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Abstract: We prove the existence of global solutions to the Euler equations of
compressible isentropic gas dynamics with geometrical structure, including transonic
nozzle flow and spherically symmetric flow. Due to the presence of the geometrical
source terms, the existence results themselves are new, especially as they pertain to
radial flow in an unbounded region, \x\ ^ 1, and to transonic nozzle flow. Arbi-
trary data with L°° bounds are allowed in these results. A shock capturing numerical
scheme is introduced to compute such flows and to construct approximate solutions.
The convergence and consistency of the approximate solutions generated from this
scheme to the global solutions are proved with the aid of a compensated compact-
ness framework.
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1. Introduction

We develop new mathematical existence theory and numerical schemes for global
discontinuous solutions to the Euler equations of compressible isentropic gas
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dynamics with large initial data and with geometrical structure. The compressible
Euler equations are of the following conservation form:

= 0 , ( L 1 )

where p, m, and p are the density, the momentum, and the pressure of the gas,
respectively. On the non-vacuum state, u = m/p is the velocity. For polytropic gas,
p(p) = py/y, where the adiabatic exponent γ is restricted to the interval (1, 5/3], as
is usual for gases.

Our results are new for the problem of spherically symmetric flow in an
unbounded domain (\x\ ^ 1) and for transonic nozzle flow: existence of global
discontinuous solutions for general initial data in L°°. The central difficulty in the
unbounded domain is the reflection of waves from infinity and their strengthening as
they move radially inward. The central difficulty for the transonic nozzle flow lies in
the associated steady-state equations, which change type from elliptic to hyperbolic
at the sonic point; such steady state solutions are fundamental building blocks in
our approach and in early work on nozzle flow.

The Cauchy problem models transonic nozzle flow through a variable-area
duct (cf. [EM, GL, GM, L1-L3, CF, Wh]). In [LI] the existence of global so-
lutions of this problem was obtained by first incorporating the steady-state build-
ing blocks with the random choice method [Gl], provided that the initial data
have small total variation and are bounded away from both sonic and vacuum
states. A generalized random choice method was introduced to compute transient
gas flows in a Laval nozzle in [GL, GM]. A mathematical analysis of the qual-
itative behavior of nonlinear waves for nozzle flow was given in [L3]. In this
paper we introduce a Godunov shock capturing scheme to obtain L°° estimates and
compensated compactness of the corresponding approximate solutions. Our method
incorporates natural building blocks from Riemann solutions and steady-state
solutions. Such estimates lead to the convergence of the approximate solutions and
to an existence theory of global weak entropy solutions for measurable initial data
inZ°°.

The initial-boundary problem is motivated by many important physical problems
such as flow in a jet engine inlet manifold and stellar dynamics including supernovae
formation. A global weak entropy solution with spherical symmetry was constructed
in [MU] for the isothermal case γ = 1 and the local existence of such a weak
solution for the general case 1 < y ^ 5/3 was also discussed in [MT]. A theorem
has also been established for the general case in [C3] to ensure the existence of L°°
spherically symmetric weak solutions in the large for a class of L°° Cauchy data
of arbitrarily large amplitude, which model outgoing blast waves and large-time
asymptotic solutions.

In Sects. 2-4 we develop a first order Godunov shock capturing scheme, with
piecewise constant building blocks replaced by piecewise steady ones. The main
point is to use the steady-state solutions, which incorporate geometrical source
terms, to modify the wave strengths in the Riemann solutions. This construction
yields better approximate solutions, and permits uniform L°° bounds. There are two
technical difficulties which we overcome to achieve this goal, both due to transonic
phenomena. One is that no smooth steady-state solution exists in each cell in gen-
eral. This problem is easily solved by introducing a standing shock at the center
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of the cell, as discussed in Sect. 2. The other is that the constructed steady-state
solution in each cell must satisfy the following requirements:

(a) The oscillation of the steady-state solution around the Godunov value must
be of the same order as the cell length to obtain the L°° estimate for the convergence
arguments;

(b) The difference between the average of the steady-state solution over each
cell and the Godunov value must be higher than first order in the cell length to
ensure the consistency of the corresponding approximate solutions with the Euler
equations.

These requirements are satisfied by smooth steady-state solutions bounded away
from the sonic state in the cell. The general case must include the transonic steady-
state solutions. The sonic difficulty is overcome, as in experimental physics, by
introducing an additional standing shock with continuous mass and by adjusting its
left state and right state in the density and its location to control the growth of the
density. These requirements also enable us to make H~ι compactness estimates for
corresponding entropy dissipation measures to deduce the strong convergence of the
approximate solutions with the aid of the compactness framework (see [Cl, C2]).

We rewrite (1.1) with geometrical structure as

( pt + mx= a(x)m ,

or in a compact form:
vt + f(υ)x = a(x)g(v), (1.3)

where m is the momentum of the gas, a(x) is a C 2 function in the region of
x = |x| under consideration, v = (p,m) τ , f(v) = (m,m2/p + p(p))Ύ, and g(v) =
(m,m2/p)τ. The function a(x) can be represented by

a(χ) = -A'(x)/A(x) with A(x) = eS* a{y)dy . (1.4)

The function A(x) represents the cross-sectional area at x in a variable-area duct
for transonic nozzle flow, A(x) — 2πx for cylindrically symmetric flow, and A(x) =
4πx2 for spherically symmetric flow. For cylindrical and spherical flow, we impose
reflecting boundary conditions at x = 1 to exclude the singularity at the origin,
but, as a principal new result of this paper, we are able to handle successfully the
difficulties at infinity.

We consider the Cauchy problem:

v\t=o = vo(x), (1.5)

and the initial-boundary value problem:

{ϊ,vf
with the initial data VQ(X) € L°°.

A pair of mappings (η,q) : R2 —> R2 is called an entropy-entropy flux pair [Lai]
if it satisfies an identity

(1.7)
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Furthermore, if, for any fixed ̂  G (-00,00),f/ vanishes on the vacuum p = 0, then

η is called a weak entropy. For example, the mechanical energy-energy flux pair

\m2 1 f\m2 Py~x

is a strictly convex weak entropy-entropy flux pair. One can prove that, for 0 ^

\Vη\ ^ const, (1.9)

and
\V2η(r,r)\ g const.V2^*(r,r) , (1.10)

for any weak entropy η, where r is any vector and the constant is independent
of r.

Definition 1.1. A pair of measurable functions v(x,t) = (p(x,t),m(x,t)) is called a
global weak entropy solution of the Cauchy problem (1.3) and (1.5) //, for any
test function φ G CQ(Ω) with Ω C R 2

+ Ξ R X R + ,

t + f(v)φx + a{x)g{v)φ)dxdt + / ^ ( x , 0 ) ώ = 0 ; (1.11)
supp 0( , 0)

shock wave with left state v-, right state t;+, α/?J speed σ,

^ - ) ) " (q(v+) - q(v-)) ^ 0 , (1.12)

for any convex weak entropy-entropy flux pair (η,q) It is called a global weak
entropy solution of the initial-boundary problem (1.3) and (1.6) provided that

1 i+e
- fm(x9t)dx->0, mL£(R+), α n - > 0 ; (1.13)
ε 1

and, for any convex weak entropy pair (rj,q) and any Cι test function φ with
suppφ C (l,oo) x R+, both (1.11) and (1.12)

For the initial-boundary problem for the compressible Euler equations (1.1) with

(m - x | | fμi = 0 ,

\x\ ^ 1 ,

we introduce the following conventional notion of weak entropy solution.

Definition 1.2. A measurable vector function (p(x, t), m(x, t)) is called a global
weak entropy solution of the initial-boundary problem (1.1) and (1.14) provided
that

(1) The vector function (p(x9t),m(x,t)) satisfies the Euler equations (1.1) in
the sense of distributions with respect to the test function space {φ G CO°({|JΓ| >
1} x R+)|0(jΓ,r) = ^(|j?|,ί)}

(2)
1 ^+ε x
- fm(x9t) -dx-^0, as s 10, m Z 1 ^ 1 x R + ) ; (1.15)
£ X
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(3) Along any shock wave propagating in the direction v e RN, |v| = 1, with
left and right states (p±,m±) and speed s = s(p-,p+,m-,m+;v),

m\2

p+ J \ λp- p_

(1.16)

where e = p,' . w ί/ze internal energy.

In these definitions, the entropy conditions (1.12) and (1.16) are equivalent to
the corresponding Lax entropy conditions along the shock waves (cf. [Lai, D2,
Sm]).

Our main results of this paper are included in the following theorems. For the
Cauchy problem (1.3)—(1.5), which models the transonic nozzle flow, we have

Theorem A. Assume that A(x) is a C2 function bounded away from zero for all
x G R and the initial data satisfy

0 S po(x) ^ Co,
mo(x)

(1.17)

for some Q > 0. Then there exists a global weak entropy solution (p(x9t)9rn(x9t))
of the Cauchy problem (1.3)—(1.5) in the sense of Definition 1.1 satisfying

(1.18)
p(x,t)

for some C(T) ^ Co in the region R x [0, T] for any fixed T e (0, oo).

For the initial-boundary problem (1.1) and (1.14), which models the spherically
symmetric flow, we have

Theorem B. Assume that the initial data are of the form (1.14) with (po(x),mo(x))
G L°°({x ^ 1 } ) satisfying (1.17). Then there exists a global weak entropy solution
(p(x,t),m(x,t)) of the initial-boundary problem (1.1) and (1.14) in the sense of
Definition 1.2, which takes the form

(p,m)(x, t) = ί p{x90,rn(x, t)-
\ x

with (p(x,t)9m(x,t)) G L°°({x ^ 1} x R+) satisfying (1.18).

Note that it is sufficient to show that v(x9t) = (p(x9t)9rn(x,t)) is a global weak
entropy solution of the initial-boundary problem (1.3) and (1.6), or the Cauchy
problem (1.3) and (1.5), in the sense of Definition 1.1. To achieve these re-
sults, we also apply a compensated compactness framework (7.1)—(7.2) (Sect. 7)
in [Cl, C2] (also see [DC 1-2, Di]): uniform boundedness (7.1) of the approxi-
mate solutions (ph(x,t),mh(x,t)) and H~ι compactness (7.2) of the corresponding
entropy dissipation measures imply the strong convergence of the approximate so-
lutions (ph(x,t),mh(x,t)) to the global weak entropy solution (p(x, t)9 m(x, t)) G
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L°° of the initial-boundary problem (1.3) and (1.6) and the Cauchy problem
(1.3) and (1.5), respectively, almost everywhere with the same property (7.1).
The importance of this framework is that it takes the vacuum into account in
correct physical variables (p,m) near the vacuum, rather than (p,w) that is phys-
ically incorrect on the vacuum. This framework was proved in [Di] for the
case 7 = 1 + 2^+\>m = ^ integers, and in [Cl, C2, DC1] for the general case of
gases 1 < γ ^ 5/3. Further discussions on this framework for other cases can be
found in [LP].

In Sect. 2 we construct two solutions which will serve as building blocks for
our construction: Riemann solutions for the homogeneous system of gas dynamics
and (exact and approximate) steady-state solutions for the inhomogeneous system
(1.2). We discuss their basic properties in Sects. 2 and 3.

Section 4 is devoted to the construction of the shock capturing scheme and
the corresponding approximate solution of the problems (1.5) and (1.6) for (1.3).
Some basic properties of the approximate solutions are discussed. It is proved in
Sect. 5 and Sect. 6 that the approximate solutions satisfy the compensated compact-
ness framework (7.1)-(7.2) (see [Cl, C2]). The existence theory is established in
Sect. 7.

Then the existence theory is applied to the transonic nozzle flow in Sect. 8
(Theorem A) and the spherically symmetric flow in Sect. 9 (Theorem B).

By the methods developed here, we have also proved existence for the ini-
tial boundary value problem that models the cylindrically symmetric flow in the
unbounded domain |£| ^ 1 (see [CG]). The ideas developed here have been
also applied to solving the compressible Euler-Poisson equations with geomet-
rical structure that model semiconductor devices and biological channel proteins
(see [CW]).

2. Nonlinear Waves and Riemann Solutions

In this section we first review some nonlinear waves in gas dynamics and construct
Riemann solutions for the homogeneous system of gas dynamics. Then we discuss
their basic properties for use in subsequent developments.

2.1. Shock Waves and Rarefaction Waves for 1-D Gas Dynamics. Consider the
Riemann problem for the one-dimensional system of isentropic gas dynamics:

u + (i + P(P))X = o,

with

ί (p_,m_), JC < xo j
(2.2)

(p+,/w+), x > xo ,

where xo E (—oo, oo), p± ^ 0 and m± are constants satisfying | — | < oo.

The eigenvalues of the system are

λ\ = c = c(M — 1), Λ,2 = \- c = c(M + 1),
P P
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where the sound speed c = pθ, the Mach number M = ^ , and θ — ^γ-m Corre-

sponding Riemann invariants are

Any discontinuity in the weak solutions to (2.1) must satisfy the Rankine-
Hugoniot condition:

σ(v ~ v0) = f(v) - f(v0),

where σ is the propagation speed of the discontinuity, and v0 — (po,wo) and v —
(p,m) are the corresponding left state and right state. This means that

_ m—niQ __ mo i / _ρ_ _

p—po Po V PQ

(2.4)

A discontinuity is called a shock if it satisfies the entropy condition (see [La]):

σ(η(v) - η(v0)) - (g(v) - q(υ0)) έ 0 , (2.5)

for any convex entropy pair (η,q).
There are two distinct types of rarefaction waves and shock waves denoted by

1-Rw or 2-Rw and 1-shock or 2-shock, respectively, in the isentropic gases. If a
state (βo,mo) or (po,wo) is given, the possible states (p,m) or (p,u) that can be
connected to (po,mo) ° n the right by a Rw or shock are

Rx(0) :m-mo = — ( p - p 0 ) - % θ - pθ

0X P < Po ,
Po v

R2(0) :rn-mo = — (p - Po) + % θ - Po), P > Po ,
Po 0

,:m-mo = ^(P- po) - J-g- P(P) - ^(p - p0), p > p0 > 0 ,mo = — (p-po)
Po V Po P - Po

£ 2(0) : m — m0 = — ( p — p 0 ) + \ —
Po V Po P - Po

- PoX P < Po ,

respectively.
Along the curve 7?i(0),

and along the curve

_ mo Po _ ^ + 1

 nθ

" Po β β P '

d2m

'dp1

dp
mo Pπ

Po 0
> 0.

R2(0)

This shows that the curve R\(0) is concave and the curve R2Φ) is convex in the
p — m plane.
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Along the curve Si(0),

_ / P PiP.
V PO iP~Pθ

_ mo

_d_ ί fn—rriQ \ Pp p—Pp < 0 n *> n ^>

dp\P-Pθ)\Sλm~ 2j£(p(p)-p(p0))(p-p0) = ' μ P0
I5Ί(O) 2y/'-^(p(p)- p(po))(p-po)

and along the curve

ΪYl — ϊϊlQ

P-PO
— mo I / p p(p)-p(po)

S2(0) PO V PO P-PO

p(p)-/?O0)

This shows that the curve 5Ί(0) is concave and the curve ^ ( 0 ) is convex with
respect to (po,mo) in the p — m plane.

One wave is of particular interest, namely, the standing shock with the speed
cr = O. For this case, the Rankine-Hugoniot conditions are

m = mo9 — + p=n^ + p(p0). (2.6)
P Po

Equations (2.6) can be rewritten as

« ' - ( β + I ) , M0

2 = ̂ i j = l + ( θ + l ) ( ί - l ) + O ( k - l | 2 ) , (2.7)
where t = p/p0.

From (2.7), one has

One can easily check that MQ is a monotonically increasing function of t
with M Q ( 0 ) = 0 , M Q ( 1 ) = 1, and MQ(OO) = oo; and M2 is monotonically decreasing
function of t with M 2(0) = oo,M 2(l) = 1, and M2(oo) = 0.

The entropy condition (2.5) for the standing shock (2.6) or (2.7) is

J M < 1 < Mo, when m0 > 0 ,

\ M < — 1 < Mo, when mo < 0 .

2.2. Riemann Solutions. Similarly, given a state (po?^o) or (PO,UQ) for p 0 > 0, the
locus of possible states (p,m) or (p,u) for p > 0 that can be connected to the state
on the left by a shock wave S~ι or rarefaction wave R~ι defines what is called an
inverse shock wave curve or inverse rarefaction wave curve. It has behavior similar
to that of S or R.

From the behavior of these curves in the phase plane (p,m), we can construct
the unique solution for the Riemann problem

V-, X < Xo ,

(2.8)
V+, X > Xo ,
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and the Riemann initial-boundary problem

t>|ί=o = v+, m\x=ι = 0 . (2.9)

For the problem (2.8), we can get a diagram of the first family of elementary
wave curves for given left state V- and a diagram of the second family of inverse
elementary wave curves for given right state υ+ to determine a unique intersection
point to obtain the unique solution. For the problem (2.9), we can draw a diagram
of the second family of inverse elementary wave curves for given right state v+
to determine a unique intersection point with the line m = 0 to obtain the unique
solution.

Theorem 2.1. There exists a unique piecewise smooth entropy solution (p(x, ί),
m(x,t)) containing the vacuum state (p — 0) on the upper plane t > 0 for each
problem o/(2.8) and (2.9) satisfying

(1) For the Riemann problem (2.8),

w(p(x9t)9rn(x,t)) S max(w(p_,m_),vy(p+,m+)),

z(ρ(x,t),m(x,t)) ^ min(z(p_,m_),z(p+,m+)),

w(p(x,t),m(x,t)) - z(p(x,tχm(x,t)) ^ 0;

(2) For the Riemann problem (2.9),

' w(ρ(x,t)9m(x,t)) g max(w(p+,m+),-z(p+,m+)),

z(ρ(x,t),m(x,t)) ^ min(z(p+,m+),0),

w(p(x, t)9 m(x, 0) - z(p(x, t\ m(x, f)) ^ 0 .

Such Riemann solutions have the following properties:

Lemma 2.1. The regions Σ = {(P>m) '• w = w^z = zo>w ~~z = 0} are invariant
with respect to both of the Riemann problem (2.8) and the average of the Riemann
solutions in x. More precisely, if the Riemann data lie in ]P, the corresponding
Riemann solutions (p(x, t), m(x, t)) lie in J^, and their corresponding averages in
x also lie in ]Γ:

\
b1 \

fp(x,t)dx,- fm(x,t)dx
b-a J

fp(x,t)dx,
\b-a a b-a a J

Furthermore, for the Riemann initial-boundary problem (2.9), the regions ^ =
{(p,m) : w ^ wo,z ^ zo,w —z ̂  O},zo ^ 0 ^ w°^"z°, are invariant with respect

to both of the Riemann problem (2.9) and the average of the corresponding Rie-
mann solutions in x.

The proof of Lemma 2.1 can be found in [Cl, MT].

Lemma 2.2. The rate of entropy production of a shock with left state t;_ and
right state v+ for an arbitrary weak entropy η is dominated by the associated
rate of entropy production for η* in the following sense:

\σ(η(v+) - η(υ-)) - (q(v+) - q(υ-))\

where the constant C depends only on η and max(|p±| + | — | ) .

The proof of this fact can be found in [Cl].



162 G-Q Chen, J Glimm

3. Steady-State Solutions

Travelling waves and Riemann solutions of the homogeneous problems (2.8) and
(2.9) have been discussed in Sect. 2. The purpose of this section is to provide
important estimates on steady-state solutions of the inhomogeneous problem (1.2)
determined by the following system of ordinary differential equations:

subject to the boundary condition

(P,m)\x=xo =(po,mo). (3.2)

The nonsonic and transonic cases are distinct, as the former produces smooth so-
lutions and the latter may contain a standing shock wave. The L°° estimates are
derived based on Riemann invariant inequalities and are required for the compen-
sated compactness framework. The Lx estimates are needed for consistency and
verification of the entropy condition.

In this section we always assume that A(x) is a C2 function satisfying A(x) ^
Co > 0 in the interval under consideration.

3.1. Smooth Steady-State Solutions for the Nonsonic Case. We first consider the
nonsonic case MQ φ 1, where MQ — M{x — XQ) — -^-.

The first equation can be directly integrated to obtain

A{x)m = A(xo)rπo . (3.3)

The second equation can be rewritten as

, x m
2

and, using (3.3),

m ( - ) + P(P)X = 0 ,

that is,

= 0.

Therefore, one has

*+ίiΰ!id.»+jmlb. ( 3 .4 ,
Z Q S A 0 S

In terms of p,M, and Mo, the system (3.3)-(3.4) becomes

A(x)M M

( 1 6 )

A(xo)Mo {

( l γ p0
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Eliminating the variable p in (3.5)-(3.6), one has

The solution of the steady-state equations is thus reduced to the following pro-
cedure: solve Eq. (3.7) for M and use (3.5) or (3.6) to obtain p.

Equation (3.7) can be rewritten as

F(M) = -jfτF(Mo), (3.8)

where the function F is defined by

F(M) = M
. 1 + ΘM2 J

satisfying

( F(0) = 0, F ( l ) = 1, F(M) -> 0, when M -> oc ,

F'(M)(\ - M) > 0, when M G [0,oo),

F'(Af)(l + M ) > 0, when M G (-oo,0] .
Thus we see that there are two difficulties in solving function equation (3.8):

If A(x) < A(XQ)\F(MO)\, no smooth solution exists, since the right side of (3.8)
exceeds the maximum value of | F | . If A(x) > A{XQ)\F(M$)\, there are two solutions
of (3.8), one with \M\ > 1 and the other with \M\ < 1 since the line F = const.
intersects the graph of F at two points. As long as \M\ φ 1 is maintained, exactly
one of these solutions is smooth for the problem (3.1)—(3.2).

Lemma 3.1. Let v(x) be a smooth steady-state solution satisfying v\x=XQ = vo, with
Po = 0, in an interval [a,b] containing xo Then

p(x) ^ 0 , x G [a,b] .

The next two lemmas will be used in deriving L°° estimates. The main idea is
that the quadrant in the Riemann invariant plane, which is invariant for the homoge-
neous hyperbolic equations, is approximately invariant for the steady inhomogeneous
equations. Let M = M(v(x)) and Mo = M(vo) be the Mach numbers. An important
intermediate step is to establish Lipschitz or Holder continuity of a relative Mach
number jf.

Lemma 3.2. Let v(x) be the smooth steady-state solution satisfying v\x=XQ = VQ.

Then, given a sufficiently small ε0 G (0, \), there exists h\ = λi(εo) £ (0,1] and

C > 0 depending only on the function A(x) such that, in any interval [XQ — |,XQ +

(i) when |M0

2 - 1| ^ ε0M
2,

M-Mo . _.
— ^ C\x-xo\Mo
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(ii) when ^ |M 2 - 1| < ε0M$ with some β e (0, £),

M 0

M-Mo

M0

l-(Mo+τo(M-Mo))2

l+(M 0+τ 0(M-M 0)) 2 ^ C\x —XQ\, for some τ0 € (0,1) ,

Proof We consider separately these two cases. Before introducing this distinction,
we recast the relative geometrical factor A(XQ)/A(X) in terms of the steady-state
Mach number N = M/Mo. By (3.7)

A(XQ)=M
=

A(x) Mo
Define

Then N = N(x) satisfies

A(xo)-A(x)
A(x) (3.9)

Our purpose is to control N(x)—l by | x - x o | For the case \MQ — 1| ^
Q, G(N;MO) is uniformly monotone near N = 1 with respect to Mo? and so

(3.9) provides an upper bound on N — 1 as we now establish. In this case,

Ml S

Notice that, in the interval N G

pendent of Mo, such that

or Mi >
1-εo

, there exists C(SQ) > 0, inde-

<»<•>

which means that G(N;M0) is uniformly monotone inΛ^G L / l — ^,

Therefore, we obtain that there exist /ϊ(εo) > 0 and Ci(εo) > 0, independent of Mo

such that, whenever |JC — xo \ ^ | ,

\N(x)-l\ ^ Cι(εo)\x-xo\,

using (3.10).
We now consider the case h^M^ ^ \MQ — 1| < SQMQ, that is,

or

in which (3.9) will provide an upper bound on (N(x) — I ) 2 .



Global Solutions to Compressible Euler Equations with Geometrical Structure 165

For this case, in the interval N G \Jl - f, J1 + y j , G'(N;M0) changes sign

at most once. Moreover, there exists α(εo) > 0, independent of Mo, such that

Therefore, there exists h\(εo) ^ h(εo) < 1, independent of Mo > 0, such that, when

|ΛΓ — ΛΓO| S ^y^, N(x) satisfies

from (3.9).
From (3.9) and the Mean Value Theorem, there exists To G (0,1) such that

τo(N - \);M0)(N - I) =
A(xo)-A(x)

A(x)
(3.11)

This implies that, when \x — xo\ ^ ^-,

TV- 1

X -

A(xo)-A(x)

A(x)(x-x0)

l + gM o

2 (l+τo(Aί-

1 +
, (3.12)

using the formula of G'(N;Mo).
Furthermore, using the Mean Value Theorem, there exists τ G (0,1) such that

a(τ,N)(N - I ) 2 + b(M0)(N - 1) + c(x,x0) = 0 ,

where

Then there exists λi(εo) S ^i(eo) such that, when h ^ Ai(εo)5

hβ ^ 3\/A; Z?(M0)
2 - 4a(τ, N)c(x,x0) > 0, for | JC — JC0 |

Therefore,

when |x —xo•*o| ^ | 5A ^ ^i? for the case \MQ - 1| ^ εoMβ by using |Z?(M0)|

:. Choosing C(εo) = max/=i92 Q(εo), we prove the lemma.
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We now estimate the Riemann invariants in order to derive L°° bounds on the
approximate solutions.

Lemma 3.3. Let v(x) be a smooth steady-state solution satisfying v\x=XQ — VQ in

[XQ - \,x0 + §],Λ ^ Ai, with \λfξ - 1| ^ hβλfξ. Then, when \x - xo\ ^ §, we have

ί w(v(x)) ^ wOo)(l + C\x-xo\), when Mo > 0 ,
{ (3.14)
[ z(v(x)) ^ z(ϋO)(l + C\x - xo\), when Mo < 0 ,

where (w,z) are the Riemann invariants, h\ > 0 w ίAe constant determined in
Lemma 3.2, am/ C is a constant depending only on the function A(x).

Proof We divide the case Mo > 0 into two subcases. In the case \MQ — 1| ^ βo^o>
we use the estimate for Â  — 1 in Lemma 3.2, when \x — XQ\ ^ |,A ^ Ai, to obtain

/ w ( ί θ \ 2 ΘMQKI -Mp)(l + gMoΛf) + (1 -M 0 N)( l

1

In the case AβM0

2 ^ |M0

2 - 1| ^ ε0M0

2, we have

2(1 + ΘM0)[l - M 0 ( l +

= [ +M0[θ(l -MQ) + (2τ0 -

w(vo)J ~ + (ΘM0+ 1)2(1

^ l+C\x-xo\,

when \x —xo| = f a n ( i τo € (0,1) is the same as the one in (3.11)-(3.12), using
the estimates (3.12) and (3.13) for N — 1 in the transonic case by noting

1 g 1+ ΘMi(\ + τo(N - I))2 ^ 1 + (1 + Chx)
2 ^ C .

Similarly, for the case Mo < 0, we have

) \ 2 _ ΘMO[(1 +Mo)(l - ΘMoN) + ( ^ i

^ 1 + C|x—ΛΓOI ,

by using Lemma 3.2. The estimate (3.14) follows.
Now we derive 1} estimates on the difference between the smooth steady-state

solution over [xo — |,xo + | ] and the boundary data at xo for sufficiently small h.
We consider here the nonsonic case \MQ - 1| ^ /^M 2 for some β e (0, \].

Lemma 3.4. There exist hi > 0, 0 < A2 ί£ hi, and a smooth steady-state solution
in [x0 - f ,xo + | ] , A ^ /i2» W ^ boundary condition v\x=Xo = vo such that, when

ξ f i

β)), - J v{x)dx = v0(\
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where bounds O(hι~P) and O(/z2(1~^) depend only on bounds of A(x) and p0 +
I — I and are independent of MQ.

Proof The estimates we expect are for averaging the smooth steady-state solution
over the symmetric interval [xo — §,*o + §]• The basic idea of our proof is to take
Taylor's expansion for the solution up to the second order as the reminder. The point
is that the coefficient in the first order term is constant and the averaging integral
cancels this term. Therefore, the second order reminder term is the first correction
for the averaging integral and we only need to estimate the second derivative of
the solution.

With this strategy in mind, we first use (3.3) and A(x) e C2[x0 — |,xo + §], and
take Taylor's expansion for m(x) at x — x0:

for some y e (*o — §,*o + | ) We conclude

- Γ m{x)dx = m0 +A(xo)mo—r f f - ) (j^)(x - x 0 ) 2 ^ = /«o(l + O(h2)),
h _k 2h \ \Aj

Similarly, we expand p(x) at x = xO

p(x) = po + p'^oX^ ~ *o) + -y

for some y G (xo ~ |,xo + §) and only need to estimate ρ"(y).
A careful calculation leads to

A\y) fθM2 + \γθ M
1 U 7 2 ' ^ ( ^ ) °̂

where

- l](M'(y)f-M(y)(ΘM2(y)

= (A( ^'(y)\2((θ+l)M2(y)-l)F2(M0)

\(X0)AHy)J (F'(M(y)))2

A(x0) M{y){\ + ΘM2(y))F(M0)

A\y) (

x ((2(A'(y))2 -A(y)A"(y))A(y)(F'(M(y)))2

-A(xo)(A'(y))2F(Mo)F"(M(y))).
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h
2 '

We obtain that there exists h ^ h\ such that, when \y — xo\ ^ |,/z ^ h,

lp'001 ^ ^
Cpo,

(3.15)

< I

and

\p"(y)\ ^ (3.16)

where C is a constant independent of po a n d M)
The estimates (3.15)—(3.16), especially for the case M% ̂  | , are obtained by

using Lemma 3.2, which ensures that there exists C > 0 such that, when \y — XQ\ ^

\M(y)-M0\ ^ Cy/\y-xo\\Mo\.

For the case MQ ^ \, we have

| l - M 2 ( j ) | ^ l l - A ^

when I j - x o | ύ \,h ^ /i2 for sufficiently small Λ2 ^ h.
This implies from (3.15)-(3.16) that

Ip'OOl ^ CpoA"'', | "

We also conclude that, when h ^ /*2,

i

This completes the proof of Lemma 3.4.

3.2. Approximate Steady-State Solutions Near the Sonic State. The case \MQ — 1
^ /Z^MQ includes A(x) < A(xo)F(Mo), for which the solution must be discontinuous
and a standing shock wave must be introduced at some point in (x0 — f ,*o + \)
in general. In this case we construct approximate steady-state solutions to make
detailed estimates in a clear fashion.

Consider the problem (3.1)-(3.2) for the case K0Vh g |M0

2 - 1| ^ hβM$ with

(3.17)

where AΓQ is chosen to ensure the following lemmas, specially Lemma 3.8.
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Definition 3.1. The pair (p,m) satisfies (3.1) in the approximate sense provided

mx + a(x)m\ ^ o(l),

+ α(*)y ύ o(l), as h^O.

Then we have the following approximate steady-state solutions.

Lemma 3.5. Let ao = a(xo) = ^ ^ There exists hτ> e (0,1] swc/z /to, /or α«j

interval [x0 - \ ,x0 + | ] w/ϊA h ^ hi
functions

(3.18)
for any j c e ( ^ - j,xo + | ) ,

= /wo(l - αo(χ - x0)) ,

satisfy (3.1) m ί/ze approximate sense and the bounds o(l) ί« Definition 3.1 depend
only on p0 + | ^ | α«rf α( c) G C1.

Substituting the right side of (3.18) into the m equation, one has

mx + a(x)m\ = \mo\ \(a(x) - a0) - aoa(x)(x - xo)\

o + \\a\\loo)\x-xo\ ύ Ch.

Similarly, we have

l ί - +
U P

 +

V
II

m

P

py\ a χ m 2

y) x P

\a(x)mo(l - ao(x - XQ)) - aomo\ + ΛΘ

P2)
mom

where
2Θ m m 0 m

We rewrite the p equation in (3.18) as

p(x) = po(l
- '" y ' 2(θ + i) v V Ψ-i-\γ

From the formula of P(x), there exists h^ > 0 such that, when h ^ h^

(x-x) .

\P(x)\ g | M 0

2 - l | ^ -, for + |
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Using this expression for p and the m equation in (3.18), we have

1 I

\aθ\

-ao(x-xo))2]

4(θ+l)a0 (x-x)

(1+P(x))\ 1 + - f)

-(l-M2+2(0+l)P(x))+M2Jl +
( M o

2 -
(x-x)

We conclude that

that is,

| M 0

2 - l | - x 0

P

M 0

2 - l

P

This completes the proof of Lemma 3.5.
We now use Lemma 3.5 to construct a smooth approximate steady-state solution

for the case KoVh ^ \MQ — 1| ^ h^M^, h ^ Λ3, satisfying appropriate Lx and Z°°
properties, which will be used to construct the approximate solution sequence to
(1.2) and to analyze its convergence and consistency.

Lemma 3.6. Consider the case K0Vh ^ |M0

2 - 1| ^ hβM$ with h ^ h3. Then there
exists an approximate steady-state solution υ(x) = (p(x),m(x)) such that

I 0

- f
(3.19)

and
' w(v(x)) S w(ϋO)(l + Ch\ Mo > 0,

. z(v(x)) ^ z(ϋO)(l + Chi Mo < 0 ,
(3.20)
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where bounds O(y/h) and C depend only on bounds of a(x) and po + | ^ | and are

independent of Mo.

Proof We first determine x G (xo — §>*o + f) m the approximate steady-state so-
lutions (3.18) such that (3.19) holds.

The identity (3.19) is trivial for m(x):

- / m(x)dx = m0- J (1 - ao(x - xo))dx = m0 .
n h n h

We now prove that there exists x G (xo — |?^o + | ) such that

that is,

, Mjl Λ Λ , 4 ( g + l ) α 0 , \ \

It suffices to prove that there exists x G (xo — § ,xo + §) such that

4(θ+ϊ)a0

Set

Then

Furthermore, for — | ^ y ^ | , we have

sign(αo)/ / 4(g+l)αo / A

We conclude that there exists x G (xo — |,xo + | ) such that

F ( x o - x ) = O,

which proves (3.19).
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We now turn to (3.20). For the case Mo > 0, we have

w(v(x)) _ ( p\θ ΘM+\

w(v0)

O fl i |2

/

4(θ+l)a0

(Mi-I)2
(x-x) + \X-XQ\

x - x Ch,

that is,

by using w(ϋo) > 0 in this case.
For the case Mo < 0, we can similarly obtain

z(v(x))
^ 1 + Ch ,

which implies

by using Z(VQ) < 0.

z(v(x)) ^

Transonic Shock. The case |MQ — 1| < KoVh may require the introduc-
tion of a standing shock wave. This shock wave is part of the exact solution of the
steady-state equations, and thus arrives in our construction while transferring bound-
ary data, at the mesh block centers, to the mesh edges where a Riemann problem is
solved. This situation is analyzed in Lemma 3.8. A similar occurrence of a stand-
ing shock arises in the introduction of source term corrections to the homogeneous
Riemann solution. Here again, the steady-state solution is used to move constant
states separating waves in the Riemann solution from its center at the mesh block
edge to its final location at t = (n -f- \)Δt, propagated away from mesh block edges.
This standing shock is located exactly at the mesh block edge, and is analyzed in
Lemma 3.7.
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Lemma 3.7. Consider the case \MQ — 1| < K0Vh with h ̂  h. Then, for any
x G [xo — §,*o + §]> there exists an approximate steady-state solution, includ-
ing a standing shock at x = f, in the sense of Definition 3.1 in the interval
[x0 - \,xo + §], such that

w(v(x)) ^ w(vo)(l + Ch), Mo > 0,

Mo < 0 ,

where the bounds C and o(l) /« Definition 3.1 depend only on bounds of\po\ + | —

α«J α(x) α«ί/ αr^ independent of Mo.

Proof. We prove the lemma only for the case Mo > 0. The other case can be
proved in the same fashion.

Introduce a standing shock at x —x with left state V- = (po-,mo) and right
state v+ = (po+,mo), where

Then the corresponding Mach numbers are

M0

2

± = 1 =F 2(θ + l)^oVh + O(A).

Therefore, we have
n

w(v±)
W(VQ) \ po J ΘMo

= ( l ± ι
0+1

J 1 + Ch .

Define

4(0+1)00

Then I (JC) = (p(x), W(JC)) determined by

( P-(x), χe[χo-\,χ),

standing shock, x = x ,

p+(x), x G [£,x0 + f ] ,

, m(x) = mo(l - αo(* - xo)),

is an approximate solution satisfying

in the sense of Definition 3.1.
Furthermore, using Lemma 3.6, we have
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Therefore, we obtain

w(v(x))

G -Q Chen, J. Glimm

w(v0+) w(v0)

w(v-(x)) w(vo_)

<= Ch

2 J

This completes the proof of Lemma 3.7.
Now we introduce the second approximate steady-state solution for the case

\MQ — 1| < Koy/h. It plays an important role in constructing the approximate so-
lutions and ensures the consistency of the approximate solution with the system
(1.2).

Lemma 3.8. There exist h4 > 0 and an approximate steady-state solution, includ-
ing a standing shock at some x G {XQ — 4f^Q\h,xo + W\^e)h) with h ^ h4, in the

sense of Definition 3.1, such that, when \MQ — 1| <

(3.21)

where the bound O( l) depends only on |po| + | ~ l and a(x) and are independent

ofM0.

Proof Using Lemma 3.7, we construct an approximate steady-state solution v(x;x)
in the sense of Definition 3.1, including a standing shock at some point x G (xo ~

x° + 4(\+θ)h)> s u c n t n a t m(x>x) = m(x) determined by (3.18), namely,

m(x\x)\x=x = mo(\ - ao(x - xo)).

The identity (3.21) for m(x,x) is clear as in Lemma 3.6. Therefore, the main point
is to choose x G (xo — w\+β)h9xo + 4^θ)h) such that (3.21) also holds for p(x;x).
We prove only for the case Mo > 0 and thus Mo± > 0. The other case can be
proved in the same way.

Notice that

- / p(x;x)dx
n u

= poG(xo - x) ,

where

G{y) =

- 1

for 2+0 i
4(1+0)r

2+θ
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A direct calculation shows that there exists h4 > 0 such that, when /? ^ A4, we
have

G'(y)>0, ^ ( ^ ^

using the choice of Ko determined by (3.17), where h4 > 0 depends only on | |α| |c
In fact, using

M0

2

± - 1 =

we have

G(y) =
{ΘMo + W*

1 )K0Vh + O(h),

V θ + 1
o

(\-K0Vh) f (l+K0Vh(l-VΓ+Έ^))dx
y l
h i

+ ( I + A : O V ^ ) / ( l -
0

- VTTΈc))dx

O(A)

where

and

a0

Using

we have, for 0 < α < 1,

B =

, IΛ t o
= (^+ 1 )^ / Vl+Bxdx- f Vl+Bxdx } .

0 Z i

+2 4

- 2

\ B ί i i _ τ

= ( g + l ) j z b α + - ί ( l ± α ) 2 / . ,_^τ
V \ V Z

.9 ί 1 - τ

Noting
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from (3.17), we have

and

by choosing α = 2(\+θ) < ^ ^ n ^ s m e a n s m a t

2(\+θ)

by using | κ°~/τ\ ύ 1 for this case.

On the other hand, one can easily check that

Therefore, there exists h$ > 0 such that, when h < A4, one has

We conclude that there exists x e (xo - w^h,x0 + τ^^h) such that

that is,

- J p(x; x)dx = pQ .

This completes the proof of Lemma 3.8.

4. Approximate Solutions

In this section we construct approximate solutions vh = (ph,mh) = (ph,ρhuh) in the
strip 0 ^ t ^ T for any fixed T £ (0,oo), where

h S ho = min hi (4.1)

is the space mesh length, together with the time mesh length At, satisfying the
following Courant-Friedrichs-Levy condition:

/I Ξ max( sup \λι(ρh,mh)\) ^ — — g 2Λ , (4.2)
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where the factor J~+^ prevents interaction among the waves in the Riemann solu-
tions starting at the mesh cell edges with the standing shocks resulting from solutions
of the steady-state equations to transfer data from cell centers. We will prove that
the approximate solutions are bounded uniformly in the mesh length h > 0 and
ph(x,t) ^ 0 to guarantee the construction of (ph,mh). Since the speeds of propa-
gation of the approximate solutions will be finite because of (4.2), we can assume
that the initial data have compact support (i.e. are constant off some compact set)
without loss of generality.

4.1. Construction of Approximate Solutions

A. Initial Value Problem. We first construct the approximate solutions (ph,mh) for
the Cauchy problem. Let

tn = nAt, xj = jh, (nj) β Z+ x Z .

Assume that vh(x,t) is defined for t < nAt. Then we define tfj = (ppm") as

r = max f

*" Ξ i / ( •_ i )h rtOcnAt - O)dx, (j -\)h^x< (j + \)h ,

(4.3)
where β G (0, | ) is the same constant as in Lemma 3.2.

In the strip nAt ^ t < (n + l)zίί, vh(x,t) is defined as an approximate solution
of the Cauchy problem

ty + f(v)x = a(x)g(v), jh ^ x g (y + 1)A ,

/M*)> x < O ' + ^ ) A , (4.4)

where ^-(x) and v+(x) are smooth solutions of the steady-state equations (3.1) with
boundary conditions

constructed in Sect. 3.1 when \M2(vn

k) - 1| ^ hβM2(vn

k\ k=j,j+l, and, other-
wise, are approximate steady-state solutions constructed in Lemma 3.6 and
Lemma 3.8 in Sect. 3.2. Then the difference between the average of the exact or ap-
proximate steady-state solutions over [(j — \ )/z, (j + \ )h] and the Godunov value
tfj is higher than first order in h by Lemma 3.4, as the Godunov value away from
the sonic state and, otherwise, by Lemmas 3.6 and 3.8. Such a construction ensures
the consistency of the corresponding approximate solutions with the Euler equations.

We will solve the problem for small time approximately. This is done by per-
turbing about the solution of the Riemann problem at x = (j + \)h:

( M ( ; + | ) * - θ ) , x<u + \)h, (4.5)
υ\t=nΔt = <
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We first construct Ra(x,t) as an approximate Riemann solution to (4.5), which
excludes the vacuum state. We obtain Ra(x,t) by finding all possible interaction
points with the line p = h@ in the phase plane (ρ,m). We introduce, if necessary,
an extra constant region with p = h& in solving the Riemann problem. Thus Ra(x,t)
satisfies the entropy condition on its discontinuities and has the relation

f = 0, when p(x,t) > tf ,
\Ra(x,t)-R(x9t)\\ . rκ> J- ( 4 6 )

[ S Chβ, otherwise ,

with the exact Riemann solution R(x9t). Following the ideas of [Dl], we approxi-
mate possible existing κth rarefaction waves (vr_,vr

+)9 κ= 1,2, in Ra(x,t) by finite
discontinuous rays. The advantage of this method for our problem is that it facili-
tates estimates of source term corrections to Riemann solutions. We introduce the
rays ^ = λ^v]) separating finite constant states vr

i9 ί = 0, l,...,m r, with vr

0 = vr_
and vr

mr = υr

+9 such that

wOί+i) = w(if.) + h, z{rfM) = z(ι£), 0 g i S mr - 1 , (4.7)

if (vr_,vr

+) is the 1-rarefaction wave with K = 1; or

z ( v r i + l ) = z(vri) + h, φ [ + 1 ) = Φ D , 0 £ i ^ m r - l 9 (4.8)

if (υr_, v\) is the 2-rarefaction wave with K = 2. In this way, we obtain the approxi-
mate Riemann solutions consisting of finite discontinuities separating finite constant
states vi9 i = 0,1,...,/, with υ0 = M O ' + \)h ~ °) a n d vi = ^+(0 + \)h + °) T o

control local entropy errors on the discontinuities in the approximate solutions (as in
Lemmas 4.1-4.2 we establish below), we need a lower bound for the density in the
approximate solutions. For this purpose, let ϋi(x) = (p^xXm^x)), 1 ^ / ^ / — 1,
with vo = V-(x) and ϋi = v+(x), be the exact steady-state solutions satisfying the
boundary conditions

determined by the smooth steady-state solutions in Sect. 3.1 if \M2(VJ) — 1| ^
h^M2(Vi) and are, otherwise, approximate steady-state solutions constructed by
Lemmas 3.6-3.7 in Sect. 3.2. We use the cut-off technique and denote by vfa) =
(Pi(x),Pi(x)ui(x))90 tί i =: I, the approximate steady-state solutions as follows:

" ^ ^ O g i g / . (4.9)p/(*) ( p / ( ) > ) , , ( ) / ( ) ^ r ^ , g g
PAX)

The approximate solution (ph(x,t),mh(x,t)) of the Cauchy problem (4.4) in the
rectangle [jh,(j + l)/z] x [nAt,(n+ l)Λt) consists of the (exact or approximate)
steady states fz(x), / = 0,1,...,/, separated by the discontinuities, subject to the
Rankine-Hugoniot condition, with speeds

p(pi+x(x(t\t)) - p(Pί(x(t\t))

dt "'^''"' v ^ V Λ « ' λ O PM(x(t)9t)-Pi(x(t)9t) '

where K = 1 or /c = 2, determined by the κth original elementary waves from which
the discontinuity comes. Then the approximate solutions (ph(x,t),mh(x,t)) approach
the approximate Riemann solutions as t —> nΔt.
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B. Initial-Boundary Problem. Assume that vh(x, t) is defined for t < nΔt. Now we
construct vh(x,t) in the strip [nAt,(n + I)At). For j > 1, the construction is as in
Sect. 4.1.A in the rectangle [(7 - \)h + 1,(7 + \)h + 1] x [nAt,(n + l)Δt]. Now
we consider the boundary interval [1,1 -f \h~\ associated with 7 = 1. For 7 = 1,
let

^ / 3

= max [ h. \Λ Ί ρh(x,nAt — 0)dx,hβ

(4.10)

for 1 ^ x ^ 1 + jh. Denote V\(x) as the (exact or approximate) solution of the
steady-state equations (3.1) with initial conditions

constructed in Sect. 3. In the strip nΔt ^ t < (n + I)At, υh(x,t) is defined as the
approximate solution of the corresponding generalized Riemann initial-boundary
problem with initial value V\(x) at t = nΔt over [1,1 + h]. This is achieved by solv-
ing the problem for small time approximately as in Sect. 4.1. A
(e.g. [MT]).

The approximate solution (ph(x,t),mh(x,t)) of the Cauchy problem (4.3) in the
rectangle [1 +jh, l+(j+ Όh] x [nΔt,(n + l)At) or [1,1 + \h] x [nAt,(n + \)Δt)
consists of the steady states vt(x), i = 0, \,...,mr, separated by the discontinuities
with speeds

- p(Pi(x(t),t))

Piixit),t) Pi+Mt),t)-Pi(x(t),t) '
(4.11)

where K — 1, or K = 2, determined by the κth original elementary waves from
which the discontinuity comes. Then the approximate solution (ph(x,t),mh(x,t))
approaches the approximate Riemann solution as t —> nAt.

4.2. Local Entropy Estimates. We now estimate local entropy errors of the dis-
continuities in the approximate solutions to allow the proof of vanishing of global
entropy errors in the context of the H~x compactness estimates in Sect. 6 and the
consistency proof in Sect. 7 of the weak limit solution.

Lemma 4.1. On the discontinuous rays, x = Xi(t), σz = -^fp, of the approximate
rarefaction waves constructed in Sect. 4.1,

\σi[η(ΌM{x{t\t)) - η(Vi(x(t),t))] - [q(vM(x(t)9t)) - q(Vi(x(t),t))]\ S Ch3~2^ ,
(4.12)

for any C2 weak entropy-entropy flux pair (η,q), where C is a constant depending
only on the uniform bound ofυh(x,t).

Proof It suffices to prove that (4.12) holds at any point of the corresponding
discontinuity wave curve in the neighborhood of Vj(x(t)) for each fixed t.

Denote vo = (po?^o) = ty(*(*o)) as a left state of the discontinuity wave curve
and denote v = (p,m) as a point on the corresponding discontinuity wave curve
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with the left state vo at some time to. Along the wave curve, we have
from (2.4),

, x mo , / P p(p) ~ P(po), Λ

m(p)= — p ± A ( p - p o ) ,
Po V Po P - Po

m(p) - m0 m0 p p(p) -

<r(p)= = — ± W —P - Po Po V °̂ P ~ Po

Set

Q(p) = σ(p)(η(v(p)) - η(v0)) - (q(v(p)) - q(v0)) .

Then

Q(p) = σ(p)(η(v(p)) - η(v0)) + σ(p)ή(v(p)) - q(v(p)) .

Notice that

Γ σ(p)(ί;(p) — vo) + σ(p)ύ(p) =f(v(p)), (Rankine-Hugoniot condition)

[ q(v(p)) = X7q ύ(p) = V^/(f(p)) .

We have
- η(υ0) - Vη(v(p))(v(p) - v0))

η(vo + τ(v(p) — vo))dτ .
o UL~

Therefore, using (4.7)-(4.8), Lemma 3.4, Lemma 3.6, Lemma 3.8, and the property
of the Rankine-Hugoniot locus, we obtain

\Q(P)\ = jQ{s)ds

- η(v0) - Vη(v(s))(v(s) - υo))ds

p i

/ σ(s)dsf τ(v(s) — Vo)Ύ\72η(vo + τ(v(s) — vo))(v(s) — Vo)dτ
?o o

S CJ \σ(s)\ dsf τ(v(s) - vo)
PO 0

V2η*(v0 + τ ( φ ) - vo))(v(s) - vo)dτ

S C\p - po| sup \v(p) - ί;0 |
2(min(p,p0))-2 ^ 0 3 - ^ . (4.13)

Lemma 4.2. There is a constant C depending only on the uniform bound ofvh(x,t)
such that, on the approximate shock waves,

- (q*(υi+ι) - q*(vt)) ^ 0 , (4.14)
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and

i(*(O,O) " η(vt(x(t),t))) - (q(vM{x{t\t)) - q{Vi{x(t

i + i ) - η*W) ~ (q*(vi+ι)- q*(Vi))}\ £ CU~^ , (4.15)

for any C2 weak entropy-entropy flux pair (η,q) satisfying (1.7) and the mechan-
ical energy-energy flux (77*,^*) defined by (1.8).

The proof of (4.14) and (4.15) is the same as the arguments leading to (4.13).

5. L°° Estimates

We first derive an L°° bound for the approximate solutions vh(x, t) of the Cauchy
problem (1.3) and (1.5) and initial-boundary value problem (1.3) and (1.6), with
the aid of the analysis of the approximate solutions vh(x,t) — (ph(x,t),mh(x,t))
constructed in Sect. 4. For any T G (0,oo), define Πτ — R x [0, T] for the Cauchy
problem and Πj — [l,oo) x [0, T] for the initial-boundary value problem.

Theorem 5.1. Assume that A(x) is a C2 function bounded away from zero for all
x and that the initial velocity and nonnegative density data (uo,po) are bounded in
L°°. Then, when h rg ho with ho determined by (4.1), the difference approximate
solutions (ρh,mh) of the Cauchy problem (1.3) and (1.5) or initial-boundary value
problem (1.3) and (1.6) with (1.4) are uniformly bounded in the region Πτ. That
is, there exists a constant C(T) > 0 such that

\uh(x,t)\ ^ C(T), hβ ^ ph(x,t) S C(T), (x,t) G Πτ . (5.1)

Proof We prove only for the Cauchy problem (1.3) and (1.5). The proof for the
initial-boundary problem (1.3) and (1.6) is the same.

First, using Lemma 2.1 and the construction of (ph,mh), one immediately con-
cludes that

ρh{x,t) ^ hβ, for - oo < x < oo, 0 ^ t ^ T . (5.2)

Now we make other estimates. For nΔt ^ t < (n-\- \)At,n ^ 0 integers, we
use Lemma 2.1 and Lemmas 3.2-3.7, and the construction of (ph,mh) to get

w(vh(x,t)) S max(sup w(vh(x,nAt + 0)), 1)(1 + CΔt),

z(vh(x,t)) ^ min(inf z(vh(x,nΔt + 0)), -1)(1 + CΔt) ,

for h ^ ho. In particular, this implies

w(vh(x,(n + l)Δt - 0)) ^ max (sup w(vh(x,nΔt + 0)), 1 j (1 + CΔt),
\ X /

z(vh(x,(n + l)Δt - 0)) ^ min (inf z(vh(x,nΔt + 0)), - l ) (1 + CΔt).

Set Mn = max ( sup w(vh(x, nΔt + 0)), - inf z(vh(x, nΔt + 0)), 1 ). Then one has
\ x x )

max (sup w(vh(x,(n + l)Δt - 0)), - inf z{vh(x,(n +\)Δt- 0)) ) ^ Afπ(l + CΔt).
\ x x J
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It follows from Lemma 2.1, Lemmas 3.2-3.4, and Lemmas 3.5-3.7 that

Mn+\ ^ Mn{\ + CAt) ,

that is,
Mn+X~Mn ^ CMn . (5.3)

Consider the corresponding ordinary differential equation

Έ = Cr ,

( \ (5.4)
KO) = ro = max sup w(υo(x)), - inf z(vo(x)), 1 .

L V x J

It follows that

r0 ^ r(t) g C(T) = roe
cτ, for 0 ^ t ^ T . (5.5)

Noting that the integral curve r — r(t) is a convex curve, we obtain from (5.2)-
(5.5) that

Mn ^ r(nAt) ^ C(T). (5.6)

We derive from (5.2) and (5.6) that

(w(vh(x,t)) S C, -z(vh(x,t)) S C ,

\w{υ\x,t))-z(vh{x,t))^ ψ,

that is, for h ^ ho, there is a constant C(T) > 0 such that

£C, hβ ί p\x,t) ^ C .

6. H~x Compactness Estimates

We now prove the H~ι compactness for the approximate solutions (ph,mh) of the
Cauchy problem (1.3) and (1.5). We first introduce a basic lemma of functional
analysis (see [Mu, Ta, Cl]).

Lemma 6.1. Let Ω c Rn be a bounded and open set. Then

(compact set of W~h\Ω)) Π (bounded set of W~U(Ω))

C (compact set of ^ ^ ( Ω ) ) ,

where q and r are constants, \ < q ^ 2 < r < o o .

With Lemma 6.1, we have

Theorem 6.1. Assume that (ρh,mh) are the approximate solutions of the Cauchy
problem (1.3) and (1.5) or the initial-boundary value problem (1.3) and (1.6) with
A(x) e C2 and A(x) ^ c0 > 0. Then the measure sequence

η(vh)t + q(vh)x
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lies in a compact subset of HX~^(Ω) for all weak pairs (η,q), where Ω C Πτ is
any bounded and open set.

Proof For simplicity we will drop the index h of the approximate solutions vh(x9 t)
and will prove only for the Cauchy problem (1.5) within this proof.

Step 1. For any function φ £ CQ(ΠT), the entropy dissipation measures can be
written in the form

/ / (η(v)φt + q(v)φx) dxdt = L(φ) + M(φ) + N(φ) + Σ(Φ) + E(φ) ,
Q^t^T=mAt

(6.1)
where

oo oo

M(φ)= / φ(x,T)η(v(x,T))dx- J φ(x,O)η(vo(x,O))dx, (6.2)
— OO —OO

= -JJVη(v)a(x)g(υ)φ(x,t)dxdt, (6.3)
π T

(6.4)

(6.5)

(6.6)

Σ(Φ) = / Σ ( ' M - [q\)φ{x{t\t)dt, (6.7)
o

\E(φ)\ S ChV\\φ\\HX , (6.8)

where υn

± = v(x,nAt ± 0), φ" — φ(jh,nAt), the summation is taken over all dis-
continuities in υ at a fixed time t, σ is the propagating speed of the discontinuity,
and E(φ) is the error term including the error in the steady-state solutions and the
error near the vacuum in the construction of approximate solutions.

Let S = (x(t),t) denote a discontinuity in v(x,t),[η] and [q] denote the jump of
η(υ(x,t)) and q(υ(x,t)) across S from left to right, respectively,

[η] = η(v(x(t) + 0,0) - η(v(x(t) - 0,0) ,

[q] = q(v(x(t) + 0,0) " q(υ(x(t) - 0, *)) .

Step 2. Since the speeds of propagation of the approximate solutions vh(x,t) are
finite, one can assume
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for sufficiently large K > 0, without loss of generality. This implies

tfl = η*(v) - η*(v) - Vη*(ϋ)(v - v) ^ 0 ,
where

and corresponding entropy flux

q\ = q*(v) ~ q*(v) ~ V^(i>)(/(ιO - f(ΰ)) ,

where tJ = (A^,O).
Noting that (p,m)\x^AT+κ = (hβ,0), for sufficiently large K > 0, we substitute

(η,q) = (η^qt) and </> = 1 in the equality (6.1). Thus

w oo Γ

Σ / [̂ "] ̂  + / Σ(*foί] " t^])Λ ^ C . (6.9)
«=1—oo 0

Using Lemmas 3.2-3.7, we have

m oo

Σ fln?]dx
n = l —oo

= Σ
>'n

= Σ
•'•"(y

-Σ

= Σ

(6.10)

Using Lemmas 4.1-4.2, we have

that is,

/ΣC'foίl - [qhΛ)dt ̂  -CThϊ-iβ > -CThi , (6.11)
0

for the convex entropy η*. We have from (6.9)—(6.11) that

/Σ(<Ψί*] - [q*])dt = JΣM] - [?ί])Λ ^ C , (6.12)
o o

U+j)h 1

Σ / / ( I - τX»_ - ί;)TV2(|,(»y + τ(»_ - »,•))(»_ - Vj)dτdx £ C . (6.13)
J
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In particular, since V2η*(r,r) ^ co(r,r), c$ > 0 constant, one has

Σ

185

(6.14)

Step 3 For any bounded set Ω C Πτ and weak entropy pair (η,q), we derive from
(6.1), (6.4)-(6.5), (6.7), (6.12)-(6.13), and Lemma 2.2 that

\M(φ)\ £ CWΦW^ay \N(φ)\ ί C\\φ\\Co{Ω)

T

J
0

\Σ(Φ)\ ̂ £ C\\φ\\C0(Ω)

C0(Ω)

(ϋy + τ(v- — Vj))(v- — ι;7 )| dτdx

- 0̂ )1 dτdx +

ί c\\Φ\\C0(Ω)

_ - vj))(v- - vj)dτdx

where the constant C depends only on the support of φ. Hence

that is

Therefore

where 1 < q\ < 2.

N+Li+ΣWc ^ c

+ N+Lι + χ ; compact in W~λ'qι{Ω), (6.15)
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Furthermore, for any φ € CQ(Ω), 5 < α < 1, we have

\L2{φ)\ ^ Σ / \Φ(x,nΔt) - φ]\(\η(v-) - η(vj)\ + \η(v+) - η(Vj)\)dx

γγ
)

Using the Sobolev theorem: WQ'P(Ω) C Q(Ω), 0 < α < 1 - | , one has

\L2(φ)\ ̂  Ch^\\φ\\w^(Ω), P > γ ^ ,

that is
11^211^-1.̂ ) ^ Ch«-2 - . 0, A - 0 , (6.16)

for K ? 2 < i | 5

Moreover,
| |^ | |^-i g C ^ -> 0, as A -> 0 . (6.17)

It follows from (6.15)-(6.17) that

compact in W~c

hq° , (6.18)

where 1 < q0 = min(quq2) < y^
The fact 0 ^ p ^ C and |^ | ^ C implies

M + L + 7V + χ ; + £ ' bounded in W~c

hr(r > 1). (6.19)

We derive from (6.17)—(6.19) and Lemma 6.1 that

M + L + N + Σ compact in i^" 1 . (6.20)

This means that

η(vh)t + q(υh)x compact in H{^(Ω).

This completes the proof of Theorem 6.1.

7. Convergence and Consistency

In Sect. 5 and Sect. 6, it is proved that the approximate solutions (ph,mh) of the
Cauchy problem (1.3) and (1.5), and the initial-boundary problem (1.3) and (1.6)
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satisfy the following conditions:

(1) There is a constant C(T) > 0 such that

v A

C ; (7.1)
Ph(xJ)

(2) The measure

η(vh)t + q(υh)x is compact in H{~^(Ω) 9 (7.2)

for all weak entropy pairs (η,q), where Ω C Πτ is any bounded and open set.

The compensated compactness framework (see [Cl, C2]) ensures the strong
compactness of the approximate solutions vh(x,t) in L\OC(ΠT) for 1 < γ g 5/3.

Theorem 7.1. Assume that (ph,mh) are the approximate solutions of the Cauchy
problem (1.3) α«ί/ (1-5) with a(x) G C^R), 0r the initial-boundary problem (1.3)
βftflf (l 6y) w/Y/z β(x) G C^ljOo), satisfying the conditions (7.1)-(7.2). TTẑ π there
is a convergent subsequence in the approximations (ph(x,t),mh(x,t)) such that

(ph»(x,t\m

h»(x,t)) -+ (p(x,t)9m(x,t))> a.e. (7.3)

The pair of functions (p(x,t),m(x,t)) is a global entropy solution of the Cauchy
problem (1.3) and (1.5) or the initial-boundary problem (1.3) and (1.6) z>2 ί/ze

of Definition 1.1 and satisfies

^ C(T) (7.4)
p(x,t)

in the region Πτ for any fixed T e (0,00).

Proof It suffices to prove the limit functions (p,m) satisfy (1.11)—(1.12). We prove
this only for the approximate solutions vh of the Cauchy problem (1.3) and (1.5).
The proof for the approximate solutions of the initial-boundary problem (1.3) and
(1.6) is the same.

Notice that for any convex weak entropy pair (η,q) and any nonnegative test
function φ e ^

(η(υh)φt + q(vh)φx + a(x)Vη(υh)g(υh)φ)dxdt + / η(υh

0(x))φ(x,0)dx
At - 0 0

= ΣΦj- I (Φ^-Φ+Vdx + Σ I (ηiv^-ηiv^Xφ-φ^dx

+ }Σ{σ[n]-[q\)φ(x(t\t)dtΛ-E{φ), (7.5)
0

where vh_ϋ = vh(x,nAt — 0),φ" — φ(jh,nΛt), the summation is taken over all dis-
continuities in v at a fixed time t, σ is the propagating speed of the discontinuity,
and

\E(φ)\ g Chf\\φ\\Hl .
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Noting from Lemmas 4.1 and 4.2 that

σ[η]~[q] ^ - ^

for the convex entropy η, one has

M - [q])Φ(x(t),t)dt ^ -Ch^^WΦWc . (7.6)
o

Furthermore, for any φ e CQ(Ω), we have,

J>n

and
U+\)h

I

Σ

c

Therefore,

/ \tt- vfdx +O(h)

V"u-fr )
0, ash-*0.

OO

α(x)Vη(vh)g(vh)φ)dxdt+ f η(υh

0(x))φ(x,0)dx

- f - c μ | | c o , Λ ^ O . (7.7)

Taking the limit Λ —> 0 on both of sides of (7.7) and using the Dominated
Control Theorem, we verify that the limit function υ = (p,m) satisfies

+ q(v)x - α(x)Vη(υ)g(v) S C\\pV2η(v)\\L<~ , (7.8)
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in the sense of distributions. Choosing (η(v)9q(υ)) = (±v9±f(v))9 we immediately
conclude that v(x,t) is a weak solution. Using the standard procedure (cf. [Lai,
D2, Sm]), we conclude that the limit function v(x, t) satisfies the entropy condition
(1.12) along any shock wave. This completes the proof of Theorem 7.1.

8. Transonic Nozzle Flow: Proof of Theorem A

For the transonic nozzle flow, A(x) represents the cross-sectional area of the nozzle
at x. The first equation in (1.2) comes from the conservation of mass in the form

(pA), + (mA)x = 0 , (8.1)

and the second equation in (1.2) is the conservation of momentum that can be
rewritten as

(mA)t+(—A) +Ap(p)x = 0. (8.2)
\P Jx

For the system (8.1) and (8.2), or more generally (1.3), we have constructed
the approximate solutions for the Cauchy problem (1.3) and (1.5) in Sect. 4 and
have proved that the approximate solutions satisfy the conditions (7.1) and (7.2) of
Theorem 7.1 in Sects. 5 and 6, provided that A{x) is a C2 function bounded away
from zero for all x G R and the initial velocity and nonnegative density data ( ^ , p 0 )
are bounded in L°°. Using Theorem 7.1, we conclude that there is a subsequence in
the approximate solutions strongly converging to the L°° function (p(x,t),m(x,t))
almost everywhere and that (p(x9t)9rn(x9t)) satisfies (7.4). For any function φ e
C<5(R+), we define ψ(x9t)=A(x)φ(x9t)9 which is still in C^(R+). In particular,
choosing η = p and m in (7.5) from Theorem 7.1, one has

oo oo oo oo / Af(χ} \
J f (pA(x)φt + mA(x)φx)dxdt = / / I pφt + rmj/x - -~mφ dxdt = 0 ,
0 -oo 0 -oo \ A\x) J

and

m

/ / mA(x)φt + — A(x)φx + p(p)(A(x)φ)x dxdt
0 - o o V P J

= 7 7
o - o o

Then Theorem B stated in Sect. 1 follows.

9. Spherically Symmetric Flow: Proof of Theorem B

Consider the spherically symmetric flow of the compressible Euler equations (1.1)

(p(x9t)9fn(x9t)) =

where x = \x\ and m(x,t) is a scalar function. The case TV = 2 corresponds to the
cylindrically symmetric flows and the case TV ^ 3 corresponds to the TV-dimensional
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spherically symmetric flow. Then we obtain from (1.1) and (9.1) that (p(x9t),m(x9t))
K

satisfies (1.2) and (1.4) with A(x) = j ^ * " " 1 .

Consider the initial-boundary problem for the system of compressible Euler
equations (1.1) with initial-boundary values (1.14). We have constructed the ap-
proximate solutions for the initial-boundary problem (1.3) and (1.6) in Sect. 4 and
have proved that the approximate solutions satisfy the conditions (7.1) and (7.2)
of Theorem 7.1 in Sects. 5 and 6, provided that the initial velocity and nonneg-
ative density data (y-,po) are bounded in L°°. Using Theorem 7.1, we conclude
that there is a subsequence in the approximate solutions strongly converging to the
L°° function (p(x9t)9m(x9t)) almost everywhere and that (p(x9t)9m(x9t)) satisfies
(7.6)-(7.7). Therefore, it suffices to prove that the functions (p(x,t),m(x,t)), de-
termined by the function (p(x,t),m(x,t)) through (9.1), satisfy the condition (1)-
(3) of Definition 1.2.

For any test function φ e C^({\x\ > 1} x [0,oo))? set φ(x,t) = φ(x,t)* e C^
( { | * | > 1 } x [0,oo)). We have

0 |;t |^l
mφt

Jfί 6ϊ) Jfί -> - A

Vφ + p(ρ)divφ dxdt

P /
ooo

/ S ί
1*1=1 o l

]\τ _ i

mo(x)φ(x,0)dx

φ))xN-ιdxdSdt
J

|x |=l

oooo

o l

J

mo(x)φ(x,0)dxdS

m

mA(x)φt + —A(x)φx + p(p)(A(x)φ)x dxdt
P J

JPo(x)A(x)φ(x,O)dx =
1

Set ψ(x9t) = φ{x,t)Λ{x) that is still C^((l,oo) x [0,oo)) function. Thus

0 |χ|
mφt+

mψt

p(p)άivφ) dxdt

J
mo(x)φ(x,O)dx

o l

p(p)φx -
A'i

\X) p
—φ dxdt mo(x)ψ(x,O)dx = 0 .

Similarly, for any test function φ e CQ({|JC| > 1} x [0,oo)) satisfying φ(x,t) =
φ(x,t), we set ψ(x,t) = φ(xJ)A(x) that is still CQ((15OO) X [0,OO)) fiinction in the
identity:

oooo
/ /

o l

mψx - Λvχ)
dxdt + / po(x)ψ(x,O)dx = 0 ,

l

and conclude the condition (1) of Definition 1.2.
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For (1.16), for any nonnegative test function φ £ CQ({|J?| > ^ x (0>°°)) satis-
fying φ(x,t) = φ(x,t), we have

\m2

A'(x) (1 m

7 - 1

using (6.5) with η(v) = \— + ,p_ 1 . . Using the standard procedure (cf. [Lai, D2,

Sm]), we conclude that the weak solution (p(x,t),m(x,t)) satisfies the entropy

condition (1.16).
The result (1.15) follows directly from (9.1) and standard techniques as in [MT].

Using completely the same arguments without any difficulties, one can similarly
obtain a global solution for the system with a gravitational source

which describes an atmosphere surrounding a solid star with radius 1 and mass M.
The local solutions have been constructed in [MT].
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