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Abstract: String equations of the pth generalized Kontsevich model and the com-
pactified c = 1 string theory are re-examined in the language of the Toda lattice
hierarchy. As opposed to a hypothesis postulated in the literature, the generalized
Kontsevich model at p = — 1 does not coincide with the c = 1 string theory at self-
dual radius. A broader family of solutions of the Toda lattice hierarchy including
these models is constructed, and shown to satisfy generalized string equations. The
status of a variety of c ^ 1 string models is discussed in this new framework.

1. Introduction

The so-called "string equations" play a key role in various applications of integrable
hierarchies to low dimensional string theories. The most fundamental integrable hi-
erarchy in this context is the KP hierarchy [31] that provides a universal framework
for dealing with many KdV-type hierarchies. String equations for "(p,q) models" of
two-dimensional quantum gravity can be treated in a unified manner in this language.
In contrast, the status of the Toda lattice hierarchy [37], which is another universal
integrable hierarchy, had remained relatively obscure until rather recent years. The
Toda lattice hierarchy was pointed out to be an integrable structure of the one-
and multi-matrix models [13], but these matrix models (matrix integrals) were only
considered as an intermediate step towards the continuous (double scaling) limit to
two-dimensional quantum gravity.

In the last few years, the Toda lattice hierarchy has come to be studied from
renewed points of view, such as c = 1 strings [7, 23, 27, 28], two-dimensional
topological strings [14, 16, 10, 34, 5], the topological CPλ sigma model and its
variations related to affine Coxeter groups [11, 18, 9]. As opposed to the (p,q)
models in the KP hierarchy, these are related to string theories with a true continuous
target space. Our goal in this paper is to elucidate the structure of those string
equations, in particular, those of c = 1 strings in a more general framework.

It will be instructive to recall the relationship between the (p,q) models and the
KP hierarchy. String equations of these models were first discovered in the form of
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the Douglas equation [8]

[Λβ] = i , (l.l)

where P and Q are ordinary differential operators of the form

P = dξ + a2dP-2 + ---+ap,

Q = Vx+b2%Γ2 + +bq. (1.2)

These two operators were later found to be related to an extended Lax formalism
of the KP hierarchy. The extended Lax formalism, developed by Orlov and his
coworkers [29], is based on the ordinary Lax operator L and a secondary Lax
operator (Orlov-Shulman operator) M. They are pseudo-differential operators of the

oo

n=2 «=1

and obey the Lax equations

^ = [Bn,L], ^- = [Bn,λί] (1.4)
otn ϋtn

and the canonical commutation relation

[L,M] = 1 (1.5)

The operators Bn are given by

Bn — (Ln)^o •> (1-6)

where "( )^o" denotes the projection onto the space spanned by nonnegative pow-
ers of dx; similarly, we shall use "( ) ^ - i " for the projection onto the space spanned
by negative powers of dx. To reproduce the Douglas equation, we define P and Q
as

P = Lp,

1 „ 1 _ „ P —
(1.7)

P 2P

require the constraints

(P)g-i = 0, (β)^-i = 0, (1.8)

and restrict the range of the time variables as

= ••• = 0. (1.9)

The Douglas equation follows automatically from the construction of P and Q -
(1.8) and (1.9) ensure that P and Q are differential operators of the required form.
Note, in particular, that (1.8) give constraints on the Lax and Orlov-Shulman opera-
tors, the first one being a reduction condition to the pth generalized KdV hierarchy.
Thus the (p,q) model can be understood as a "constrained KP hierarchy." From the
standpoint of the KP hierarchy, therefore, it is these constraints on L and M rather
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than the Douglas equation itself that plays a more essential role. In our terminology,
"string equations" mean such constraints as (1.8).

This correspondence with the KP hierarchy allows one to use many powerful
tools developed for the study of the KP hierarchy, such as the Sato Grassmannian,
the Hirota equations, W\+oo algebras, etc. [32, 15, 40, 12]. Since this raises many
interesting mathematical issues, generalizations to multi-component KP hierarchies
have been also attempted [38].

The case of (/?, 1) (or (l,g)) models has been studied with particular interest
in recent studies. This is the case where the models becomes "topological," i.e.,
describes topological strings of A^ (k = p — 2) type [6]. Unlike the other (p,q)
models, the string equation for these models can be solved more explicitly in terms
of a "matrix Airy function" (or "Kontsevich integral") [1], and by virtue of this
matrix integral construction, it is rigorously proven (at least for the case of p = 2)
that the corresponding τ function is a generating function of intersection numbers
on a moduli space of Riemann surfaces [21]. The (generalized) Kontsevich integral
is an integral over the space of N x N Hermitian matrices of the form

Z(Λ) = C(Λ)fdMexpΊr (λpM l—MpJrΛ , (1.10)

where A is another N x N Hermitian matrix, and C(A) is a normalization factor
that also plays an important role. Kontsevich's observation is that this integral has
two-fold interpretations. The first interpretation, revealed by "fat graph" expansion,
is that this is a generating function of intersection numbers. The second is that this
is a τ function of the KP hierarchy,

Z(A) = τ(t), (1.11)

where A and t are connected by the so called "Miwa transformation:"

tn = -ΊrΛ-n = ΣKn- (1-12)
n i=\

Here λ\,..., λN are eigenvalues of A.
As for the Toda lattice hierarchy, our knowledge on string equations is far

more fragmental, but simultaneously suggests richer possibilities. The most funda-
mental and well understood cases are the one- and two-matrix models [19, 4, 25].
String equations of these two models are quite different. Let us specify this in more
detail. As we shall review in the next section, the Lax formalism of the Toda lat-
tice hierarchy uses two Lax operators L, L and two Orlov-Shulman operators M, M
[35, 2]. These operators are "difference" operators obeying a set of Lax equations
and a twisted canonical commutation relations of the form

[L,M]=L, [L9M] = L. (1.13)

(M should not be confused with the matrix variable M in the Kontsevich integral.)
String equations are formulated as algebraic relations between the two pairs (L,M)
and (L,M). Roughly speaking, string equations of the one-matrix model are written

L = ΪΓ\ ML'1 = -ML, (1.14)
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and those of the two-matrix model are given by

L = -ML, ML~ι = - Z " 1 . (1.15)

The point is that both (L,ML~ι) and (L ,ML) are a canonical conjugate pair, and
that string equations are canonical transformations between them. The difference be-
tween the one- and two-matrix models is that whereas string equations (1.14) of the
one-matrix model are coordinate-to-coordinate and momentum-to-momentum rela-
tions, string equations (1.15) of the two-matrix model mix coordinate and momen-
tum variables. Note that the latter is also a characteristic of Fourier transformations.
This is actually related to the fact that the Kontsevich integral is essentially a matrix
version of Fourier transformations [25].

In fact, most examples of string equations in the Toda lattice hierarchy are
variants of the above two. For instance, string equations of c — 1 strings [7, 23, 27]
and their topological versions [14, 16, 10, 34, 5] are of the two-matrix model type.
The generalized Kontsevich models, too, may be considered as a solution of the
Toda lattice hierarchy obeying string equations of the two-matrix model type [19].
Meanwhile, string equations of the topological CPι model and its variants [11, 18, 9]
are of the one-matrix type. Furthermore, the deformed c = 1 theory in the presence
of black hole backgrounds [28] are known to obey more involved string equations,
though this case, too, is essentially of the two-matrix model type.

In this paper, we are mostly concerned with string equations of the two-matrix
model type in the above sense. We re-examine the generalized Kontsevich models
and the c —\ string theory in detail, and present a broader family of solutions that
includes these two examples as special cases. This will clarify the status of a variety
of c ^ 1 string models. For instance, we shall show that the generalized Kontsevich
model at p = — 1 does not reproduce the c — 1 string theory, but is rather related
to the Penner model [30]. This poses a question on recent attempts in the literature
[22] that treat two-dimensional topological strings as "Ak strings at k = —3."

This paper is organized as follows. Section 2 is a brief review on necessary
tools and results from the theory of the Toda lattice hierarchy. Sections 3 and 4
deal with the generalized Kontsevich models and the c — \ string theory. In Sect. 5,
our new family of solutions and string equations are presented. Section 6 is devoted
to conclusion and discussion.

2. Preliminaries on Toda Lattice Hierarchy

We first present necessary tools and results [36] in an ^-independent form (i.e.,
letting ft = 1), and show an ^-dependent formulation in the end of this section.
Throughout this section, s denotes a discrete variable ("lattice coordinate") with
values in Z, and t — (ίi,*2> ) a n d t — (ίi,f2> ) two s e t s of continuous variables
that play the role of "time variables" in the Toda lattice hierarchy.

2.1. Difference operators. The Lax and Orlov-Shulman operators of the Toda lattice
hierarchy are difference operators of the form

n=0
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n=\ n=\

n=0

oo
M = -ΣntnL +s+ΣvnL , (2.1)

n=\ n=\

where ends are shift operators that act on a function of s as endsf(s) = f(s -f-«).
The coefficients ww, ι;w, wrt and ϋn are functions of (t,t,q), un = un(t,t9s)9 etc. These
operators obey the twisted canonical commutation relations

[L,M]=L, [L9M] = L, (2.2)

and the Lax equations

dL _ Γβ π dL - ΓB n

~ = [Bn,Ml §[ = &,"],

δtn " ' ' δtn

where the Zakharov-Shabat operators Bn and Bn are given by

and ( )^o,<o denotes the projection

ane . (2.5)

We call (2.2) "twisted" because it is rather the "untwisted" operators ML~X and

ML that give canonical conjugate variable of L and L:

[L,ML~ι] = l, [L,ML~ι] = \. (2.6)

Another important set of difference operators are the so-called "dressing opera-
tors" of the form

oo

W =1 + Σ wne~nds, wn = wn(t9t9s) ,

oo

W = wo + Σ Wnend*, wn = wn(t, I s) (2.7)
B = l
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that "undress" the Lax and Orlov-Shulman operators as

/ oo

L = WedsW~\ M = W Is + Σ «ίΛe

oo( oo \

j - Σ /ifMe-πδί ί F " 1 . (2.8)
n=l /

This does not determine PF and ^F uniquely, and one can select a suitable pair of
W and W such that the following equations are satisfied:

dtn

^ = (Wend*W-ι)>0W, ^ = -(We-nd*W-l)>0W. (2.9)
δtn ~ dtn

These equations of flows in the space of dressing operators can be "linearized"
as follows. A clue is the "operator ratio"

U(t,t)=W(tJTxW(t,t) (2.10)

of the dressing operators W = W(t, t) and W — W(t91). One can indeed easily see
that U = U(t, t) satisfies the "linear equations"

dJL=e^U, ™ =-&-*, (2.11)

so that the flows in the space of U operators are given by simple exponential
operators:

d) fgU(tJ) = exp I Σ tne
nd°) t/(0,0)exp f - g tne'ndλ . (2.12)

V JΛ=1 / V n=\

Furthermore, the passage from (W,W) to U is reversible. Namely, given such an
operator U(t,t), one can solve the above "factorization problem" (2.10) to obtain
two operators W = W(tJ) and W = W{tJ)9 which then automatically satisfy (2.9).
This is a Toda lattice version of Mulase's factorization problem for the KP hierarchy
[26]. Actually, this factorization problem is solved by reformulating the problem in
the language of infinite matrices.

2.2. Infinite matrices. Note the following one-to-one correspondence between the
sets of difference operators and of infinite (Z x Z) matrices:

Σ an(s)ends ~ Σ diagMOK , (2.13)
n n

where
diagMO] = (an(i)δij)9 Λn = (δu-n), (2.14)

and the indices / (row) and j (column) run over Z. (This A should not be confused
with the finite matrix A in the partition function of generalized Kontsevich models!)
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The projectors ( )^o,<o are replaced by the projectors onto upper and (strictly)
lower triangular matrices:

b o = (θ(j - i)aij)9 (A)<0 = ((1 - θ(j - /))%) (2.15)

All the Lax, Orlov-Shulman, Zakharov-Shabat and dressing operators have their
counterparts in infinite matrices,

T ^—x T M j—x Λ/ϊ J 4—\ f M <ί-+ Λ/f W ^_Λ W W ;-+ W (Ί Λ£Λ

and they obey the same equations as their counterparts. For instance, dressing rela-
tion (2.8) turns into a matrix relation of the form

/ oo \

L - W/IW"1, M = W [A + Σ ntnΛn W"1,

L=w^ιw"1, M = w μ - Σ « U ' B W"1. (2.17)
V »=1 /

Here A is the infinite matrix
A=(iδij) (2.18)

that represents the multiplication operator s. Similarly, the difference operator U(t, I)
has an infinite matrix counterpart U(ί, ί), and its time evolutions are generated by
exponential matrices:

) = exp Σ tnΛn U(0,0)exp ~Σ tnA~n . (2.19)
\/i=l / V n=\ J

Factorization relation (2.10) is now converted into a factorization problem of
infinite matrices of the form

ί, t) = W(ί, f Γ 1 W(^ 0 (2.20)

This is an infinite matrix version of the Gauss decomposition, because W = W(ί, t)
and W = W(ί, Γ) are lower and upper triangular matrices. As in the ordinary finite
dimensional cases, this Gauss decomposition can be solved explicitly by (an infi-
nite matrix version of) the Cramer formula [33]. In particular, the matrix elements
wn(tj,s) and wn(tj,s) can be written as a quotient of two semi-infinite determi-
nants. The denominators eventually turn out to give τ functions of the Toda lattice
hierarchy:

τ(tj,s) = det(uij(tj) (-oo < ij < s)). (2.21)

This gives a Toda lattice version of a similar formula in the KP hierarchy [31]. The
matrix elements UijitJ) of U(ί,I) are connected with their "initial values" ŵ  (0,0)
by

OO

Uij(tJ)= Σ Sm(t)ui+mJ+n(0,0)Sn(-t), (2.22)
m,n=0

where Sn are the fundamental Schur functions

oo / oo \

Σ SiίOA11 = exp ( Σ U " (2.23)
n=0 \n=\ J

Eventually, the infinite matrix (a GL(oo) element) U(0,0) persists as arbitrary con-
stants in a general solution of the Toda lattice hierarchy. It is thus the GL(oo) group
that plays the role of the Sato Grassmannian in the Toda lattice hierarchy.
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2.3. Constraints. "String equations" in our concern are derived from linear relations
of the form

A(A9A)V(090) = U(0,0)i(zM), (2.24)

among the matrix elements of U(0,0). Here A(A,A) and A(A,A) are linear com-

binations of monomials of A, A and A~ι:

) = ΣάmnΔ
mΛn, (2.25)

m,n

m runing over nonnegative integers and n over all integers. A fundamental result is
the following [35, 2, 28]:

Theorem 1. The above linear relations of U(0,0) is equivalent to the constraint

A(M,L) = i(M,L) (2.26)

of the Lax and Orlov-Shulman operators, where

M1" VA(M, L) = Σ amnM
mLn

9 A( M, L) = £ άmn M1" V . (2.27)
m,n m,n

These constraints may be interpreted as a fixed point condition under W\+oo

symmetries of the Toda lattice hierarchy [35, 2, 28]. These matrices are in one-to-
one correspondence with difference operators,

,eds), A(A9A) ^A(s,eds), (2.28)

and give a closed Lie algebra with the fundamental commutation relation

[A9A] = A *-> [ed'9s] = ed* . (2.29)

This is essentially a (centerless) W\+oo algebra with generators

χ)kAn+k <-> (se~ds)ke{n+k)ds . (2.30)

It is this W\+oo algebra that underlies the above constraints.
These constraints can be further converted into linear constraints for the τ func-

tions of the form [35, 2, 28]

XAτ(t9 t,s) = Xχτ{t, t,s) + const. τ(t9 t,s) , (2.31)

where XA =XA(t,s,dt) and JQ(t,s, df) are linear differential operators in t and t that
represent W\+oo symmetries acting on the τ functions, and "const" is a constant that
also depends on A and A. This constant may emerge due to a nonvanishing central
charge in the W\+oo algebra of symmetries acting on the τ functions. Fixing this
constant requires a subtle trick [12, 38]. We shall not deal with this issue in this
paper.
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2.4. τ functions in Miwa variables. A clue connecting generalized Kontsevich mod-
els and the KP hierarchy [21, 1] is the Miwa variable representation of the KP τ
function. If the matrix U(0,0) is upper or lower triangular, a similar representation
of the Toda lattice τ functions [19] is also available as we show below. (In fact,
such a representation persists without this condition, though the relation to U then
becomes more complicated.)

Theorem 2. (i) Suppose that U(0,0) is lower triangular. Then by the Miwa trans-
formation

1 N

tn = -ΣΛΓ (2.32)
n i=\

oft with arbitrary parameters λf, the τ functions τ(t,t,s) can be written

ύ i,j S N))
ψ,/,<s)= -(s-j)-ι ~ 11 Uii' (2.33)

where Uj(O,t,λ) are the following generating functions of matrix elements ŵ  (0, /")

o/U(0,0:
OO

w7 (0,f,/l) - Σ^'-^i/ίO,?) . (2.34)

(ii) Suppose that U(0,0) is upper triangular. Then by the Miwa transformation

1 N

Σμi (2.35)
n i=\

of t with arbitrary parameters μ, the τ function can be written

(1 ^ ij S N)) -̂ f1

Π uu>

where w/(ί,0,μ) are the following generating functions of the matrix elements
Uij(t90)ofV(t90):

oo
j (2.37)

The infinite products of uu and w# in the above formulae are interpreted as
follows. Note that the matrices U(0,Γ) in (i) and U(ί,0) in (ii) are still triangular.
The Laurent series uj(0j,λ) and w(ί,0, u) thereby take such a form as

y y % (2.38)

As opposed to an ordinary setting [19], we do not assume that the leading coefficients
are normalized to be 1. The infinite product then arises. This factor is essentially
the same as encountered in the treatment of semi-infinite determinant (2.21) [33],
and can be interpreted as:

( const, woo um (n ^ 0)

const. (n = -l) (2.39)

const. /(un+ln+ι... u-i-i) (n S -2)

with an overall renormalization constant "const."
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2.5. h-dependent formulation. An ^-dependent formulation of Toda lattice hierarchy
can be achieved by inserting % in front of all derivatives in the previous equations
as:

d ' ^ Γ2 40)

The discrete variable s now takes values in hZ. Accordingly, Lax and Orlov-
Shulman operators are difference operators of the form

oo

L = e + 2 ^ un+\e ,
w=0

oo oo

n=\ «=1

OO

»=0

oo oo

M = - Σ «ίi^"π + ί + Σ iU" , (2.41)
n=\ n=\

where the coefficients are functions of (h,t,t,s), and obey the twisted canonical
commutation relations

[L,M] = hL, [L,M] = hi, (2.42)

and Lax equations

h^- = [Bn,L]9 h^ = [5Π,L] ,

ft^ = [BΛ9M], ^ = [Bn,M] ,

^ ^ = [Bn,M], h3^- = [Bn,M] (2.43)
δtn dtn

Bn and Bn are defined in the the same way as in the case of % — 1.
Note that such an ^-dependent Toda lattice hierarchy emerges if one starts from

an ^-independent formulation and rescales variables as

tn->fΓxtn, tn^h-ιtn9 s^h-ιs (2.44)

and

M-*%-χM, M^h~λM. (2.45)

This is indeed the case for solutions that we shall construct in subsequent sections.
The ^-dependent formulation, however, also admits solutions that cannot be obtained
by the above rescaling of (t9t,s).
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3. Generalized Kontsevich Models

Our first example is the generalized Kontsevich models that have been studied in
the context of the KP hierarchy. We introduce "negative times" t and reconsider
these models in the language of the Toda lattice hierarchy. The idea is more or
less parallel to the ITEP-Lebedev group [19], who however treated these models as
solutions of a "forced" hierarchy on a semi-infinite lattice Z^o We rather attempt
to interpret these models as solutions of the hierarchy on the bi-infinite lattice Z.

3.1. Partition function as KP τ function. In an ̂ -dependent formulation, the par-
tition function of the pth generalized Kontsevich model is given by

/ i \
Z(Λ) = C(Λ)fdMexph-χ Tr ΛPM Mp+λ , (3.1)

V P+ i /

where the normalization constant C(Λ) is given by

C(Λ) = const. J ] -j Y

e x p V/>+i / '

By the standard method using the Harish-Chandra-Itzykson-Zuber formula [25], the
partition function Z(Λ) can be rewritten as a quotient of two determinants,

= detju-jjλi) (1 g ij ^ N))

άQt(λj~ι (1 S ij ^ N)) '

where

( 1 λ
Uj(λ) = c(λ)fdμμ~J~ exp^~ I λpμ μp+λ J

c(λ) = const. μ^-^^expΛ"1 Γ ^ - λ ^ Λ . (3.4)

The right-hand side of the definition of Uj(λ) is an integral over the whole real
axis. By the standard saddle point method, one can show that Uj(λ) has asymptotic
expansion of the form

00

uj(λ) ~ Σ^~'~l«ιj (3-5)

as λ —> +00. It is these asymptotic series rather than the functions Uj(λ) them-
selves that are eventually relevant for the interpretation of Z(Λ) as a KP τ function.
Namely, we insert this asymptotic expansion into the right-hand side of (3.3) and
consider it as a function (or, rather, formal power series) of t by the Miwa trans-
formation

f» = - Σ V = -TrΛ-". (3.6)
n i=\ n
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3.2. Extension to Toda lattice τ function. We now extend the above construction
to w/s with negative index j . Apparently, this appears problematical, because the
integral (over the real axis) becomes singular at μ = 0; actually, what we need is
asymptotic series rather than the functions Uj(λ) themselves. As we shall discuss
later in a more general setting, the asymptotic expansion as λ —> +oo is determined
only by a small neighborhood of the saddle point at μ = λ. The other part of the
path of integration may be slightly deformed to avoid the singularity at μ = 0, or
even cut off! With this deformation or cut-off, the integral itself will be varied, but
the difference is subdominant and does not affect the asymptotic series. Thus upon
suitably modifying the definition of uj(λ), we can show that Uj(λ) for j < 0, too,
has asymptotic expansion of the form

(3.7)

We can thus define uy for all integers, and hence a Z x Z matrix U = U(0,0).
According to the general construction in the last section, this determines a Toda
lattice τ function τ(t, t,s).

Since U(0,0) is lower triangular, the τ function should have a finite determinant
representation by the Miwa transformation

tn = -ΣλΓn = -τrΛ-'. (3.8)

n ί=χ n

One can easily see that the generating functions Uj(09t9λ) is given by

( 1 °° \

λpμ — μp+l - Σ tnμ~n (3.9)
P + ! «=1 /

with the same normalization factor c(λ) and the same path of integration (deformed
or cut off in the aforementioned sense) as in the definition of Uj(λ) = Uj(0,09λ).
The τ(t9t9s) can eventually be written

detOfc-^ίO.U ) (1 g ij g N))
τ(t,t,s) = 1—r——. . (3.10)

dtίA?- 1 ' - '- 1 (1 ^ ij £ N))

(Note that, along with t and F, the lattice coordinate s, too, has to be rescaled as
s —> h~ιs in an ^-dependent formulation of the Toda lattice hierarchy, s now runs
over the ̂ -spaced lattice hZ.)

Formally, this τ function can be derived from the following matrix integral that
extends Z(Λ):

( 1 °° \
Z(Λj,s) = C(Λ)JdMQxph-1 Tr APM -Mp+X - £ tnM~n + slogM .

\ P + 1 n=\ J
(3.11)
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3.3. String equations. It is now rather straightforward to derive string equations -
we first derive linear relations among ŵ  = Wj/(0,0), then convert them into relations
among (L,M,L,M).

Linear relations can be derived from linear functional or differential relations
among u/s. This is just to apply well known calculations [19, 25] to w/s with
negative indices as follows.

First, by integrating by part,

1 (λ'μ - -~[

= h(j + l)uJ+ϊ(λ) + Uj-p(λ). (3.12)

Here we have implicitly assumed that the path of integration connects two points at
infinity, so that no boundary term emerges. If the path has a finite endpoint, such
as the semi-infinite line [ε, oo), ε > 0, the boundary term is subdominant compared
to the main asymptotic series arising from the saddle point at μ = λ. Since we shall
eventually derive linear relations among wz/s, such subdominant terms are negligible.

Similarly (but without integration by part),

P+l

These relations imply the linear relations

K/j-i = h I - - + — — J Ui-pj + Ui+ιj (3.14)

among the coefficients of asymptotic expansion. In terms of U = U(0,0), they can
be rewritten

1 + Λp),

\1Λ = (--AΛ-p + hE^lA-P + Λ)V. (3.15)

V P 2P )
Finally, we replace

Λ-+UU hA-^M,M (3.16)

(taking into account the rescaling due to the presence of h) and obtain the following
result on string equations:
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Theorem 3. The Lax and Orloυ-Shulman operators of this solution obey the string
equations

Lp=ML +LP,

L = --ML-P + h?^L-p+L. (3.17)
p 2p

3.4. Generalized Kontsevich model at p = — 1. Let us consider the case of p = — 1.
The string equations then become

LΓλ
 =ML~1

(3.18)

As we shall argue in the next section, these string equations do not agree with string
equations of two-dimensional (or c = 1) strings (compactified at self-dual radius).

This is a puzzling consequence of our analysis. Some of recent studies on the
two-dimensional topological string theory [22] are based on the hypothesis that the
topological Ak model at k = — 3 (which corresponds to p — — 1) gives the two-
dimensional string theory. Our result implies that such an identification is somewhat
problematical.

The model at p = — 1, as Dijkgraaf et al. [7] remarked, is rather related to the
Penner model. The partition function for p = — 1 is given by

Z(ΛJ,O) = C(Λ) JdMQxph~ι Ύr I Λ~ιM - logM - ]Γ tnM~n ) . (3.19)

If t = 0, this function factorizes into a power of act A and Z( 1,0,0), and that the
second factor Z(l,0,0) coincides with the partition function of the Penner model
[30]. Curiously, however, Dijkgraaf et al. identified this matrix integral with the
c = 1 string partition function. Actually, as we have mentioned above, this matrix
integral does not correspond to the c = 1 string partition function.

What physical meaning do the "negative times" t possess? It seems likely that I
are nothing else but the coupling constants of "anti-states" that Montano and Rivlis
[24] postulate in their topological interpretation of Ward identities for (1,#) models.
This is in fact a main idea that lies at the heart of the work of the aforementioned
studies [22] on the two-dimensional topological string theory. Although we consider
their interpretation of the (l,q = —1) model rather problematical, their work contains
many intriguing ideas. We shall return to this point in the final section.

4. Compactified c = 1 String Theory

Our second example is the compactified c = 1 string theory formulated in the lan-
guage of the Toda lattice hierarchy [7, 23, 27]. This string theory possesses a discrete
parameter β = 1,2,..., and β = 1 corresponds to the case at self-dual radius.

4.1. Partition function of c — 1 strings. The partition function of compactified c — 1
strings becomes the Toda lattice τ function with a diagonal U = U(0,0) matrix of
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the form [7, 23, 27]

V (4.1)
\2 ~ h)

In fact, this is a somewhat simplified version of a true c = 1 string partition function
[7]. The above definition is substantially the same as used by Nakatsu [27] and
leads to the same string equations (except that h in his definition is replaced by — %
here). String equations of the original c — 1 string partition function are presented
in Ref. [28] in a more general setting including black hole backgrounds.

Since U = U(0,0) is a diagonal matrix, the τ functions have two Miwa variable
representations with respect to t and t. In both representations, the τ functions are
written in terms of a finite determinant including the generating functions w/(0, t, λ)
and ύi(t,0,μ). By the familiar integral representation of the Gamma function, one
can easily obtain the following integral representation of these generating functions:

Q/ h.\— —

uj(0,ϊ,λ) =
, / I 1 \ V Λ r v ι v

\1 ~ n)

β-D/2-J-l eχph-l ί(λ/μ)β + βXogμ _ g tnμ-n\ 9

^2+i exp ft"1 ί(λ/μγ - β log λ + Σ tnλΛ . (4.2)

4.2. Integral representation of Kontsevich type. If β = 1 (i.e., in the case at self-
dual radius), the τ function has a matrix integral representation of Kontsevich type.
For simplicity, let us consider the case of s = h(N — 1) (though a similar matrix
integral representation persists in a general case). By the Miwa transformation

ft " hΎ

tn = — Σ μ ? = — T r M > (4-3)
n / = 1 n

the τ function τ(tJ,h(N — 1)) can be written

τ(ί, f, ft(7V - 1)) = const. ~>^-i-&>°>l*j) ( 1 ^ Uj ύ ~ „ ( 4 4 )

As in the case of generalized Kontsevich models, this can be converted into a matrix
integral of the form

/ oo \
τ(t,t9h(N - 1)) = C(M)fdΛexph-χ Tr AM~X - log/I + Σ ^ (4.5)

V Λ=l /

with a suitable normalization factor C(M).
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Although very similar, this matrix integral is substantially different from the
generalized Kontsevich model at p = —1. The latter rather corresponds to β = —1.
(Mathematically, the present construction is also valid for β = — 1,— 2, ) If
β = — 1, one can indeed derive a matrix integral representation of the form

τ(tJ,0) = C(Λ)JdMQxph-χ Tr A~ιM - logM - £ tnM~n (4.6)

V n=\ /

in the Miwa variables

ίB = - Σ V = -TrΛ-. (4.7)

n ί=ι n
(We have put s = 0 just for simplicity. A similar expression persists for a general
value of s.) This is nothing else but the generalized Kontsevich model at p = — 1
given by (3.19).

Thus, as opposed to the claim of Dijkgraaf et al. [7], we conclude that the
generalized Kontsevich model at p = —I does not correspond to the c = 1 string
theory of β = 1, but falls into the case of the strange value β = — 1. We shall
reconfirm this puzzling conclusion in the language of string equations below.

4.3. String equations. By the recursion relation Γ(x + 1) = xΓ(x) of the Gamma
function, one can easily derive the following algebraic relations for U — U(0,0):

β 2β

VΛ-» = l - ^ + f t ^ + i j ^ U . (4.8)

Here A and A are the infinite matrices introduced in Sect. 2. To obtain the associated
string equations, we have only to resort to the substitution rule

A-^UU hΛ^M.M. (4.9)

We can thus reproduce the following result of Nakatsu [27] (who derives this result
by a somewhat different method).

Theorem 4. The Lax and Orlov-Shulman operators of this solution obey the string
equations

2β

•til
2β

(4.10)

As promised, this result clearly shows that string equations (3.18) of the gen-
eralized Kontsevich model at p = — 1 agree with none of the c — \ string theory
with β ^ 1. The only possible value is β = — 1.

One can rewrite these string equations into linear constraints (W\+oo constraints)
on the τ functions. To do this, just take the nth power (n = 1,2,...) of both sides
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of the above string equations as

L n β = ( • • • ) " , L n β = (' f , (4.11)

and apply the relation between nonlinear constraints (2.26) on (L,M,L,M) and linear
constraints (2.31) on the τ function. If β = 1,2,..., one will thus obtain a set of

constraints of the form

d τ ( t , t , s ) = χ ( I ^

dτ(tt,s) = Xβn{UsΛ)τ{tj^s) ^ ( 4 1 2 )

where Xnj and X β,n

 a r e linear differential operators as in (2.31) that give a W\+oo

symmetry of the Toda lattice hierarchy. If β = 1, this is exactly the W\+oo constraints
that Dijkgraaf et al. [7] present in the former half of their paper. (Thus, as far as
we understand, they deal with two distinct cases in the same paper - the β = I
case in the former half and the β = — 1 case in the latter half!) Meanwhile, if
β = — 1, —2,..., the W\+oo constraints are of the form

n\β\tn\β\τ(tj,s) = Xβtn(t9s,df)τ(tj9s) ,

n\β\tnmτ(t9t9s)=Xβtn(t9s9dt)τ(tJ9s). (4.13)

As a final remark, we would like to note that if h is replaced by — ft in the
definition of Uij9 the string equations become

(4.14)

In several papers, string equations of c — 1 or two-dimensional topological strings
are given in this form.

5. Synthesis - Generalized String Equations

We now present our new family of special solutions and associated string equations.
These solutions have two discrete parameters (p,p). The generalized Kontsevich
models and the compactified c — \ string theory can be reproduced by letting these
parameters to special values. In fact, there are two apparently different constructions
starting from the generating functions uj(λ) and ΰi(μ), respectively, which eventually
lead to the same string equations. Unfortunately, we have been unable to see if these
two constructions give the same solution. We mostly present the first construction
based on Uj(λ\ and just briefly mention the second one.
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5.1. Generating functions and string equations. The generating functions uj(λ) of
the new special solution are given by

uj(λ) = c(λ)fdμμ{p-l)/2-J-χ exp/T1 fλpμp
^

c(λ) = const. λ{p-ι)/2Qxph~ι f-^-λp+A . (5.1)
\P + P /

The case of p + p — 0 is also included here by replacing

P -λp+p -> plogλ (5.2)
P + P

in the limit as p —> —p. In fact, wy (Λ,) then becomes monomials of λ, and reduce
to the generating functions in the c = 1 string theory. The case of (p,p) = (p9l),
meanwhile, is nothing but the pth generalized Kontsevich model. The integrands of
the above integrals may have singularities at the origin, but this apparent difficulty
can be remedied by the same trick as discussed in the previous cases. Furthermore,
in much the same way, one can derive the following relations for general (p, p)\

λPUj(λ) = ft (ty- + £^j Uj+β(λ) + Uj-p(λ) ,

JW (5.3)

The solution of the Toda lattice hierarchy in question is determined by asymptotic
expansion of uj(λ). In fact, whereas the case of p + p > 0 is more or less parallel
to generalized Kontsevich models, the case of p + p < 0 is quite distinct - we have
to consider asymptotic expansion as λ —> +0 rather than λ —> +oo. To see this, let
us change the variable of integration from μ to a new variable z as:

μ = λz . (5.4)

Then

uj(λ) = const. λ{p+p)/2-j-χ exp/T 1

p

^z (5.5)

Thus the saddle point analysis has to be done in a region where %~xXp+P~ —> +oo.
The most dominant contribution comes from the saddle point z = 1, which corre-
sponds to μ = λ in the original integral. Contributions from other saddle points (and
from the endpoint of the path of integration, if the path is cut off in a neighborhood
of the origin) are subdominant and negligible in asymptotic expansion of uj(λ). The
prefactor on the right-hand side of (5.5) cancels the leading quasi-classical contri-
bution from the integral, so that uj(λ) has asymptotic expansion in negative integral
powers of λp+?. In summary, we obtain the following result:
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Theorem 5. (i) If p + p > 0, Uj(λ) has asymptotic expansion of the form

oo

Uj(X)~J2*~' "ij α ^ + o o ) . (5.6)

In particular, U is lower triangular.
(ii) Ifp-\-p < 0, Uj(λ) has asymptotic expansion of the form

Uj{λ)~ J2 λ-'-\j (λ-+0). (5.7)

In particular, U is upper triangular.
(iii) In both cases, utj = 0 if i — j φ 0 mod p + p.

We shall examine this asymptotic expansion in more detail in the next subsection.
Anyway, the infinite matrix U = U(0,0) determines a solution of the Toda lattice
hierarchy. By the triangular form of U, the τ function is ensured to have a Miwa
variable representation. One should however note that one cannot use uj(λ) in the
case of p + p < 0. If p + p < 0 (so that U is upper triangular), it is wz(μ) that
emerge in the Miwa variable representation. Unfortunately, we have been unable
to give a closed expression to W/(μ) in the present setting. [This should not be
confused with the "dual construction" discussed later, which starts from an explicit
construction of wz(μ). In that case, the corresponding Uj(λ) remains unknown in
turn.] This is an incomplete aspect of the present construction.

The aforementioned relations among the generating functions imply the following
linear relations among the coefficients Ujj of the asymptotic expansion:

i +1 P-
+

Uij-p = hl h — — j Ui-Pj + Ui+pj . (5.8)

In terms of the matrix U = (iiy),

ΛPV = V (-AΛ-P -h^^-Λ-P + Λp) ,
\P 2P J

VΛP = (--AΛ-P + hE^lΛ-p + ilΛ U . (5.9)

V p 2P )

String equations can be readily derived from these relations:

Theorem 6. The Lax and Orlov-Shulman operators of this solution obey the string
equations

Lp - 1

P
ML>-h

1 ML~P +
P

p—lf-
•' 2p L

±p - 1 j

2p

β+Lp ,

(5.10)
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The string equations of generalized Kontsevich models and c = 1 strings can be
reproduced by letting (/?,p) = (p, 1) and (p,p) = (β,—β). The case of (p,p) =
(1,-1) is also essentially the same as the string equations of the two-matrix model;
the extra term L and L on the right-hand side can be absorbed into a shift of s.
(More precisely, it is a "forced Toda lattice hierarchy" confined to a semi-infinite
lattice [19] that arises here.) The string equations for general values of (p, p), too,
relates "coordinates" L and L to "momenta" ML~^/p and ML~P'/p. In this respect,
these string equations may be referred to as "two-matrix model type," as mentioned
in the Introduction.

5.2. Systematic method of asymptotic expansion. Let us examine the coefficients
Uij of the asymptotic expansion in more detail. We would eventually like to evaluate
them in an explicit form. Such an explicit formula will be useful in considering the
relation between the present construction and its "dual" form discussed later.

Since this issue can be treated in a more general context, we now consider an
integral of the general form

I(k) = f dzg(z)e-Wz\ (5.11)

where A: is a large positive number, /(z) and g(z) are holomorphic functions, and
f(z) is supposed to have no saddle point other than a simple nondegenerate saddle
point at z = z0 along the path of integration. By the assumption, f(z) can be written

f(z) = fo + Mz-z0)
2 + 0((z-z0γ), /iΦO, (5.12)

in a neighborhood of ZQ. Then I(k) should have asymptotic expansion of the fol-
lowing form as k —> +oo:

(5.13)
Λ=0

The problem is how to evaluate these coefficients. From the field theoretical
standpoint, the most familiar method would be the expansion into "Feynman graphs."
Namely, one separates f(z) into the quadratic part and the rest, as shown above,
treating the latter as a "perturbation," and evaluate the final series of integrals as
Gaussian integrals. This is actually a very inefficient way, because an is then given
by a sum of various Feynman graphs, and evaluating the sum is a hard task. A more
efficient method is to resort to the Laplace method. A modernized version of this
method is presented by Berry and Howls [3] (whose main concern rather consists in
global issues like Stokes phenomena). This method yields a closed formula for an,
as we now briefly present below.

A clue of the latter method is to rewrite the integral I(k) by the new variable

y = (/00 - /o)1/2 = fl'\z - zo) + O((z - z 0 ) 2 ) . (5.14)

Note that it is just a neighborhood of z0 that actually contributes to the above
asymptotic expansion; "modulo subdominant terms," one can replace the full path
of integration by a small piece in a neighborhood of zo. y is a local coordinate in
such a neighborhood of ZQ. The integral I(k) can now be written into a Gaussian



Toda Lattice Hierarchy and Generalized String Equations 151

integral:

/(jfc) = e-
kfofdy^-g(z)e-ky2 + subdom . (5.15)

The subdominant terms "subdom." are of course invisible in asymptotic expansion,
and negligible in the following calculations. The Jacobian dzfdy and the function
g(z) are both holomorphic functions of y in a neighborhood of y = 0. Let us write
the Taylor expansion of their product as:

The asymptotic expansion of the above integral can be obtained by inserting this
Taylor expansion, formally interchanging the order of summation and integration,
and finally extending the range of integration to the full real axis. Final integrals
are to be evaluated by the familiar formula

C O

dyy2ne-ky = Γ[n + -\ k~n-(l/2\ / dyy2"-^'^ = 0 . (5.17)
— CO ^

Thus an are given by

(5.18)

Furthermore, the Taylor coefficients h2n are given by an integral of the form

along a small contour around y = 0. This contour is mapped onto a contour around
z — z0 on the z plane, because y —> z is a coordinate transformation. Thus the last
integral can be rewritten into a contour integral on the z plane:

h2n = — § dz G ^ MnnΛ . (5.20)
2πiJZ0 ( / ( z ) / y + 0 / 2 )

In summary, we obtain the following formula for the coefficients an\

2πi Jzo ( / ( ) / ) " + ( 1 / 2 )

In the case of our uj(λ), f(z) and g(z) are given by

/(z) = -P—z

p+~p -zp

9 g(z) = z

{P-χ)l2~j-λ . (5.22)
P + P

The relevant saddle point is at z = 1; the others are pth roots of unity and the origin,
and all subdominant if we consider the asymptotics as h~ιλp+p —> +oo. The above
contour integrals are still hard to evaluate explicitly, but anyway, we thus obtain a
closed formula for the coefficients M^ .
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5.3. Dual construction. A parallel construction is possible by starting from the
generating functions

ΰi(μ) = c(μ)Jdλλip~l)/2+iQxph~ι (λpμp

c(μ) = const. μ ( ^ 1 ) / 2 expTT1 (^Kμp+P\ . (5.23)

Previous calculations on uj(λ) can be repeated in a fully parallel manner. The gen-
erating functions W/(μ) turn out to have asymptotic expansion of the form

ΰi(μ)~ Σ ΰijiJ (μ-+oo) (5.24)
j=-oo

if p + p > 0, and
oo

(5.25)

if p + p < 0. (The case of p + /? = 0 again reduces to the c = 1 string theory.) The
coefficients utj satisfy exactly the same linear relations as the coefficients utj in the
previous construction. In other words, this "dual" construction leads to a solution
of the same string equations.

We have been, however, unable to prove (or disprove) that these two con-
structions in fact give the same solution. An obstruction is the fact that the linear
relations among M^ appear to allow more ambiguities than the overall rescaling
Uij —> const. Uij. Nevertheless, it seems likely that the above solutions are rather
special and coincide. The contour integral representation in the previous subsection
will be useful in pursuing this issue.

5.4. Concluding remark of this section. The contents of this section is inspired by
the work of Kharchev and Marshakov [20] on the (p,q) duality in c < 1 strings.
Our U is a matrix representation of their Fourier-Laplace integral operator that gives
the (p9q) duality. Namely, if Vpq denotes the point representing the (p9q) model
in the Sato Grassmannian, U acts on the Sato Grassmannian and interchanges the
(p,q) and (q, p) models:

VVgp = Vpq . (5.26)

Note that everything is formulated in the language of the KP hierarchy.
Although closely related with their work, our usage of U is substantially different.

We rather interpret U as a GL(oo) element that determines a solution of the Toda
lattice hierarchy. Only in the case of q = 1, their work and ours are directly related
via generalized Kontsevich models. Recall, however, that even in that case, our
interpretation of generalized Kontsevich models is slightly different from the ITEP-
Lebedev group [19]. We have pointed out that the generalized Kontsevich models
with "negative times" give solutions on the full (bi-infinite) lattice rather than a half
(semi-infinite) lattice.
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6. Conclusion and Discussion

We have constructed a new family of special solutions of the Toda lattice hierarchy,
and derived string equations of these solutions. These solutions have two discrete
parameters (p, /?), and include already known solutions as follows:

• (p,p) — (/?, 1), p > 0 - the pth generalized model with "negative times" I and
a "discrete time" s.

• (P>P) — (β>—β)> β > 0 - the compactified c = 1 string theory, β = 1 corre-
sponds to the self-dual radius case.

• (p,p) = (-1,1) - related to the Penner model. This case may be interpreted as
the generalized Kontsevich model at p = — 1, and also as the c — 1 string theory
"at β = - 1 . "

In the course of reviewing known examples, we have also posed several ques-
tions on the relation [7, 22] between the generalized Kontsevich models and the
c = 1 string theory. In particular, as opposed to the hypothesis postulated in the
literature [22], the naive extrapolation of the pth generalized Kontsevich model to
p = — 1 does not give the c = 1 string theory at self-dual radius. The p = — 1 limit
is rather related to the Penner model [30]. Actually, these three models are mutually
distinct and obey different string equations. Thus, although there is a lot of evidence
[39] that the Λk+\ model at k = — 3 is anyhow related to c = 1 (or two-dimensional)
strings, the approach to c = 1 by the generalized Kontsevich models seems to be
problematical.

A natural extrapolation of the c = 1 string theory at self-dual radius will be
given by the case of p = 1 and p ^ — 1. This model is ensured to reduced to the
c = 1 model by letting p —> — 1. Furthermore, remarkably, this model has a matrix
integral representation of Kontsevich type, as follows. The matrix U = U(0,0) of
this model is upper triangular; the τ function has a Miwa variable representation by
the Miwa transformation

in = --Σμί-
n = --ΊτM-". (6.1)

n i=ι n

This Miwa variable representation can be rewritten into a matrix integral of the form

τ(t, t, h(N - 1)) = C(M)JdΛ exp h~x Tr (ΛMP l—Λι+p + Σ ^Λn) , (6.2)
V 1 + p n=\ J

+ Σ
+ p n=\

where we have considered the case oϊ s — h(N — 1) for simplicity. (This expression
can be readily extended to general s.)

Unlike the ordinary generalized Kontsevich models, the Kontsevich potential
Λ1+P/(\ + p) in this matrix integral is a negative power of A. Therefore the integral
should be suitably interpreted (e.g., by suitable regularization to avoid essential
singularities as det A —> 0). The τ function itself, as a function (or formal power
series) of (ί,Γ), is however independent of such a detail of regularization, and only
determined by the contribution from the saddle point A — M. The above matrix
integral representation might lead to a topological interpretation of this model by
means of "fat graph" expansion.
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Another important difference from the ordinary generalized Kontsevich models
is that the string equations of this model never reduces to string equations in the KP
hierarchy. In the case of generalized Kontsevich models, the "negative times" are
coupling constants of unphysical states ("anti-states" in the language of Montano
and Rivlis [24]), which decouple from the theory as t —> 0, and the string equations
turn into string equations in the KP hierarchy in this limit. This does not occur in
the case of p = 1 and p ^ — 1. In other words, the model persists to be "c = 1 "
in the whole space of the coupling constants.

We, however, do not know what physical interpretation the string equations
actually have for general values of (p, p) including the above case of p = 1 and
p ^ — 1. Do they all correspond to a physical model (hopefully, of strings)? A first
step towards such deeper understanding will be to show a connection with moduli
spaces of Riemann surfaces. The works of Montano and Rivlis [24] and Lavi et al.
[22] will provide useful ideas in that direction.

Acknowledgements The author is very grateful to Toshio Nakatsu, Takahiro Shiota and Takashi
Takebe for many comments and encouragement. He is also indebted to Chris Howls for ideas on
asymptotic analysis This work is partly supported by the Grants-in-Aid for Scientific Research,
Priority Area 231 "Infinite Analysis," the Ministry of Education, Science, Culture, Japan Part of
this work was completed while participating in the research program "Exponential Asymptotics"
at the Isaac Newton Institute, the University of Cambridge

Note added After this paper was completed, the author learned that the same issue as we have
considered on c = 1 strings was studied by Imbimbo and Mukhi in a recent preprint [17]. They
noted the inconsistency between the Kontsevich-type representation of Dijkgraaf et al [7] and the
W\+oo constraints, and proposed an alternative matrix model Our matrix integral representation of
the c = 1 partition function in Sect. 4 seems to be essentially the same as this model The author
would like to thank Sunil Mukhi for pointing out the existence of their paper

References

1. Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensional ^-gravity
Commun Math. Phys 147, 25-56 (1992)

2 Adler, M, Shiota, T., van Moerbeke, P : A Lax Representation for the Vertex Operator and
the central extension Commun. Math Phys (to appear)

3 Berry, M V , Howls, C J : Hyperasymptotics for integrals with saddles, Proc R Soc. London
A434, 657-675 (1991)

4. Bonora, L, Xiong, C.S : Matrix models without scaling limit. Int. J. Mod Phys. A8, 2973-
2992 (1993); Multimatrix models without continuum limit Nucl Phys. B405, 191-227
(1993)

5. Bonora, L., Xiong, C.S.: Two-matrix model and c = 1 string theory. Phys Lett B347, 41-48
(1995); Extended Toda lattice hierarchy, extended two-matrix model and c = 1 string theory
Nucl Phys B434, 408-444 (1995)

6. Dijkgraaf, R.: Intersection theory, integrable hierarchies, and topological field theory. In: New
Symmetry Principles in Quantum Field Theory. NATO ASI Cargese 1991, London. Plenum,
1991

7 Dijkgraaf, R., Moore, G., Plesser, R: The partition function of 2D string theory Nucl. Phys.
B394, 356-382 (1991)

8. Douglas, M.: Strings in less than one-dimension and the generalized KdV hierarchies. Phys.
Lett. 238B, 176-180 (1990)

9. Eguchi, T., Hori, K, Yang, S.-K: Topological sigma models and large N matrix integral.
UT-700, hep-th/9503017

10. Eguchi, T, Kanno, H.: Toda lattice hierarchy and the topological description of c = 1 string
theory Phys Lett. B331, 330-334 (1994)



Toda Lattice Hierarchy and Generalized String Equations 155

11. Eguchi, T., Yang, S.-K.: The topological CPι model and the large N matrix integral. Mod.
Phys Lett. A9, 2893-2902 (1994)

12 Fukuma, M, Kawai, H., Nakayama, R: Infinite dimensional Grassmannian structure of two
dimensional string theory. Commun Math. Phys 143, 371-403 (1991)

13 Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A : Matrix models of
2D gravity and Toda theory. Nucl. Phys. B357, 565-618 (1991); Martinec, EJ.: On the
origin of integrability in matrix models. Commun Math. Phys 138, 437-450 (1991); Alvarez-
Gaume, L., Gomez, C , Lacki, J.: Integrability in random matrix models. Phys Lett. B253,
56-62 (1991)

14 Ghoshal, D., Mukhi, S.: Topological Landau-Ginzburg model of two-dimensional string the-
ory. Nucl. Phy B425, 173-190 (1994)

15. Goeree, J.: W constraints in 2d quantum gravity Nucl. Phys B358, 737-757 (1991)
16. Hanany, A., Oz, Y, Plesser, R: Topological Landau-Ginzburg formulation and integrable

structure of 2d string theory Nucl. Phys B425, 150-172 (1994)
17. Imbimbo, C , Mukhi, S : The toplogical matrix model of c = 1 string, heρ-th/9505127
18. Kanno, H, Ohta, Y : Topological strings with scaling violation and Toda lattice hierarchy

Nucl Phys B442, 179-204 (1995)
19 Kharchev, S., Marshakov, A., Mironov, A, Morozov, A: Generalized Kontsevich model

versus Toda hierarchy and discrete matrix models Nucl. Phys. B397, 339-378 (1993)
20 Kharchev, S., Marshakov, A.: Topological versus non-topological theories and p — q duality

in matrix models. Presented at Rome String Theory Workshop 1992, FIAN/TD-15/92, hep-
th/9210072; On p — q duality and explicit solutions in c ^ 1 2d gravity models Int J. Mod
Phys A10, 1219-1239 (1995)

21 Kontsevich, M : Intersection theory on the moduli space of curves and the matrix Airy func-
tion Commun. Math. Phys 147, 1-23 (1992)

22. Lavi, Y., Oz, Y, Sonnenschein, J.: (l,q = — 1) model as a topological description of 2d
string theory. Nucl. Phys. B431, 223-227 (1994); Hanany, A., Oz, Y : c = 1 discrete states
correlators via W\+oo constraints Phys Lett. B347, 255-259 (1995); Oz, Y : On topological
2D string and intersection theory. TAUP-2234-95, hep-th/9502058

23. Marshakov, A : On the string field theory for c ^ 1 In: Pathways to Fundamental Theories,
Singapore: World Scientific, 1993

24 Montano, D , Rivlis, G : Solving topological 2D quantum gravity using Ward identities Nucl.
Phys. B404, 483-516 (1993)

25. Morozov, A.: Integrability and matrix models ITEP-M2/93, ITFA 93-10, hep-th/9303139,
and references cited therein

26. Mulase, M : Complete integrability of the Kadomtsev-Petviashvili equation Adv in Math
54, 57-66 (1984); Solvability of the super KP equation and a generalization of the Birkhoff
decomposition Invent Math. 92, 1-46 (1988)

27 Nakatsu, T.: On the string equation at c = 1 Mod Phys Lett A9, 3313-3324 (1994)
28 Nakatsu, T, Takasaki, K, Tsujimaru, S.: Quantum and classical aspects of deformed c — 1

strings. INS-rep -1087, KUCP-0077, hep-th/9501038, Nucl Phys. B (to appear)
29 Orlov, Yu A., Schulman, E.I: Additional symmetries for integrable equations and conformal

algebra representation Lett. Math Phys. 12, 171-179 (1986); Orlov, Yu A.: Vertex operators,
^-problems, symmetries, variational identities and Hamiltonian formalism for 2 + 1 integrable
systems In: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Singapore:
World Scientific, 1988; Grinevich, P G , Orlov, Yu.A.: Virasoro action on Riemann surfaces,
Grassmannians, det dj and Segal Wilson τ function In: Problems of Modern Quantum Field
Theory, Berlin-Heidelberg-New York: Springer-Verlag, 1989

30. Penner, R C : Perturbative series and the moduli space of Riemann surfaces J Diff Geom
27, 35-53 (1988)

31 Sato, M, Sato, Y : Soliton equations as dynamical systems on infinite dimensional Grass-
mann manifold. In: Nonlinear Partial Differential Equations in Applied Science; Proceedings
of the US.-Japan Seminar, Tokyo, 1982. Lect. Notes in Num. Anal 5, 259-271 (1982);
Sato, M., Noumi, M.: Soliton equations and the universal Grassmann manifolds Sophia Univ.
Kokyuroku in Math 18, (1984), in Japanese; Date, E., Kashiwara, M., Jimbo, M , Miwa., T :
Transformation groups for soliton equations In: Nonlinear Integrable Systems - Classical
Theory and Quantum Theory Singapore: World Scientific, 1983, pp 39-119; Segal, G.,
Wilson, G.: Loop groups and equations of KdV type IHES Publ Math 63, 1-64 (1985)



156 K Takasaki

32 Schwarz, A : On solutions to the string equations. Mod. Phys. Lett. A6, 2713-2726 (1991);
Kac, V, Schwarz, A : Geometric interpretation of partition function of 2D gravity Phys. Lett
B257, 329-334 (1991)

33 Takasaki, K: Initial value problem for the Toda lattice hierarchy. In: Group Representations
and Systems of Differential Equations, K Okamoto ed., Advanced Studies in Pure Math 4:
Amsterdam, North-Holland/Kinokuniya, 1984; Takebe, T : Representation theoretical meaning
of the initial value problem for the Toda lattice hierarchy I. Lett Math. Phys 21, 77-84
(1991); II, Publ. RIMS, Kyoto Univ, 27, 491-503 (1991)

34 Takasaki, K: Dispersionless Toda hierarchy and two-dimensional string theory Commun
Math Phys 170, 101-116(1995)

35 Takasaki, K, Takebe, T : SDiff(2) Toda equation - hierarchy, tau function and symmetries
Lett Math Phys 23, 205-214 (1991); Quasi-classical limit of Toda hierarchy and ίF-infmity
symmetries Lett Math. Phys. 28, 165-176 (1993)

36 Takasaki, K, Takebe, T.: Integrable hierarchies and dispersionless limit UTMS 94-35, hep-
th/9405096, Rev. Math Phys (to appear), and references cited therein

37 Ueno, K, Takasaki, K.: Toda lattice hierarchy. In: Group Representations and Systems of
Differential Equations, K Okamoto ed, Advanced Studies in Pure Math 4, Amsterdam:
North-Holland/Kinokuniya, 1984

38 van de Leur, J : KdV type hierarchies, the string equations and W\+oo constraints Utrecht-
843, hep-th/9403080; The Wλ+oo(gls) symmetries of the s component KP hierarchy hep-
th/9411069

39 Witten, E.: The N matrix model and gauged WZW models Nucl. Phys B371, 191-245
(1992); Algebraic geometry associated with matrix models of two dimensional gravity Nucl
Phys B377, 55-112 (1992)

40 Yoneya, T : Toward a canonical formalism of non-perturbative two-dimensional gravity Com-
mun. Math. Phys 144, 623-639 (1992)

Communicated by M Jimbo




