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Abstract: In this paper we solve the following problems: (i) find two differential
operators P and Q satisfying [P, Q] = P, where P flows according to the KP hierarchy
dP/dtn = [(Pn / ί ?)+, P], with p := ord P > 2; (ii) find a matrix integral representation
for the associated r-function. First we construct an infinite dimensional space (^r -
span€{^0(^)5 Ψi(z), •} of functions of z £ C invariant under the action of two
operators, multiplication by zp and Ac := z d/dz — z + c. This requirement is satisfied,
for arbitrary p, if ψo is a certain function generalizing the classical Hankel function
(for p = 2); our representation of the generalized Hankel function as a double Laplace
transform of a simple function, which was unknown even for the p = 2 case, enables us
to represent the r-function associated with the KP time evolution of the space <W as a
"double matrix Laplace transform" in two different ways. One representation involves
an integration over the space of matrices whose spectrum belongs to a wedge-shaped
contour 7 := j + + η~ c C defined by 7 ± = M+e±7ri/p. The new integrals above
relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which
generalize the Kontsevich integrals and solve the operator equation [P, Q] = 1.
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Introduction

It is a long-standing puzzle in the theory of 2d-gravity to find an adequate descrip-
tion of gravitational coupling of (p, q) minimal models. One part of it is to find two
differential operators P and Q of order p and q respectively, such that [P, Q] = f(Q)
for some function /. In the simplest case of q = 1 and / = 1, such description is
provided by 1-matrix models, especially by the Kontsevich integral and their general-
izations; see [1, 19, 25]. Going along the chain, 2d-gravity —> equilateral triangles —>
discrete matrix models —> Kontsevich models, this approach has lead to the discovery
of integrable structures for non-perturbative partition functions, which take the form
of r-functions of the KP hierarchy (see [7, 25, 31] for review and references). While
similar results are believed to be true in the general (p, g)-case, the Kontsevich inte-
gral counterparts are still unknown. Note that a minor modification of the generalized
Kontsevich integral can be interpreted as a duality transformation between (p, q) and
((/,p)-models [18].

So far the most promising approach for finding integrable structures in the general
(p, c/)-case seems to be the one initiated by Kac-Schwarz in the case q = 1 and / = 1.
So, the general problem comes in two stages: (i) Find a point in Sato's Grassmannian
invariant under two symmetry operators, satisfying some commutation relation; the
existence of such a plane leads to a system of differential equations specifying the
wave function Ψ and thus to an algebra of constraints for the τ-function. (ii) Find a
matrix integral representation for this τ-function. Note a matrix representation, beyond
the case q = 1 and / = 1, if it exists at all, was unknown.

The purpose of this paper is to find a r-function and a matrix integral repre-
sentation for the equation [P, Q] = P for q = 1 and arbitrary p . Remarkably, the
matrix integral representation can still be found, but it is far less straightforward and
considerably more involved, than the ordinary Kontsevich integral.

The message is the following: whereas the case [P, Q] - 1 is described by general
matrix Fourier transforms, a solution to [P, Q] = P is related to double Laplace trans-
forms. While it is not known whether this solution has immediate physical relevance,
it may help to shed some light on the (p, g)-case and on the matrix representations of
the corresponding τ-functions. In particular, what are the proper multimatrix gener-
alizations of the Kontsevich integrals?

Note this problem has come up in the physical literature, in various different
contexts: unitary matrix models have been written down, leading to equations [P, Q] =
P for differential operators P and Q in the double scaling limit; see the studies
of Dalley, Johnson, Periwal, Minahan, Morris, Shevitz, and Watterstam [4, 5, 28,
22, 23]). In the mathematical context (inverse scattering and monodromy preserving
transformations), see Ablowitz, Flaschka, Fokas and Newell [11,9, 10]). The solution
provided in our paper is new and does not require any scaling limit.

Consider the problem of finding a differential operator P of order p and another
differential operator Q satisfying
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[P,Q] = f(P), w i t h O ^ / ( z ) G C W . (1)

When P is (formally) deformed with respect to the KP flows, i.e., dP/dtn =
[(Pn/p)+ ? P] , one can introduce the corresponding deformation of Q which preserves
Eq. (1). Hence (1) can be considered as a condition on a solution of the p-reduced
KP hierarchy.

The basic ingredients of this construction are1

o ψoe l + z~ιC[[z-ι]l
o A: CCO"1)) —> C((z~1)), a differential operator in z, which increases the order of

an element of C((z~1)) in z exactly by one,

so that <W := span€{ψo, Aψ0, A2ψ0,...} belongs to the big stratum of the Sato
Grassmannian and satisfies A(W' C (W, such that

o ψ0 satisfies the differential equation v(z)φQ = F(A)ψo for some υ(z) G C((z~1))
and F(Z) e C[Z], so that υ(z)W c <W also holds.

Let Ψ be the KP wave function corresponding to (W. The above conditions lead to the
existence of differential operators Q and P in x such that QΨ = AΨ and PΨ = v(z)Ψ.
If A coincides with d/dv = (l/v')d/dz up to the conjugation by a function, then
we have [P, Q] = 1. And if ψo is defined by a Fourier transform and the action of
A on it can be expressed in a suitable way, then the corresponding Hermitian matrix
Fourier transform, properly normalized, is the corresponding τ-function. See Sect. 3
for details.

The matrix integral approach to (1) has so far needed ordQ = 1 at the initial
point of the formal KP time flows, requiring άtgz f(z) < 1. The degree 0 case can
be reduced to [P, Q] = 1. In this paper, we provide a solution to the degree 1 case,
or the next simplest instance of (1), which can clearly be reduced to

[P,Q] = P, (2)

with differential operators P and Q. As in the case of [P,Q] = 1, we write the
r-function of its formal KP deformation explicitly in terms of a matrix integral.

Definition 1. Let -1 < c < 0, p £ Z, p > 2. Let W be the linear span

of generalized Hάnkel functions,

nc+l ΛOO -Cs Ϋ -(u-\)z

also representable as double Laplace transforms

Ώc+l z oo poo

Φk(z) = ^ ^ ~ 1 ) ( C + V / dxxce~xzP dyfk(y)t-χyp (4)
2πi Jo Jo

of the functions

fύy) - (ζk+ιe-ζy - ζ-k~ιt-<~ly)yk, k = 0,1,2,.. ., with ζ := e ^ . (5)

1 C[[a?]] := {X^°^o

 anχΎl I α n € C} is the ring of formal power series in x, and C((x)) :=

Γ}_ anx
n I α n G C} is the ring of formal Laurent series in x
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Using the asymptotic expansion ψk(z) = zk{\ + 0(1/2:)) G C((Z~1)) as ?ftz —> oo,
(Wr defines a point of the Sato Grassmannian Gr. Let Ψ and τ be the wave (formal
Baker-Akhiezer) function and r-function, respectively, associated with the KP time

evolution Wι - e " Σ ί i Z V ; see Sects. 1 and 2. Then we have

Theorem 1.
Ψ(x,0,z) = exzψQ((\-x)z), (6)

and it satisfies

= O and UL JL _Λ _ ( X _\)λφ { x ^z) = 0,

(7)
where L(z, d/dz) is the monic differential operator

Note that for p = 2, L(z, d/dz) = (d/dz)2 - (c2 + c)/z2.

Theorem 2. Let <9@N be the space of N x N Hermitian matrices, and J ^ y the
subspace ofS^&N of positive definite Hermitian matrices. The corresponding τ-function
evaluated at

tn := tr Z~n , for n = 1,2,..., and with an N x N diagonal Z,
n

is given by the following (normalized) double matrix Laplace transform:

J
T\t) — O i ( Γ )

where ()2 denotes the terms quadratic in X,

S0(Y) := ̂ | P d e t t / * - , ^ ) ) ^ . ^ and

where y - (yu ..., yN) are the eigenvalues of Y, yp = (yf,..., yp

N), and Δ(y) :=

Πi>j(yi ~ Vj) - A^yl~l\i> a n d fk-ι are as in (5).
The function τ(t) also has the following matrix integral representation

τ(t) = S i ( ί ) ^ ϊ J^R

integrated over the space of matrices

$(% = {W = UDΊU~ι I U e V(N), DΊ := diag(W l,. ..,wN)€ (j)N},

where 7 denotes a wedge-shaped contour in C, defined in Sect. 4 (see Fig. 1), in terms
of a complex-valued measure

m(dW) = dUdw ]J (Wi - wό )
2.
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Theorem 3. (ί) The algebra of stabilizers of(W>

S V := {φ(z,d/dz) G C((z-χ))[d/dz] such that φW c <W},

is generated by Ac := z-jfe - z + c, zp and ξ := ̂ ~pF(ylc), where F(u) = Π o " ^ "

c , ^ , ξ ] C £((z-ι))[d/dz].

Moreover, °W - C[Ac]ψo, and ψo satisfies the differential equation

(8)

(ii) A family of solutions to the operator equation [P, Q] = P is given by the differential
operators P and Q in x, defined equivalently by

1

V

or by
V i

S~ι and Q= -(MP1/p - Pι/p + c),
κdx) p

where M = S (ΣT ktk(d/dx)k~ι) S~ι, tk=tk + δk,\X, with wave operator2

S = r(t)

(Hi) The function τ(t) satisfies, in terms of the W-generators in Eq. (20), the following
constraints

"']p-jτ(t) = arn^cτ(t), m,n = 0,1,2,..., (10)

for some constants α m ; n ? c , where the constants an^ are defined by the formula3 (x

d/dx)n = Y^Q an^xl(d/dx)1. In particular, setting m = 1, τ(t) satisfies Virasoro

constraints of the form (with W<$ = Σi+j=nP

:4l)jjl)'')

= 0, n = 0 , l , 2 , . . . . (11)

Remark 1. The constants α m 5 n ? c in (10) can all be calculated; in particular, the Vira-
soro constraint (11) for n = 0 becomes:

Λ^., d d c(l+c)(p-l)\

2 For a e C, define [a] := (α, 7-, χ 5 ) € C°°
3 More explicitly, an^ = ̂  Σl=a {)(~^y~^Jn Note that it vanishes if n > 0 and i = 0
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1. The KP Hierarchy

Throughout, x is a formal scalar variable near 0, and z is a formal scalar variable
near oo. If g(z) = czq{\ + O(z~1)), c ^ 0, then ord^ g(z) := q is the order of g(z).

Throughout, we denote d/dx by D. The algebra of ordinary pseudodifferential
operators in x is denoted by ί$ (the word "in x" may be dropped if there is no
fear of confusion), with its splitting & = &+ + &L into the subalgebras of ordinary
differential operators and of ordinary pseudodifferential operators of negative order:

) > ,

A = Σ diD1 e& => A+ = ] Γ aiD
i Ξ ^ and A_ = A - ^ + e ^ L .

i>0

The ring ^ acts on the space of functions of the form Σ-oo<z<oo aί(χ)zlεxz simply
by extending the formulas Dnexz = zntxz and A(Bcxz) = (Ao B)exz, A, B e &.
When A e £&+, this definition of A(Bεxz) coincides with the usual action of A, as a
differential operator, on Btxz as a formal series in x with z-dependent coefficients.

A pseudodifferential operator in x may depend on the KP time variables t =
(t\, t2,...) introduced below, but not on z unless otherwise noted. We are not specific
about the regularity of the coefficients of pseudodifferential operators. The operators
S, L, M etc., associated to a point <W of the big stratum Gr° of the Sato Grass-
mannian (see below) have regular (i.e., formal power series) coefficients; otherwise,
the singularities of those operators can be controled by the Schubert stratum to which
(W G Gr belongs. In particular, there exist n, m > 0 such that xnS and S~1xm at
t = 0 have regular coefficients. See [29] for details.

As in [2], we set I- (a; + ti,Ϊ25*35 •)> and

* ( d_ \_d_ \_d_

The elementary Schur functions pn are defined by exp (^^° tnz
n) =

7.7. £ P hierarchy. The operator L = L(ί) = 7̂  + ΣlJ=-ooaΛx^t)DJ G ^ » w i t h

t = (ti, ̂ 2,. .)» subjected to the KP equations

is known to have the following representation in terms of an operator S G 1 + ^ L
called the wave operator, and the associated, formally infinite order pseudodifferential
operator

as follows:
L = SDS~1 =WDW~\ (12)

όtn

and
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The wave function

Φ(t, z) := Ψ(x, t, z) := Wtxz = SeΣZ ~Uz%, (13)

where ii = U + δ^ix, satisfies

dΨ
LΨ = zΨ and — - = (Ln)+Ψ, (14)

otn

and has the following representation in terms of a scalar-valued function associated
to S called the tau function r:

«,,,, .
τ(t)

n=0

implying in view of (13)

Moreover, using (13), we have

^-φ = ^-WQXZ = W^-exz = Wxexz = WxW~ιΨ
oz oz oz

thus leading to the operator

M :=

satisfying

MΨ = φ/dz)Ψ and [L, M] = W[D, x]W~l = 1,

and for any formal series / = f(x, ξ),

f(M, L) = Wf(x, D)W~ι. (17)
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1.2. Symmetries. Consider the Lie algebra WQO of operators

Wθΰ :=C[z,z-ι][d/dz] = span Jza( —
β

and its completion WQQ := C((z ι))[d/dz] in the z ^adic topology, for the customary
commutation relation [ , ]. Acting on Ψ9 we have

za(d/dz)βΨ = MβLaΨ, (18)

motivating the definition of the following vector fields, called symmetries, on Ψ\

We require that these flows act trivially on parameters x, t, and hence on S~ιMS =
k x , for instance.

Lemma 1. There is an injective homomorphism of Lie algebras

{ Lie algebra of vector fields
on the manifold of wave functions Ψ
commuting with the KP flows d/dtn

i.e.,

This definition differs from the one in [2] by the sign. Here this definition is chosen
to make it consistent with the natural action of WQQ on the Grassmannian discussed
in the next section, rather than its negative. These vector fields induce vector fields
on S and L = SDS~ι

9 as

and
Yz«

Proposition 1 ([2]). We have

φ = _ £; , n.teTL, n >0, (19)

where the WJ,n+ι\ the generators of the W^-algebra, are the coefficients in the ex-
pansion of the vertex operator

( OO \ / OO , _i _i r\ \

^ ( μ * - λ% J exp ί Σ ^— — jOO

Σ ^ ' V - with W^ = δefi. (20)
k=0
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2. Grassmannian

Let H := C ^ " 1 ) ) , H+ := C[z], and # _ := z~ιC[[z-1]], so that H = H+ΘH-.We
denote by Gr the Grassmannian manifold of linear subspaces <W of H of relative
dimension 0 with respect to H+, i.e., the natural map

T Γ ^ * :
 (-7w c—> H — > H/H— — H+

being Fredholm of index 0. Gr° := {(W e Gr | π^ is isomoφhism} is the big
(open) Schubert stratum of Gr.

Given a wave function Ψ = Ψ(x, t, z), let (W be the point of Gr defined by4

rr.r ί & τ ,κ

<W = span^^-—1^(0,0,2

= span ci —^ j^^(0,0,z) N > 0, JU .-JN > 0 > .

The first line guarantees CW G Gr, and the second line follows from the first by using
the second equation in (14), i.e., the KP time evolutions of Ψ. Hence up to the ί-adic
completion we have

so that, letting ψ = e~ΣtiZtψ and

c , z) | j = 0,1,2,...} ,

we have φ = (π^t)~ι(l), i.e., ψ is the preimage of 1 by the map π ^ t: ^ ^ ^ —> i?+.
The corresponding r-function r(t) is the determinant of the composite map

U * ̂  r_ - H+ , (21)

where g denotes the multiplication by t~l^tiZ\ Given (W, the determinant is well-
defined up to a constant which is determined by the choice of a basis {̂ /c}£So'
φk = zk{l + O(z~1)) for k > 0, of ^ " . We take {zfe}go as the basis of H+. More
specifically, τ(t) is defined as the limit as n —> oo of the determinant of

^ ^ ggr _ ff+ _> H+/znH+ , (22)

where the middle arrow is the composite map in (21), ^ ^ = s p a n ^ l ^ } ^ 1 , and the
determinant is computed with respect to the bases {φk}7}^ °f (%K, and {zk}^~Q of
H+/znH+. The limit exists in the ί-adic topology of C[[ί]], i.e., for any multi-index
α, there exists a positive integer na such that, if n > n α , then the coefficient of ία

in the determinant of (22) is independent of n, and gives the coefficient of ta in τ(t).
This finiteness property is an immediate consequence of the fact that, expanding τ(t)
in terms of Schur functions, the coefficients give the Plϋcker coordinates of (W. See
[29] for details.

The Woo -action on Ψ becomes the natural action of w^ on Gr: As an ordinary
differential operator in z, each A e Woo acts on H9 which defines a vector field on
Gr.

4 If Ψ is singular at (x,t) = 0, we need to replace (d/dx)jΨ(0,0,z) in the first line by

(d/dx)J (xnΨ(x,0, z)}\χ=Q for some n > 0, and make a similar replacement in the second line (see

[29] for details) We chose to write the formulas for W G Gr° for simplicity
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2.1. Stabilizers. Given W G Gr, we shall call

S<#r := {Q := Q{z, d/dz) G w^ | QW C 9ST]

the stabilizer of W. In this subsection we shall observe basic properties of the
stabilizer which can be obtained without referring to matrix integrals.

Lemma 2. Let W G Gr and A := Σ-oo<i«oo,o<;«oo ^zKd/dzy G &„. If

QA:=

Σ-oo<i«oo,o<;«oo

AW c W, (23)

0<j<oo

Conversely, if Q e &+ is of this form, i.e., Q = QAfar some A G WQQ, then this A
satisfies (23).

Proof. We have
) (24)

by definition. Since A6^ C (5^/", and since the Taylor coefficients (or Laurent coef-
ficients if W 0 Gr°) in x of Ψ generates W, AΨ is a C[[x, t]]-linear combination
of Ψ, DΨ, D2Ψ, . . . , i.e., AΨ = QΨ for some Q e &+. Hence, since (24) deter-
mines QA uniquely, QA itself must be in &+. Conversely, suppose QA G ̂ . , and let
Ψ(x, 0,2;) = Σ fn(z)xn be the Taylor (or Laurent) expansion of Ψ(x, 0,z) at x = 0.
Then each Taylor coefficient in x of QA& is a linear combination of {/nCz)}, and
hence it belongs to (W, so that by (24) Afn G (W for every n (the action of A on
fn is well-defined since A is a differential operator in z). Since {/n} is a basis of
^ , we have AW c

Corollary 1. Let p ^ 0 be an integer, and let Q G ̂  swc/* ί t o adίL^)^^ = 0
/or N > 0. 77iέ?n Q = QA /or some A G ϊΠoo 5MC/I ί/iαί A ^ ^ C W holds. In
particular, a solution to the string equation (1) always comes from a pair of A G w^
and W G Gr, such that AW C W {and zvW C W due to the extra assumption
P = LP e &+).

Proof. Writing Q = £ V ci:JM^L\ let A = Σij Cijz\d/dzy. Since ad(L^)iVQ = 0
we have a d ^ ) ^ ^ = 0, which implies that A is a differential operator in z. Hence
the "converse" part of Lemma 2 applies.

Lemma 3. Let A, B G w^, ψ0 = 1 + O ^ " 1 ) G 1 + Jϊ_ am/ ̂  G Gr. Suppose A
acts on the monomials zk, k e Z, as

and Ck =/ 0 ifk > 0. Then the following conditions are equivalent:

(i) ψo G W, AW C W and BW c ̂ * ;
4^0? A2ψo, •}> ̂ nJ ̂ 0 satisfies the differential equations

BAnφ0 = Fn(A)φ0 , n = 0,1, . . . (25)

Fn(s) G C[s].
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In particular, under these conditions (Wr belongs to the big stratum Gr° of Gr. If
moreover, A and B satisfy a commutation relation of the form

(26)

for some a(s), b(s) G C[s], then in (25) it suffices to assume only the n = 0 case, i.e.,

Bφ0 = F(A)φ0 (27)

for some F(s) G £[s].

Proof Since ψ0 G W, AW c W implies <W := span c {^ o ,^0o,^Vo,. . .} C
<W. Since ^o = 1 + O(z~ι) and A raises the order of a function in z by 1, the map
W -> H+ is bijective, and W G Gr°. In particular, both W and ^ ' are of
relative dimension 0, so that (Wr = ^ / ' / . Conversely, ^ * = <3^/v clearly implies
ψ^eW and A ^ * c <^\ Assume these equivalent conditions. Then BW C W
if and only if B<WI C 9 ^ ' if and only if the differential equations of the form (25)
are satisfied. Finally, when A and B satisfy a commutation relation of the form (26),
the n t h equation in (25) implies the (n + l) s t one, so that (27) suffices.

The following propositions take a closer look at the [P, Q] = 1 case and [P, Q] = P
case, to show that essentially those elements in w^ which give rise to P and Q in
the sense of Lemma 2, and their polynomials, are the only elements of the stabilizer.

Proposition 2. Let p G 7L, p > 0. Let A G ϊ̂ oo be such that [A, zp] = 1. If W* G Gr
satisfies zp(W C <W and AW C W, then the stabilizer of <W is generated by zp

and A, i.e., S<&r = C[A, zp].

Proof. Since [A, zp] = 1, A is a first order differential operator in z9 so that any
C G S V can be written as C = Σ-oo<z<oo,o<i<iv α ύ z ^ J f o r s o m e N > 0. It
suffices to prove that α^ = 0 if i < 0 or if i ψ 0 mod p. Suppose A raises the order
of a function in z by k: ord^ A2;̂  = ί + fc. Let / be the set of pairs (i,j) such that
i < 0 or i φ 0 modp, α ĵ 7̂  0, and i + fcj is maximum among all such α^ 's. We
have |/| < 00, and we only need to prove |/ | = 0. Suppose this is not true. Let
°o '= Σ{i,j)eiaυziAJ' Noting

[A, zιAj] = [A, (zp)i/p]Aj = (i/p)zi~pAj,

so that a.d(A)n(zιA^) = 0 for n > 0 if and only if i > 0 and i = 0 mod p, we see
that for n > 0 the leading terms of ad(A)nC are ad(^4)nCΌ, which lowers the order
of a function in z, and does not annihilate the function for a general n. This cannot
happen since aά(A)nC(W% c ^ \ and since in ^ ^ the order of functions in z are
bounded from below.

Proposition 3. Let p G 7L, p > 0. Let A = zd/dz - a(z), where a(z) G z + CH^" 1]],
αra/ ?/;o = l + O(2:~!) G I + H-. Let W G Gr be ί/ιe point of the Grassmannian
determined by the conditions ψo G ̂ W and A<Wr C °fflr. Suppose CW also satisfies

z

p(W C W. Let F(s) = cl\p

i=ι(s ~ Q ) G C[S], w/iere Q G C, c G C*, ̂ e ίftβ
polynomial of degree p as in (27) with B = zp, i.e., ψo satisfies the equation

zpφO- (28)

Then if F satisfies the following genericity condition:
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(G) For any n Ξ£ 0 mod p, we have (F) + n := Σ(c{ +ri)^k (F) mod p, i.e., πp ((i*
1) +

n) Jπp(F), where (F) = ΣP

=ι(Ci) is the divisor of F, and πp: C -» C/pZ, is the
natural projection,

then the stabilizer of °W is generated by A, zp and ξ := z~pF(A), i.e.,

p,ξ]. (29)

Remark 2. Condition (G) is equivalent to

(G;) There does not exist n \ p, 0 < n < p, and H(s) G C[s] of degree n such that

and if it is not satisfied, i.e., if F(s) = ΠPLQ H(S — in) for some n | p and H,
then taking such (n, H) of the smallest n, we observe from our proof below that

n , ξ7], where ξ' = z~nH(A).

Remark 3. The right-hand side of (29) equals Σ ^ } A.> 0 C α ^ c f c , where (α, 6, c) is any
permutation of (A, zp, 0 ; the order does not matter because

and [zp,ξ] = F(A) - F(A - p). (30)

Remark 4. Condition (G) is satisfied by the F in Theorem 3: Since

F(s) =
\i=0

and — 1 < c < 0, there is no period less than p in the divisor of F modulo p.

Proof of Prop. 3. Using the commutation relations (30), the definition of <W', and
Eq. (28), we observe easily that S<w D C[A, zp,ξ]. We prove the converse inclusion
in two steps. Only Step 2 needs Condition (G).

Step 1. We observe that S^ is spanned by the ^-homogeneous elements in SV*, i.e.,
the elements of Sc^ of the form znf(A), where n G 7L and f(s) G C[s].

Indeed, let S' c S<%r be the subspace of S<w spanned by the z-homogeneous
elements, and suppose that S" := Sc%r \ S' i- 0. Let N be a nonnegative integer such
that

S"{N):={CeS"\ovάd/dzC<N}

is nonempty. Let C G 5 / / ( i V ) be such that, writing

C = Yjz
nfn(A), (31)

no(C) := max{n | / n ^ 0} is the smallest in S"/(iV). Such a C exists because

Claim: {no(C) \ C G S"{N)} is bounded below.

Proof. Indeed it is bounded from below by —2N+1: since C G 5 f//(iV) is an ordinary
differential operator of order < N, and since 0O> ̂ o , , AN~ιψo are linearly
independent, we have CAιψo ψ 0 for some ί, 0 <i < N. Since Aιψo = (—\yzι(l +
O(z~1)), since C ^ ^ c W, and since ^ ^ is a span of AJVo for j > 0, we
observe that C does not decrease the order of Aίψo in z by more than N — 1. This
implies, using the notation of (31), that n + deg/ n > — (]V — 1) for some n. Hence
no(C) > n > - d e g / n - (iV - 1) > -(27V - 1).
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Now let

C" := [A, C] - no(C)C = ̂ ( n - no(C)) zn fn(A). (32)

Clearly C G Sc^r. We have ord^/^ C < oΐάd/dz C < N, and no(Cf) < no(C) — 1.
Hence by the minimality of no(C), we must have C £ S"{N\ so that C G Sr. Thus
each term (n — no(C)) zn fn(A) in (32) belongs to S\ and only finitely many fn are
non-zero. As a finite linear combination of such, we have C" := C—zn°^C) fno(C)(A) G
5', so that zno{C) fno(C)(A) -C — C" must also belong to SV% and hence to 5', since
it is ^-homogeneous. This implies C = C" + (C — C") G S'', which is a contradiction.

Step 2. Let /(s) ψ 0 be any constant coefficient polynomial, and let n be an integer.
We prove that

znf(A) G S<w implies p \ n,

and that, when n < 0, zn/(A) G 5^- must have the form ξkh(A) for /c := — n/p > 0
and some h(s) G C[s].

Suppose zn/(A) G 5^*. We assume n ^ 0 without loss of generality. Since
znf(A)ψo G ( ^ / \ by Lemma 3 there exists another polynomial g(s) G C[s], such that

l>o=9(A)fo. (33)

First assume n > 0. Let £ > 0 be the least common multiple of p and n. Noting

z

2 * γ 0 = zpF(A)ψ0 = F(i4

etc., we have

- 1

F{A - ip) I ψo = z^Ψo (34)

\ ~

from (28), and
(tln-\

JJ G(A-jn)J φo = z% (35)

from (33), where G(s) - g(s)/f(s — n) is a rational function in s, and GG4 — jn) in
(35) is understood as an element of the field of fractions of C[A\\ this makes sense
because, since {^4n^o}n=o,i, is linearly independent, the representation

CM 3 f(s) » f(A)φo G <W

is faithful.
Comparing the left-hand sides of (34) and (35), we thus have the equality

e/p-l ί/n-l

H F(s-ip)= H G(s-jn) (36)
2=0 j=0

of rational functions in s. Since the left-hand side of it is a polynomial of s, so is
the right-hand side. Let D be the divisor of this polynomial, and let πι be the natural
map C —• C/£Z. From the left-(resp. right-)hand side of (36) the image τr^(D) of
divisor D on the cylinder C/£Z is invariant under the translation by p (resp. n). But
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the genericity condition (G) implies that if πι(D) is invariant under the translation by
k G Z, then p \ k. Hence p | n.

Note here that, since ί is the least common multiple ofp and n, this implies £ = n,
so that the right-hand side of (36) is G(s) itself. Hence

n/p-l

g(s)/f(s-n) = G(s)= J ] F(s - ip).

In particular, g(s)/f(s — n) is a polynomial.
In the case where n < 0, after rewriting (33) as

we switch the roles of / and g, and n and —n, to proceed exactly the same way to
prove p | n and

-n/p-l

f(s)/g(s + ή)= Π F(s-ip).

Thus we have
n/p-l

»=o

proving the last assertion of Step 2, and hence completing the proof of Prop. 3.

2.2. Symmetric functions and matrix integrals. In this subsection, we prove a number
of lemmas regarding symmetric functions.

Lemma 4. Let s and N be positive integers. Let F(x{1\ ..., x ( s )) be a function which

is symmetric in each x ( r ) := (x\,..., x^/) G C^, r = 1,.. ., s; let / i , . . . , fs be

functions of two variables, and let B[x^s)) be a skew-symmetric function of x^s\ If

C\,..., Cs denote s fixed contours in C, then the integral

s N

where x (0) G CN comes in as the first argument of f\, is skew-symmetric in x^\ and

Φ(X^) = (NiyJ

fx«\ ..., x^)B(x^) ή f[ fr&Γ", 4') •
r=l i=\
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Proof For any (good) functions A = A(x(l\ . . . , x(s)) and h = h(x(l\ . . . , x{s)), let

(Ah) : = / • • • /

./ Λco^x x(Cs)

For any σ r G 6JV, let a;£> := ( x ^ i , . . . , x ^ ) , and ft<σ' ^ ( V ^ , . . . ,z(s>) :=
/ι(x^ },. . ., x(

σ

s

s>). Clearly (Λ/i) = (A&> ^)h(σu ,σβ)^ I f > m o r e O ver, Λ is symmetric
in each of x(l\ . . . , x ( s~1 }, and skew-symmetric in x(s\ i.e., A{σu ' σ s ) = (- l) ε ( < J s ) Λ
then we have

Applying this to /ι(x ( 1 ),.. ., x ( s )) := Π r Hi fr (χ(f~l\ xt^)> a n ( ^ summing it up over
(σi , . . . , σs) e (6jv)β, we obtain

A ^ (-if^WWfΛxΓMxTJ), withσo = i

A

σi, ,σs r

Setting here A = F ( x ( 1 ) , . . . ,a; ( s ) )5(x ( s ) ) proves the identity in Lemma 4. Finally,

Φ(# ( 0 )) is skew-symmetric in x^ since det ί/i (a^ , Xj ) J is.

Lemma 5. (See [19, Lemma 4.2], [17, Eq. (2.21)], [26, Theorem 8.18].) Let

<W - span^l^oO)? Ψι(z), Ψiiz),. .} G Gr

with functions

Ψk(z)= ^2 a3,kzj •> A; = 0 , 1 , 2 , . . . ,
— oo<j<k

such that dkk = 1 far k > 0, i.e., ord^ ^ ( 2 ) < fc and ψk(z) = zk(l + OO" 1 )) /or
/υ ^> 0. L ί̂ N > 0 be any integer such that this condition holds for k > N. Let
z\,..., zjsf be formal scalar variables near 00. Then the τ-function r(t) at

1 N

is given by
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Proof. This lemma is stated by Kontsevich in [19], essentially without proofs; see
[17, Sect. 2.3] for a proof using free fermions. To keep the notation simple, let us
denote by (1 — z)~ι and (—z + I ) " 1 the geometric series Σς? χU a n c * ~ Σ l L ^n>
respectively. Let δ(z) := (1 — z)~x — {—z + I ) " 1 = Σ™^ zn, which plays the role of
delta function, in the sense that

δ(z/y)f(z) = δ(z/y)f(y), (39)

as is obvious by taking f(z) = zm (see [6]). Let σ := Y[i=ι(—Zi) = (—l)Nzι... ZN-
Let σι := \j \\ Ύ_^)(1 — Zi/zj), i- 1,. . ., JV, understood as rational functions of z/s,
so that we have the following identity of formal power series in z\

N

ΐ=l

- 1 JV

2=1

- 1

From (37) we have

g :=exp - - Π >-r
n=l

N

-1 N

N - 1

N N

2=1 2=1

so that by using (39), we have

N N

<=
m —

- 1

(σ

2=1

Denoting by B the matrix of the composite map in (21) with respect to the bases

{Ψjj^o a n d {zk}f=o> w e h a v e t h u s B = B° + B\ where

/ 1 1 \

%
ZN

\ : . . . : /
ΨI(ZN)

/ ••• 0 0
••• 0 0

\ •"

N

0 ... 0 0 σ

- I

CL-2
α _ i

αO(
0

0

,o

)

β-2,1

α _ i } i •••

an

0

\ : . /
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SN is the diagonal matrix diag(σi,..., σ^), and α ^ , — oo < k < oo, 0 < j < oo,
are the Laurent coefficients of ̂  = Σk dkjZk.

Let us apply some column operations on B. Adding an appropriate linear com-
bination of first N columns to the (N + i) t h column (i > 0), we can eliminate the
column * (ΨN+Ϊ(ZI), > ΨN+ΛZN))* i > 0, from B°. Since N is large enough so that
djj = 1 for j > N, Bι has the form

σ * \
σ

0
so that the "*" part can be eliminated by further column operations on columns N+1,
N + 2, . . . , which do not alter the v3°-part. Here O m x n is the m x n zero matrix.
The matrix B can thus be reduced to Br = B/0 + Bn, where

/ 1
- 1

1 \

ΨN(ZN)

oN>

B1

- ( •
o,ooxN

• ) •

Let n, n > iV, be an integer. Note that the column operations needed to bring B into
Bf only adds linear combinations of lower numbered columns to higher ones. Hence,
denoting by Bn, B'n, Br® and B£ the matrices of the first n rows and columns in B,
B', B/0 and Bn, respectively, we have d e t £ n = d e t ^ = det(J5 °̂ + B%), with

/ 1

. - n + l

1 \

ZN
Ψo(zN) ΨN(ZN)

oNx(n-N)

and
71 _ I O(n-N)xN

ONX(Π-N)

Since the last n — N columns of B® are 0, we have

B' = σln- N

ONX(Π-x(n-N)

where Z consists of the last N rows and the first N columns of B!?:

Z =

-n+N

h

-n+1

-n+N
ZN

-n+1
ZN

Hence we have, using σ = (— 1) z\...
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det Bn = det B'n = ( - i)N(n~N>> det Z det(σJn_]v)

= (z1...zN)n~NάetZ

where

Z' =

ί"1 \

>N

Ψo(zύ

ΨO(ZN)

Noticing

and

we observe that deti?n coincides with the right-hand side of (38). Since n > TV is
arbitrary, this completes the proof of Lemma 5.

Lemma 6. Let Z := diagfe,. . . , zN). Let λ := ( ( p - 1)(JV-1), ( p - l)(iV-2),.. . , p -

l). Fί?r a polynomial f(y,z), let us denote by (f(y,z))2 the terms in f(y,z) which

are quadratic in y. Then we have5

where c is a non-zero constant which depends only on N and p.

Proof. The Schur function associated with the partition λ is given by (see [21])

/ N Λ N N
Δλ+δ(y)

where 6 = (N - 1 > AT - 2 > > 1 > 0) and Δμ(y) = det(?/fj)i<*,j<jv. Therefore
we have, with λ + δ = (p(N - 1) > p(iV - 2) > > p > 0),

iV AT TV

\ 1 1 1 /

establishing the first equality of Lemma 6. In order to establish the second one, note

Fχ is the Schur function for the partition λ
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=

2

h3

- -Vy

Hence, performing a Gaussian integration, we find

2π)^/2 ^ ) Λ
pJV/2 Zi(^P) 1 1

establishing Lemma 6.

Remark 5. In general we have

dYe~

The following lemma is due to Harish Chandra, Bessis-Itzykson-Zuber and
Duistermaat-Heckman among others:

Lemma 7. Given N x N-diagonal matrices X and Y, we have

V) ( } Δ(X)Δ(Y) '

A proof can be found in [13].

3. Matrix Fourier Transforms

In this section we explain how generalized Kontsevich integrals (see [19, 1, 24]) are
closely related to the theory of Fourier transforms. Indeed, if V(x) grows sufficiently
at infinity, any Fourier transform

a(y) = ί°
J —

(40)

leads to a linear space of functions (W invariant under two operators A and V'(z)
satisfying [A, V'(z)] = 1.
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(i) The point is that a(y) satisfies the differential equation

as seen from

0 = / -^-e

(41)

Thus setting y = V\z) in (41) and Ao := V"(z)-ιd/dz = d/dy\y=yi{zy the function

a(V'(z)) satisfies the differential equation

V'(A0)a(V'(z)) = V'{z)a(V'{z)). (42)

(ii) The method of stationary phase applied to integrals (40) and their derivatives
leads to the following estimate, upon Taylor expanding V(x) around x - z,

d\n

= e

/•CX)

/ xne-v^+xV'^dx
J — oo

/ χnQ-(V(z)+(x-z)V'(z)+(\/2)(x-z)2V"(z)+O(x-z)3)+xV'(z)dχ

J — oo

\z) f°° χnt-{\/2)(x-zfV"{z)(\+(V'"/V")O{x-z))dχ

J — oo

-oo

-V(z)+zV

/V"

(43)

with

Therefore defining

and

dy
o p(z)- 1

the differential equation (42) implies

This, combined with (43), proves that the linear span
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W := spanc{V>feω = zk(l + 0(1/z)) \ k = 0,1,2,...}

is invariant under the operators A and V'(z), i.e.,

AW C ^ and V'(z)W C ^ " , with [A, V'(z)] = 1.

(iii) By Lemma 5 and the fact that ψk(z) - Akψo(z), the r-function corresponding to
W, at time t as in (37), is given by

_

-1

Δ(z) yy

Δ(z

N\Δ(z) Λft"

using Lemma 4 with s = 1 and the skew-symmetry of Δ(x),

Δ{x)Δ(V'{z))

jxUXU~lV\Z)

using Lemma 7, with X = diag(x),

Γ dX e~tΓ ^ ( X ) e t Γ x v

= c e Γ P j ^ —trπ/rv+zYu ' using Lemma 6,

//Jj^iv
= C .̂

for some constants c, c ; and c" depending on TV.

4. Generalized Hankel Functions, Differential Equations
and Laplace Transforms

This section deals with the properties of Hankel functions and their generalizations.

Lemma 8. The family of integrals

pc+l poo z-c^uz^kt-{u-\)zZ OO - C (

• -Kc<0, (44)

admits, for large z > 0, an asymptotic expansion in C((z~1)) of the form

k ( ) , (45)
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with ψo(z) satisfying the differential equation

3 \ TT ί d -W c - z ι , Λ , w, < Λ ^z- i] - cp \\ z- i) \z e ψo(z) = (-z)pψo(z), (8)
z = 0 v dz J 1 1 V dz ))

or equivalently

QZZ~C I zp ( — J — cpzp~ι ( — J I zce~zψo(z) = (—z)pψo(z). (8;)
\ \ ZJ \ ZJ J

Moreover ψk(z) admits the following representation in terms of a double integral6

ϋ c + 1 ί ί°°

2τri JΊ Jo

jjC+l POO POO

= -^Z(P~1)(C+1)QZ / dxxce~xzP / dy fk(y)e~xyP, (46)
2τπ Jo Jo

where, in the first integral, 7 : = 7 + + 7~ C C denotes the contour consisting of two
half-lines 7^ = M+ζ^1, ζ := eπl//p, through the origin making an angle ±π/p with the
positive real axis, with the orientation given as to go from ζ~ι 00 to 0 to ζ 00 (see
Fig. 1 (a)), and where in the second integral,

fk(y) = (ζk+le-<y - ζ-k-ιε-^y)yk = ] Γ t ^ 3

j=0 J '

where an = ζn — ζ~n = 2i sin(nπ/p).

Proof Setting v = (u — l)z, and using

Γ(-c)= / —-dv forc<0,
Jo v

we first observe that for each n > 0,

. k c + l
Λ.c+l^c+l / 1 _ι_ ± (\^P IPλίoi IvΛi—
υ " y1 "•• p \λ^i=2 \i)^υ/z)

= zk(\+ hktiz~ι +••• + bk>nz-n + 0(1/zn+1))

as z —> 00, where the 6 ^ := (Γ(—c + i)/Γ(—c))bk,i =

obtained from the coefficients bk,i of the expansion7

6 If p = 2, so that 7 becomes the imaginary axis, these integrals should be interpreted by replacing ζ
by ζε = e(

7r i/2)-e> a n d 7 by Ά+ζε + Ά+ζ~l, and then taking the limit as ε | 0
7 Noting that the radius of convergence of this power series is \ζ — 1|, one can get a precise growth

estimate of the coefficients of φ^ (z) which implies that, in particular, as always with the string equation,
<W does not belong to the L2-Grassmannian of Segal-Wilson [30].
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(a) * (b)

Fig. 1. Contours of integration: (a) contour 7 for (46); (b) closed contour for (48)

(1+5)*
c+1

confirming the asymptotic expansion (45).
Moreover, setting

2=1

• du,

we have for c < 0 and Re z > 0,

0 = -zp-ι~c

(UP - l ) c

u=\

du

= (-If y°° {{-zuf - cpi- • du

= (-IFz~c ( z* (—Y -z c ( z
dzj

(UP -

p-Ίg-z) -(-*>> I A*ω

i=0

-ί)~ (-z)λ

using in the last line the operator identity

2=0

thus showing that ψo(z) satisfies the differential equation (8) or (87)

(47)
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Consider a bounded domain D c C , whose boundary consists of the lines 7^,
making an angle ±π/p with the positive real axis, two circle segments C^, about
the origin, of large enough radius R and a small circle about 1 of radius ε connected
to C%, as in Fig. 1 (b). The function e~uz/(up - l ) c + 1 is univalued in D and all its
singularities lie outside D. By Cauchy's theorem we have

7 + / + / •/""•/ + Λ
JΊ- JΊR JC+

R JR JCε J\+ε
Observe that, for z > 0 and p > 2, we have z cos θ > z cos(π/p) > 0 for 0 < θ <
π/p, implying

I (uz) e U Z

 d^ = ofRk-(c+l)p+lQ-Rzcos(π/p)\ _^ Q

Jc± (UP - l ) c + 1 v J

as R f oo. Since c < 0, we also have

as ε I 0. So, taking limits as ε j 0 and i? | oo leads to

uz) t~^u

 Ί I f f \
— du = - / + /

(up-i)c+ι Woo Λ-io / (UP - l ) c + 1

= 2ie-π i csinπc /
»/1

Note that, since wp — 1 < 0 along [1, oo), we have the following Γ-function repre-
sentation

1

(UP - l ) c + 1

and thus

Jo

Γ(-c)
c+leπic

2i sin πcΓ(-c)

pc+lz-c

2isinπcΓ(-c)Γ(c+l)
ί du(uz)kQ-(u~l)z Γ dxxcex(uP~l)

J~i JO

2πi

l
z(p-l)(c+\)

i
^ /

Jo
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upon setting w = uz. Here we used the Γ-function duplication, Γ(—c)Γ(c + 1) =
—π/sinπc, —1 < c < 0. Working out the integral over 7, interchanging the integra-
tions and using ζ±p = — 1, we find

2πi

with

fc-' f>dye-<-1Vyke-χy'+ζ'»1 ί
Jao JO

.(P-l)(c+l)e, Γ dχχce-xz" ['

Jo Jo

= Σ ^

as announced in (46), thus ending the proof of Lemma 8.

Lemma 9. The linear space spanned by the generalized Hdnkel functions,

Όc+\ poo -c(yz\ke-(u-l)z

^ j L L d u
(UP - l ) c + 1

is invariant under

zp and Ac:= z~cezz—oe~zzc = z- z + c
oz oz

(so that [(l/p)A, zp] = zp), with ψo satisfying the differential equation (8).

Proof The space (Wr is invariant under Ac, because

Acφk(z) = — z - V ^ Λ - ' ^ { u p _ 1 ) c + 1 d»

c+l ^ /.oo ( ω 2 )fc e -«z
- z c z-χ- I Γ du

Γ(-c) dz Λ (UP - l)c + 1

= kψk(z)-ψk+ι.

Moreover, the operator

p-l p-2

Π(A:-*)-cpJJ(i4c-ί)

has the form J^Q otjAJ

c, with α p = 1. From Lemma 8, the solution to the differential
equation

/p-l p-2 \

I TT(^-c — i) — cp Y\(AC — i)
I XX XX
\ ί=0 i=0
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is given by the function in (44) or (46) for k = 0. An asymptotic expansion of the
form

follows from (45).

5. Proof of the Main Statements

5.7. Proof of Theorems 3 and 1 and Remark 1. In Lemma 9, we have constructed a
space <W' and an operator A- Ac such that

AWcW and zP(WdW,

with the lowest order element ψo G (W satisfying Eq. (8). Proposition 3 and Remark 4
imply that the stabilizer of W is C[A, zp, z~pF(A)l proving Theorem 3, Part (i).

Let Ψ and r be the wave function and the r-function, respectively, associated with

the KP time evolution W1 = e~ΣtiZ% W of W. We now define the operators P
and Q in the x-variable, via the operators A and zp in the ^-variable, by means of

zpΨ(t, z) = PΨ(t, z) and (l/p)AΨ(t, z) = QΦ(t, z).

According to Lemma 2, P and Q are differential operators. They satisfy [P, Q] = P
since [(l/p)A, zp] = zp. Note that P and Q can also be written:

and
1

V

where

in terms of the r-function above, and L and M are as in (12) and (16), proving
Theorem 3, Part (ii).

Since (M — \)L = pQ — c is a differential operator, we also have, using the
notation α^ as in the statement of Theorem 3,

m

((M - \)L)mLnp = Σ amAM - lYLi+np

i=\

0<i<m
= Σ

is a differential operator. Thus

)-!? = 0,
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implying (10), upon using (19), completing the proof of Theorem 3.
To prove Remark 1, we evaluate

at t = 0 to find — [(dτ/dt\)/τ) \t=0 = a. Remember, on the one hand,

and on the other hand

t x τ{tx+x-z~\...)

T{tχ + X, . . .) x=0,t=0

t=0

Therefore a = &oi = (—c)&o I = c(l + c)(p — l)/2 as stated in Remark 1, as implied by
(47).

To prove Theorem 1, note that at t = 0,

Q\t=o =

= (l/p)(x — l)(d/dx) + c + (negative order terms).

Since Q must be a differential operator, the negative order terms vanish, and Q\t=o =
(l/p)(x — l)(d/dx) + c. Thus, from the second equation in (9), we have

0 = (Q\t=o - Ac)Ψ(x, 0, z) = ((x - l)φ/dx) - zφ/dz - l))Ψ{x, 0, z). (49)

Since this is a first order equation and the line x - 0 is noncharacteristic, Ψ(x,0, z)
is determined by (49) together with the initial condition ^(0,0, z) - ψo(z). It is easy
to check that the right-hand side of (6) satisfies these conditions. Finally, (7) follows
from (8): Writing (8) as

substituting (1 — x)z for z, using the scaling invariance of zd/dz, and dividing both
sides by zp, we get

— χ)z)) = (x — l)pQ^x~l)zφo({l — x)z). (50)

Multiplying both sides of this formula by ez, and using the identity ez(z d/dz + c) =
(z d/dz — z + c) o e*, we get the second formula in (7). Next, switching the roles of
z and 1 — x in (50), we get

— l)τς— + c I (eίx~ι^zψo((l — x)z)) = zp^x~ι^Z/φo((l — x)z).
(x- 1)P

Multiplying both sides of this formula by ez, and using the fact that tz commutes with
(x — \)d/dx + c, we get the first formula in (7), completing the proof of Theorem 1.
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5.2. Proof of Theorem 2. Setting tn = - £ Σf= 1 z~n, n = 1, 2, . . . , and using
Lemma 5, and Lemma 4 with s = 2, we have

τ(t) =
Δ(z)

^ / dx
Jo Jo

aNS2(t) f ,
Δ(z) JMN

det(Λ_1(2/ί))fc.e-ΣΓ:

• det (Λ-i(»i)) f c i. det (e- X 4 Z ?) . deti . ( ) .

where a = p c + 1/2πi,

and

Δ(y) .

So we have, for some constants C, C" and C" depending on TV, >̂ and c,

dxΔ{xf\\\x{\ f dyΔ(y)2S0(y)

U(JV) ^ϋ(/V)

using Lemma 7

ί dxΔ{xf(f{x{\ f dyΔ(y)2S0(y)

/ -tlZPU?xUx ί dUγe-«u~χxUxυrlyVuv

V(N) JV(N)
setting Uy = VγlJχ for fixed Ux in the last
integral and noting that dUx όϋγ = dUx dλ/γ
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' N
Λ(t)Δ(zn r ^ Λ .

Δ(z) Jn? \ " / J\J(N)

dyΔ2(y)So(y)

= C' Γ T / dXdet(Xc)t~«

ϊϊM+

where we used Lemma 6 in the last equality, and the definition of S\(t) in Theorem 2.
A similar calculation, outlined below, implies the second formula for r, upon using
the first representation of ψk(z) in (46):

τ(*) = "
Δ{z)

f ί°° P P\
I fill) / /ΊΓ/T> f * 7/1 'T* f* f* % I

>-l)(c+l) m

p p /»OO λ>OO ^ ^ - ^ - ^

• - dw / * / ώ e ' ^ ^ ΓT ^ Z l ( t ί ) TT €~z*>x% | T e^
J^γ Jη JO JO _i _i

α w v-.

(N\γ~ " - < 4(z)V" "V

ending the proof of Theorem 2.
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