that xvιdx2

vl^Ω\hoτPv.
To this end, let us put Bc

v := {Σ3

j=ιbjXvjePv\bjeBv, ye{l,2,3}}. Clearly, Pv =
Bv + Bc

v. An argument similar to that used in the proof of Lemma 2.11 shows
that BVΠBC

V = O. It follows now that Pv =BV®BC

V. As we consider here the
universal calculus on Pv, we have an isomorphism φ : ΩιPv 3 dp.u ι—> [/?]<c 0 u
ePv/(£®Pv. Furthermore, we have

Qιpv = φ-\ψ(ΩιPv)) = φ-\Bv/<£ 0 Pv) Θ Φ~\{BC

V θ <£)/£ 0 Pv)

= dBv.Pv θ d(Bc

v θ <C).PV = Ω^y.Pv θ rf(55).Pv . (25)

On the other hand, taking into account the isomorphism ΩιPv=Pv<g> {PV/<E), one

can show (with some help of the representation presented in Point IΙI.(a) of

Proposition 4 in [29] and formulas (24)) that Xv/Λ^φO. Therefore, since xvιdx2

vl =

dxvι — dxvι.x
2j^d(Bc

v).Pv, we can conclude, by virtue of (25), that xvιdxvl

\τPv, as desired. D

Remark 2.16. The strong connection form ω defined in Proposition 2.14 is non-
trivial. Indeed, taking (8) into account, one can see that

3

Πω(dxvι) = -2xvϊω(δ) = r~2 Σ avixvιxvidxvi,
i=\

where, as before, / is any fixed element of {1,2,3}. On the other hand, it
can be checked that {[*w](c}z e{i 2 3} a r e linearly independent and that xJ/φO.
(Again, one can take advantage of the representation presented in Point IΙI.(a) of
Proposition 4 in [29] and formulas (24).) Hence, with the help of an isomorphism
ΩXPV ^ Pv 0 (PV/<C), it follows that Πω(dxvl)φ0. Consequently, the space of vertical
forms (i.e. Im Πω) is non-zero. D

We end our display of examples with a strict monoidal category (see Sect. 6.1
in [33]) example of a weak connection.

Example 2.17. Similarly to Example 2.7, this example is concerned with a trans-
lation of the concept of the canonical connection on a homogeneous space to
a different set-up. Only this time, the groups employed are neither Abelian, nor
finite. The former makes our bundle look more interesting, the latter forces us to
replace the algebraic tensor product by the appropriate dual of the Cartesian product.
More precisely, let SOΐ be the image of the category of sets under the contravariant
functor Map( ,k). The tensor product 0gjj defined by

Map(X, k) 0 ^ Map(7, *) = Map(X x 7, k)

makes 501 a strict monoidal category. Moreover, if X is a group, then Map(X,&) is
an 5[R-Hopf algebra, where the definition of an 501-Hopf algebra is the same as that
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of a Hopf algebra but with the tensor product taken to be (S>m In what follows we
define several gauge theoretic notions in the setting of the category SDΪ:

1. Ω^X := {FGMap(XxX,&) | VxGX : F(x,x) = 0} (Map(X,£)-bimodule of
9ft-differential 1-forms).

2. Δw-R •'= R* (right coaction), where R : X x G -^ X is a right free action of
the group G on X (e.g., see p. 55 in [37]; G will denote a group and R its right
free action throughout the rest of this example).

3. Am_m : Ωx

mX -> {KeMap(XxXxG,k) \ V x£X,geG:K(x,x,g) = 0} (right
coaction on SOΪ-differential 1-forms), where \/F G Ώ ^ X , JC, J G X , geG:
(Am-<xF)(x9y,g) := F(R(x,g),R(y,g)).

4. A triple (Map (X, A; ),Map(G,£),zl $«_;?) is called an ϊft-principal bundle and,
for simplicity, denoted by (X, G,R).

5 Ω5[R-horX : = {FeΩ^XiyxeX, geG: F(R(x9g)9 x) = 0} (horizontal 50ϊ-dirT-
erential 1 -forms).

6. B := Msφ(X/G,k) (base space of (X,G,^)).

7. 0^-shor* := {F G ̂ _ h o r X I Vr, ^ GX, g G G : F(Λ(*, g),y) = F(x, y)} (strongly
horizontal $R-differential 1-forms).

8. Let (X, G,R) be an SCR-principal bundle and let

Π:=ΠιX /72GMap(XxX,XxX)

be an idempotent satisfying the following conditions:

j ) ^ X , geG: Π2(R(x9g)9 R(y9g))=R(Π2(x9y), g).
Then 77* is called an SOΪ-connection and is denoted by 77^.

9. An 9W-connection 77a« is called a strong 50ΐ-connection iff

V*, ^ GX, flf G G : 7720R(x, gf), y) = Π2(x, y) .

The above definitions were constructed so that the SW-objects thus defined become
the corresponding "quantum objects" (the universal differential calculus assumed)
when both X and G are finite and the SOί-tensor product is the same as the algebraic
tensor product. In particular, one can rethink and equivalently describe Example 2.7
in ΪR-terms. Doing so blurs the view of general principles making that example
work, but it allows one to have a better insight into its concrete mathematical
fabric.

Clearly, if H is a subgroup of G acting on G on the right by the group multipli-
cation (let us denote this action by RQ), then {G,H,RQ) is an 9JΪ-principal bundle.
Furthermore, any surjection j : G —• H satisfying j o% = id, where i : H ^ G is the
inclusion, and

: j{h~xgh) = h~xj{g)h (26)

yields an SDΐ-connection on (G,H,RG). Indeed, let ΠJ(g,r) := (g, gj(g~~ιr))> for any
g,reG. Then, for all g,reG, heH, we have:

1. φjf{g9r) - (g,gjXg-lgj(g-lr))) = (g9gjXg~ιr)) = Π\g9r)9 where the mid-
dle equality is implied by the formula j o i = id.
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2. Π\(g,r) — g (obvious).

3. F e Ω\κ_horG => F o W: = 0 (obvious).
4. For any FeMap(GxG,A;), the implication

FoΠJ = O^FeΩloι__hoΐG

is a consequence of the fact that Πj restricted to [jgeG(g,gH) coincides with the

inclusion of \JgeG(g,gH) in G x G.

5. Πj

2(gh,rh) — ghj(h~ιg~λrh) = gj(g~λr)h = Πj

2(g,r)h, where the middle step
follows from (26).

Hence, (777)* is an 9Jl-connection. Moreover, much as in Example 2.7, if (777)*
is a strong 9JΪ-connection, then, for all geG,heH, hj{g) = j{hg).

Next, we proceed to consider a special case of G and H. To do so, first we
need a definition of an algebraic formal group:

Definition 2.18 (cf. [25] and Appendix A in [15]). Let g be a finite dimensional
Lie algebra (dimg = n), and let {Ev}ve{\t ^ be a basis of cj Also, let F be the
formal group law {see, e.g., Sect. 9.1 and Sect. 1.1 in [25]) given by the Baker-
Campbell-Hausdorff formula determined by g and the basis {£v}vG{1? jΛ} (see
Appendix A in [15]), so that to every pair of n-tuples of formal power series
in a finite number of variables with no free term we can assign another such
n-tuple, i.e.

F((pι(tι,...,tι),...,pn(tι,...,tι)),(qι(sι,...,sm),...,qn(sι,...,sm)))

= (rι(tι,...,tι,su...,sm),...,rn(tι,...,tι,su...,sm)).

Symbolically, we will write (p\(t\,...,tι),...,pn(t\,...,tι)) as exp(pvE
v) and

F(exp(pvE
v), exp(qμE

μ)) as exp(pvE
v) exp(pvE

v). (The Einstein convention of sum-
mation over repeating indices is assumed here and throughout the rest of this exam-
ple.) The group generated with the use of F by the n-tuples {exp(tmX)}meτ$fχeQ,
where {tm}me^ are formal power series in one variable with all but the linear
coefficients vanishing, is called the algebraic formal group associated to g and is
denoted by EQ.

Now, let G = £si(2,c), H = £ 5 u ( 2 ) and let j : £5i(2,<c) -> £5U(2) be the surjec-
tion defined by j(exp(pιEι + pμE

μ)) = exp(pιEι), where {El}ie^)2,3} is a fiχed
basis of 5u(2), and {Eμ}μe{\i2,3} is a fiχed basis of /su(2). It is clear that
(issi(2,c)>^su(2)9^£sl(2(c)) is an 9DΪ-principal bundle, and j o % — id. Thus, to see that
j induces an 50ί-connection, it suffices to prove the following:

Lemma 2.19. ^geEsl(2,€),heE,u(2) : j(h~λgh) = h~ιj(g)h

Proof Since the formal power series determining elements of 2ssi(2,(C) are generated
by the Baker-Campbell-Hausdorff formula, we know that

\/xe{(zu...,zn)e1Rn\z2

l+--.+z2

n

Vj(g) := exp(pι(x)Eι + Pμ(x)Eμ)eSL(2X).
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This means that the formal power series {pi, pμ}ι,μe {1,2,3} defining g are convergent
when evaluated at any x in an ε-neighborhood of OelRΛ Now, let g be an arbitrary
element of £si(2,<C) and h be any element of ESU(2) of the form h = exp(YX), where
X G S U ( 2 ) and t is understood as a formal power series in one variable. Also, let
"y := (t,x)€JR.n+l and 7 be the map defined (on some appropriate open neighborhood
of the neutral element of SL(2, C)) by the formula

J(exp(tιEι +ΊμE
μ)) = exp(ί/£7).

Then, using the fact that the splitting sl(2, C) = su(2) 0 zsu(2) is αd-invariant, for
every y close enough to 0 G R n + 1 , we have

= exp (pι(x)exp(-ΊX)Eι exp(ΊX))

= exp(-tX)exp(pι(x)Eι)exp(iX)

Thus, the formal power series defining j(h~λgh) and h~ιj(g)h coincide when eval-
uated on an open neighborhood of 0 e R w + 1 , and hence are identical. To end the
proof, we need to note that ad : 2sSU(2) —> Aut(J£

I

5i(2,c)) is a homomorphism and, since
every element of 2£SU(2) is generated by elements of the form cxp(tX), the formula
j(h~ιgh) = h~ιj(g)h is valid for all gEi^i^c) and heE5U(2), as claimed. D

Finally, since h = exp(tY), g = exp(^Z), where Y := _̂°j ιΛ9 Z := ίι

Q _°Λ

do not satisfy j'(hg) = A/(^), the j-induced ΪR-connection is non-strong, as desired.3

It seems proper to mention at this point that it would be interesting to see
to what extent gauge theory on quantum principal bundles can work in some more
interesting categories and whether the monoidal reconstruction (see Sect. 8.2 in [33])
can be extended to reconstruct bundles and connections. D

3. Gauge Transformations

The next natural step is to determine how strong connections behave under quan-
tum gauge transformations. To do so, we must first define gauge transformations
of a quantum principal bundle. One can define the group of quantum gauge trans-
formations as the group of convolution-invertible elements of Homk(A,P) which

3 I am very grateful to Philip Ryan for pointing out that Y, Z provide the desired counterexample to
the formula j{hg) = hj'(g)
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intertwine AR with adR, and satisfy / ( I ) = 1. (The same definition is considered
in Proposition 5.2 of [7].) Then one can define their action on connection forms
in a way analogous to the action of their classical counterparts on the classical
connection forms (see [4]). Quantum gauge transformations defined in this manner
generalize locally defined quantum gauge transformations discussed in Sect. 3 of [9]
(cf. Sect. 3 in [21]).

Definition 3.1. Let P{B,A) be a quantum principal bundle. A k-homomorphism
f : A —> P is called a gauge transformation iff

1. / is convolution invertible,
2. ARof = (f® id) o
3.

Proposition 3.2. The set of all gauge transformations of a quantum principal bun-
dle is a group with respect to convolution. We denote this group by GT(P).

Proof. A routine sigma notation calculation verifies the following lemma:

Lemma 3.3. Let {(£?/, P/)}ie{i,2}, Vn and mn be as in Lemma 2.3. Then, for all
f ^ β ) f H ( Λ β )

((fi (8)id) o adR) * ((f2<8>id) o adR) = ((f\ *f2) <8> id) o adR .

Hence, since the map

(ΔRo) : Homk{A,P) 3f^ΛRo feUomk(A,P®A)

is an algebra homomorphism (cf. Lemma 4.0.2 in [35]), the set of all gauge trans-
formations is closed under the convolution. Furthermore, it follows from the same
reason that ΔR o f-1 = {ΔR o f ) " 1 . Therefore, as / ( I ) = 1 implies f~x{\) = 1, by
putting fi = / and f2 = f~ι in Lemma 3.3, we can also conclude the existence of
the inverse. D

When defined in this way, quantum gauge transformations are unwilling to pre-
serve the property ω(MA) = 0 (see Definition 1.8 and Proposition 3.4) defining a
connection form ω on a bundle with a general differential calculus. This is the
case even if one assumes that the gauge transformations satisfy an additional condi-
tion ( ( / 0 f~ι) o A)(MA)C NP. (A related discussion can be found around formula
(48) in [9]; note that this condition is satisfied in the classical situation, in which
MA — (Kerε)2 - see Example 1 on p. 132 in [39].) Therefore, when dealing with
quantum gauge transformations, we will assume the universal differential calculus.

Proposition 3.4. Let feGT(P) andωe^P), where <g(P) denotes the space of all
connection forms on a quantum principal bundle (P,A9AR,O9O). Then the formula

Gfω = / * ω * f~λ + / * (d o f~x)

{cf. (20) in [40]) defines an action G : GT{P) x <£{P)

Proof. Let us verify first that Gfω is indeed a connection form.
1. Gfω {k) = 0. Obvious.
2. Taking into account that T is a left P-module morphism (see Point 4

in Definition 1.1) and remembering that for the universal differential calculus
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NP = 0=MA9 one can see that

= f(a{l))(Joω)(a{2))(ARof-χ)(a0))

+ ((m <8> id) o (id <g> 4 0 ) (/(fl(i)) <8> f~\a{2)) - ε(a) ® l)

= (/O(θ) ® 0(2) - ε(tf(2)))) (/~V(4)) <8> 5

1 2)^(4) - 1 ® ε(a)

= 1 <8> (α - ε(α)).

3. A® o G/ω = (Gf(ύ (8) id) o βJΛ can be proved much as Proposition 3.2.

Now, to complete the proof, it suffices to note that Gf*gω = G/Ggω. D

The action of the gauge group GT(P) on the space of connections can be derived
from its action on connection forms. It is explicitly described by

Proposition 3.5. Let GT(P) be as in Proposition 3.4. Denote by &(P) the space of
all connections on P, and by T the bijection providing the correspondence between
connections and connection forms, i. e., let

T : 0>{P) 3 Π ^ σπ o (1 0 (id - ε))eίf(P),

where σπ : P 0 Kerε —> ΩιP is the unique left P-module homomorphism satisfying
T o σπ = id and σπ o T = 77.4 Then the map % : GT(P) x 0>(P) -> 0>(P) given by

9fΠ = mΩiPo(id 0 (Πorfoίid**/))**/"1)

-fmΩiP o (id (8) f*(d°f~1)) ° T (27)

w the action of the gauge group GT(P) on the space of connections έ?(P), and
the following diagram commutes:

GT(P) x &>(P) ( ^ } GT(P) x

Λ Λ

Proof. Both assertions of the proposition follow from the formula:

VfeGT(P), Πe^(P) : <SfΠ = (T~ι o Gf o T)(Π). (28)

Since both sides of the above equation are left P-module homomorphisms, in order
to prove (28), it suffices to show that, for any feGT(P) and Πe^(P), we have

ι o d ,

1 See Proposition 4 4 and the paragraph above it in [9]
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that is,

mΩip o ( i d 0 / * ( σ j 7 θ ( l 0 ( i d - ε ) ) ) * / " * ) ojod

= mΩ\p o (id 8) (Πodo(id*Rf)) *R/~1) O d (pure gauge terms cancel). (29)

To do so, let us calculate the value of the left-hand side of (29) on arbitrary
peP:

(mΩ\p o (id 0 /*(<ττ7θ(l0(id - ε ) ) ) * / " 1 ) o T o d) (p)

= (mΩipθ (id 0 / * (σπo(l0(id - ε))) * Z " 1 ) ) (p{0) 8) p{X) - p 0 1)

(see (24) in [9])

= P(θ)f(P(i))σπ (1 0 P(2) ~ ε(/7(2)) <8> l) f~l(P(3))

= σΠ (P(O)f(P(l)) <8> ̂ (2) - P(0)f(P(\)KP(2)) (8) 1) f~l(P(3))

= (σπ o T o J o (id*/?/))(jp(o))/~1(jθ(i)) ( id^/ is right-covariant)

= (mΩ\p o (id 0 (i7orfo(id*/?/)) */?/ - 1) o

Hence, we can conclude that (29) is true, and the proposition follows. D

Remark 3.6. The left ^-module isomorphism (id *Λ / ) : P —• P can be regarded as
a quantum version of a gauge transformation understood as an appropriate diffeomor-
phism of the total space of a principal bundle (see p. 339 in [4] and Definition 5.1
in [7]). In fact, the map / ι—> id *R f is a group isomorphism (see Corollary 5.3 in
[7]). (Observe that (id ** f~ι) o (id *R / ) = id = (id *Λ / ) o (id *τ? f~ι).) D

Having defined and described quantum gauge transformations and their action
on the space of connections and connection forms, we can now show that these
transformations preserve the strongness of a connection, i.e., provided MA = 0 = Np,
their action is well-defined on the space Sf&(P) of all strong connections on a
quantum bundle P. (Obviously, their action is then also well-defined on the space

of all strong connection forms.)

Proposition 3.7. Let P(B,A) be a quantum principal bundle with the universal
differential calculus. Then V/ e GT(P): Π e S?0>(P) ^ $fΠ e

Proof. Note first that, for any right v4-comodule coaction p^\ <$ —> ^ 0 A,
any αi G Uomk(^,Ωm(X)) and α2 G Homk(%,Ωn(X)) (where m ^ 0, n ^ 0 and

is any differential algebra), there is the familiar graded Leibniz rule:

d o (αi* p^α 2) = (doocι) *p(€ α2 + (-) m αi *p^ (rf o α 2 ) .



604 PM Hajac

Now, using similar calculations as in the proof of Proposition 3.5 and the Leibniz
rule for the convolution, one can see that, for any f £GT(P\

(id - <SfW) od = d~(Πodo (id**/)) ** f~ι - id ** / * (dof~ι)

= (d o (id**/)) ** f-ι-(πodo (id**/)) ** rλ

= ((id -Π)odo (id**/)) ** / - 1 . (see (27))

Hence, \/feGT(P): Πe^^(P) => ̂ fΠe^^(P\ and since ^ is a group action
on ^(P), V / G GΓ(P): &fΠ G 5 ^ ( P ) =* Π G ^ ^ ( P ) . D

4. Curvature

We are ready now to examine the properties of the exterior covariant derivative (see
Definition 1.12) associated with a strong connection. This will lead to the definition
of a (global) curvature form on a quantum principal bundle. The following propo-
sition and corollaries describe the composition of the covariant exterior derivative
with strongly tensorial differential forms (see Definition 1.11). They and Proposi-
tion 4.6 are analogous to the corresponding local (i.e. valid only for trivial quantum
bundles) statements made in [9]. As we do not know how to characterize all dif-
ferential algebras for which D can be well-defined, we will simply assume here,
whenever needed, that Ω(P) is a right-covariant differential algebra such that D is
well-defined.

Proposition 4.1 (cf. (17) and (76) in [9]). Let (P,A,AR,NP,MA) be a quantum
principal bundle with a connection form ω, and let Ω(P) be a differential algebra
such that Ω\P) — ΩxP/Np and the exterior covariant derivative Dω associated to
ω is well-defined by formula (9). Then, for all φ e STp(V, Ωn(P)\ n G {0} U N,

Dωoφ = doφ- ( - ) > * p ω.

Proof Note that, for any da G Ωn(B), n G N, p G P, we have

(d - Dω)(doc.p) = (-fdocdp - (-)"Ja.(id - Πω)(dp)

= (-)ndot.pω(P{l)) = (-r(id *®ω)(dθi.p). (see (8))

On the other hand, for all v G V, φ(v) can be written as a finite sum ]Γ\ da^pi for
some closed differential forms doii G Ωn(B) and 0-forms pi G P. Hence, with the
help of Lemma 2.5, we obtain

((d - Dω)oφ)(v) = ((-)"(id *^ ω)oφ)(v) = (-f(φ *p ω)(v) ,

and the assertion follows. D

Corollary 4.2 (cf. (7) in [9]). Let Ω(P) be as in the proposition above. If D is
the exterior covariant derivative associated to a strong connection, then, for every
n G {0}UM, we have D o (STp(V,Ωn(P)))C STp(V,Ωn+ι(P)).
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Proof. In the same way as in the case of the differential envelope, it can be directly
calculated that D is always right-covariant (see Appendix A in [9]), and thus, for
all connections, D composed with a pseudotensorial differential form is a tensorial
differential form, i.e.

V« G {0}UN: Do(PTp(V,Ωn(P)))C Tp{V,Ωn+\P)).

Hence, to prove the assertion of this corollary, it suffices to note that, if D is
associated to a strong connection, then, as can be seen from the second line of the
first calculation in Proposition 4.1, D evaluated on a strongly horizontal differential
form yields a strongly horizontal differential form. D

Remark 4.3. With the help of D one can equivalently define a strong connection as
a connection whose exterior covariant derivative maps P into strongly horizontal
forms, i.e. D(P) C Ωlhoτ(P). Obviously, since D can be defined on P for any
differential calculus, such a definition works on any quantum principal bundle. D

Corollary 4.4 (cf. Sect. 3 in [9]). Let ω be a strong connection form, and let Dω

and Ω(P) be as in Proposition 4.1. Then

Vφ G STP(V,Ω(P)): (Dω)2 o φ = -φ * p (d o ω + ω * ω ) . (30)

Formula (30) is, in particular, true for a classical principal bundle P(M,G).
(A classical principal bundle is a special case of a quantum principal bundle when
we replace the algebraic tensor product by the appropriately completed tensor prod-
uct. ) It is a generalization of the classical formula

D2oc = ρ\F)Λoc, (31)

where α is a differential form on P with values in a finite dimensional vector space
W, the homomorphism ρ': g —> QI(W) is the Lie algebra representation induced
by a homomorphism ρ: G —>• GL{W\ and F is the curvature form of a connection
defining D (e.g., see (19) in [37]). More precisely, taking V to be the tensor algebra
of the dual vector space W*9 defining PR by

VveW*: pR(υ)(w,g) =

putting

P3p^ (vooί)(p) G R for degα = 0,

where v is the polynomial function on W corresponding to the tensor v, and remem-
bering that every g-valued differential form ϋ on P can be viewed as an εc°°(G)-
derivation ψΰ: C°°(G) -+ Λ*(P) given by ψ#(a)Xp = ϋ(Xp)a (or ψΰ(a)p = ΰ(p)a
if degα = 0), we can rewrite (31) as
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Note that, since every vector space if is a Lie group and there is a canonical
isomorphism between W and the Lie algebra of W, we could define φa in the
same way as we define φ#. But then we would not have φa(l) = <5o,degα, which we
need in Appendix A (see Proposition A.5). In the classical case, we can replace
F by d o ω + ω * ω or D o ω in the last formula, but we need to put F —
d o ω + ω * ω to obtain (30). Also, formula (31) can be considered as a motivating
factor in defining the curvature of a connection on a projective module as the square
of a covariant derivative (see p. 554 in [12]; covariant derivative = connection on
a projective module). Therefore, it is natural to define the (global) curvature form
of a connection Πω in the following way:

Definition 4.5. Let ω be a connection \-form on a quantum principal bundle. The
differential form doω + ω*ω is called the curvature form of ω and is denoted
byFω

Clearly, if ω is a strong connection form, then, at least in the case of a trivial
bundle, for any differential algebra Ω(P), even if D is not well-defined, Fω is
horizontal (Fω = Φ~ι*Fβ*Φ, where Φ and β are as in Proposition 2.2 and Fβ :=
doβ + β*β is a local curvature form, cf. (11) in [9]). Moreover, unlike the
expression Doω, the so-defined curvature form has the desired (at least from
the point of view of Yang-Mills theory) transformation properties, i.e. we have:

Proposition 4.6 (cf. (13) in [9], (20) in [40]). Let P(B,A) be a quantum principal
bundle with the universal differential calculus, ω e %>(P) and f e GT(P). Then

Fθfω = f *Fω* f~l -

Proof. Straightforward. D

5. Uq(2)-Yang-Mills Theory on a Free Module

To begin with, let us show that it is possible to define an action functional on
quantum bundle connections in such a way that, at least in the case of a trivial
quantum bundle, it agrees with the Yang-Mills action functional constructed in
Sect. 1 of both [13] and [30]. (Clearly, we assume that the "base space" of a quantum
bundle is an algebra over which modules are considered in [13, 30].) Considerations
in [8] and Proposition 4.6 suggest that, if A is a matrix quantum group and T its
matrix of generators (fundamental representation, cf. p. 628 in [38]), it is reasonable
to define an action on a quantum principal bundle P(B,A) to be (compare with the
Lagrangian given by (6.65) in [19] or (4.1) in [21])

YM(ω) = - O r o Tr o (Fω * Fω))(T), (32)

where Tr is the usual matrix trace, and 3Γ: ΩP —• k is a linear map vanishing on
[P,ΩP]. (To ensure that we have an ample supply of connections, throughout this
section we will use the universal differential calculus.) Clearly, remembering the
property of T that, for any fi and f2, (f\*Ϊ2)(Tab) = Σcfι(Tac)f2(Tcb), one can
see that

VfeGT(P),ωe<$(P): YM(Gfω) - YM(ω).
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Similarly, if P(B,A) is a trivial bundle with a trivialization Φ (which we will also
assume for the rest of this section), then for any ω,

YM(ω) = - ( ^ o T r o ( Φ * F ω * F ω * φ

= _ ( c r o Tr o (Fβ * Fβ))(T) =: YM(β), (33)

where β is given by formula (13) (see Remark 2.6) and Fβ is the curvature form
associated to it (see the end of the previous section). As to ^Γ, observe that one
should expect to have a lot of information vested in it: projection from the universal
to a non-universal calculus and metric (Hodge star). In what follows, we specify
ZΓ in such a way as to incorporate the Yang-Mills functional presented in [13, 30]
into the quantum bundle framework. One ought to bear in mind that to obtain a
^-deformed Yang-Mills theory in the spirit of quantum groups, one should invent
another 2Γ or change the formula (32) altogether. Here, however, we investigate
what effects can entail from the deformation of the structure group alone.

Definition 5.1. Let ZΓB be a faithful invariant trace on B (as in [13, 30]), J§? be
a finite dimensional Lie subalgebra of Der(#), {X/}/^ ,dimĵ } be its basis, and

Xi=Xi®\ά, le {l,...,dimJSf}. We put

ί
) z/degα

0 z/degα
where

Recall that the product of differential 1-forms evaluated on the tensor product
of derivations is, as in the classical case, given by

( α Γ .απ)(7i <8> <8> Yn) = αi(7i) κn(Yn)

and (bodbχ)(Y) = b0Y(bχ) (see p. 403 in [16]). (Observe that, as {Yi}ie{\, ,„} are
derivations, it does not matter in which way we write a differential form as a
sum of products of differential 1-forms.) Now, with SΓ defined as above, we have

= 0. Moreover, we have

Proposition 5.2. Let A and T be as above. Also, let B be a *-algebra, P(B,A)
a trivial quantum principal bundle with a trivialization Φ (e.g., P = B®A\ ω a
strong connection form on P, and 3~ as in Definition 5.1. Then

YM(ω) = YM(Vω) , (34)

where Vω = d + β(T) is the ω induced connection on the right module Bn (β is
given by (13), n is the size of T, Vωξ = dζ + β(T)ξ - see p. 637 in [9]), and the
right-hand side of (34) is defined in Definition 1.20.
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Proof. Note first that, by Proposition 2.2, β(T) e Mn(ΩιB). Consequently, Fβ(T) =
dβ(T) + β(T)2 is an element of Mn(Ω2B) (see the paragraph above Proposition 4.6
for Fβ). Therefore, since the curvature (V ω ) 2 equals just dβ(T) + β(T)2 (cf. p. 681
in [11]), with the help of (33), Corollary 1.19 and Proposition 1.13, we have

YM(ω) = YM(β)

= - Σ ((rB®ε)oττ(Fβ*Fβ)(T))(Xr/\Xs®XrΛXs)

= - Σ {PB°(Fβ(T,j)Fβ(Tfl)))(XrΛX,®XrΛXs)
u

r<s

= -(^ioTr)

). •
Thus, the Yang-Mills action functional given by (32) coincides, as stated above,
with the Yang-Mills action functional defined in [13, 30] (cf. Sect. VΠ.D in [17]
and Sect. V.B in [18]). This confirms that, as was mentioned in [9], the formalism
of quantum group gauge theory is "not incompatible with the existing ideas in non-
commutative geometry."

Remark 5.3 Observe that although any trivial quantum bundle P(B,A) is isomor-
phic with B ®A (algebras B and B (g) 1 identified) as a left 5-module, we cannot
claim in general that it is isomorphic with B®A as an algebra (see the first para-
graph of Sect. 3.1 in [28]). But here, since our attention is restricted to strong
connections, the structure of the "total space" is not important - we can equally
well define the Yang-Mills action functional by

YM(β) = ~(3ΓΩB o Tr o (Fβ * Fβ))(T) ,

where 3ΓQB is a A -linear map vanishing on [B,ΩB]. (Obviously, the Yang-Mills
action thus defined is invariant under the local gauge transformations, i.e. gauge
transformations taking values in B rather than in P; see Definition 3.1). D

Remark 5.4. Note that the derivations used in Definition 5.1 are not fully antisym-
metrized - there is a tensor product in between two groups of antisymmetrized
derivations. This is a key difference between the construction of 7M(V) and
the construction of the second Chern class. (One should think of 3~ defined in
Definition 5.1 as a pairing rather than a trace.) D

Now, we are going to take a closer look at what happens if we choose A = Uq(2)
(with q G R+). (We continue to assume, as in Proposition 5.2, that B is a *-algebra,
so that Ω(B) is also a *-algebra; cf. (1.32) in [39].) To do so, let us first recall the
definition of Uq{2) (see Lecture 5 in [36]):

Definition 5.5. (Uq(2),A,ε,S) is a matrix ^-Hopf algebra determined by the fol-
lowing equalities'.
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where

/ = (ab- qba, bb* - b*b, ab* - qb*a, a*a - ad" + (q~2 - \)bb\

ta - at, tb - bt, ta* - a*t, tb* - b*t, tt* - t*t, ad" + bb* - 1, tt* - 1)

and q G IR\{0};5

where

T-
-q~lb*t* a*t*

and 0 is the matrix multiplication with the product of its entries replaced by the
tensor product 0 ; and

At = t( S(t*) =

The next step is to establish an equivalence between a certain class of strong con-
nections on a trivial 6^(2)-bundle and the space of hermitian connections on the
associated free module. Since any β G Hom<c( 1/̂ (2 ),Ωi?) satisfying β(C) = 0 is a
connection form on the base space B of a trivial Uq(2) bundle (see Remark 2.6
and the paragraph below) and the β-induced connection V on B2 depends only
on β(T), we will restrict our attention to connection forms that are, in some
way, uniquely determined by β(T). In the classical situation, β is an ε-derivation
and thus is automatically determined by β(T). Mimicking this classical differential
geometry formula for β, we define an auxiliary map β: C(α, b, t,a*,b*,t*, 1)
-> ΩιB by

J}(ak{ a*lι bm b* m tPι t* n aksa*lsbmsb*nstPst*rs)

( 0 for Σ%\ ™i + ni^2

qL,ι=J+\(li-h) fo fo r mj _ ^ j £ | i j # φ # j ι S j . 5

^ + 1 ( / , - f c ) ^* f o r Λ y = h j e { i , . . . , s } , ( 3 5 )

Σ L I ^ « + Λ, = I

+ Σ i = l Z7^ + Σi=l Γ ^ * f°Γ Σ/=l mi + «z = 0 ,

where, a priori, α, ^ and t are any differential forms in ΩιB. One can verify that

/ * ( / + / * ) =0 if α + β* = 0 = 7 + 7*. Hence, since

]}(aa*+bb* - l ) = 0 = /J(ff*- 1 ) ^ ^ + 5* = 0 = 7 + 7* ,

Since, further on, we want (_ J to be positive definite, we actually need to assume that q > 0
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we can conclude that (35) defines β G Kom^(Uq(2)9 ΩιB) such that j8(l) = 0 (i.e., a
£/^(2)-connection form) if and only if a + a* = 0 = / + **. Moreover, it is straight-
forward to check that

°jβ(T) = O, (36)

and conversely, that for every M G M2(ΩιB) satisfying (36) we can find unique
α, b, t such that β(T) = M (cf. Proposition 1 in [3]). Thus we have proved the
following:

Proposition 5.6. Let % = {βeHoπuc(Uq(2)9Ω
ιB) | β satisfies (37) for some a,ϊ,

7 G ΩιB} and W(B2) denote the space of Hermitian connections on B2 (see Point 1
and Point 3 of Definition 1.15), where

for m + n ^ 2

farZZθ,nn = °i ( 3 7 )

— r)t for m — n — ^),

,) is given by the formula (ξ,ζ) = ξU ι

Q ° )(. The map

ψ: % 3 β •-• d + β(T) G W(B2)

is a bijection.

Corollary 5.7. Let P(B, Uq(2)) be a trivial quantum principal bundle with the uni-
versal differential calculus. There exists a one-to-one correspondence between the
elements of ^^(B2), i.e. the universal calculus connections on B2 that are com-
patible with the Hermitian metric given by the matrix Π ° j , and the strong

connections on P(B, Uq(2)) whose "pullback" on the base space B (given by (13))
satisfies (37).

This way, we obtain the Yang-Mills theory of connections compatible with the
^-dependent Hermitian structure on B2. Now, in order to handle the critical points
of YM the same way they were dealt with in [30], let us assume (as in [30],
pp. 535-6) that B is a smooth dense *-subalgebra of a C*-algebra, and that it is
equipped with a faithful invariant trace ZΓβ. As was argued in Sect. 1 of [13], the
Yang-Mills functional does not depend on the choice of a Hermitian metric - we can
gauge q out of the picture. Hence, the critical points of the Uq(2)-Yang-Mills action
functional are simply the critical points of the Yang-Mills action (see p. 536 in [30]),
if there are any, "rotated" by the appropriate ^-dependent gauge transformation (see

Sect. 1 in [13]). (More explicitly, as the Hermitian metric is given by (ι

Q ° ), the

corresponding gauge transformation i s V ^ ί Q _̂ J V ( J /-)•) Consequently,

we have:

Corollary 5.8. In the above described setting, the Uq(2) and U(2)-Yang-Mills
theories have the same moduli spaces of critical points (cf Sect 4 in [30] and
p. 582 in [12])



Strong Connections on Quantum Principal Bundles 611

Another way to remove q from the picture is to alter (37) by replacing b* by
qb *. Then, however, we would lose the geometrical interpretation of the action of
the ^-deformation of U(2) on the space of compatible connections as the action
of the gauge transformation. Also, the formula β(T*) = β(T)* would no longer be
true. (Caution: at least in the general case, we cannot claim that β is a *-morphism
even when it commutes with the * on the generators.) In any case, we can see that
the Yang-Mills theory remains unchanged for any q G 1R+. A similar situation was
discussed in the context of quantum group gauge theories on classical spaces in the
last two paragraphs of Sect. 2 in [8].

Remark 5.9 The reason for employing in the considerations above Uq{2) rather
than SUq(2) is that, when using SUq(2), formula (37) entails Tr β(T) = 0 for all
β, and although the tracelessness of β(T) is automatically preserved by the entire
GL(B2) in the classical case, we cannot claim the same in general (cf. Introduction
and Sect. 3 in [2]). Nor can we claim that the tracelessness of β(T) is preserved by
the gauge group U(B2) of unitary automorphisms of B2 (see Remark 1.16). Besides,
^^-connections given by (37) can be regarded as (, )-compatible connections,
and vice versa, which makes a clear analogy with the classical situation, where
Hermitian metrics are (7(2)-structures (cf. p. 13 in [37]), and £/(2)-connections are
automatically compatible with the corresponding Hermitian structures (cf. pp. 94-5
in [37]). D

Finally, let us mention that an alternative approach would be to work with a
non-universal differential calculus instead of assuming (35), which is put in the
theory by hand. But that is yet another story.

Appendix

A. Quantum Associated Bundles

Definition A.I (cf. A.3 in [9]). Let (P,A,ΔR,NP,MA) be a quantum principal bundle
and (V,pR) be a right Aop-comodule algebra (see the remark below). Also, let ΔE
be the homomorphism from P <S> V into P 0 V ®A given by

ΔE — (id (g) id <g) (/WOT)) o (id (g) τ (g) id) o (AR <g) pR) ,

and E be the space of all right-invariant elements of P (g) V, i.e.

E = {t eP® V I ΔEt = f ® 1} .

Then (E,P, V,pR) is called the quantum fiber bundle associated by pR to the quan-
tum principal bundle P.

Remark A.2. Note that the notion of a comodule algebra makes sense for any
bialgebra. In the preceding definition, we do not assume that A°v is a Hopf algebra.
Such an assumption is equivalent to an assumption that the antipode of A is bijective
- a restriction that is unnecessary here. (Contrary to [9], we use S rather than S~ι.)
Observe also that the homomorphism ΔE makes P ^ i F a right A -comodule. D

We call E a quantum fiber bundle instead of a quantum vector bundle, as it
is called in [9]. The only difference, however, between Definition A.3 in [9] and
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Definition A.I is an extra twist in the formula defining ΛE (i.e. m is replaced by
moτ; for comparison see also Corollary 4.14 in [28] and Sect. 5 in [10]). An
advantage of introducing such a change is that, from the point of view of further
constructions, it is consistent with defining strongly horizontal differential forms
as elements of Ω{B)P rather than PΩ(B). As to the reason for using the word
"fiber" rather than "vector,"6 since to define section-valued differential forms Γ*(E)
(Definition A.4) or to prove the propositions presented here it is unnecessary to
assume that V is a quantum vector space (quadratic algebra; see [27]), we formulate
everything without this assumption, and treat V as a "quantum fiber." (See the
paragraph below Corollary 4.4 for how, having a linear structure on a fiber, one can
reproduce the familiar classical situation of vector-valued differential forms.) The
following are the reformulations of the corresponding statements in [9]. Except for
the last parts of the proofs of Proposition A.5 and Proposition A.8, the remaining
proofs in this section are straightforward modifications of the corresponding proofs
in [9].

Proposition A.3 (cf. Lemma A.4 in [9]). The spaces E and 5<8>1 {see Definition
1.1) are subalgebras of P (&V and E respectively.

Proof. Analogous to the proof of Lemma A.4 in [9]. D

Many statements below concern differential forms of an arbitrary degree. There-
fore, we need to assume that we have a quantum principal bundle P{B,A) equipped
with a differential algebra Ω(P) such that Ω\P) is the first order differential calculus
of P{B,A).

Definition A.4 (cf. (69) in [9]). A k-linear map s: E -> Ωn{B\jvith n £ {0} U N,
satisfying \/b£B: so R^\ = Rb o s and s{l <g)1) = δn$, where R and R denote the
corresponding multiplications on the right, is called a differential form with values
in sections of the quantum fiber bundle E. {For n — 0, s is simply called a section
of a quantum fiber bundle.) The space of all such n-forms will be denoted by
Γn{E).

Proposition A.5 (cf. Proposition A.5 in [9]). Let φ e STp{V,Ωn{P)\n e {0}UN,
be such that </>( 1) = <5deg <?,o {the space of all such forms will be denoted by
~STp{V,Ωn{P))) and let s:= mQ{P) o τ o {iά®φ)\E. Then, z/degφ = 0 or if P{B,A)
is a trivial bundle, s e Γ d e g <?(£).

Proof To begin with, observe that for any φ e ~STp{V,Ωn{P)), n e {0}UN and

b G B, we have soRb^λ = Rbos and s ( l (g) 1) = δdQgs,o, so that it only remains to

be shown that s{E) C Ωdegφ{B). Note also that, if Σi P*®vi e E> w e n a v e

τ o (id ® φ)) I Σ Pl ® v*
\ i j

= ( (wiβ(P) o τ o (id <g> φ)) ( Σ P' ® vι ) J ® 1 .
V V J J

5 1 owe noticing this point to Marc Rieffel
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(We write the sums because we cannot claim that E is spanned by simple tensors.)
Now, since it is clear that s(E) C Ωsζ^γ

φ(P), we can conclude that s takes values
in strongly horizontal right-invariant differential forms on P. Hence, if deg φ = 0,
then s(E) C B, and it follows that s e Γ°(E). On the other hand, if there exists a
trivialization of a quantum principal bundle P(B,A), by the same reasoning as was
used to justify formula (18), we can infer that strongly horizontal right-invariant dif-
ferential forms must be elements of Ω(B). Consequently, s G Γάegφ(E) as claimed.
(Warning: As of now, we do not know whether or not it is always true that every
right-invariant strongly horizontal form on P is a form on B. Hence, as a precau-
tion, we assume the triviality of P(B,A) when dealing with forms of degree bigger
than 0.) D

For the remaining two propositions we will assume that P(B,A) is a trivial
quantum principal bundle with a trivialization Φ.

Proposition A.6 (cf. (71) and (72) in [9]). Let ΦE := ((ΦoS) 0 id) o τ o pR. Then

J := (mp®id) o (id®ΦE)

is a left P-module automorphism of P <g> V. Its inverse is given by

J \— (/wp0id) o (id0(Φ~ 1 oS f)0id) o (id 0 (τopR)) .

Moreover, ΦE(V) C E and J (E) = B 0 V.

Proof _ _

1. It is straightforward to check that JoJ = \ά — J'oJ. Since J> is, clearly,
a left P-module homomoφhism, we can now conclude that / is a left P-module
automorphism of P 0 V.

2. A direct sigma notation calculation shows that ΔE o ΦE = ΦE 0 1, whence
ΦE(V)CE. _

3. Finally, we must show that J> (E) = B <g> V. To do so, first we need:

Lemma A.7 (cf. 3.1 in [31] and (72) in [9]). For every £ \ pι 0 vι G E,

Σ P(θ) ® rf 0 p\λ) = Σ P1' ® v{0)
/ i

Proof This lemma can be verified by applying

(id®id®m) o ( i d 0 i d 0 ^ 0 i d ) o (i

to both sides of the equality ]Γ\ /?[O)0^(0)^^(1)^(1) = Σ / ̂ 0 ^ 0 1 . •

Now, with the help of the above lemma, one can see that J \E = Sφ 0 id (see

(20)), whence J (E)C B ® V. Furthermore, as B 0 1 is a subalgebra of E (see

Proposition A.3), and ΦE(V) C £, we also have J>(B®V) C ,E. Thus, since «/ o«/

= id, it follows that Ύ {E)=B®V.
Closing our list of propositions is:

Proposition A.8. Let ΦE := (Φ~ι 0 id) o τ o p# (cf. (73)[9]). ΓAew Φ^(F) C E, and

Ψ: Γ*(E) 9 m ( ί o Φ £ ) * p Φ e ST P(V, Ω* (P))
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is a bijectίon.1 Its inverse is given by

Ψ : STp(K Ω*(P)) 9 φ π mΩ(P) o τ o (id ® φ)\E G Γ(E) (cf. (70) in [9]) .

Proof.
1. Using formula (28) in [9] (see the proof of Corollary 2.4), one can prove the

inclusion ΦE(V)C E in the same way as the inclusion ΦE(V)C E, i.e. by a direct

sigma notation calculation. (Observe that Φg and Φβ coincide in the classical case.)
2. We already know from Proposition A.5 that Ψ indeed takes values in Γ*(E).

Furthermore, it is clear that

Vs eΓ(E), n G {0} UN: Ψ(s)( V) C ί4 0 Γ (P) and Ψ(s)( 1) = δaja .

Proceeding much as in the first calculation in the proof of Proposition A.7 in [9],
we can show that, for an arbitrary s€Γ"(E), n G {0}UN, we have

Hence the inclusion Ψ(Γ*(E))C STP(V,Ω*(P)) follows.

3. For an arbitrary s € Γ"(E), n e {0}UN and Σi P'®vi € E, we have

(lm(Ψoψ)(s)CΩ(B))

(see (20), cf. (19))

=Rbos)

= (s o F) ( s e e Lemma A.7)

where

F := (id®(Φ~ιom)®id) o (id(8)id0τ) o (id(8)(τopΛ)(8)id).

7 This isomorphism corresponds to the formula for a pseudotensorial 0-form on P that one could
obtain by combining the very last formula in the proof of Corollary A 8 and formula (74) in [9]
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Furthermore, it is straightforward to check that Ψ o Ψ = id. Hence, Ψ is the inverse
of Ψ9 as needed. D

B. Axiomatic Definition of a Frame Bundle

The theorem below allows an axiomatic definition of a frame bundle. This theo-
rem should have been proven many years ago. Nevertheless, since no appropriate
reference has been found, we include a proof.

Theorem B.I. Let M be a smooth manifold with dimM = n G N. A principal fiber
bundle P(M, GL(n, IR)) is isomorphic to the frame bundle FM if and only if there
exists a smooth Wι-valued iά-equivariant l-form θ on P such that Kerθ = Kerπ*,
where π : P —> M is the bundle projection.

Remark B.2. Here, by an isomorphism of two principal fiber bundles P(M, G) and
P'(M, G) we understand a diffeomorphism / : P —• P1 satisfying π' o / = π and
/ o Rg = Rr

g o / for any g G G. D

Proof of Theorem B.I. It is clear that if P(M,GL(n, R ) ) is isomorphic to FM, then
the canonical l-form on FM yields, via the bundle isomorphism, the desired l-form
on P. Conversely, assume that P admits θ satisfying the above conditions. Then,
remembering that a coframe at any point mGM is a linear isomorphism from TmM
to W1, we can construct the following map:

J: P Λ F*M -> FM ,

J: p»σ*θp^(σ*θp)-\

where σ is any smooth section of P fulfilling (σ o π)(p) = p. Note that, due to the
assumption Kerθ = Kerπ*, the map J indeed takes values in the coframe bundle
F*M and does not depend on the choice of σ. Thus, J is uniquely and well-defined.
Let R: FM x GL(n, IR) 3 (e, g) ι-> eog e FM be the right action and π: FM -» M
be the bundle projection. Evidently, πoj = π and, for any geGL(n,IR), RgoJ =
J o Rg, whence J is a bijection. Now, let p be any point in P. There always exists an
open neighborhood U of the point π(p) over which we can pick smooth sections
χ: U —> P and χ: £/ —> FM. Since /> is arbitrary, to prove that J is smooth, it
suffices to show that the map TχθJ oT~ι : U x GL(n,WL) -> C/ x GL(w,R), where
Γχ~ and Γχ are local trivializations associated with χ and χ respectively, is smooth.
We have

(TίoJoT-ι)(u,g) = (u, (σ*θmoχ(u)Γιog). (38)

Since σ*θp does not depend on the choice of σ, for any /? G χ(ί/), we can pick
σ = χ. Taking (38) into account, one can see that the smoothness of J follows from
the smoothness of the map

ί\U3u^ θm o χ*oχ(u) G GZ(/i,R) .

Furthermore, J~x is also smooth because

(Tχ o Γ 1 o T7ι)(u,g) = (ii, (7*0Z(I<) o χ ( i θ o 0 ) .

Hence J is a bundle isomorphism and P(M9 GL(n, IR)) and FM are isomorphic, as
claimed. D
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An advantage of such an axiomatic definition of a frame bundle is that it is,

at least a priori, translatable into the language of quantum principal bundles. More

precisely, we could try to define a quantum frame bundle as a quantum bundle

P(B,A) equipped with a horizontal (or strongly horizontal) form θ: V<—> Ω\P)

satisfying AR o θ = (θ <g> id) o pR, where (V,pR) is an appropriate right Aop (or A)

comodule algebra. (An example of such a construction for the case of a classical

group has been provided in [23]; in particular, see Sect. 4 of [23].) It seems in-

teresting to consider in this context bundles over the quantum sphere Sg (see [29]

or [9]) with A = GLq(2,WL) (see p. 161 in [36]), V a quantum plane (see [27]) and

PR the standard right coaction (see Appendix B in [9]).
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