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Abstract: We present a detailed study of the generalized hypergeometric system
introduced by GeΓfand, Kapranov and Zelevinski (GKZ-hypergeometric system) in
the context of toric geometry. GKZ systems arise naturally in the moduli theory of
Calabi-Yau toric varieties, and play an important role in applications of the mirror
symmetry. We find that the Grόbner basis for the so-called toric ideal determines
a finite set of differential operators for the local solutions of the GKZ system. At
the special point called the large radius limit, we find a close relationship between
the principal parts of the operators in the GKZ system and the intersection ring
of a toric variety. As applications, we analyze general three dimensional hypersur-
faces of Fermat and non-Fermat types with Hodge numbers up to A1'1 = 3. We also
find and analyze several non-Landau-Ginzburg models which are related to singular
models.

1. Introduction

Recent studies on nonperturbative aspects of string theory have made remarkable
progress in understanding the structure of moduli spaces in string theory. Applica-
tions of mirror symmetry, for example, in type II string compactification to studying
the geometry of moduli spaces is one of the most successful developments. Starting
from the pioneering work by Candelas et al. [1], and subsequently by others, the
quantum geometry of the moduli spaces for many Calabi-Yau models [2-11] have
now been well understood via mirror symmetry. At the same time, there is parallel
progress in studying the axiomatic framework of quantum geometry and its applica-
tion to enumerative geometry [12]. Also in explicit constructions of the geometry of
concrete Calabi-Yau models, it is now understood that for a large class of Calabi-
Yau varieties, the mirror maps have remarkable modular and integrality properties
[13-15]. These models present strong and even beautiful evidence for the recent
proposal for the so-called type Π-heterotic string duality [16]. These Calabi-Yau
models continue to provide fruitful testing ground for string duality [17].
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Mirror symmetry was first recognized in the local operator algebra of the
N = 2 string theory [18]. Soon after the introduction of the framework of toric
geometry into the study of Calabi-Yau models [19, 20], mirror symmetry has
since been widely checked for many Calabi-Yau hypersurfaces and complete in-
tersections in toric varieties. Mirror symmetry relates two moduli spaces with
apparently very different properties - one moduli space is described by purely
classical geometry, while the other is described by quantum geometry which
receives nonperturbative corrections from the worldsheet instanton [21]. Mirror
symmetry thus gives us a powerful means for studying quantum geometry of
one moduli space via classical means such as the theory of variation of Hodge
structures.

Variation of Hodge structures allows us to study the period integrals for Calabi-
Yau varieties. It is known that the period integrals satisfy differential equations
with regular singularities, known as Picard-Fuchs differential equations. A gen-
eral technique for constructing Picard-Fuchs equations is the reduction method
of Dwork-Griffiths-Katz. For Calabi-Yau toric varieties, it was remarked in [22]
that the period integrals satisfy a generalized hypergeometric system introduced
by GeΓfand-Kapranov-Zelevinski [23]. It has been observed [8] in solving sev-
eral examples that the GKZ system is not generic and is reducible. Moreover
there is an irreducible part in which the period integrals live. In this paper
we study the GKZ hypergeometric system for general Calabi-Yau hypersurfaces,
and discuss the previous observations in a different light but with much greater
generality. As applications, we determine the Picard-Fuchs differential equations
for all hypersurfaces with Hodge numbers Aljl ^ 3 in weighted projected
spaces.

In Sect. 1, we review the toric description of mirror symmetry, due to Batyrev.
We introduce period integrals in the language of toric geometry, and introduce a
GKZ system which we call A*-hypergeometric system. The system is extended by
incorporating the symmetry coming from the automoφhism group of the ambient
space [8]. We classify according to the toric data [8] Calabi-Yau hypersurfaces into
three classes: types I, II and III.

In Sect. 2, we analyze local solutions to the zJ* -hypergeometric system. We
construct a finite set of differential operators for local solutions by relating the
system to an algebro-combinatorial object, known as a toric ideal. We find that
the local properties near the so-called large radius limit are determined completely
by the intersection ring of the ambient space. In the case of type I and type II
models, we prove in general the existence of the large radius limit, hence establish
the existence of the point of maximally unipotent monodromy. We give a natural
explanation for the reducibility of our A*-hypergeometric system in terms of certain
aspects of the intersection ring of the ambient space. We also extend our arguments
to type III models.

In Sect. 3, we will apply our general framework to three dimensional Calabi-Yau
hypersurfaces with A1'1 rg 3. Detailed analyses are given for a few typical models.
For others, we will append a list of the Picard-Fuchs equations to the source file
of this article [24] for interested readers.

In the final section we will discuss some relationships among different
Calabi-Yau manifolds which come from the inclusion relations among reflexive
polyhedra.
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2. Toric Geometry and Generalized Hypergeometric Differential Equation

In this section we analyze the differential equations, known as Picard-Fuchs equa-
tions, satisfied by the periods of a toric variety. Applications of toric geometry to
the description of the Picard-Fuchs equation was first initiated in [22] and further
developed in [8]. Here we summarize some of the analyses in [8] and extract some
combinatorial aspects of the Picard-Fuchs equations.

2.1. A construction of mirror manifolds. In order to fix some notations, we re-
view Batyrev's construction of the mirror manifolds, which is applicable to the
list of 7,555 hypersurfaces of [25, 26] as well as complete intersections [27] in a
product of (weighted) protective spaces. In the following we restrict our attention
to hypersurfaces, although generalization to complete intersections [28, 29] can be
done.

Let us consider a weighted protective space Pn(w) and a hypersurface Xd(w)
with (weighted) homogeneous degree d = w\ H h wn+\. Without loss of gener-
ality, we may assume that the weight w is normalized [30], i.e., gcd(w\,..., w/,...,
wn+ι) = l , ( / = 1,...,«+ 1). (See also [31].) For n = 4, the list of [25, 26] exhausts
all hypersurfaces Xd(w) defined by weighted homogeneous polymonials satisfying
the transversality condition. Now let

W(z)= £ amzm = Σ amu ,mn+ιz^ . z™;γ . (2.1)
(w,m)=d (w,m)=d

For generic am, the zero locus {W(z) = 0} defines a hypersurface Xd(w) in general
position. Its intersection with singular locus of the ambient space P(w) gives the
singular locus of the hypersurface. We denote the Newton polyhedron of W(z)
as Δ{w). It is the convex hull of the exponents of (2.1) m in Rw + 1, shifted by
(—1,..., — 1). If we take into account the condition d = w\ H h ww+i, it is easy
to deduce that the shifted polyhedron can be written as

z1(w) = Conv.({jteZw + 1 |(w,x) = 0, xt ^ - l ( / = l , . . . , w + 1 ) } ) . (2.2)

An ^-dimensional polyhedron A in Rn is called integral if all its vertices are
integral (with respect to the lattice Z w ). A reflexive polyhedron is an integral poly-
hedron with exactly one integral interior point, the origin. The polar dual of i ,

Δ*:={yeRn\(y9x)^ -1 (VxGZl)} (2.3)

is again integral and reflexive. If we consider the set of cones over the faces of a
polyhedron, we will obtain a complete fan which covers Rw. Thus to each pair of
reflexive polyhedra (A, A*), we can associate a pair of complete fans (Σ(A)9Σ(A*))
and in turn a pair of the n dimensional toric varieties (PΣ(A*)^Σ(A)) In each of the
toric varieties, there is a family of Calabi-Yau hypersurfaces given by the zero loci
of certain sections of the anticanonical bundle. The toric variety PΣ(A) contains a
canonical Zariski open torus (C*)M whose coordinates we denote asX = (X\9...,Xn)-
In these coordinates, the sections are

fA.(X,a)= Σ atX"' . (2.4)
V*EA* ΠZ"

For generic values of the afs in (2.4), the XA* in PΣ(Δ) admits a minimal reso-
lution to a Calabi-Yau manifold (which we also denote XA*) Similarly there is a
corresponding family of hypersurfaces XA in PΣ(A*) Batyrev showed that a pair of
the Calabi-Yau manifolds (XA,XA*) is mirror symmetric to each other in the sense
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that we have the following relations for their Hodge numbers (n 2; 4);

Σ Ϊ(S*)+ Σ l'(S*)l'(S), (2.5)
codim S * = 1 codim S * =2

- ( / i + l ) - Σ l\S)+ Σ l'(S)l'(S*),
codim S— 1 codim S=2

where the S are faces of A, S* the polar dual face of S. The functions / and /' count
the numbers of integral points in a face and in the interior of a face respectively.

When W{z) is Fermat, the toric variety 1*Σ(A*) is isomorphic to the weighted
projective space Pπ(w), with XA isomorphic to some Xjfw). Then the mirror hyper-
surface X/\* can be understood [19] as an orbifold of the XA in P ^ * ) , giving the
orbifold construction of Greene and Plesser [32] based on conformal field theory.
For general hypersurfaces of non-Fermat type, P(w) and J*Σ(A*) are only birational.
In fact the fan Σ(A*) is a refinement of the fan of P(w). The hypersurfaces Xd(w)
and XΛ are related by flop operations on the ambient spaces. It has been shown
[33], in this way, that Batyrev's constructions applies to all 7,555 hypersurfaces and
reproduces the generalized mirror constructions known to [34]. In addition, there are
several mirror pairs (XA,XA*) which do not come from hypersurfaces in weighted
projective spaces.

The quantity most relevant to the applications of the mirror symmetry to the
quantum geometry of XA are the period integrals for its mirror XΔ*. For example,

^ΫsTWά)^Ψ' (2 6 )

πi) C o jA*{Λ,a) i=ι At
is the period integral over the torus cycle Co = {\X\\ = p^l = = \Xn\ = 1} in
(C*)71. For other periods, we will analyze the differential equation satisfied by (2.6).

2 2. sέ1 -hypergeometric system for the periods. In [28], it is remarked that the pe-
riod integral (2.6) satisfies an <£/-hypergeometric system introduced by GeΓfand,
Kapranov and Zelevinski [23]. In [8], it is found that the hypergeometric system
is not generic but reducible, and the period integrals can be extracted from the
system as the irreducible part of its solution space. Furthermore, for most of the
hypersurface models, it is noted that the hypergeometric system must be general-
ized in order to extract the irreducible part of the solutions. We reproduce here
an extension which is called an extended A*-hypergeometric system, from purely
combinatorial data of the polyhedron. We note that for type I models (see below),
the extended A*-hypergeometric system coincides with the GKZ system. For type
II or III, the extended A*-hypergeometric system incorporates additional differential
operators associated with the action of an automorphism group.

An jZ-hypergeometric system is described by a finite set stf in a lattice {1} x Z"
with the property that stf linearly spans Rw + 1. In our case of the Zl*-hypergeometric
system, the finite set is given by the set of all integral points in the polyhedron
A*. Namely we have */= {v0*,v*,...,v* | v* = ( l , v * ) , v*G/l*nZ π } . Here we let
VQ = (1, VQ) for the origin VQ in A*. We consider a lattice L of aίfine dependencies
on stf\

L = { (/o,/ i , . . . , / , )GZ^ I /ovo* + /ivf + + lpvl = 0} . (2.7)
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Then it is found in [28] that the period integral (2.6) satisfies the following set of

differential equations, (jZ-hypergeometric system with exponents β = (—1,0, . . . , 0 ) £
1

= 0 (j = 0, l , . . . ,«) , (2.8)

where the differential operators 3>ι and «S} are defined to be

£)-π {If

i=0

The solution space of (2.8) is typically too large - it contains more than the period
integrals of the Calabi-Yau manifolds X ĵ*. It turns out that the period integrals
satisfy additional differential equations.

2.3. Automorphism ofPz(A)- It is easy to recognize the origin of the linear differ-
ential operators &j(j = 1,...,«) as the invariance of the period integral (2.6) under
the canonical torus action on a toric variety, Xι —> 1 ^ ( 1 , G C * ) . Since the algebraic
torus acts by a subgroup of the automorphism group of the toric variety T*Σ(Δ), it is
natural to incorporate into the PDE system the invariance under infinitesimal action
of the full automorphism group. To describe this action in full generality, we will
introduce the root system for a toric variety.

Let us consider a compact nonsingular toric variety P^ based on a regular fan
Σ in the scalar extension NR of a lattice N(= Zr) of rank r. Let M(= Zr) be the
lattice dual to N. We choose a basis {n\,...,nr} for TV and a dual basis {m\,...,mr}
for M. There is a canonical algebraic torus T^ := Homz(M, C*) = (C*) r in
whose coordinate ring is C[M] = 0 m ( Ξ M C e ( m ) . We write it as C ^ 1 , . .
with Xt — e(rrii). Define the derivations δn(n£N) on C[M] by δne(m) = (m,n}e(m).
These derivations describe the natural action of Lie(TN) on 7^. We may write
{δnι,...,δn,} = {X\ w>-">Xrw}' ^ n e ̂ ^e algebra of the full automorphism group
of P^: is described by the root system R(Σ) in addition to the torus action. The
root system R(Σ) is determined by the data of the fan Σ as follows. We denote the
subset of one dimensional cones in the fan as Σ( 1). In each one dimensional cone
(7 ( 1 ) Gl(l), there is a primitive element n(σ^) in N. Let

= {aeM\3σil)eΣ(l) with (α^(σ^)) = - 1

and (α,«(σ(1))) ^ 0 for a l l σ ^ + σ ^ } . (2.10)

In terms of the root system, the Lie algebra of the automorphism group can be
expressed by (see Proposition 3.13 in [35] for details)

Lie(Auto(PΣ)) = L i e ( Γ J V ) θ ( θ Ce(α)(5 (D ) . (2.11)
\eΛ( i ) α 7

The linear differential operators i ^ i , . . . , ^ in (2.8) express the invariance of the
period integral Π(a) under the action of Lie(7V). In fact it is easy to check that

( 1 \ n dX

7 7 Π Π T (/= 1,...,#»). (2.12)
fΔ*(X,a)J k=ι Xk



540 S Hosono, B H Lian, S -T Yau

The operator «2Γ0 represents the change of the period under the overall scaling of the
Laurent polynomial f^*(X9a) —> λf^*{X,ά). We can now clearly extend the formula
(2.12) to define ^γΠ(a) for every yeLie(Auto(Pi;(j))) by replacing δΛι by Y. We
thus arrive at the definition of the extended zl*-hypergeometric system

^/77(α) = 0 (leL\ &γΠ(a) = 0 (Γ e Lie (Auto ( P z ( / j ) ) ) ) . (2.13)

This extended system was first introduced in [8] and was used successfully to de-
termine the complete set of the period integrals.

Because of the special value of the exponent β = (—l,0,.. .,0)eRw + 1, the fol-
lowing gauge for the period

Π(a) = a0Π(a), (2.14)

will be useful. We will denote the hypergeometric system in this gauge as &ι

= 0,&ifl{a) — 0. Especially the first order differential operators Jo,«2Γi,...,«% may

be written concisely as

&u = Σ(u,v*)θai ( «eR" + 1 ) . (2.15)

In ref. [8], several Calabi-Yau hypersurfaces with Λljl = 2 and 3 have been
studied. There hypersurfaces in a weighted projective space have been classified
into three types depending on the properties of the fan Σ(A*). Type I models are
those which do not have any integral points in the interior of codimension-one
faces of A*(w) and for which we have a regular-fan Σ(A*) after taking into ac-
count subdivisions of the cones resulting from the integral points on the lower
dimensional faces. Type II models are those which have integral points in the inte-
rior of codimension-one faces of A*(w) but for which we still have a regular fan
Σ(A*) after subdivisions of the cones resulting from the integral points on the faces.
Type III models are those for which we do not have a regular fan Σ(A*) even if
we subdivide the cones by incorporating all the integral points on the faces. In this
sense type III models may be called "singular." According to this classification, we
reproduce here the models analyzed in [8]

TypeI:Z 8 (2,2,2, l , l )

TypeΠ:* 1 2 (6,2,2, l , l ) , *1 4(7,2,2,2,1), *1 8(9,6,1,1,1), X12(6,3,1,1,1),

^24(12,8,2,1,1),

Type ΠI :*i2(4,3,2,2,l), *i 2(3,3,3,2,l), *i 5(5,3,3,3,l), * i 8 (9,3,3,2, l) .

(2.16)

It was found that for a model of type I or II, the extended A*-hypergeometric system
is sufficient to determine the complete set of the period integrals. Whereas for models
of type III, one needs to consider additional (non-toric) differential operator(s) whose
form can be determined from the Jacobian ring of the hypersurface. If we supplement
these additional operators to the extended A*-hypergeometric system, we can derive
the Picard-Fuchs differential equations. Thus for type III models, the combinatorial
data of the polyhedron A * alone do not seem sufficient for the explicit construction
of the full system of differential operators. Nevertheless we will find in the next
section that the local solutions are determined purely by the combinatorial data of
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the polyhedron, and this property is shared by all three types of the Calabi-Yau
hypersurfaces.

Example. Xj4(7929292,l). This is a typical model with non-trivial automorphism
group. The polyhedron A(w) = {JC G R5 | w\X\ H (- w5x5 — 0, xt ^ — 1 (/ = 1,...,
5)} is simplicial and is given by the convex hull of the vertices

V! = ( 1 , - 1 , - 1 , - 1 ) , v2 = (-1,6,-1,-1), v3 = ( - 1 , - 1 , 6 , - 1 ) ,
(2.17)

v4 = ( - l , - l , - l , 6 ) , V5 = ( - 1 , - 1 , - 1 , - 1 ) ,

where we fix a basis {A\9..., Λ4} for the lattice H(w) — {x e Z51 w\X\ H h
w5x5 = 0}, with Λι = ( 1 , 0 , 0 , 0 , - W l ) , Λ2 = (0,1,0,0,-w2), Λ3 = (0,0,1,0,-w3)
and Λ4 = (0,0,0,1,— w4). The integral points in the dual polyhedron A*(w) are

v* =(0,0,0,0), v ί = (1,0,0,0), v* = (0,1,0,0),

v3* =(0,0,1,0), v4* = (0,0,0,1), v5* = ( - 7 , - 2 , - 2 , - 2 ) , (2.18)

v6* = ( - 3 , - 1 , - 1 , - 1 ) , v7* = ( - 4 , - 1 , - 1 , - 1 ) , v j = (-1,0,0,0).

The points v*,...,v| are the vertices of the simplicial polyhedron zl*(w) and
all other points (except the origin) appear on some faces of the polyhedron.
The point v£ = ^(v* + v |) appears on the edge (one dimensional face) and cor-
responds to an exceptional divisor in X&. The point v7 = η(y\ + \\ + v\ + 7v^)
and Vg = ^(2v| + 2vJ + 2\\ 4- v |) are both in the interior of the codimension-
one face dual to the corner Vi of A(w). Hence they describe the automorphism
of Pi(zi) and of the family of hypersurfaces Xj*. In fact the two points de-
scribe the root system for the fan Σ(A) and generate the nontrivial part of the
automorphism,

Θ Cξ2 := Ce(v 7*K 0 Ce(v*)c5Vl . (2.19)

These infinitesimal actions on the coordinate ring can be expressed in terms of the
natural basis for N = Z 4 and M = Z 4 as & = X<+<(δXχ - δXl - δχ3 - δχ4) (ί = 1 , 2 )
and have the expressions

(2.20)

1 / δ 3 3 F 5 ^ l

We may verify the algebra [^1,̂ 2] = 0. The linear differential operators 2£ξx and
3(ξ29 which follows from (2.12), turns out to be

d d d
££ξ\ — ao -^ 1" 2 β i -z h dβ -z— ,

daΊ δa6 da5

d . d d }

These linear operators together with ^o> ? ^5 and the higher order operator
constitute the full extended A*-hypergeometric system.



542 S Hosono, B H Lian, S -T Yau

3. Secondary Fan, Grobner Fan and Local Solutions

In this section, we analyze the local solutions of the zl*-hypergeometric system.
We find that the local properties of the zl*-hypergeometric system are determined
purely by an algebro-combinatoric object, known as a toric ideal. At a special point,
called "large radius limit," the toric ideal is related to an ideal which determines
the cohomology ring of the toric variety PΣ(Δ*)

3 1. Convergent series solutions for stf -hyper geometric system. Here we will sum-
marize, with some modification, the general results in [23] about the convergent
series solutions of the jZ-hypergeometric system. We set stf = (1,-d*) Π Zp+ι —
{VQ,...9V*} for our case of the Zl*-hypergeometric system. The description here is
brief and is meant to fix notations and to prepare for later discussions. We refer the
reader to the original paper [23] for details.

From the definition of the j/-hypergeometric system (2.8), (2.9), it is easy to
check that a formal solution to the ^/-hypergeometric system with exponent β G Rn + 1

is given by

where β = Σi 7/̂ Γ Evidently the formal solution is invariant under y —> y -\-v (v£L).
Define the aίfine subspace Φ(β) := {y eRp+ι | β = Σji^ΐ}- If we choose a basis
fx\...J{p~n) for I , the formal series (3.1) takes the form Π(a,γ) = ay Σmι, ,mp_nez

cmxm, where x^ = a1 . The relevant solutions are those with cm(y) = 0 unless
rrii ̂  0. One must therefore restrict the choices of the basis and of y.

A subset / E {0,1,...,/?} is a base if {v* | / G /} form a basis of W+ι. Given
a base / and y,(j' $1), we can solve for yj(jel) using the linear relation
Σj&yjϊj=β-Σjϊiyjϊj' Consider Φz(β9I) := {y G Φ(β) \ yj G Z (j $1)}, and
Φί(βJ) := b e Φz(βJ) I yj = Σ C Γ λkήk) (0 ^ h < I, j φ/)}. It is clear that
φ£(β,I) is a set of representatives of Φz(βJ)/L. Consider the cone Jf(stfJ) =
{/ GLR I li ^ 0 (/ $/)} where LR = L 0 R. A Z-basis A c L is said to be compati-
ble with the base / if the cone generated by the basis A contains the cone

If A — {flι\..., l^p~n^} is compatible with the base /, then the formal series

(3.1) takes the form Π(a,y) = at Σmu ,«,,_„*<> cmxm for each y G φ£(β,I) with

xk = a1 , and this power series converges for sufficiently small |x&| . (3.2)

By definition we may write the formal series (3.1) as above with cm = cm(y) :=

Πί=o yΓ(Σmkή
k) + Ίi + 1). For y G Φ£{βJ\ we have Σ™kψ + Ίj + 1 eZ for

j$I. It follows that if c m Φ0, then Σmklf} + Ίj = Σ(mk + h)lf] ^ 0 ( ^ 7 ) ,

where we use yy = Σ^P (S> ύ h < 1? 7*ί^) Since the basis A is compatible
with the base /, we have nik + λk ^ 0 for all k, implying rrik ̂  0. Thus given
a basis A compatible with the base /, if for every yeΦ^(βJ) there is cm(y) + 0
for some m, then we have \Φz{β,I)/L\ — |det(vyί)i^/ ^ n + i } 7 e / | linearly independent
power series solutions [23].

However it can happen that cm(y) = 0 for all m, i.e., the series solution be-

comes trivial Π(a,γ) = 0 when Σmkή + 7/ + 1 ̂  Z^o (mk ^ 0) for some i G/.
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In this case, we multiply cm by a constant infinite renormalization Γ(yι + 1). More
precisely, we assume that y is such that the following limit exists:

(3.3)

for all leL.
All linearly independent power series solutions are constructed from a set of

bases {/} which form a triangulation of the polyhedron P := Conv.({0,VQ,V*,...,
v*}), where 0 is the origin in Rn+ι. We call a collection of bases T = {/} a tri-
angulation of P if U/EΓ^Λ*) =p a n d (vjζ) Π (v*2) (7i,/2GΓ) is a lower dimen-
sional common face. Here (vf) a n + 1 dimensional simplex with vertices vf (/ G/)
and the origin. Because the « + 1-simplices in P are in 1-1 correspondence with
the ^-simplex in A*, there is a notion of a triangulation of zl* (or j ^ ) . We use
the two notions interchangeably. A triangulation T is called maximal if T gives
the maximum number of w-simplices in A* and O G / for all / G T. A Z-basis 4̂
of L is called compatible with a triangulation T if A is compatible with every
ieτ.

For a base / and a point I J E R ^ 1 , we consider a linear function A/̂  on R ^ 1

such that hlη(v*) = ^ (ί G/). We define a cone # G < / ) by {η G R^+1 |Ά/,,,(vf) ^
?// (/ φ/)}. For a triangulation Γ, we define the cone <#(*/, T) := f|/eΓ ^ ( ^ , / ) We
may associate with η G R "̂̂ 1 and a triangulation Γ, a piecewise linear continuous
function hτ,η on the polyhedron P defined by 1) hτ^η(v*) — r\i for each vertex vf
of the triangulation T, 2) the restriction h^ηl^*) ( / ^ ^ ) i s a linear function. Then
the cone ^ ( J / , Γ) consists of ^ G R ^ + 1 for which the function hτ,η is convex and
hτ,η{v*) Ik Άi for vf not a vertex of T [23]. A regular triangulation is a triangu-
lation for which we have interior points in the cone ^(s/,T). For every regular
triangulation Γ, there are infinitely many Z-basis of L compatible with Γ. We set
φz(β>τ) := U/GΓ φz(β>J) N o w w e m a y s t a t e t h e r e s u l t (Theorem 3) in [23]:

For a regular triangulation T of the polyhedron P, and a Z-basis A =
{l^\...,l^p~n^} of L compatible with Γ, we have integral power series in
the variables Xk = a[i} for a~ΎΠ(a,y) (y G Φχ{β, T)\ which converge for suffi-
ciently small \xk\. If the exponent β is T-nonresonant, the series Π(a,y) (y G

)) constitute vol(P) linearly independent solutions for (2.8). (3.4)

In the above theorem, the exponent β is called Γ-nonresonant if the sets Φχ(βJ)
(/ G T) are pairwise disjoint. It turns out that in our A*-hypergeometric system
there are many regular triangulations for which the exponent β = (—1,0,...,0) is
Γ-resonant. In particular, if T is a maximal triangulation and the polyhedron A* is
of type I or II, then β is "maximally Γ-resonant," i.e., Φz(βJ) consists of a unique
element y = (—1,0, ...,0) modulo L for all / G T. (Note that each simplex I ET
has volume |det(Vy}/ ) i ^ « + i j G / | = 1.) In this case, we will obtain only one power
series solution (3.1), and all other solutions contain logarithms, whose forms we
will determine by the Frobenius method.

Given a regular triangulation Γ, a compatible Z-basis A — {ftι\... J^p~n>>} and
yeΦz(β,T), we define a power series wo(x,p) = aoll(a,y), where p = (pi,. . . ,

pp-n) is defined by y = ΣPkl(k) + (-1,0,...,0) and xk = (-l/Pa1™. Explicitly
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we have

X,p)= Σ -v ^yy...κ i rκj.O + 0 m+p ( 3 f )

«„ %zo

The p can also be determined by the indicial equations of the hypergeometric system.
Given a regular triangulation T9 we shall now construct a compatible Z-

basis A with the criterion that the cone generated by A in ZR contains the cone
X ( J / 5 Γ ) := (J / G Γ J Γ ( J / , / ) . First we introduce the Gale transformation. Consider
the exact sequence

0 _* R"+1 —> R^+1 —> R^-« -> 0 , (3.6)
A B

where we let Rw+1 be the span of the integral points v*'s and R^+1 in the middle is
the span of a basis {e^*9e^*9...9e^*} labeled by the points. The linear map A sends

veRn+ι to Σi(v>v*)ev* and B is the natural map onto Rp+ι/Rn+ι = R^"". The

Gale transform of a point configuration s# in Rn + 1, which we denote { J / , R W + 1 } ,

is defined to be a point configuration {&,Rp~n} with & := {B(e^*),...,B(^v*)}

Now we consider a cone in Rp~n,

Then it is shown in [36, 37] that the cone ^ ( J / , T) decomposes into Rn+ι Θ
^(ja/, T). The secondary fan J^(j/) is defined as

#-(j/) = {^(j^, T) I Γ: regular triangulation} . (3.8)

It is known that the secondary fan is complete and strongly polytopal polyhedral
fan [36, 37].

In our point configuration {stf,W+ι}, the set j / consists of integral points.
Therefore the sequence (3.6) can be considered with an integral structure: 0 —»

Zn+\ __> Z p+i _> ZP+ι/A(Zn+ι) -+ 0. The dual of this sequence is 0 <- Coker(A*) ̂ ~

( Z w + 1 ) * ^ ( Z ^ + 1 ) * ^ - L ^ - 0 , where A* maps ^ G ( Z ^ + 1 ) * to Σi(ev?>s)v*> a n d s o

L(=Ker(A*)) is the lattice of the affine relations among J / . The cone dual to
<€\sί9T) C W~n is the cone Jf(s/,T) C LR. In general <β\sij) is strongly con-
vex but not necessarily regular. There is a canonical refinement of the secondary fan
known as the Grόbner fan (see next subsection). However even a cone in this refine-
ment is not necessarily regular. By suitably subdividing the cone, we obtain a regular
subcone and hence a Z-basis of this subcone. The dual basis A = {/(1),...,/(/7~w)}
thus generates a cone containing JΓ(j/, T). This gives us a Z-basis of L compat-
ible with T. Note that when ζβ\stf9 T) is already regular, the basis A is uniquely
determined by T.

Suppose now the polyhedron A* is of type I or II. Then endowed with a maximal
subdivision, it defines a regular fan Σ(A*) and P ^ * ) is smooth. It is known that
the Gale transform {J*, Zp~n} generates the Picard group [35, 38]. Now associated
with Σ(A*) is a maximal triangulation T. In this case, ^ ' ( J / , T) is the Kahler cone,
and Jf ( J / , T) is the Mori cone of P ^ * ) - In particular (€\s09 T) is a maximal cone
(hence has interior points), implying that T is regular.
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3.2. Toric ideal and universal Grδbner basis. Here we will focus on the differential
operators % (IEL) in (2.9). Although there are infinitely many operators, we can
describe the system by a finite set of the operators. The problem is how to construct
such a finite set. We will see that the so-called toric ideal in the theory of Grόbner
basis gives us a powerful tool for this purpose.

Let stf be the finite set in the previous subsection and L be the lattice representing
the integral relations among the vertices in s&. We may decompose any element I EL
uniquely into /+ — /_ with two nonnegative vectors /+, /_ having disjoint support,
where the support meL is defined by supp(ra) := {/|raz φ0}. Toric ideal J^ is
defined as the ideal in C[yo,..., yp] which is generated by y1+ — yι~, i.e.,

^ = (yι+-y1-\leL). (3.9)

Let ω be a term order in C[yo,...,yp]. It is a vector ω = (ωo,...,ωp)eRp+ι

which defines an monomial ordering by the weights: the weight of yl° - ypP

being ωoαo H r- cop<x,p. With respect to this term order, we consider an ideal
LTω(J^) = (LTω(f) I / G JJ) of the leading terms of J^. Two different weights ω
and ω' may give the same ideal. The equivalence class in R/7+1

is an open convex polyhedral cone. The collection of cones {^(Jy,ω)} is known
to be finite and defines a polyhedral fan called the Grδbner fan ^(J^) of J^.

The Grόbner basis of J^ with respect to a term order ω is a finite generating set
&ω of ^ , with the property that the ideal (LTω(g) \ g G $ω) is equal to LTω(J^).
By Hubert's basis theorem, J^ is generated by a finite set of binomials yι+ — yι~
with I EL. Starting from such a finite set, the (reduced) Grόbner basis &ω obtained
by Buchberger's algorithm [39] is also a set of binomials. This is because the
algorithm consists of forming the S-polymonials for the generators and the reductions
of the minimal Grόbner basis and both processes close in the set of binomials.
Moreover the elements of the reduced Grόbner basis take the form yι+ — yι~ (/ eL)
of binomials.

Next given a term order ω, we shall obtain a regular triangulation Tω and hence
a compatible Z-basis A of L (last section). The elements of the toric ideal J^
may be identified as differential operators which annihilate the formal series Π(a, γ)
with γ G Φz(β,Tω). The ideal LTω(J^) is then a set of of "leading" terms of the
operators which determine the indices for the series wo(x,p). Therefore the Grόbner
basis &ω with respect to ω gives a finite set of the differential operators {%} which
suffices to describe the local solutions. A finite set which contains the Grόbner basis
$ω for all term orders is known as a universal Grόbner basis ^(^. This basis is
useful to describe the global property of the system.

A nonzero integral relation / G L is called elementary if 1) / is primitive,
i.e., gcd(/o, /i,...,/p) = 1, 2) supp(/) is minimal with respect to inclusion. It is
known that the set {flι\ fl2\..., l^} of all elementary integral relations generates

a (p + l)-dimensional zonotope ^ := (0, /(1)) + (0, /(2)) H h (0, / ( m ) ) , where
(0, /(*)) represents a one-dimensional simplex and the sum means the Minkowski
sum. The universal Grόbner basis is then given by [40]

v* = {yι+ - /-1 / G ^ n
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Given a term order ω the notion of a regular triangulation can in fact be recast as
follows. Consider the polytope Pω := Conv.{(ωo,VQ),...,(cop,v*p)} in Rw+1, which is
a lifting of stf by assigning the weights ω, as height to each point v*. For sufficiently
generic ω, the lower envelope of Pω naturally induces a triangulation Tω of srf.

It turns out that a triangulation T of stf is regular if and only if T = Tω for
some generic weight ω. Also the interior points of the cone ^(s/,T) consists of
all weights ω G R^+1 such that Tω = T [40]. The Stanley-Reisner ideal SRT for
a triangulation T of s/ is the ideal in C[yo,...,yp] generated by all monomials
yixyi2 - - - ylk9 where {hJi^- Jk} $T. Then the following is shown in [40]:

If a weight vector ω defines a term order for the toric ideal J ^ , then the
corresponding subdivision Tω is a regular triangulation The Stanley-Reisner
ideal SRTω is equal to the radical of the ideal LTω(J^). (3.12)

As an immediate corollary to (3.12), the Grόbner fan # X ^ ) is a refinement of the
fan {<#(*/, T)}. Since each cone # ( j ^ , T) has a decomposition R"+1 Θ ^ ; ( J / , T),
we have a similar decomposition ^ , ω ) = R"+1 Θ ^ ( ^ , ω ) . We will call the
collection {Ήf(Jy,ω)} the Grόbner fan which we also denote by

Example P(2,2,2,7,7). This is a simple example of a toric variety in which we
can define a Calabi-Yau hypersurface with h}iX{X^) = 2. The polyhedron Δ(w) is
given by the convex hull of the following integral points,

V l = ( 3 , - 1 , - 1 , - 1 ) , v2 = (-1,3,-1,-1), V3 = ( - 1 , - 1 , 3 , - 1 ) ,

v4 = ( - l , - l , - l , 7 ) , v5 = ( - 1 , - 1 , - 1 , - 1 ) ,

where the vector components are those with respect to a fixed basis A\ = (1,0,0,
0, —w\),...,Λ4 = (0,0,0, l,—w4) for the lattice H(w) (see the example in the pre-
vious section). The integral points in the dual A*(w) are

vj = (1,0,0,0), v| - (0,1,0,0), v3* = (0,0,1,0),

vJ=(O,O,O,l), v? = ( - 2 , - 2 , - 2 , - 1 ) , v * - ( - 1 , - 1 , - 1 , 0 ) ,

The point v̂  = ^(v^ + v|) in a codimension 3 face of A* corresponds to a ^
Du Val singularity in the affine sub variety determined by the cone R^o^4+R^ov|
in the fan Σ(A*). We can find three elementary relations (up to sign) in s& =
(l,A*(w)) Π Z 5 expressed by

^ = (-4,1,1,1,0,0,1), / ( 2 ) = (0,0,0,0,1,1,-2), / ( 3 ) = (-8,2,2,2,1,1,0).

(3.15)
Then the zonotope ^ determines the universal Grόbner basis

%* = {̂ 1727376 - yt,y4ys - y\,y\y\y\yAy<> - yl^yxyiyzyw - ytyβ} (3.16)

It is straightforward to find all possible regular triangulations of the set J / , or
equivalently the polyhedron A*(w). We find the following four regular triangulations:

To = {(0,2,3,5,6), (0,1,3,5,6), (0,1,2,5,6), (0,2,3,4,6),

(0,1,3,4,6), (0,1,2,4,6), (0,1,2,3,5), (0,1,2,3,4)},

7Ί = {(1,2,3,4,5)}, Γ2 = {(1,2,3,4,6), (1,2,3,5,6)}, ( 3 ' 1 ? )

Γ3 = {(0,2,3,4,5), (0,1,3,4,5), (0,1,2,4,5), (0,1,2,3,5), (0,1,2,3,4)},

where, for example, (0,2,3,4,5) represents a simplex with vertices VQ,V|,...,V|.
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Table 1. Grόbner cones with typical weights Each cone determines the ideal LTω(J^) and its
radical. The radical coincides with the Stanley-Reisner ideal SRχω according to (3 12)

cone weight ω LTω

τ 2

τ 3

τ4

τ 5

τ 6

(0,1,1,1,1,1,0)

(i,o,o,o,i,i,o)

(1,0,0,0,0,0,1)

(1,0,0,0,0,0,5)

(0,1,1,1,0,0,4)

{yo,y6)

(yo,yβ)

τ 2

Fig. 1. The secondary fan and the Grόbner fan for P(2,2,2,1,1) The secondary fan consists of
the polyhedral cones parametrized by the regular triangulations ΓQ, , Γ3 in the text. The Grόbner
fan provides a refinement consisting of τ\, ,τ$ represented by the typical weights in Table 1

The Grόbner fan consists of six two-dimensional cones, together with lower
dimensional cones as their faces. We list the typical weight with the corresponding
ideal LTω(Jy) and its radical in Table 1. We draw, in Fig. 1, the secondary fan
and the Grόbner fan as its refinement using a Z-basis {/(1),/(2)} which is dual to a
Z-basis {/(1),/(2)} in (3.15) of the lattice L.

3.3. Cohomology ring O/PΣ(A*) ond the local solutions - when Σ(A*) is regular.
In this subsection we will study the local solutions of the A*-hypergeometric sys-
tem. Since the Grόbner fan is a refinement of the secondary fan, each cone of the
Grόbner fan naturally defines a convergent series for (3.1). Namely we consider a
cone τ with typical weight ω. If τ is simplicial and regular we consider a Z-basis
{Ί[ι\...J[p~n)} of τ, and if not we subdivide τ into simplicial and regular cones
and take a Z-basis for one of these cones. Then the dual basis {lτ , . . . ,/τ }
gives us a Z-basis compatible with the regular triangulation Tω and the series (3.5).
Even though the choice of Z-basis of L is not unique, once a choice is made we
refer to it as a Z-basis of L for the cone τ with typical weight ω.

Since the exponent β is Γ-resonant for some regular triangulations, we do not
have vόl(A*(w)) linearly independent power series solutions, and so we need to
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search for the logarithmic solutions. The type of logarithmic solutions which arises
for a given triangulation depends on the type of degenerations of the hypersurface,
hence on the monodromy of its period integrals. In general, the differential equations
satisfied by the period integrals have regular singularities [41]. Therefore we can
determine the local solutions from the data of the leading terms of the differential
equations - the so-called indicial equations. We expect that among the singularities,
the quotient singularities can be resolved by the toric method via a refinement - such
as the Grόbner fan - of the secondary fan ([22] Conjecture 13.2). Thus near these
singularities, we should recover the data for our local solutions from the structure
of the cones in the fan.

Let us consider a power series solution (3.5) determined by a Z-basis {l[ι\...,
l[p } of L for a cone τ with typical weight ωGτ. We identify the toric ideal
Js, in C[y\9...9yp] with the ideal generated by {^/} in C [ ^ - , . . . , ^ - ] . While
we will consider a multiplication of Q}\ by the rational functions of α^'s extend-
ing the coefficient, we need to be careful with the noncommutativity resulting
from this extension. Now let us consider an operator in the Grόbner basis 3^ω.
If 3fι e0βω and ω /+ - ω /_ > 0 (< 0), then ( ^ ) / + ( ( ^ ) Z - ) is one of the genera-
tors for the ideal LTω(J^). For the case ω (/+ — / _ ) > 0, we multiply 3)\ by aι+ to
obtain

Since ω (/+ — /_) > 0 we have /+ — /_ G τ v . Since τ v is generated by
flp~n)}9 it follows that aι+~ι~ in the second term can be expressed by a monomial
of {x[ } which vanishes when xτ —> 0. Other parts in (3.18) are "homogeneous"
and can be rewritten in terms of the log derivatives θQι = a^. The same argument
applies to the case ω (/+ — /_) < 0 . Therefore the principal part of 3)\ which
determines the local properties about x^ = 0 are given, through the generators of
08ω, by

λ ^ λ ± , (3.19)

where /+ and /_ in the right-hand side for ω (/+ — / _ ) > 0 and ω (/+ — / _ ) < 0,

respectively. Clearly we can express the principal part (3.19) as a polynomial

/ / ( θ α o , . . . ^ , ) . In the gauge Π = Π(x{

τ

ι\...,x(

τ

p-n)) (2.14), using xk = a*? we can

write

Iι(θao9...9θap)=Jι(θg)9...9θ4P-H))9 (3.20)

where the right-hand side is a polynomial in the θχ(k). Note also that J\ is homoge-
neous if the entries of l± are 0 or 1. Due to the property of the Grobner basis, the
principal parts (3.20) for the elements in &ω give us a complete set of the indicial
equations for p. Summarizing our results:

Consider a local solution wo(xτ,p) (3.5) with a Z-basis of L for a cone τ with
typical weight ω. Then the indices p are determined from the finite set of
indicial equations Jι(p[ι\...,p[p~n)) = 0, with yι+ - yι- e @ω . (3.21)
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This result combined with the Frobenius method enables us to construct missing
solutions in the general theorem (3.4) for the case of Γ-resonant

Now let us turn to the description of the intersection ring ^ ( P ^ ^ Z ) , which
is isomorphic to the cohomology ring, H2*(PΣ(Δ*),Z) of the nonsingular protective
toric variety P ^ * ) - I n the following we assume J*Σ(Δ*) is nonsingular, which means
that we take one of the finest subdivisions of the fan Σ(Δ*). Note that for the models
of type I and II, such finest subdivision comes from a maximal triangulation TQ of
the polyhedron A*. We have seen that TQ is also regular. In the next section, we
will find that our results apply also to the singular models of type III with some
modifications.

In toric geometry, each integral point v* (i = 1,...,/?) in A* Π Zn corresponds to
an irreducible Γ-invariant divisor A It is known that if v?,..., v*k generate a cone in
Σ(A*), the divisors Dh Dik intersect transversally with the subvariety determined
by the cone. Also there are linear relations among the toric divisors since we are
working modulo the divisors of rational functions on PΣ(Δ*) It is then known that
[35]:

For a compact nonsingular toric variety PΣ(Δ*)9 the intersection ring
^*(Pr(/4*)?Z) is described by Z[Dι,...,Dp]/J, where </ is the ideal generated
by

(i) A, A* f o r v/ί> >vΐk
 n o t in a cone of Σ(Δ*) ,

(ϋ) Σf=i(^v?)AfornGZΛ.

We can fix the normalization of the "volume form" in the ring by the property that
the Euler number of PΣ(Δ*) is equal to the number of the ^-dimensional cones in
the fan Σ(A*). This is the number of the ft-simplices in the corresponding maximal
triangulation Γo of the polyhedron A*.

To relate toric ideals to our previous discussion on the A*-hypergeometric
system, we introduce a formal variable Do and rewrite the intersection ring as
^*(Pj(Zj*),Z) = Z[A)>A> '">Dpyβ, where we define 3 as the ideal gene-
rated by

(i)' A, ' 'Eh for ^*, . ,v* not in a cone ofΣ((l9A*))9 (3 23)

Z^1

The fan Σ((l,zl*)) in (i) ; is defined to be a set of cones over the simplices of the
triangulations Γo of (1,zl*). If the fan Σ(A*) is regular, so is the fan Γ((l,Zl*)),
although the latter fan is not complete.

Now note that the set of the generators (i) ; is the same as the generators of the
Stanley-Reisner ideal for the maximal triangulation TQ of A *. Note also the similarity
of the linear relations (ii)r and the first order relations (2.15) in the hypergeometric
system. By (3.12) the Stanley-Reisner ideal SRTo is the radical of LTω(J^), where
ω is a weight with Tω = To. In the following, we will show that the ideal LTω(J^)
is radical. This allows us to determine the ideal LTω(J^), or equivalently the prin-
cipal parts (3.20) of the A*-hypergeometric system that governs the local solutions,
via a purely combinatorial object - the Stanley-Reisner ideal. As an immediate con-
sequence we show that for the maximal triangulation, p — (0,...,0) is the unique
solution to the indicial equations. Furthermore we observe that the local solutions for
the maximal triangulation To can be described by the intersection numbers. The latter
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are computable from the intersections ring (3.22). We will also see that the Stanley-
Reisner ideal above can be easily computed in terms of the so-called primitive
collections.

To discuss the combinatorial description of the Stanley-Reisner ideal, we intro-
duce the notions of a primitive collection and a primitive relation [42]. A primitive
collection of a complete fan Σ(A*) is a set of integral vectors & — {v*,v*,..., v*}
such that if we remove any one of v* from ^ , then the integral vectors in ^\{v*}
generate a cone in Σ(A*) while 0* itself does not generate any cone in Σ(A*).
It is easy to prove that i) in (3.22) can be replaced by the monomials Dh Dia

corresponding to the primitive collections of Σ(A*). Once we fix a triangulation TQ
which underlies the Σ(A*)9 it is straightforward to read off all primitive collections.
So far we don't need the regularity of Σ(A*). But to discuss primitive relations, we
must assume that Σ(A*) is regular. A primitive relation will be a certain element
of L attached to each primitive collection.

Consider a primitive collection 0* — {v*,v*,...,v*α}. There is a unique cone
%><EΣ(A*) of minimum dimension such that the integral point v* -f v* + -f v* is
in the interior of #. By regularity, there is a set of generators {v*i?...,v*} of the
cone such that for some positive integers c^, we have

v * + v * + . + v* = Σ Q v ; . (3.24)

It is easy to translate the above statement about the fan Σ(A*) into a statement
about the fan Σ((l,zl*)), which is not complete but regular. We get

v*+v*+ + v * = E ^ ; , (3.25)

where v*o = VQ and co = a — Σk>\ ck = 0 Equation (3.25) defines a primitive rela-
tion / ( ^ ) G Z . It is easy to deduce from the defining property of a primitive collection
that the index sets {i\9...9ia} and {jo, -,js} are disjoint.

Let ω be a weight vector such that Tω is the maximal triangulation To. Recall
that the convex polytope Pω is defined by the convex hull of the points vj :=
(cθ£,v£) (k = 0,...,/?). Then we can show the following "height" inequality (v* +

f- v*)0 >(ΣckVjk)0, i.e.,

ωh + ωh H h ωia > ^ ckωjk . (3.26)

This means that LTω(yι^+ — yι^~) = yixyι2 JV Since the Stanley-Reisner
ideal SRT(ύ is generated by those ylλy11 yia with {v*,v*,...,v*} primitive, it fol-
lows that SRτω C LTω(Jy). Combining this with the property (3.12), we see that
LTω(Jy) is radical. Moreover we also have SRτω = (yι^+ \& is primitive).

In the example P(2,2,2,1,1) discussed in the last subsection, we find two primi-
tive collections {v*,v|,V3,v£}, {v^v^} for the maximal triangulation To and the cor-
responding primitive relations turn out to be /^) and l^ in (3.15), respectively. As

is evident in Table 1, these primitive collections give the generators LTω(yι+ — yι-),
(z = 1,2) of the ideal LTω(Jy) for the cone τ\.

Note that the above generators of SRTo are nothing but the leading symbols
of a generating set of operators Q)\ of the Zl*-hypergeometric system. Combining
with the operators £Jtu we have a correspondence between the symbols of the full
zl*-hypergeometric system and the ideal 3 (3.23) for the intersection ring. This
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motivates the following map m from Z[θao,..., θβp] to the intersection ring m : θaι •->
Di. Define the following intersection coupling,

Chh in = (m(θχ{:ι))m(θχi,2)). m(θχ,n))} , (3.27)

where the bracket means taking the coefficient of the "volume element" in the ring
),Z)> Then we observe the following:

If τ is the cone in which Tω (ω e τ) is a maximal triangulation, then all the
indices at the point x^ = 0 (i = 1,...,/? — n) of the hypergeometric system are
identically zero. And the local solutions near this point are given by

(3.28)

Σ C/,12 in dPn

 dPr2 ' ' * dPin

 Wθ(*τ, p)\p=0

Recall that mά(LTω(J^)) = LTω(J^) for the weight ω such that Tω = To, and that
LTω(J>χ?) is generated by LTω(&ω). Since an element of the Grobner basis has
the form yI+ — yι~, it follows that the entries of either vector l± are 0 or 1. In
either case, we see that the corresponding indicial equation Jι(p\,...,pp-n) = 0 is
homogeneous. But the finiteness of the solution set implies that zero is the only
solution.

Example. P(2,2,2,1,1). As we have seen, there is one maximal triangulation Γo in
(3.17) for the polyhedron A*, The corresponding cone is τ\ in Table 1, and thus

the Grobner basis <%ω consists of yι+ — yι- = yiyiysyβ — y$ and yι+ — yι~ —
— y\. From this we obtain the leading term operators for (3.20);

•Λd) = θaχθaiθa3θaβ = θl (θx — 2θy ) ,

2 (3.29)
Λ θ θ θ

with the corresponding linear operators

^ i = θl (θXτι - 2θyτι) - xτι(4θXτ

(3.30)
^ 2 = θ2

yτι - yτι(θXτι - 2θyτι - l)(θXτι - 2θyτι).

Since the generators of the Stanley-Reisner ideal is given by the primitive collec-
tions, it is easy to determine the intersection ring. The results for the intersection
couplings are

C —2 C —1 C —C —C —Ω Π λ\\

where Cxxxx = {m(θXτι) -m(θXτ )) for example. From the indicial equations J/(i)(p)
= Jp)(p) = 0, we see that all indices at the point xτι = yτχ — 0 are zero. In fact we
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find the following 8 solutions with only one power series solution;

wo(x, 0); δPxw0(x, 0), dPyw0(x, 0); (2dPx + 2δPxδPy )wo(x, 0), δPxw0(x, 0);

(2dl + lδ2

pβPy)wo(x,0),δlwo(x,0); {2dA

Px + 4dj&,)wo(x,0), (3.32)

where

, , v^ Γ(4(n + px)+ϊ) n+pχ m+Py
W0{X'P) ^r(n + Px+iyr(m + py+l)2r(n-2m + px-2py + lf^ * ' '

(3.33)

Because we have eS?/Wo(x,p) = J/(o(p)xp + (power series in x and y) {ί = 1,2), we

can verify that (3.32) solve the hypergeometric system by inspecting (2dpx +

4dlδPy)(Jι(ι)(p)xp)\p=o = 0(z = 1,2), for example (see Eqs. (4.4) and (4.5) in [8]
for detailed arguments about the remaining terms).

Similarly we obtain for %2 the principal parts (3.20) in the Π(a) gauge

(4θXτ2 - 4)(4θXτ2 - 3 ) ( 4 ^ 2 - 2)(4θXτ2 - 1), θ2^ , (3.34)

with xτ2 = β~/(υ = 1/xrj, yτ2 = a1 . From these principal parts, we see that not all
solutions to the indicial equations at xτ2 = yτi = 0 are zero. Thus the local properties
of τi and τ2 are quite different. The fact that LTω(Jy) is radical in τ\ but not in
T2 is responsible for this difference.

3.4. Cohomology ring of XA and the local solutions. We consider the restriction
map H*(PΣ(Δ*),2J) —> H*(XA,Z) induced by the inclusion XA —> Pz(zi*)5 and denote
the image by H*0UC(XA,ZJ). The restriction map can be realized by considering the
intersection of the elements of H*(PΣ(A*)9^) with the divisor XΔ. By construction
of the Calabi-Yau hypersurface XA, the divisor class [XA] coincides with the anti-
canonical class of the ambient space Pχ-(zi*), namely

[XA]=Dι+D2 + -+Dp9 (3.35)

in the intersection ring. The toric part of the cohomology //t*ric(Xj,Z) can then
be written as Alήc(XΔ,Z) = A*(PΣ{Δ*),Z)/Ann(Di + - + Dp) (where Ann(x) in a
ring R is Ann(x) := {y£R \ yx = 0}) or equivalently

A:oήc(XA,Z) = Z[Dl9D2,.. ,^]/Λuot , (3.36)

where </quot is the ideal quotient ,/quot = «/:(A H + ^ ? ) (Here (/:x) = {ye
R\yxel}.)

Now recall the close relationship between the ideal 3 in (3.23) and the ideal of
the symbols for the zl* -hypergeometric system with respect to the cone τ of maximal
triangulations Tω. First we have 3qmt =3:(Pι+D2-\ + Dp) = 3:(~D0) =

3: Do. In fact we observe more: suitable linear combinations of the differential
operators a!±^ι factorize from the left by the operator θao, implying that the hyper-
geometric system is a reducible system. Factorization by the operator θao should be
understood as corresponding to the restriction to the hypersurface XΔ. As we shall
see, the solutions to the factorized system can be obtained from (3.28) by a similar
restriction of the intersection couplings (cf. m(—θao) = —Do = [XA])
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In cases of type II models, we observed that the quotient (3.36) results in setting
to zero the divisors A for which the integral points v* are on a codimension one face
of A*. This can be understood as follows: the above divisors come from the desingu-
larizations of point singularities of the ambient space; a hypersurface X& in general
position will not meet these singularities. In accordance with this "decoupling" of the
divisors it is natural to consider the lattice L' — { / G Z | // = 0, vf is on a codimen-
sion one face of A*}. We define a Z-basis {l{ι\..., l[p~n>)} (V = dim Auto(PΣ(zl*)))

of V of the reduced cone (R^o/τ0 + + R^ol[
p~n))nL^ as follows. We make

subdivisions of the reduced cone if it is not regular, in which case the Z-basis is
not uniquely determined. However our observations in the following do not depend
on this. We will call L' the reduced lattice, or the reduction of L.

The decoupling of some divisor Dt in the intersection ring implies that we
can turn off the monomial deformation via α, (which corresponds to the divisor
Di under the monomial-divisor map [43]). In fact we observe that these variables
can be eliminated in the extended J* -hypergeometric system which is originally
defined to act on functions on C ^ as follow. Recall that the GKZ A*-hypergeometric
system is enlarged by adjoining n' — n additional linear differential operators JΓZ (i =
n + l,...,dimAuto(P2;(Zj)) = nr in (2.21)). This creates just enough equations to
eliminate those operators •£- corresponding to points v* on the codimension one
faces, from the operators <2)\ (leL). We may then set at — 0 after the elimination.
We denote by Q)\ the resulting new operators which act on functions on C ^ , where
the set s0' consists of all integral points on the faces with codimension greater than
one. Note that the set {β\ \ leL} is in general larger than the set {βv \ lf eLf}.

We now define the intersection couplings on A*OUC(XA,Z) by

^ ^ ) ) - m(θχy0) m(-θao)) , (3.37)

then we may state the observation given in [10] as follows:

For a cone τ with typical weight ω, some of the operators aι±(3)\(l EL) or their
linear combinations factorize by the operator θao from the left, indicating that
the A*-hypergeometric system is reducible. If Tω is a maximal triangulation,
the local solutions about the point x[ = 0 (i = 1,...,p — n') for the reduced
system are given by

dPίwo(xτ,ρ)\p=θ9 !2 n ^ ^
h, h

(3.38)

Σ κf!i2 /„_! 3 P ί l dPi2 dp wo(xτ,hi.
h,h, in-i

We also observe that in the case of Fermat hypersurfaces, the operators aι±^fj
which factorize whose leading term generate the ideal βquot can be constructed from
operators ^/ in the Grobner basis &ω. However for general models of non-Fermat
type we need to consider operators aι±9)\ outside the basis &ω as well as their
linear combinations with coefficients in the ring generated by the θaι (see examples
in Sect. 4).

Examples. 1) P(2,2,2,1,1). We have seen a unique maximal triangulation Γo

in (3.17) and have constructed local solutions for the corresponding cone in the
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Grόbner fan. Now we note that θao = —(θaι + h θaβ) = — 4θXτι. It is easy to ob-

serve that the operator aι+ Q}^ expressed in the fl{a) gauge factorizes from the

left by θao = -4θXτι, i.e., i?i = θXτχΘ in (3.30) for some third order operator Θ. If

we write the divisor m(θXτι) as Jx and similarly for Jy, the topological data for the

solutions are summarized as follows:

Jζcl O Ίζd Λ Jζcl Ίζd A

^xxx °' ^xxy ' ^xyy yyy ' ,~ ~Ωs

c2 Jx = 56, cι Jy = 24 ,

where the invariants c2-J's are listed for later use. For their calculation we use the
adjunction formula [44]; c(XA) = Πf=iO + A)/(l + Kd])

2) P(7,2,2,2,1). The toric data of this model have been summarized in the end
of the previous section. Although this model has the same moduli as the above
model, two integral points on the codimension one face make the combinatorics
of this model much more complicated. It turns out that there are 14 elementary
relations which generate the zonotope ^ , and there are more than 2,000 elements
for the universal Grobner basis. The secondary fan has 32 four dimensional cones,
most of which are singular.

It seems to be a formidable task to determine the Grobner fan, however it
is easy to find the maximal triangulation of A* and the corresponding Stanley-
Reisner ideal. As proved in the previous subsection, for a weight ω such that Tω is
the maximal triangulation, we have LTω(Jy) = mά(LTω(Jy)) = SRτω and we can
determine the ideal LTω(J^) by the Stanley-Reisner ideal which is simply described
by the primitive collections. In this case, it turns out that the ideal LTω{J>^) = SRTω

is generated by

y\ys, yiyi, yσs, ysys, yβyi, yβys,

These generators may be translated into the generators (i)' in (3.23). Then together
with the linear relations (ii) ; in (3.23), they define the intersection ring of the
ambient space. We find that the ideal Ĵ qUot = *f :(D\ + + Z)g) as defined earlier
is generated by the monomials

DXD59 D3D4D6, Dl9 Z> 8 , (3.41)

with the linear relations (ii) ;. The divisors Dη and D% in (3.41) being among the
generators show that these divisors decouple from the intersection ring.

We find that a Z-basis of L for a cone τ with the typical weight ω is

W U 3 U 4 > } with

lV = (-1,0,0,0,0,-1,1,1,0), 42 )=(0,1,0,0,0,1,-2, 0,0),

/?> = (0,0,l,U,0,0,1,-4), /(τ4) = (0,0,0,0,0,1, 0,-2,1).

The intersection of the cone generated by (3.42) with L^ is a two dimensional

regular cone generated by /<» = Ίl^ + /<3) + 4#° = (-7,0,1,1,1, -3,7,0,0) and

/<2> = i ψ .



GKZ-Generalized Hypergeometric Systems in Mirror Symmetry 555

The form of our generators of «/quot suggests that we should try to factorize the
following differential operators:

da\ da5 \ δ α 6 /
(3-43)

{2,3,4,6} βa^ βa^ β^ £}a^ βa^ y^a^

where l{\,5} and /{2,3,4,6} a r e the primitive relations corresponding respectively to
the primitive collections {vj^vj} and {v2>v3>v4>v6} Although the second operator
contains a derivative with respect to a%, we can eliminate it using the order one
operators 2t^ and 3£ξ2 corresponding to the automorphisms (2.21). Defining the

local variables x — — a1 ,y = aι,wε observe the factorization of the operator ΘaQ

in flo^2«3«4^6^/{23 4 6}i"' a n d find a complete set of differential equations for the
period integrals:

% = (θy - 3θx)θy - y(Ίθx - 2θy - 1)(70X - 2θy),

®2 = Θ2

X(7ΘX - 2θy) - Ίx(y(2Sθx - 4θy + 18) + θy - 3ΘX - 2)) (3.44)

x(y(2Sθx - 4θy + 10) + θy- 3ΘX - \)(y(2%θx - 4θy + 2) + θy- 3ΘX),

in the Π(a) gauge (2.14). The local solutions of this system are given by (3.38)
with the following topological data:

Kxxx — λ> Kxxy — 7> Kxyy — Z[> Kyyy ~ b ό »

(3.45)
c2 . Jx = 44, c2 Jy = 126 .

3.5. Singular models of type III. In the previous subsections, we have considered
the non-singular models, i.e., models of type I and II in our classification (2.16).
However in actual applications, singular models dominate the others. We will see,
nevertheless, that several properties observed in the previous subsections apply with
some modifications even to the singular cases.

Since a complete analysis of the secondary (Grόbner) fan for Δ* is formidable in
general (cf. the example P(7,2,2,2,1)), we focus only on the Calabi-Yau phase(s)
which corresponds to maximal triangulation(s). For the nonsingular models of type I
and II, we have seen that the ideal LTω(J^) for a maximal triangulation Tω coincides
with the Stanley-Reisner ideal. For the singular models of type III however, the ideal
LTω(Jy) differs from its radical and from the Stanley-Reisner ideal because Σ(Δ*)
is no longer regular.

For a singular model, the fan Σ(Δ*) is singular even relative to the maximum
subdivision incorporating all integral points in Δ*. To obtain a regular fan, which
we denote as Σ(zl*) r e g, we subdivide further the singular cones taking into account
integral points outside the polyhedron Δ*. Since the polyhedron zl* is reflexive, the
integral points which generate an ̂ -dimensional cone in Σ(Δ*) are on a hyperplane
with integral distance one from the origin [19]. Moving this hyperplane in a parallel
way to the integral points outside Δ*, we can speak of the integral distance of these
points. For the hypersurfaces Xd(w) in (2.1), a point with the integral distance k > 0
corresponds to a monomial of the homogeneous degree kd.
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Let us denote all the integral points generating the one dimensional cones of
Σ(zΓ) r e g as {vjf,...,v*,v*+1,...,v*}, where v*+1,...,v* are those new points intro-
duced by the subdivision. (Note that even though the new points have distance
greater than 1, they are still primitive vectors of the lattice.) Since we have a non-
singular toric variety Pr(Λ*)re , we can describe its intersection ring according to
(3.22) with additional divisors Dp+\,...,Dq. It turns out that the divisor class of the
Calabi-Yau hypersurface XΔ in this fully resolved ambient space is given by

[XΔ]=Dλ + - +Dp + dp+ιDp+ι + ' ' + dqDq, (3.46)

where ί& is the integral distance of the point v£ described above. We should note
that the regular fan Σ(A*)κg need not be the fan associated with a triangulation of
the polyhedron A'* := Conv.({v*,...,v*,v*+1,...,v*}). Therefore in general, we do
not have a description (3.22) of the intersection ring via the Stanley-Reisner ideal in
terms of a triangulation of Af*. However in many cases, it happens that the convex
hull A'* is itself a reflexive polyhedron. In such a case we have another family of
Calabi-Yau manifolds X# in the ambient space T*z(A'*)- This ambient space is in
general different from Pz(A*\e . However if we have the relation Σ(A'*) = Z(zl*) reg,
then we will have two different families of Calabi-Yau hypersurfaces in the same
ambient space T*Σ(Δ'*) = Pz(zi*)re One hypersurface XΔ represents the divisor class
(3.46) and the other hypersurface X# represents

[XAt] =Dχ+'.'+Dp+ Dp+ι + + Dq . (3.47)

We will see an example of this type in Sect. 4.
Now let us see the detailed analysis in a typical example Xu{4, 3, 2, 2, 1) which

was analyzed in [8]. The polyhedron A(w) for this model has vertices

vi = ( 2 , - 1 , - 1 , - 1 ) , v2 = (-1,3,-1,-1), v3 = ( - 1 , - 1 , 5 , - 1 ) ,
(3.48)

V4 = (-1,-1,-1,5), v2 = ( - 1 , - 1 , - 1 , - 1 ) ,

with respect to the basis Λ\,...,Λ4 for the lattice H{w) as in (2.17). The integral
points in the dual polyhedron Δ*(w) are as

vf =(1,0,0,0), vj =(0,1,0,0), vj =(0,0,1,0),
(3.49)

v j = (0,0,0,1), v | = ( - 4 , - 3 , - 2 , - 2 ) , v£ = ( - 2 , - 1 , - 1 , - 1 ) ,

together with the origin VQ = (0,0,0,0). The maximal triangulation of the polyhedron
A*(w) is unique and is given by

To = {(0,3,4,5,6), (0,1,3,4,5), (0,2,3,4,6), (0,1,4,5,6),

(0,1,3,5,6), (0,1,2,4,6), (0,1,2,3,6), (0,1,2,3,4)}. ' }

It is easy to see that the corresponding fan Σ(A*) is not regular because the first three

simplices in TQ respectively have volumes 2,3, and 2. We subdivide the first cone

by introducing a point Vj = V3 +V4 +vs +V6 ^ Similarly by introducing Vg = 2Vl

3

+V4 +

hψL a n d v ; = ?lψi +

 2jψL f o r t h e s e c o n d c o n e and vί0 =
 V ? + V^ v : + V 6* for the

third cone, we finally obtain the regular fan £(z!*) r e g . All these additional points

Vγ,...,v*0 have integral distance two and correspond to the charge two monomials
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Z2Z3Z4Z5, z\z\z\z\, z\z\z\z\ and z\z\z\z\, respectively. The generators (i) in (3.22)
are determined by the primitive collections for the fan Σ(A*) , and there are
20 such generators. Together with the linear generators (ii) in (3.22), these deter-
mine the defining ideal J for the intersection ring A*(PΣ(A*)τe )• The ideal quotient
by [XΔ] = A + + Dβ + 2{DΊ + + Ao) determines A*0^(XA). It turns out that
Jfquot is generated by

A A , DXD3D6, Dl9 As, D9, A o , (3.51)

together with the linear relations (ii). The generators D7,D%,D9 and Ao indicate
that these divisors decouple from the intersection ring. This can be understood as
follows: the additional points V7,...,v*0 represent point singularities in the ambient
space and the divisors A , , A o resulting from the desingularization of these points
do not intersect with the hypersurface XΔ in the general position.

Now let us turn to the set of the convex piecewise linear functions over the fan
Γ(Zl*)reg, i.e., the Kahler cone of Pr(zi*)re (see [37]). Since the regular fan Σ(A*\Qg

does not come from any triangulation of the polyhedron Af* (in fact we verify
Σ(zl*) r e g has 21 four dimensional regular cones whereas vol(zj'*) = 24), the Kahler
cone so obtained cannot be interpreted as a cone of the secondary fan for A'*. It is
straightforward to find a Z-basis for the dual cone of Kahler cone τ and we have

/O) = (-1,0,0,1,1,0,0, 0,1,-2, 0), 4 2 ) = (-1,1,0,0, 0, 1, 0,0,-2,1,0),

/<3> = (-2,0,0,1,1,1,1, -2,0,0,0), /<4) = ( 1,0,0,-1,-1, -1,0,1, 0,1,0) ,

/(5) = (-2,0,1,1,1,0,1,0,0,0,-2), 4 6 ) = ( 2,0,0,-1,-1,0,-2,1,0,0,1).

(3.52)

The decoupling of the divisors A , ,Ao in (3.51) corresponds to reducing

from L to the lattice l! generated by / (1) = 4l[l) + 2/?} + 3l?} + 3/(

τ

4) and /(2) =
) ( ) ( 6 )

= (_6?2,0,1,1,-1,3,0,0,0,0), /(2) = (0,0,1,0,0,1,-2,0,0,0,0). (3.53)

We verify that the above basis for the reduced lattice generates the cone JΓ(j/, TQ)
dual to <$'(£/, TQ) for the maximal triangulation Γo of A*. However this is not
a general phenomenon as we will see in the example X H ( 7 , 3 , 2 , 1,1) presented in
Sect. 4.

The operators 3)\ we deduce from the first two of (3.51) are

da2 da5 \da6) '
(3.54)

d d d δ ί d \ 4 d
daoj da9

where / { 2 , 5 } = l?] + /^5) + 2l{6) and /{i,3,4,6} = 2 # } + l{? + l?] + 2/<4) are primi-
tive relations for Γ(Zl*)reg. These two operators are the analogues of (3.43) of the
nonsingular model, but with one crucial difference. In this singular case, we do not
have an order one differential operator in the extended A*-hypergeometric system
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to eliminate ^ . In order to eliminate this we must study the Jacobian ring of the
hypersurface in detail. In [8], a second order operator was found which has the
form

d d _ Uaλa2 ( d \2 24aλa2aβ d d \2axa\ d d

da0 da9 a\ \ da0) a\ da0 daβ a\ da0 da5 '

when acting on the period 17(α), see Eq. (3.39) in [8]. Using this relation and the
definition x — α/U) and y = a1 \ a third order differential operator is derived from
Q)ι{x 3 4 6 } after a factorization θx from the left. As is evident, the linear differential op-
erators represent relations among the monomial with the homogeneous degree d or
the charge one in the Jacobian ring. In contrast, the differential operator (3.55)
represents a relation among the monomials of charge two. While the order one
differential operators have been related to the symmetry of the period under auto-
morphisms and thus to the combinatorial data of the polyhedron A*9 the form of
the operators for the charge two monomials above do not have a clear description
in terms of the combinatorial data. This is a typical feature we encounter in the
analysis of the singular models. We observe that despite having to use charge two
operators to factorize @ι, the principal part of the factorized operators still coincide
with those monomial generators of the defining ideal <fquot for A*oήc(XΔ) - just as
in the case of type I, II models. This means that the structure of the local solu-
tions is not affected by the usage of the charge two operators. That is, the same
properties in (3.38) hold for type III models as they do for type I and II models.
In our example here, the local solutions are described by the following topological
data:

Ίζd o Jζc^ ^ Kc^ ^ Kc^ ^
Γ^xxx ^ ' i V xxy J> 1^xyy J> yyy '

(3.56)
c2 . Jx = 32, c2 Jy = 42 .

We verify that the convex hull of the points {v*,...,v^0} is again reflexive
and defines a family of Calabi-Yau manifolds X^ with Hodge numbers (2.5)
hl'l(X/\') = 6 and /z 2 ' 1 ^/) = 71. Thus this is a case in which a polyhedron A*
results in topologically distinct Calabi-Yau manifolds X# and XA sitting inside two
distinct ambient spaces (because Σ(^1*) r e gφΓ(Δ /*) as we have seen). In fact XΔι
is not even in the list of 7,555 Laudau-Ginzburg models of [25].

Finally let us calculate the Stanley-Reisner ideal for the triangulation TQ in
(3.50). It is straightforward to see that the ideal is generated by

D2D5, D{D3D4D6 . (3.57)

Since the model (or the fan Σ(A*)) is only simplicial but not regular, the odd
homology groups of the singular toric variety can have torsion. Thus we con-
sider the homology groups over Q. Then the groups are given by the intersection
ring (3.22) s/*(PΣ{Δ*),Q) over Q. Thus it is Q[£>i,...,A>]/^" with the ideal J
generated by (3.57) and the linear relations among the vertices {v*,...,vj!-} as in
(ii) of (3.22) [38]. The normalization of the "volume form" of this ring becomes
less clear because the Euler number of the singular P ^ * ) is not given simply
by the number of the cones with maximal dimensions in Σ(A*). However we
know that the hypersurface XΔ in the general position does not meet the point



GKZ-Generalized Hypergeometric Systems in Mirror Symmetry 559

singularities of the PΣ(Δ*), and the hypersurface divisor class is given by [XΔ] =
D\ -\ h As- Therefore we naturally introduce a normalization of S^*(PΣ(A),Q)
using the Euler number of the hypersurface, rather than that of the singular ambient
space:

% ^ p = Hhι>\XΔ) - h1Λ(XΔ)). (3.58)

Here we evaluate the component of the top degree on the left-hand side and we
use the Hodge numbers hx>x{XΔ) and h2>x(XΔ) in (2.5). In the left-hand side, we
adopt the expression f | ( l -f A ) for the total Chern class [38] which is justified for
the nonsingular PΣ(Δ*), but naively extended to our singular case. We have verified
experimentally that the normalization (3.58) indeed results in the right topologi-
cal couplings and the linear form c2 J ' s . We may summarize our observation in
general,

For a smooth Calabί-Yau models XΔ in a singular toric variety 1*Σ(Δ*), the
intersection ring j/*o r i c(JQ,Q) is given by SΪ*(PΣ(Δ*)9Q)/ Annφi H \-Dp)
with the normalization determined by (3.58). (3.59)

The effect of taking the quotient by Ann(Di -\ \-Dp) may be replaced by the
ideal quotient /̂quot = <$'• (D\ + + Dp) as in the nonsingular case. In our example,
it is easy to derive the first two of (3.51) from (3.57) via the ideal quotient.

Finally we note that all notions in the theory of toric ideals apply to the singular
cases as well. Therefore it would be helpful to compare the Grόbner fan of a singular
model with that of a nonsingular model. By an analysis similar to (3.15), we obtain
the following elementary relations for the model P(4,3,2,2,1):

/ ( 1 ) = (—6,2,0,1,1,-1,3), /<*> = (0,0,1,0,0,1,-2),
(3.60)

/ ( 3 ) = (-6,2,1,1,1,0,1), / ( 4 ) = (-12,4,3,2,2,l,0).

The universal Grόbner basis are determined from the zonotope &^ as

yl\y\y\ylylysy6 - yι

0\ y\yiy\y\y\ - l2

y\y\y\y\y\ - y^y

ylyiy^y^yβ - yt yίyly^y^ys - yhβ, yiy, - y\}. (3.61)

In Table 2, we present the cones in the Grόbner fan with the ideals of the lead-
ing terms. There the cone τ\ corresponds to the maximal triangulation 7Ό (3.50)
and should be compared with τ\ in Table 1. The difference we should note is
that the ideal LTω(Jy) is not radical and does not coincide with the Stanley-
Reisner ideal STω. To see the consequence of this fact, recall that the generators
of the ideal LTω(J^) may be mapped to the symbol of the differential operators
@ι by (3.19). As we see in the Table 2 explicitly, we simply obtain higher order
differential operators rather than (3.54).
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Table 2. Grόbner cones with typical weights for P(4,3,2,2,1) The first cone τ\ corresponds to
the maximal triangulatίon TQ in the text

cone weight ω LΊ

τ\ (0,1,1,0,0,0,0)

τ 2 (0,0,2,0,0,1,0)

τ 3 (1,0,0,0,0,1,0)

τ 4 (1,0,0,0,0,0,1) ( j φ j φ {yo,y6}

τ5 (1,0,0,0,0,0,7)

τ 6 (0,0,0,0,0,1,3)

τ 7 (0,1,0,0,0,1,2) (y*,y

4. Applications to Mirror Symmetry and Mirror Map

In the application to mirror symmetry, the secondary fan can be regarded as
a collection of different phases of a type II string theory compactified on a Calabi-
Yau manifold (see for example [45,46]). The triangulations of Δ* which induce
different subdivisions of the fan Σ(Δ*)9 and their corresponding cones in the sec-
ondary fan are known to have a clear physical meaning in terms of orbifold as
well as the smooth Calabi-Yau manifold. Among them, the maximal triangulations
of Δ* or the finest refinements of the fan Σ(Δ*) constitute the Calabi-Yau phase.
In this phase we have the large radius limit of the smooth Calabi-Yau manifold
where the non-perturbative instanton corrections are suppressed exponentially. The
structure observed in (3.38) is consistent with the quantum cohomology ring near
the large radius limit.

In this section, we use several models to show how our general framework
applies.

4.1. Quantum cohomology ring. Quantum cohomology ring is one of the nontrivial
consequences of the local operator algebra of the type II string theory compacti-
fied on a Calabi-Yau threefold. In N = 2 string theory, two different kinds of the
local topological operator algebras, called (a, c)- and (c, c)-ring, correspond respec-
tively to the //^-type cohomology and the i/2'1-type cohomology in the topological
σ-model [47,48]. On physical ground, the (α, c)-ring receives quantum corrections
from σ-model instantons whereas the (c, c)-ring does not [21]. Mirror symmetry
which exchanges the two provides a powerful hypothesis to determine the quantum
cohomology ring in terms of the (c, c)-ring:

^ \XΔ^a), (4.1)

where q in the left-hand side represents the quantum deformation and a in the right-
hand side represents the classical deformation of the mirror hypersurface in (2.4).
More precisely, we may regard the right-hand side as the Jacobian ring of the mirror
hypersurface and we can use the theory of variation of Hodge structures to study
this side. The isomorphism can then be realized in terms of the flat coordinates
on moduli spaces. This map is called the mirror map. It is known that the mirror
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map has many remarkable properties such as modular property, integrality in the
^-expansion, etc. [13].

In the classical limit, the instanton corrections in the quantum cohomology ring
are exponentially suppressed. The monodromy of the periods near the limit is maxi-
mally unipotent [2]. This is the property we established in general in (3.38) for any
maximal triangulation of the polyhedron A* of type I or II. It is found in [8, 10]
that if we define the local variables via the basis {l^} of the Mori cone by

xk = (-l)>°ar', (4.2)

then we may express the mirror map as

7 2πi WO(JC,O) ' κ '

where qj = e2πzί/. The inverse map is denoted as JC* = x*(#). The quantum couplings
are related to the geometrical couplings, Kyk(x) := J Ω(x) Λ didjdkΩ(x) - Ω(x) be-
ing the holomorphic threeform - by

1 ( 1 \ ^ „ , ,dxtdxmdxn

(2πiy\Wo(x)J UΓ 'dh dtj dtk

(4.4)

Special geometry in the Z/2' ι -moduli space enables us to express the same couplings
using the so-called prepotential F(t) [49]:

khk (4 5)

For the prepotential, there is a concise formula given in [10] based on the local
structure (3.38):

(4.6)

where we define

D™ = dpι, Df> = I Σ * , l Λ Λ , D^ = -\ Σ KfmndPldPmdPn . (4.7)
z m,n ° l,m,n

It is also observed that the prepotential defined above has the following asymptotic
form with topological data in the leading terms, i.e.,

- I Σ **«** - E ^ » - <$x + W, (4.8)

where χ is the Euler number of XΔ and the (9{q)- terms represent the quantum
corrections. The first example understood was the case of the quintic in P 4 studied
by Candelas et al [1]. We denote by Nr(d) the predicted number of σ-model in-
stantons with multi degree (d\,...,dhi,\). The genus one (string 1 loop) topological



562 S Hosono, B H Lian, S -T Yau

amplitude [50] F{op has the form

+ const., (4.9)

where the dis, are irreducible parts of the discriminant of the hypersurface X^ and
rj and st are some parameters to be fixed by the asymptotic form of the topological
amplitude. It is known that the amplitude has an expansion of the form

F,top = const. - ? £

-ΣU ~qd)\ , (4.10)

where qd = qd

λ

ι — qh\]\λ and the number Ne(d) is the prediction for the number
of 1 loop instantons, i.e., elliptic curves in the Calabi-Yau manifold XA with multi
degree n.

In the following, based on our general observation (3.38), we analyze the large
radius limit. In this paper, we will be mainly concerned with the determination of
the Picard-Fuchs operators from which we can determine the quantum corrections in
a straightforward way. For example we can calculate the quantum corrected yukawa
couplings (4.4) using the Mathematica program INSTANTON appended to [10].
The required input data come from the Picard-Fuchs operators and the classical
couplings given here in Appendix C. For the interested reader, a complete list of the
Picard-Fuchs operators for the Calabi-Yau hypersurfaces with /z1'1 ^ 3 is appended
in the source file of this text [24]. The determination of the numbers Ne(d) is a little
involved because we need to know the form of the discriminants of the hypersurfaces
and need to fix unknown parameters rt and 57 in (4.9). We will list, in the appendix
to the source file, the form of the discriminants for some of our models. However
the detailed analysis, together with the analysis of the conifold singularities where
one Calabi-Yau model may be connected to another (cf. [51,52]) will be presented
elsewhere.

4 2. Selected Examples.

X9(3,2,2,l,l)2_168. This is a singular model of type III. The polyhedron A(w) for
this model has the vertices

v, = ( 2 , - 1 , - 1 , - 1 ) , v2 = ( - 1 , 3 , - 1 , - 1 ) , V3 = ( - 1 , 3 , - 1 , 0 ) ,

v4 = (-1,-1,3,-1), v5 = (-1,-1,3,0), v6 = (-1 ,-1 ,-1 ,8) , (4.11)

v7 = (-1,-1,-1,-1) , v8 = (0,2,-1,-1), v9 = (0,-1,2,-1),

with respect to the basis {/li,...,/^} for the lattice H(w) defined after (2.17). Then
the vertices of the dual polyhedron Δ*(w) are given by

v f = (1,0,0,0), vj = (0,1,0,0), v ; = ( 0 , 0 , l , 0 ) ,
(4.12)

v* =(0,0,0,1), vj = ( - 3 , - 2 , - 2 , - 1 ) , vj = (-1 ,-1 ,-1 ,0) .
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There are no integral points inside the polyhedron except the origin. For the maximal
triangulation of Δ*{w), we obtain

To = {(0,3,4,5,6), (0,2,4,5,6), (0,1,3,5,6), (0,1,2,5,6), (0,1,3,4,6),
(4.13)

(0,1,2,4,6), (0,2,3,4,5), (0,1,2,3,5), (0,1,2,3,4)}.

This triangulation induce the fan Σ(A*)9 however the resulting fan is singular
because the simplex (0,2,3,4,5) has volume three. In fact we find two integral points

v* = (v;+v?)+2(v;+v?) = ( , 2 , - l , - l , 0 ) , vg = 2 ( v ? + v ? )

3

+ w + v ? ) = (-1,0,0,0) which
are inside the cone spanned by v^v^v^ and v| but outside the polyhedron, indicat-
ing that this model is of type III. As described in the previous section, we subdivide
the fan Σ(A*) by Vη and Vg to obtain a regular fan Σ{A*\Qg. The intersection ring
-4*(Pz(zi*)re ,Z) is described by the ideal (i) in (3.22) with generators

DχD
7
, DiDs, D

6
D

Ί
, D

6
D

S
, D

X
D

4
D

5
, D

2
D

3
D

6
 ,

(4.14)
D

2
D

3
D

7
, D

4
D

5
Dz, D

2
D

3
D

4
D

5
 ,

and the linear relations (ii) among the integral points v*,...,Vg. The hypersurface

divisor [XΔ\ = D\ + + Dβ + 2D7 + 2Dg determines the ideal quotient «/qUOt It is

generated by

D
4
D

5
 - D

4
D

6
 + 4D

3
D

6
, D

λ
D

4
D

5
, D

7
, D

8
 , (4.15)

together with the linear relations. Starting from those operators Q)\ whose lead-
ing terms match (4.14) (under the correspondence θa, <-» Dt{i = 1,...,/?)), we can
derive the Picard-Fuchs operators via some nontrivial factorizations.

We first note that the generator D\D4D5 induces /{lj4j5} = (—1,1,0,0,1,1,
-2,0,0) in L. From this we immediately see that the operator

'*"5> " dax da4 da5 da0 \da6 J ( }

0 \da6

is one of the Picard-Fuchs operators. To find the other, we need to derive the
following relations from the analysis of the Jacobian ring of the hypersurface:

δ d 3a\ ί d \ ao d d

da0

d

da0

daΊ

d

das

ao \daoj

3aιa4a5 /

I6a2a3a6 \

aoa4 d

I6a2a3 da4

t

d ^

daβ)

d

daβ

Zβ dao das

2

i a0a4a5

' I6a2a3aβ

a0 d d

4a2 da3 daβ

d

da4

d

das

The derivation of the above relations may be done most efficiently by representing
the hypersurface in terms of the homogeneous coordinate of P(3,2,2,1,1):

W = z\ +z$z4+z4

3z5 +z9

4+z9s . (4.18)

The mirror of this hypersurface, whose period we are analyzing, can be constructed
by the transposition argument of Berglund and Hubsch [34]. We consider the
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orbifold W/Z4 x Z 9 with the transposed potential W. Relating to our toric descrip-
tion, we may write the transposed potential

W = a\z\ + a2z\ + a-$z\ + a^z2z\ -\-a5Z3zl + aoZ\z2Z2Z4z5 + a^z\z\z\ , (4.19)

which is regarded as the degree 12 hypersurface in P(4,3,3,1,1). Then the integral
points v̂ Vg are mapped, respectively, to degree 24 (charge two) monomials
z\z\z\z\ and z\z\z\z\ under the monomial-divisor map [43]. The equations in
(4.17) represent the relations among the charge two monomials in the Jacobian
τmgC[zu...,z5]/(dW).

We now focus on the generators D\Ds and D6D7 which correspond to the prim-
itive collections whose primitive relations are /{i,8} =("2,1,0,0,0,0,0,0,1) and
/ { 6 7 } = (0,0,0,0,-1,-1,1,1,0) in L. We find that the operator

0 = 3 ^ ^ _ ^ S (4.20)
a0 δa0

 { 1 '8 } a\ δa0

 { 6 '7 }

has the property that aoΘΠ(a) = (θao - l)Q)2ΐl{d). Using this we obtain a complete

set of the Picard-Fuchs operators in the Π(a) gauge,

®! = θy{βy ~ θχf ~ y(3θχ + θy + l)(3θX " Iθy ~ l)(3θX " 2θy) ,

^2 = (θx - θy)
2 + (0χ - θy)(3θx - 2θy) + 4^X(30X - 2β,)

- 2 6 ^ - 1X3^ + 6̂  + 1) (4.21)

-3y(3θx-2θy- l)(3θx-2θy)

- 4Sxy(3θx + θy

where x and y are defined by (4.2) using the basis / ( 1 ) = (-3,0,1,1,-1,-1,3,0,0)
and l^ = (—1,1,0,0,1,1,-2,0,0) generating the Mori cone in the reduced lattice
{leL\h = h = 0}.

Using the hypersurface divisor [XΔ\ — D\ + * + D^ + 2Dη + 2Z)g we determine
the following topological data:

jy-cl __ c v-cl Q jy-cl i -i jy-cl 17
i Vxxx u ' 1^xxy y>> 1^xyy i J » JJ^ '

c2 Jx = 48, c2 Jy = 74 .

According to the general form (3.38), these topological data determine the local
solutions of the Picard-Fuchs equations (4.21) near x = y = 0. We notice that this
model has the same Hodge numbers as the model ^(2,2,2,1,1)?_1 6 8. However there
is no linear transformation which relates the topological data: the cubic and linear
forms of the two manifolds. By Wall's theorem [53] we see that the two manifolds
are topologically distinct.

Non-LG model related to Xg(3,2,2,1,1 ) 2 _ 1 6 8 . For the model analyzed in the last
subsection, we can verify that the polyhedron A1* — Conv. ({v*,..., Vg}) is reflexive
and the complete fan Σ(A'*) for a triangulation of A'* (i.e., the triangulation TA
below) coincides with Σ(A*)TQg. Therefore we have another family of Calabi-Yau
hypersurfaces XΔ> in the same ambient space P ^ ' * ) = ̂ Σ(A*)K - The hypersurface
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represents the divisor class

[XA,] = Dx + + A> +Dη +DS . (4.23)

The dual polyhedron A'* is the convex hull of the points v*,...,Vg. The poly-
hedron A' has vertices V2,v3,...,V9 (the corner vi is deleted) and

vio = (1,-1,-1,2), vn =(1,0,-1,0) , v i2 = ( 1 , 0 , - 1 , - 1 ) ,
(4.24)

v 1 3 = (1 ,-1 ,-1 ,-1) , vi4 = (1,-1,0,0), v i s= ( 1 , - 1 , 0 , - 1 ) .

By the formula (2.5), we know that Hodge numbers of X^ are A1'1 =4 and A2'1 =
85. It turns out that this model is not in the list of [25]. Also this model gives an
example of a topology change due to flop operations [43].

There are 37 triangulations for the polyhedron A'* and among them two tri-
angulations give us different resolutions of the ambient space. The first one is the
triangulation corresponding to the subdivision £(zl*) r e g:

TA = {(0,3,5,7,8), (0,2,5,7,8), (0,3,4,7,8), (0,2,3,5,8), (0,2,3,4,8),

(0,1,3,5,6), (0,1,2,5,6), (0,1,3,4,6), (0,1,2,4,6), (0,1,2,3,5), (0,2,4,7,8),

(0,1,2,3,4), (0,3,4,5,7), (0,2,4,5,7), (0,3,4,5,6), (0,2,4,5,6)}. (4.25)

The second triangulation TB is TA but with the last four simplices replaced by

(0,3,4,6,7), (0,2,5,6,7), (0,3,4,6,7), (0,2,4,6,7) . (4.26)

We verify that the difference in the two triangulations is due to two different trian-
gulations of the two dimensional face (square) (V4, v^vj, v£). They are {(v^v^v^),

< V 4> V 5> V 7» f θ Γ TΛ> a n d {(V4>V6>V7>> ^ 5 > V 6 > V 7 » f θ Γ TB-

For the triangulation TA, we have in (4.14) the generators of the Stanley-Reisner
ideal. Each generator DhDh Dik determines uniquely the element /{/M 2, jky in the
lattice L, and in turn the operator <&ι . } . We observe that some combinations of
the operators factorize to give a complete set of Picard-Fuchs operators. The prin-
cipal parts of these operators generate the ideal J^quot as in (4.15). In Appendix A,
we list the resulting Picard-Fuchs operators in terms of the local coordinates x9 y, z
and w defined by if = (-1,1,0,0,1,1,-2,0,0), if = (-1,0,0,0,1,1,0,-2,0),
if = (-1,0,1,1,0,0,0,1,-2) and if = (0,0,0,0,-1,-1,1,1,0), respectively. The
intersection ring (3.36) determines the topological data as follows;

KχlcX = 1 7 , KXXy = 26, Kχyy = 3 6 , Kyyy = ^ ^ ^ X X Z ^ ^ >

j/Ά,cl iQ vA,cl o^ vA,cl o vA,cl i i Ί/Ά,cl Λ
Kxyz ~ l δ ' Kyyz ~ Zό> Kxzz ~ y> Kyzz ~ 1A» Kzzz ~ 4 '

jyΆ,cl on ΊSΆ,CI ΓΛ jζA,cl η^y τsΆ,cl ^η jyΆ,cl o/r

xxw » xyw ' yyw ' xzw ' ' yzw ^ '

Kzzw = ^ J Kxww = 8^' Kyww ~ 1^8, ^ z ^ = 54, KWww = 162 ,

c2 . J^ = 74, c2-J* = 100, c2 J? = 52, c2 ^ = 144 . (4.27)
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For the triangulation 7#, we find the generators for theStanley-Reisner ideal

D2D3D6, D2D3D7 . (4.28)

We observe again some (less trivial) factorizations among the operators {βι{ϊ t t }}
and their combinations in order to obtain the Picard-Fuchs operators listed in
Appendix A. The local coordinates x, y,z and w for this triangulation are defined

by if = if + if, If = if + if, if = if + if and if = -if, respectively.
Then the topological data turns out to be

jfB,cl A j^B,cl o jy-B,cl I Λ
Kxxw — 4> Axyιv — δ> Kyyw ~ 1 U •>

K^ = 4, K*£ι = 5, KB

Z£ = 2, (4.29)

c2 JX

B - 74, c2 JB

y = 100, c2 Jf - 52, c2 . Jξ = 24 ,

where the cubic couplings among Jx,Jy,Jz are the same as in (4.27) and KB\fw =
KBι^[ = 0 (* =x,y,z). As we observe in (4.29), the topological data for the phase
B indicate that the Calabi-Yau hypersurface has the property of a K3 fibration [14].
In fact, we verify that Aχ3 := Conv. ({v^, v|, v|, v^Vy, Vg}) is a three dimensional
reflexive polyhedron. We observe that c2 Jt = 24 for some / (cf. (4.29)) is nec-
essary for the Calabi-Yau hypersurface to contain a K3. We also remark that the
existence of a three dimensional reflexive polyhedron zj£3 in A* does not always
yield the above topological condition. We will return to this point later in the final
section.

Xi4(7,3,2,l,l)2_260. This model provides us an example in which we have two dif-
ferent resolutions of point singularities in the ambient space, however the difference
of the two resolutions does not affect the topology of the Calabi-Yau hypersurface.
This model has also been solved in [11].

Let us summarize the toric data for this model. The reflexive polyhedron we
consider is given by the convex hull of the following integral points:

V! = ( 1 , - 1 , - 1 , - 1 ) , v2 = (-1,3,0,-1), v3 = ( - 1 , 3 , - 1 , - 1 ) ,

v4 = (-1,3,-1,1), v 5 = ( - 1 , - 1 , 6 , - 1 ) , (4.30)

v6 = (-1,-1,-1,13), v7 = ( - 1 , - 1 , - 1 , - 1 ) ,

with respect to the basis {yli,...,/^} of H(w) given after (2.17). Then the vertices
of the dual polyhedron A*(w) are

v ί = (1,0,0,0), v * = (0,1,0,0), v 3 *=(0,0, l ,0),

(4.31)

v j = (0,0,0,1), v5* = ( - 7 , - 3 , - 2 , - 1 ) , v * = (-2,-1,0,0) .

We will find one point Vη = (-1,0,0,0) on a codimension one face (v|, vj, vj, v|, v£).
If we triangulate the polyhedron A*(w), we will find the following two differ-
ent triangulations TA and TB which induce the complete fans Σ(A*)A and
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Fig. 2. Two different triangulations TA (left) and TB (right) for the models X 7(7,3,2,1,1) In

the left, we see three 3-simplices whereas in the right we see two 3-simplices This results in

different regular fans Σ(Zl*)^e g and Σ(zJ*)^ g for the different desingularizations of the ambient

space However the Calabi-Yau hypersurfaces in them have the same topology

respectively;

TA = {(0,4,5,6,7), (0,3,5,6,7), (0,3,4,6,7), (0,2,4,5,7),

(0,2,3,5,7), (0,2,3,4,7), (0,1,4,5,6), (0,1,3,5,6),

(0,1,3,4,6), (0,1,2,4,5), (0,1,2,3,5), (0,1,2,3,4)}. (4.32)

Tβ can be obtained from TA by replacing the first three simplices of TA by
(0,3,4,5,7) and (0,3,4,5,6). The difference between TA and TB are depicted in
Fig. 2. Since it turns out that some of the cones in the fan Σ(A*) are singular
for both triangulations, we need to subdivide them. In the case of TA, we find the
following integral points make the cones regular:

_ ι

10 'Λ V 1

and for 7# we find

. 1, .

(4.33)

V*0 = 2 (

-(

(4.34)

Subdividing Σ(A*)A and Σ(A*)B by these integral points results in the regular fans
Σ(A*)A

eg and Σ(A*)^g, respectively, both of which do not come from any triangu-
lation of the polyhedron A'* - the convex hull of all the integral points. Using each
of the two regular fans, we determine the basis for the Kahler cone, and the Mori
cone of the ambient space. We summarize in Appendix B the bases {ηA,..., ηA} and
WB^'-^B} °f t n e M 0 I i cones for Γ(zd*)^eg and Σ(A*)^g respectively. We observe
that the Mori cones for both ambient spaces are not simplicial, implying that neither
are the Kahler cones of the ambient spaces.
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(-3,7)

Fig. 3. The secondary fan for the polyhedron A*(1,3,2,1,1) The Kahler cones of the smooth

ambient spaces ^Σ(Δ*Ϋ a n c * ^*Σ(Δ*)B n a v e different restrictions to the secondary fan The re-

stricted Kahler cone for the former space is given by the union of the cones parametrized by Γ4

and Γ5, while for the latter it is given by the cone parametrized Γ4

The divisor [XΔ] of the form (3.46) determines the same intersection ring for the
two hypersurfaces, and for both cases we find that the divisors A 0' ^ 7) decouple.
In fact the ideal ,/quot is generated by

D2D6, D3D4D5, (/ ^ 7) , (4.35)

together with the linear relations (ii) in (3.22). We remark that in this model both
{V2>vό} a n d {V3>v4>v5l a r e m e primitive collections of Σ(A)feg and Γ(zJ)feg. The
reduced lattices which we denote L'A,L'B in the two cases are generated by

if = 3η2

A +η3

A +2η4

A + 2η5

A + 4η6

A = ( - 4 , 2 , 1 , 0 , 0 , 0 , 1 , 0 , . . . , 0 ) ,

if = 2ηι

A

for L A and

(4.36)

+ f]\ + n\ + 2η\ = ( -2,1,0,2,1,1, - 3 , 0 , . . . , 0 ) ,

+ 2η% = (0,0,1, - 4 , - 2 , - 2 , 7 , 0 , . . . , 0 ) ,= 3η2

B + 6η3

B + Ίη% + ιy| + 2η%

- 2ι/i + ^ = (-2,1,0,2,1,1, - 3 , 0 , . . . , 0 ) ,

(4.37)

for L'B. We remark that the Mori cone for the ambient spaces are not simplicial
but their intersection with L^'s are. We also note that two restricted cones for
Σ(A*)feg and Γ(Zl*)feg have an intersection, in fact the former is included in the

latter since if = if and if = if + 21 f . We draw in Fig. 3 the restricted Kahler
cones in the secondary fan for the polyhedron A*, more precisely in the secondary
fan for the point configurations vj, v*,..., v£ (we delete the point Vj corresponding to
automorphisms). Since «/quot is the same for both Σ(Δ*)^g and £(zl*)feg, we expect
that the two triangulations define the same Calabi-Yau hypersurface in different
ambient spaces, i.e., the only difference is in the topology of the ambient space
which is irrelevant to the hypersurface.
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Now we derive the Picard-Fuchs operators based on the triangulation 2^. We
note that this model is of type III with non-trivial automorphisms. This is the most
general situation. The point Vy on a codimension one face is a root vector in (2.10)
for the fan Σ(A). According to (2.12), this results in the following linear operator
annihilating the periods:

%' = 2ax — + a0 — . (4.38)
dao daΊ

Now we look at the operators which correspond to the first two generators in (4.35),

2 - ——-1—
/ { 2 > 6 } da2da6 \da7,

_AAJ ίLAA
{ 3 > 4 ) 5 } da-$ <3<24 das dao daβ da%

Starting with these operators, we derive the Picard-Fuchs operators for the period
restricted to the sublattice (4.36). It is easy to see the first operator %{26} combined
with the linear operator (4.38) results in a second order differential operator. For
the operator ^/ { 3 4 5 } , we need to look into the structure of the Jacobian ring of the
hypersurface. For this, as in the previous example, it would be most efficient to
express the hypersurface in terms of the homogeneous coordinates:

W = z\+ z\zz +z]+ z\4 + z\A , (4.40)

in P(7,3,2,1,1). Then the transposition argument in [34] applied to this hypersurface
indicates that the mirror is given by the orbifold W/Z2 x Z14 with

W = a\z\ -+- a2z\ + a^z2z\ + ύ^z]4 + asz\4

-aΊz\z\z\z\, (4.41)

in P(14,7,3,2,2). We note that, in this form, the automorphism used for (4.38) is
identified with

z\ H-> z\ + ε Z2Z3Z4Z5, Zi ι-> Zi (i ^ 2 ) , (4.42)

in infinitesimal form. The deformation parameters a%,...,a\\ corresponds to the

degree 56 (charge two) monomials Z2z\z™zψ, z\z^z\z\, z\z\z\z\ and z\z\z\z\,

respectively. Since we can verify (1 - ^ψ^)z2z\z^zf = λ-^^z\z\z\z\ + 2-ψ

z\z\z\ modulo terms in the Jacobian ring (dW) which vanish inside the period
integral, we have the relation

da)\ % da6 da0 a^ \ da6

where we use (4.38) in the derivation. If we combine (4.43) with the opera-
tor ^ / { 3 4 5 } in (4.39), we will obtain a third order differential operator. Thus we
obtain the Picard-Fuchs operators which determine the local solutions with the
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property (3.38);

2X = θx(θx - 30,) - 4x(2θy + 4ΘX + 3)(2θy + 4ΘX + 1),

^ 2 = (1 - βAxfθl - 64{U2x2y(θx - 30,)(20, + 40X + 1)

+xy(θx - 30, - l)(θx - 3θy)} - (1 - 64x){ll2xy(θx - 3θy - 1)

x(θx - 30,)(20, + 4ΘX + 1) + ^(0* - 30, - 2X0* - 30, - 1)(0X - 30,)} ,

(4.44)

with x = /A] = ^ s y = a1? = aJ^ψi, The topological data for the local solu-
aQ aQa6

tions about x — y = 0 are given by

c2 - J* = 66, c2 Jf = 24 .

The analysis for Γ# is the same as the above and the Picard-Fuchs operators are
given by (4.44) with the variables (XA^A) '•= (x,y) changed to {XB^B) under the
relations XA = xβy^yA = yβ- The topological data are connected by the linear rela-
tions which results from these relations.

5. Conclusion and Discussions

We have analyzed the GKZ hypergeometric system - which we call A*-hyper-
geometric - for a reflexive polyhedron. The characteristic feature of this system in
mirror symmetry is that it is Γ-resonant in general. Especially, for a maximal trian-
gulation To of the polyhedron A *, the monodromy of this system becomes maximally
unipotent. We have found close relationships between the Stanley-Reisner ideal for
the triangulation To and the ring of the leading terms of the A*-hypergeometric
system at the maximally unipotent point. For the models of type I and II, we
have proved these two ideals are actually equal, using the general theory of toric
ideals. We have found a closed formula for the local solutions near the maximally
unipotent point, in terms of the intersection form. As was observed in [8, 10], the
A*-hypergeometric system is reducible. If we extract the irreducible part of the sys-
tem by factoring out the operator 0βo, the resulting system gives a sufficient set of
differential operators to determine the quantum geometry of moduli space. We have
verified our observations for the Calabi-Yau hypersurfaces in weighted projective
spaces up to A1'1 ^ 3, including models of type III.

In the table of Appendix C, we have summarized the topological data for each
models. There we can see several isomoφhisms or relations between different mod-
els. For example we have AΓ/4(7,2,2,2,1 )2_240 ^ **(3,1,1,1, l) 2_ 2 4 0 , ^ ( 5 , 3 , 3 ,
3,1)3_H4 = XU^2^2^)-u4 and ^ ( 9 , 4 , 2 , 2 , l) 3_ 2 4 0 ^ ^(4 ,2 ,1 ,1 , l) 3_ 2 4 0 , all
of which can be explained by a fractional change of the variables [54]. Also there
can be a reflexive polyhedron A*(w') in another reflexive polyhedron A*(w).1 For
example, by listing all integral points in the polyhedra, we see A*(2,2,2,1,1) C

observation has also been made in Ref [11]
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zl*(3,3,3,2,l), zl*(6,2,2,l,l)czl*(9,3,3,2,l) and zl*(l5),z!*(2,14) C J*(3,2,2,
2,1) C zl*(5,3,3,3,1). Since all integral points in A*(w') are contained in Δ*{w\
the inclusion relation J*(w') C A*(w) implies that the fan Σ(A*(w)) is a refinement
of the fan Σ(A*(w')). This reminds us of the cases we encountered in the singu-
lar models of type III, in which we found that topologically different Calabi-Yau
hypersurfaces can sit in the same ambient space.

To see the details, let us consider the case zJ*(6,2,2,1,1) C Zl*(9,3,3,2,1). The
integral points in zl*(9,3,3,2,1) with respect to the basis given after (2.17) are VQ =
(0,0,0,0), vf =(1,0,0,0), v; =(0,1,0,0), v3* =(0,0,1,0), vj =(0,0,0,1), v| =
(-9,-3,-3,-2), v6* = (-6,-2,-2,-1), v* = (-3,-1,-1,0) and v * = ( - l , 0 ,
0,0), where the last points v8 are on a codimension one face of the polyhedron.
The polyhedron zl*(6,2,2,1,1) has integral points v^v^v^v^v^v^v^Vg, where
the point v8 is also on a codimension one face. Therefore Σ(A*(9,3,3,2,1)) is a
refinement of the fan Σ(A* (6,2,2,1,1)), and we will have two different Calabi-Yau
hypersurfaces in the same ambient space Pr(j*(9,3,3,2, i)) 2 According to (3.46), the
divisor for the hypersurface is given by

[XAM]=Dl+D2+D3+D4+D5+D6+D7+Ds, (5.1)

for the model X18(9,3,3,2,1)L186 and

+ 2D5 + D6 + D7 + Ds , (5.2)

for the model X12(6,2,2,1, l ) i 2 5 2 . This can also be understood by the fractional

transformation on the defining polynomial. The polynomial W(z) = W(z) for the
mirror of X18(9,3,3,2,1)^_186 is

W = axz\ + a2z\ + a3z\ + aAz\ + asz\* + aozιz2z3z4z5 + a&fcf + aΊz\z\ , (5.3)

in P(9,3,3,2,1)/(Z6)2, where the deformation by as, which corresponds to the
divisor Z)85 is eliminated using the automorphism. Now consider the transforma-
tion ξi — Zi {i — 1,2,3), 4̂ = z^/4, ξ5 = zιj4z5. Then the potential becomes, if we set

W(ξ) = axξ\+ a2ξ
6

2 + a3ξ
6

3 + a4ξ\2 + *ofifcfckfc + aβξf + aΊξ\ξ\ , (5.4)

which can be regarded as a hypersurface in P(6,2,2,1,1)/(Z^ x Zi 2 ), the mirror
of X12(6,2,2,1,1)?_252 The additional quotient by ΊJ\2 comes from the identifi-
cation (£4, ξ5) = (a4ξ4,0ίξs) with α4 = 1 (see [8] for the detailed form of the ac-
tions for 2J\). The Mori cone of each model may be obtained by restricting the
Mori cone of the ambient space to the sublattice Z/, namely / e L with /8 = 0 for
J*(9,3,3,2,1) and l5 = /8 = 0 for J*(6,2,2,1,1). Thus the inclusion of the dual
polyhedron, A*(wf) c A*(w), implies an embedding of the (quantum) Kahler mod-
uli of XΔ{W') to that of XA(W), or equivalently under mirror symmetry, the complex
structure moduli for the mirror XΔ*(W') to that of X^*(W).

As a different kind of inclusion relation, we also observe that the dual poly-
hedron A*K3(w') for some K3 hypersurface [55] sits inside the polyhedron A*(w)
for a Calabi-Yau hypersurface. It has also been observed that if, in addition, we

2 Since the ambient space is still singular, we need further subdivisions of some cones However the
following arguments are valid for the fully resolved ambient space
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have the following specific form of the topological data; C2 K = 24, J -K -K —
K - K K = 0 for some divisor class K, then the following "CY-K3 correspondence"
occurs: the Picard-Fuchs operators for the Calabi-Yau manifold specialize to those
for a K3-model under a suitable limit of the variables. In our list, the following
models shows these specific properties: JΓ8(2,2,2,1,1)?_168, X1 2(6,2,2,1,1)2_2 5 2,
^i2W>3,3,2, 1)_ 1 3 2 , X 1 8(9,3,3,2,1)_ 1 9 2, X24(12,8,2,1? l)_48o> ^io(4?2,2,1,1)_|9 2

and X1 6(8,3,3,1, l ) ί 2 5 6 . Also our non-Landau-Ginzburg model found in relation to
X9(3,2,2,1,1)?_168 shows this property as well. The K3 polyhedron A*κτ> contained
in the reflexive polyhedron Δ'* provides an example of non-Landau-Ginzburg K3
hypersurface. We have noticed that the specific form of the topological data de-
pends on how we triangulate the polyhedron, namely in this example, the CY-K3
correspondence occurs only in the phase B (see (4.29)). Some of the models where
the CY-K3 correspondence occurs has been studied extensively, and has provided
strong evidence for the so-called heterotic-type II string duality [16, 14, 17]. We
believe that our general framework outlined here will provide powerful techniques
for studying questions in heterotic-type II duality.
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Appendix A. Picard-Fuchs Equations for the Model in Section 3

This non-Landau-Ginzburg model is defined by the reflexive polyhedron Δ'* which
has the property Σ(A'*) = Γ(zl*) r e g for A* = A*(3,2,2,1,1). There are two Calabi-
Yau phases, phase A and phase B, which are connected by flop operations.

Phase A

®\ = θx(θz - 2θy + θw)-xw(θx + θz + θy + 11)(0W - 2ΘX),

Q}2 = θχ(θy ~ 2ΘZ) - XyW2(θχ + θz + θy + 2)(θχ + θz + θy+l),

^ 3 - (ΘW ~ 2θχ)(θZ - 2θy + θw) - W(θχ + θy~ θW)(θχ + θy~ ΘW) ,

@4 = (20* - 0W)(20Z - θy) - yw(θx + θz + θy + l)(0z - 20, + 0 w ) ,

^5 = (0X + θy- Θwfθχ-X(θχ + θz + θy + l)(θz ~ 2θy + ΘW~ \)(θ z ~ 2θy + ΘW) ,

®6 = (θχ + θy-θWf(θy-2θZ)

-y(θx + θz + θy + 1)(0Z - 2θy + θw - 1)(0Z - 20, + θw),

^7 = ΘZ(ΘX + θy~ θWf + 3yZ(θχ + θZ + θy+ 1)(0Z - θy + 0W)(0, ~ 2θZ)

-yθz(θz - 2θy + θw- 1)(0Z - 20, + θw) - xθz(θw - 2ΘX)(ΘW - 2ΘX - 1) ,

^ 8 = 9θ2

χ - IWXΘW + 250,0, - 410X0Z -f 16ΘZΘW

-4$yzw(θx + θz + θy + 1)(0, - 20Z) - 9x(0w - 20,)(0W - 2 0 , - 1 )

+j;w(0x - 2ΘZ)(ΘZ - 2θy + 0W) + ^ ^ ( 0 , + 1)(0X + 02 + 0, + 1)

+xw(9θz + 100, + 9ΘW + 9)(0W - 20 X ),
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^ 9 = 30*0, - 6ΘXΘZ - 6θwθy + 3θwθy + 3θ2

y - 9θyθz + 13θwθz + 3θ\

-3y(θz - 2θy + θw - l)(θz - 2θy + θw) - 3z(2θz - θy + 1)(20Z - θy)

-xwθz(θw - 2ΘX) + >>w(502 + 30W + 3)(02 - 2θy + 0W)

+ x j w 2 ( ^ + 0Z + 0, 4- 1)(80Z + 6ΘW + 12) . (A.I)

Phase B:

®l = ΘX(ΘX -θy + θz- θW)-X(θχ + θy + 0Z + 1X0, - 0χ - 0W) ,

^ 2 = θx(θy - 2ΘZ) - xy(θx + θy + 0Z + 2)(0X + 0, + 02 + 1) ,

^ 3 = ^ " W(θ, - θχ - θW)(θχ ~θy + θZ- ΘW) ,

^ 4 = (θ, - θx - θw)(θy - 2ΘZ) - y(θx + ^ + θz + 1)(0X - 6̂  + 0Z - 0 W ) ,

^ 5 = 90X0W - 2θxθy - \6ΘZΘW - \6ΘXΘZ + 160,0* - 48yz(θx + 0, H- 0Z + 1)

(0, - 20Z) - 16yθz(θx -θy + θz- θw) - 9xw(θy - θx - θw ~ 1)

(θy -θx- θw) - 4xy(2θx - 3θy + 20W - 1)(0X + θy + 0Z + 1)

= 3ΘXΘW + 80,0W + 60X0, ^ W X

20Z - l)(θy - 2ΘZ) - I6yz(θx

- θy + θz - θw - 1)(0, - θy + 0z - 0W)

-θx-θw- \)(θy -θx- θw) - 8yθw(θx -θy + θz- θw)

-4xy(5θw + 20X + 0, + 3X0* + 0, + θz + 1) - x(30w - 2θy)(θy - θx - θw) .
(A.2)

Appendix B. Basis of the Mori Cone for P(7,3, 2,1,1)

For this weighted projective space, we have two different desingularizations of the
ambient space, Έ*Σ(Δ*γ a n d Έ*Σ(A*)B ^n the text. For each desingularization, we obtain

the basis of the Mori cone following [37]. We see the Mori cone for Σ(zl*)feg is
not simplicial.

For the regular fan Σ(A*)feg:

η\ = ( 1,0,0,1,0,0,-2,-1,1, 0, 0, 0 ) ,

^ = ( - 2 , 0 , 0,0, 1, 1, 1, 1,-2,0,0,0),

^ = (-2,0,1,0,1,1, 0, 1,0,-2, 0, 0 ) ,

^ = ( 2 , 0 , 0 , 0 , - 1 , - 1 , 0,-2, 1,1,0,0),

^ = ( - 2 , 1 , 0 , 0 , 1 , 1 , 1, 0,0, 0,-2, 0 ) ,

f/5 = ( 1 , 0 , 0 , 0 , - 1 , - 1 , - 1 , 0, 1,0,1,0),

^ = ( - 2 , 1 , 1 , 0 , 1 , 1 , 0, 0,0, 0, 0 , - 2 ) ,

^ = ( 1 , 0 , - 1 , 0 , - 1 , - 1 , 0 , 0 , 0 , 1 , 0 , 1 ) . (B.I)

For the regular fan Σ(^*)feg:

^ = (0,0, 0,1, 0, 0,-2,0, 0, 0, 1,0,0),

η2

B = (-1,0,0, 1, 0, 0,0, 1,1,0,0, 0 , - 2 ) ,
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i/l = (-1,0, 0,0, 1, 1, 0,0,-2, 0, 0,0,1),

η4

B = ( 1,0,0,-1,-1,-1,1, 0,1,0,0, 0, 0),

i/l = (-2,0, 1,0, 1, 1, 0,1, 0,-2, 0,0,0),

ι/l = (2,0,0, 0,-1,-1,0,-2,1,1,0, 0, 0),

i/J = (-2,1, 0,0, 1, 1, 1,0, 0, 0,-2,0,0),

i/l = (-2,1,1, 0, 1, 1,0,0,0,0,0,-2,0),

i/l = ( 1,0,-1,0,-1,-1, 0,0, 0, 1, 0,1,0). (B.2)

Appendix C. Topological Data for Models with A1*1 ^ 3

We list the topological couplings for the Calabi-Yau models with A1'1 _ 3. We fol-
low the conventions in [8, 10], i.e., 8 J 3 + 4J2./2 for the coupling means A J ^ = 8,
K^XιX2 = 4 and others are zero. The superscript in each model shows the type of

the model defined in (2.16). The divisors Jk and the variables x^ = (—l)/o a1

are connected by the identification J^ = m(θx(k)) made in (3.27) and (3.37). Ac-
cording to Wall's theorem cited in Sect. 4, the topological type of the Calabi-Yau
manifolds are classified by the classical Yukawa couplings (cubic form) and the
invariant c2 Λ (linear form) on Hι'ι(X,Z).

For the interested reader we list the concrete basis {/(A:)} for the Mori cone in
the file appended to [24]. The basis for the Mori cone and the topological couplings
in this list determine the prepotential F(t) in (4.6).

Fermat type Calabi-Yau hypersurfaces

model topological couplings c2 J

^'(2,2,2,1,1)2_168 8 J , 3 + 4 J 1

2 J 2 (56,24)

^(6,2,2,1,1) 2_ 2 5 2 4 J , 3 + 2 J , 2 J 2 (52,24)

^(7,2,2,2,1 ) i 2 4 0 2Jι

3 + 7Jι2J2+2lJ]J2

2 + 63J23 (44,126)
τ/"I / o s~ i i i \ 2 f\ j 3 i ^ 7" 2 r I 7" 7~2 /i ΛΛ O/C\

Ajg^y, O, 1, 1, lj_54o "«̂ 1 +J«/l J2-\-J\J2 yiΌl^DΌ)

X/ 2 (6,3,1,1,1) 3 _ 3 2 4 18/!3 + 6Jι

2J2+2JιJ2

2 (96,36,102)

^(3,3,3,2,1)L 1 3 2 6Ji 3 + 4 J 1

2 J 2 + 8Ji 2 7 3 + 4 J i / 2 / 3 (48,24,56)

^(5,3,3,3,1 )
3
_

1 4 4
 37i

3
 + 5 J

x

2
 J

2
 + 5Ji J

2

2
 + 5/

2

3
 (42,50,120)

+10 Jλ

2J3 + \5JιJ2J3 + 15J 2

2 J 3

+30 Ji J 3

2 + 45 J2 J3

2 + 90 y3

3

Xf8(9,3,3,2,l)3_192 3 J 1

3 + 2 J 1

2 Λ + 4 J 1

2 J 3 + 2 ^ / 2 / 3 (42,24,52)

X2Vl2,8,2,l,l)3_480 8 J 1

3 + 2 J 1

2

t / 2 + 4 y 1

2 y 3 (92,24,48)

+JιJ2J3-\-2JλJ3

2
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Non-Fermat type Calabi-Yau hypersurfaces

model

X«(3,2,2,l,l)2_1 6 8

A?(2,2,l, 1,1 ) 1 1 8 6

^(3,2,1,1,1)1^

^(3,1,1, l , ! ) ! ^
]^I /7 α 9 1 1 γ2

A 1 4 ^/, J , Z , i, i;_26o
A 1 5 p,^ , J , Z , i ;_1 2 6

^io(3>2,2,2,1)_144

X,V3,3,2,1,1)1168

XF0(10,4,3,2,1)1192

X ' 0 ( 4 , 2 , 2 , L l ^

^iό(^'3,2,2, l)_2oo

Z»(5,3,2,l,l)3_204

^18v^> ^, 2? 2, 1 )_240

^(4,2,1,1,1 )?_240

topological couplings

67 1

3 + 97i 2 7 2 + 137 17 2

2 + 1772

3

14 J\ -f- 7 7} 72 + 3 J\ 72

3ό 7j + 1Σ J\ J2 + 4 7j 72 + 72

637 1

3+217 1

27 2 + 77i72

2 + 272

3

Q T 1 'X T T 1 7" /• 2
^ *J 1 1* J «/1 t/2 "T* *J 1 «/2

8 J , 3 + 14 Jλ

2 J2 + 24 J, J 2

2 + 37 J 2

3

+4 J\ 73 + 7 7i 72 73 + 10 72 73

+27!7 3

2 +272 73

2

907i3 + 307!272 + 10 Jι 72

2 + 372

3

+457i273 + 157i7273 + 572

273

^ΐovt^IIl2

+3272

3 + 107!273 + 137i7273

+ 1672

273 + 67i7 3

2 + 672732

187i3 + 127i272 + 87j 7 2

2 + 57 2

3

+ 3 7 i 7 3

2 + 2 7 2 7 3

2 + 7 3

3

407i3 + 207!272 + 107! 72

2 + 472

3

+ 107i273 + 57i7273 +27 2

2 7 3

Ί£T?>\λΊτ2τ\ΛT Γ 2 , r 3DΌJ\ -\- YΔJ\ J2~rίrJlJ2 \ J2

+ 187i273 + 67i 7273 + 272

273

+6 J\ 73 + 2 72 73 + 2 73

ΐ Γ i Γ J2U2f
+72 7i J 3

2 + 43 J2 J 3

2 + 86 J 3

3

8J,3 + 18J1

2J2 + 36J 1J 2

2 + 72J2

3

+4 J\ 73 + 9 7] 72 73 + 18 72 73

wΐt ll^ί+4^2

+367i 73 + 97i 72 73 + 272 73

C2 J

(48,74)

(68,36)

(96,34)

(126,44)

(66,24)

(44,82,24)

(120,42,50)

(66,92,48)

(72,50,34)

(100,52,24)

(96,34,44)

(104,66,128)

(68,132,36)

(132,36,68)
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Non-Fermat type Calabi-Yau hypersurfaces

model topological couplings c2 J

^(8,3,3,1,1) 3 _ 2 5 6 6/13 + 16/i 2 / 2 + 42/! J2

2 + 104 J2

3 (60,164,24)

(164,36,266)

+ 128 Jx J3

2 + 25 J2J32 + 203 J3

3

References

1 Candelas, P , de la Ossa, X, Green, P, Parks, L : Nucl Phys B359, 21 (1991)
2 Morrison, D : Picard-Fuchs Equations and Mirror Maps For Hypersurfaces In: Essays on

Mirror Manifolds ed S -T Yau, Hong Kong International Press, 1992
3 Klemm, A., Theisen, S : Nucl Phys B389, 153 (1993)
4 Libgober, A, Teitelboim, J.: Duke Math J, Int Res Notices 1, 29 (1993)
5 Font, A: Nucl Phys B391, 358 (1993)
6 Klemm, A, Theisen, S : Theor Math Phys 95, 583 (1993)
7 Candelas, P , de la Ossa, X , Font, A, Katz, S , Morrison, D : Nucl Phys B416, 481 (1994)
8 Hosono, S , Klemm, A., Theisen, S , Yau, S -T : Commun Math Phys 167, 301 (1995)
9 Candelas, P., de la Ossa, X, Font, A, Katz, S , Morrison, D : Nucl Phys B429, 629 (1994)

10 Hosono, S , Klemm, A, Theisen, S , Yau, S.-T : Nucl Phys B433, 501 (1995)
11 Berglund, P, Katz, S., Klemm, A : Mirror Symmetry and the Moduli Space for Generic

Hypersurfaces in Toric Varieties heρ-th/9506091
12. Kontsevich, M, Manin, Yu : Commun Math Phys 164, 525 (1994)
13 Lian, B H , Yau, S -T : Arithmetic properties of the mirror map and quantum coupling hep-

th/9411234
14 Klemm, A, Lerche, W, Myer, P : K3-Fibrations and Heterotic-Type II String Duality hep-

th/9506112
15 Lian, B H., Yau, S-T : Mirror Maps, Modular Relations and Hypergeometric Series 1,11

hep-th/9507151, 9507153
16 Kachru, S , Vafa, C : Exact Results for N = 2 Compactifications of Heterotic Strings hep-

th/9505105
17 Kachru, S , Klemm, A, Mayr, P , Lerche, W., Vafa, C : Nonperturbative Results on the Point

Particle Limit of TV = 2 Heterotic String Compactification hep-th/9508155
18 Lerche, W, Vafa, C , Warner, N : Nucl Phys. B329, 163 (1990)
19 Batyrev, V : J, Algebraic Geometry 3, 493 (1994)
20. Roan, S-S : Int J Math 2, 439 (1991)
21 Distler, J, Greene, B : Nucl Phys B309, 295 (1988)
22 Batyrev, V : Duke Math J 69, 349 (1993)
23 Gel'fand, I M , Zelevinski, AV, Kapranov, M M : Funct Anal Appl 28, 94 (1989)
24 Hosono, S , Lian, B H , Yau, S -T : Optional appendix to alg-geom/9511001
25 Klemm, A , Schimmrigk, R : Nucl. Phys B411, 559 (1994)
26 Kreuzer, M, Skarke, H: Nucl Phys B388, 113 (1993)
27 Candelas, P, Dale, A M , Lύtken, C A., Schimmrigk, R: Nucl Phys B298, 493 (1988)

Candelas, P, Lutken, C.A, Schimmrigk, R: Nucl Phys B306, 113 (1988)
28 Batyrev, V, van Straten, D : Generalized Hypergeometric Functions and Rational Curves on

Calabi-Yau Complete Intersections in Toric Varieties Alg-geom/9307010



GKZ-Generalized Hypergeometric Systems in Mirror Symmetry 577

29 Batyrev, V., Borisov, L : On Calabi-Yau Complete Intersections in Toric Varieties alg-
geom/9412017

30 Dais, D I : Enumerative Combinatorics of Invariants of Certain Complex Threefolds with
Trivial Canonical Bundle MPI-preprint (1994)

31 Dolgachev, L: In: Group actions and vector fields Lecture Notes in Math Vol.956, Berlin-
Heidelberg-New York: Springer-Verlag (1991) P 34

32 Greene, B , Plesser, M : Nucl Phys B338, 15 (1990)
33. Candelas, P , de la Ossa, X , Katz, S : Nucl Phys B450, 267 (1995)
34. Berglund, P , Hϋbsch, T.: Nucl. Phys. B393, 377 (1993)
35 Oda, T : Convex bodies and Algebraic Geometry, An Introduction to the Theory of Toric Va-

rieties A Series of Modern Surveys in Mathematics, Berlin-Heidelberg-New York: Springer-
Verlag, 1985

36 Billera, L , Filliman, P , Strumfels, B : Adv in Math 83, 155-179 (1990)
37 Oda, T., Park, H S.: Tόhoku Math. J 43, 375-399 (1991)
38. Fulton, W.: Introduction to Toric Varieties Ann of Math Studies 131, Princeton, NJ: Prince-

ton University Press, 1993
39 See for example, Cox, D , Little, J , O'shea, D : Ideals, Varieties, and Algorithms UTM

Berlin-Heidelberg-New York: Springer-Verlag, 1991
40 Strumfels, B : Tόhoku Math. J 43, 249 (1991)
41 Griffiths, P.: Ann. of Math. (2) 80, 227 (1964)
42 Batyrev, V : Quantum Cohomology Ring of Toric Manifolds alg-geom/9310004
43 Aspinwall, P , Greene, B , Morrison, D : Phys Lett B303, 249 (1993)
44 Griffiths, P , Harris, J : Principles of Algebraic Geometry. New York: Wiley-Interscience,

1978
45 Witten, E : Nucl Phys. B403, 159 (1993)
46 Morrison, D , Plesser. : Nucl. Phys B404, 279 (1995)
47 Aspinwall, P., Morrison, D.: Commun Math Phys 151, 245 (1993)
48 Witten, E : Mirror Manifolds and Topological Field Theory In: "Essays on Mirror Symmetry",

ed. S -T Yau, Hong Kong: International Press, 1992
49. Strominger, A : Commun. Math Phys 133, 163 (1990)
50 Bershadsky, M , Cecorti, S , Ooguri, H , Vafa, C : (with an appendix by S Katz), Nucl Phys

B405, 279 (1993)
51. Strominger, A : Massless Black Holes and Conifolds in String Theory hep-th/9504090
52 Greene, B , Morrison, D , Strominger, A : Black Hole Condensation and the Unification of

String Vacua hep-th/9504145
53 Wall, C T : Invent Math 1, 355 (1966)
54 Lynker, M, Schimmrigk, R: Phys Lett B249, 237 (1990)
55 Yomemura, T.: Tόhoku Math J 42, 351 (1990)

Communicated by R H Dijkgraaf






