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Abstract: We use the cut-down method and a multi-dimensional continued fraction
approximation to prove that any simple 3-torus is an inductive limit of direct sums
of four circle algebras. Consequently, simple 3-tori are classified by the ordered

with distinguished order unit.

1. Introduction

A non-commutative «-torus is the universal C*-algebra generated by n unitaries,
C/i, t/2,..., Un, with non-trivial linear commutation relations

(*1) UjUi = (exp(2πiθij))UiUj, 1 ̂  ί < j g n ,

where βy is a real number. We shall call such unitary generators canonical and a
simple non-commutative w-torus a simple rc-torus.

Such a C*-algebra is often represented as a twisted group C*-algebra of Z",
with respect to a bicharacter β, and written as C*(Zw,β). The two definitions may
be identified as follows:

Let eι,...,ew be a basis of Z", and denote by χ€j the characteristic function on
Z" supported at e7 ; if we write β(e^ej)β(ej9ei) in the form exp(—2π/0//), we can
identify χej with Uj as in (*1), for 1 ^ j ^ n.

We shall feel free to use both definitions and this identification.
For the importance of this class of C*-algebras, we refer to [R4, P and Po].
Built on [R3,EE, ELI and EL2], we are now able to show that every simple

3-torus is an inductive limit of direct sums of four circle algebras. Consequently
(applying Corollary 1 of the main theorem in [Po], also see [Pa] and the appendix
of our paper for a direct proof), any non-commutative 3-torus is an inductive limit
of type I C*-algebras.

Combining the classification theorem of Elliott (Theorem 7.1 of [E]), we see
that the ordered K0-group with a distinguished order unit is a complete isomorphic
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invariant for a simple 3-torus. Consequently, a complete stably isomorphic invari-
ant for an arbitrary 3-torus is the ordered KQ -group, or equivalently, the range of
the canonical trace on its AΓ0-group, up to a scalar multiple. Notice that such a
C*-algebra may neither be simple nor real rank zero.

This answers an open question asked ten years ago (see [BCEK]).
Part of the results here was reported in December 1994, at the Fields Institute

Workshop "Classification of Amenable C*-Algebras."
We shall outline the idea of the proof.
Let A be a non-commutative 3-torus with canonical generators ί/ι,f/2, t/3 and

associated commutation parameters %'s. In the paper [EL2], we prove that if A is
simple and (1, #12, #13, #23) are rationally dependent, then A is an inductive limit of
direct sums of four circle algebras. Therefore in this paper, we will only consider
the case where (1,#12,#13,#23) are rationally independent. Note that this condition
itself implies the simplicity of A.

Our solution to this problem consists of two steps.
In general, let S be a finite subset of a unital C*-algebra B. To approximate S

by a unital C*-subalgebra of B of a special type (e.g. direct sums of circle algebras)
up to δ, we might try the following naive idea. If a projection e in B satisfies the
following condition:

\\[e,Xj]\\ < -, for all*y in S ,
then

\\Xj - (exj e 0(1- e)xj(l - e})\\ < -, for all x} in S .

Therefore the above approximation problem reduces to two similar problems for
eSe in eBe and for (1 — e)S(l — e) in (1 — e)B(l — e). If, in addition, eSe and
(1 — e)S(l — e) are both nearly "half" of S, we have a better chance to solve the
two reduced problems. The difficulty lies in understanding the word "half" in a
correct way and formulating a nice sufficient condition on e which leads to such a
situation.

Let A be a simple 3-torus as above such that (I,0i2 50i3 5023) are rationally
independent, and S = {U\, t/2, U$}. In this case, we may choose the rank of the
corresponding K\ -classes to measure the size "half." Thus our first step is, for a
sufficiently large class of approximately central projections, formulating a nice suf-
ficient condition which leads to the desired situation. We do it in the following
way. At first, for a projection e approximately commuting with all U/s up to ε
and in the class which we shall specify in the next section, we study the ap-
proximate position of eSe in eAe and that of (1 — e)S(l — e) in (1— e)A(l — e),
up to a universal multiple of y^ We achieve this in a local reduction theorem
by a suitable strong Morita equivalence construction (cf. [R3 and ELI]). Then
by considering {[eUj e]ι :j= 1,2,3} in K\(eAe) and {[(1 — e)Uj(\ — e)]\ : j =
1,2,3} in Kι((l — e)A(\ — e)), we are able to formulate a nice sufficient condi-
tion which leads to an approximation of S by direct sums of four circle algebras
in A. We formulate this condition as a non-standard Diophantine approximation to
(1, #12, #13, #23)

The second step is to solve this non-standard Diophantine approximation prob-
lem. We achieve this by a natural modification of the ordinary strongly convergent
multi-dimensional continued fraction approximation.
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2. The Local Reduction Theorem

In this section, we will assume that A is a simple non-commutative 3 -torus with
canonical generators t/ι,£/2 and £/3. Also we assume the rational independence of
0,012, 013? 023)

We will first specify a class of projections that we are going to study.

Definition 1. Let W\ and WΊ be two unίtaries in a C* -algebra with the nontrivial
linear commutation relation:

where 0 < θ < 1/2. We call the following projection the normalized Rieff el pro-
jection generated by the ordered pair (W\,Wι) :

where FQ and GO are two continuous functions on R/Z defined as follows. In the
interval [0, 1], the support of FQ is [1/2 - θ, 1/2 -f 0], the function FQ takes 1 at

1/2 and linear in the remaining subintervals; the function GO equals \/Fo(l — FQ)
on [1/2, 1/2 + θ] and zero otherwise.

Notice that, if θ is irrational and τ is the canonical trace on C*(Wι,W2) which
annihilates the set {W?W% : (w,«)φ(0,0)}, then τ(e(Wι, W2)) = θ.

Let μ = (μ\9μ2,μ3) be an integral vector. We denote by U& the unitary t/f1 U%2

U^3 in A. Let v* be another integral vector, then

U*Uβ = (exp2πi(μ x v, <9))t/W ,

where Θ = (023?— 013,012) and μ x v is the classical vector cross product in R3.
For the vector v which is 1 at the y-th component and zero otherwise, we

have that (μ x v, Θ) = — (μ x Θ, v) = —(μ x Θ)y . This is exactly the commutation

parameter of Uj with U^. We have the following easy estimate.

Lemma 1. Let (μ,v*) be a pair of rationally independent integral vectors and ε be
a small positive number. If for the Euclidean distance,

dist(μ x Θ, Z ) < ε and dist(v* x 6), Z3) < ε ,

and if the fractional part Θ of (μ x v,Θ) is less than 1/2, then

\\[e(U\ £/*), Uj]\\ <2m+£-+ tJl, far = 1,2,3 -
u y u

A weaker converse is true, but we will not need it.
Our special class of projections consists of all projections of the form e(Uv,

where (μ, v*) is a pair of integral vectors which are rationally independent and satisfy
the following technical condition (*2).

If we write μ = pμl and v — kv\ such that p, k are positive integers and μ l 9v*ι
are primitive integral vectors, then

(l)/?ι xv*ι is primitive;
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(2) l / ( \ 5 p ) < α := a + ^{/Γj x vΊ, Θ) < 1/2/7, where — a is the integral part of

k(μl x Vι ,Θ>;
(3) (1 — pa) Ik is an integer.

In the next section, we shall produce many integral and rationally independent
vector pairs satisfying the above technical condition.

From now on, we will always assume that the pair (μ, v*) satisfies the above
condition and use the notations p,k,a,tt,μl9v\ as defined in (*2). We will also
denote by e the projection e(U*, U^) and use the symbol "~" to mean "near."

Next, we study the approximate position of {eUje : j = 1,2, 3} in eAe and
{(1 - e)Uj(l -e):j= 1,2,3} in (1 - e)A(l - e\ up to small distances.

Since the way we study eAe is through a Morita equivalence eAe-A bimodule
of M.A. Rieffel (cf. [R3]), we need to smooth e first.

Denote FQ /[0,i] by /o, where χ[o,η is the characteristic function on [0, 1] and
FQ is the continuous function in the definition of e(Uv, U^).

For each large number TV, we define a non-negative Schwartz function /0 with
the same support as that of /o and satisfying:

(1) /<>(* + p*)= 1 -MX) and /0(1 -*) = /<>(*), l/2-poi^x^ 1/2 -

(2) l l v T o - Λ l U <
Then we define a smooth projection e$ by the same formula as that of e, with

FQ, GO replaced by

Σ Mx + Ό and GΌ(*) := Σ \//oO

Clearly, when A/" — > oo, we have /o — > /o and eo — > e(Uv,
Also it is easy to check the following inequality

(*3) V/0(jc) - V/oί^) ^ 77 + W J ,̂ x, y e R

Definition 2. PFe .s αj; ί/zαί α unitary generator {Fo, FI, ^2, PS} of eAe is standard, if

(1) their commutation relations are all linear (as in (*!)),
(2) the unitary V0 has finite order.

Note that, if A is simple, then C*(Fι, V^ V^) must be a non-commutative 3-torus.
For a pair of rationally independent integral vectors (μ, v ) satisfying the above

condition (*2), we prove the following crucial theorem.

The Local Reduction Theorem. With the notations above (including those intro-
duced in (*2)) and 0 < ε < 1/15, suppose

dist(/?x<9,Z3)= H / Γ x β - β J < ε

dist(vx Θ,Z?)= | | v x β-β2ll < ε >

^2 are ίwo integral vectors. Then there is a standard unitary
generator {K0, V\, F2, V^\ of eAe (where e = e(U^, U^)) and there is another one
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{Ko,Fι,F2,K3} of (I -e)A(l - e) such that, for j = 1,2,3,

eUj e ~ a Laurent monomial in F0, V\, VΊ, F3, (up to a scalar multiple)

(1 — e)Uj(\ ~ e) ~ a Laurent monomial in F0, V\, F2, F"3, (up to a scalar
multiple)

all to within 16^+ 17πε.

At first, for a large number TV, we smooth e to a projection e0 as above.
One can check directly that

for y = 1,2,3. We will work with eo instead of e. At the end, the result will be
passed from eQ to e by taking the limit as N — > oo.

To study eoAeo and (1 — eoM(l ~^o)? we extend μ l 9 v Ί to an integral basis
{μ l 5 vϊ,ώι} of Z3 with

Denote by (m,l,n) the inverse matrix of (μ l 5 vΊ,ώι) . Then it is clear that

« = μ ! x vΊ , w x m = vί and ΐx n = μl .

After the papers [ELI and EL2], the format of the following construction be-
comes standard. Therefore, we will sometimes sketch a routine calculation and refer
to the above two sources for the detail.

Part One. The e^Ae^ part.
Let us first take an Abelian group

G = (R x Z x 1LP x Zk) x (R x T x Zp x Zk)

twisted by the Heisenberg cocycle β (cf. [R3]), and then a lattice D — span(ει,ε2?ε3)
C G defined by

/εΛ /*! n\ mi l\ y{ ^
I2

f = (um9n9m, Γ, -Γ,z,0,
\ ε 3 / \Λ 3 n3 m3 /3 ^3

where z*= — (m, Θ)Γ+ (ΐ,Θ)m.
From the identity

α -> -» α
-m x/ + « x z * = Θ + -m x
k k

we have C*(D,β) = A, where Uj is identified with
M.A. Rieffel ([R3]) has shown that a suitable completion of the space of

Schwartz functions on R x Z x Z ^ x Z ^ forms a strong Morita equivalence

C*(£>-L,β)-C*(Aβ) bimodule, where D^ is the identified annihilator of D through
the anti-symmetrization of β, that is

D± = {x G G : β(x, y)β(y,x) - 1, for all y G D} .

We will show that C*(Z)-L,^) = e^Ae^ in a nice way.
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Denote (1 — pa)/k by SQ. We claim that Z)1- = span(<5o,<5ι,<52,<5s), where

0 0 [1]^ 0 0 0 0 0

-k(m,Θ) -1 0 0 ^(19Θ) 0 0 0
1 0 0 0 0 0 0 [1]*
0 o 0 [-1], ^ 0 [SQ]p 0

V /
It is easy to check that δ/s are all in Z)-1.
To see the converse, let w = (x,n, [m]p9 [I]k9y, [z]z, [m']p, [lf]k) be in

Z)-1 <ί= >̂ m is arbitrary and

1 r ^ _ _ fl/^ w 7 ^ r r ^ r^^Λ
-jc/ — αym — zn + «z + -—m m——ί — (m,Ln)\ CΊ ,
* * P * \ξj

where ^'s are integers.
<̂ = >̂ m is arbitrary and

' —w \
= z,-/,—/

k k

Since

-9-,- = (kv\,—μ^-
/c / V Oί

we deduce that

w = mδQ- nδi + (/' + *6)^2 + (-pal + kmf

We shall denote χ .̂ by Vj.
Define a Schwartz function / on R x Z x Z^ x Z t simply by setting

/(x, 0,0,0) = \/fo(x) (x G R) and zero otherwise. Then a direct calculation as in
[ELI] shows that

— </>/>^ = 1C*(^) and ^</'/)^ = eo

For the formula concerning the two C*-algebraic valued inner products {, )D_L
and {,}£>, we refer to [ELI or R3].

Now, we have a natural isomorphism Φi of e^Ae^ onto C*^-1,^) defined by

6?0C£?0 !->• {/*

We will identify the two C*-algebras via this map and then {F0, PI, F2, ̂ 3} becomes
a standard generator of e^Ae^.

In a way similar to the computation in [ELI and EL2], for each j — 1,2,3 and
w G Z)-1-, we have

{/ * UJ9f)D±(w) = 0, unless

07 = -mjδo + /lyδi 4- ίz/<52 + (/y + %A:)(53 = (xQJ9..., yQJ9...) ,

where fey and fey are integers.
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Moreover, for such a w,

— {/ * UJ9f)D±(w) = — / \//o(>)/o(* + *oy + Xj)exp(-2πix(yj
pea pot u

• exp [ — A

where

XQ == I X20 I ~~ —K\W1 9 \9jYl ~

\ -^30 /
and

Consequently, we get

Γ2) ,

Considering the support of /o, it is clear that

unless ti — — (22 + α^) + ^> where the components of A are taken from {0,±1}.
Let us denote by Qj\ and g/2 the y-th component of Ql and g2 respectively.

We can rewrite the above calculation in the following form:

where ξjQ, ξjt± G T and

yo(*) = Σ MP*(-X + /ι))/o(pα(-αc + τι) + (v x θ - Q2)y

/Γ x Θ)y), 7 = 1,2,3,

^y,±(^) = Σ MP*(-X + /ι))/o(pα(-Λ + /ι) + (v x β - Q2) . ±
«ez v y

• exp(2π/(^ + w)(jβ1 - μ x 0)y.), y = 1,2,3.

Applying the estimate (*3) to these three functions, we deduce that

£?n£/ έ?n - ̂ .^"^y^F'̂ ^^V^7'"^1 7 - 1 2 3^O^y^O ~ vO^o V \ V2 K3 5 7 — A ? ^ ? ^ ?

to within 8/Λf + 16-χ/β + 17πε.
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Part Two. The (1 - eQ)A(l - e0) part.

For the same group G and the same vectors m, /, n as above, we define another
lattice D = span(£i,£2?£3) Q G, where

\ f i 3 /

The same argument as in Part One gives the identity A = C*(D,β), where Uj
is identified with χ^./O — /?α). Also, another argument as in Part One shows that

D = span((5o, δ\, $2, δ^), where

/ \

/<So\
Sl

δ2
\δj

0

—k(m, Θ}

0

~P

0
-1

0

0

0

0

0

[-!]/>

[l]k

0

0

0

1 — pa

0

(Γ,β)
1

1 — pa

0

0

0

0

0

0

0

[1],
0

0

0

0

J

We denote χ~δ. by ,̂ 7 = 1,2,3.
If we take the Schwartz function / on R x Z x Zp x Zt defined by

/(*, 0,0,0) = /(-*, 0,0,0) = v/1 - MX) exp
1 -

for 0 ^ jc ^ 1/2 and zero otherwise, then a computation as in [ELI] shows that

Thus we can identify (1 — eQ)A(l — e0) with C*φ ,β) by the isomorphism

1
Φ2

-eQ)c(l -eQ)\
I — poc (f*c,f}f

Clearly, the four unitaries V^V\^V^V^ form standard generators of (1— e§)A(\— β0).
For j = 1,2,3 and w G D-1, we can calculate (1/(1 — p%))(f * Uj, f ) β j _ ( w ) in

a similar way as in Part One. This leads to

to within S/N + 16-^/ε + 17πε, where η} is in T.
Notice that the inverse maps of Φi and Φi are given by

(f,c*f)D,

l - / ? α w '

Using the continuous functional calculus, it is not hard to check that the unitaries
Φ\~l(Vj) and Φ2~λ(Vj) continuously vary as N —» cχo. By taking the limit, we pass
the result from en to e. D
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Corollary. Under the same conditions as in the theorem, if in addition that

= (1 - pa)(l -pa + (v,Q,) - (μ,Q2)) ,

then {eUjβ : j — 1,2,3} is approximately contained in a matrix algebra over an
irrational rotation algebra (or direct sums of several copies) in eAe, to within
16Vε+17πε. SO does {(1 - e)Uj(l - e) : j = 1,2,3} in (1 - e)A(l - e).

Proof. With the notations and the approximation to U/s as in the above theorem,
it is elementary to check that the condition (*4) is the same as

det (n, -(Q2 + am\ pal- kQλ )

- det («, - [ Q λ + (1~/ f l )Π,m- p(Q2 + am)} = 0 ,

which is equivalent to

τark{[eUj e]ι : j = 1,2,3} < 3 in Kλ(eAe)
and

rank{[(l - e)Uj(l - e)], : j = 1,2,3} < 3 in ^((1 - e)A(l - e)) .

Let us consider the eAe part, the consideration in the (1 — e)A(\ — e) part is
similar.

Since [^ί]ι,[^]ι,[^]ι are integral independent in K\(eAe), there
are two Laurent monomials W\9 W± of V\^V^V^ such that, for each j= 1,2,3,
yfij -(Qjτ+amjΐ^palj-kQji .§ & Laurent monomial Qf ^ and ψ^ up to & §calar

multiple.
Thus {eUje :j= 1,2,3} is approximately contained in C*(J6, W\, Wι\ to within

πε. We have to show that the C* -algebra C*(fδ,»ΐ,0£) has the
expected form.

Since A is simple, the embedding eAe H-> A induces an ordered group isomor-
phism between their ATo-groups (Proposition 2.4 of [Rl]). Thus by the unique-
ness of the state of the ordered AΓ0-group with distinguished order unit, we have
(/?α) τeAe(K$(eAe)) = TA(KQ(A)), where TA denotes the canonical trace on A. Con-
sequently, if we denote by θ\2, ΘB, $23 the commutation parameters of V\, V2, V$, then
15 ^12,^13,^23 are rationally independent. On the other hand, we must have

rank(X -(Q2 + am), pal- kQλ ) ^ 2 .

Since otherwise, we would have

Q2 = -am + rin,

Qι = ^7+r2n,

for some rational numbers r\,r2. Consequently,

From (*4), we would reach a contradiction

-(pa)2 = (1 - pa)(l + pa) = 1 - (pa)2 .
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Thus the cross product of some two row vectors in the matrix («, — (Q2 + am\

pal — kQ\ ) must be non-zero. The commutation relations in

cannot all be rational. Consequently, the commutation relation of W\ and W2 must
be irrational. To show that the C* -algebra C*(1^9W\9W2) is isomorphic to some
finite dimensional algebra tensored by an irrational rotation algebra, we notice that

We will denote by (a\9...9an) the greatest common divisor of the integers
aι,...,an. Writing

Wι = C Vζl V3

cι and W2 = Vf2 vζ2 V? ,

we have the following three cases only:

(1) If c\ = c2 = 0 (mod p), then

(2) If we have only one GJ = 0 (mod p\ say j = 1, then a slight modification of
the argument in [ELI] (Lemma 2 and the proof at the end of Part One) gives that

C*(^δ, Wl9 W2) = l(C2,p} ®Mp/(C2,p} 0 C*(»i, W2

p/(C2>p}) .

(3) If both c\ and c2 are not integral multiples of p, then there is a pair of
integers u and υ such that

(Cι,C2) = CιU + C2V.

Then a change of coordinate in C*(W\9W2) gives that

W2 = w?W? = ήjfιu+a*υv*ιu+b2vlfc

where η, ή G T. We have that

[Wι, %] = Q and

A similar argument as above gives that

C*(F0, Wl9 W2) <* \(ci9C2t

In any case, we have the desired form for C*(^, W\9 W2). This completes the
proof. D

Remark.

(1) The converse of this corollary is clearly true by considering the rank of
certain K\ -classes. But we will not need it in this paper.

(2) The above corollary combining the theorem of Elliott and Evans ([EE])
gives an approximation to {U\9 U2, U^} by direct sums of four circle algebras in A9
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provided by the existence of a pair of integral vectors (μ, v) which satisfies the
above conditions.

3. The Main Theorem

In this section, a non-commutative 3 -torus A may not be simple.

The Main Theorem. If ( I,0i2, #13, #23) we rationally independent, then the cor-
responding non-commutative 3-torus is an inductive limit of direct sums of four
circle algebras.

Assuming this theorem, we shall first prove the following corollaries.

Corollary 1. Any simple non-commutative 3-torus is an inductive limit of four
circle algebras. Therefore, they are classified by their ordered K^-group with dis-
tinguished order unit.

Proof. The first statement is a combination of the main theorem here and the main
theorem in [EL2]. Once we have the first statement, the second statement follows
easily from the classification theorem of Elliott (Theorem 7.1 of [E]). D

Corollary 2. (1) Any non-commutative 3-toms is an inductive limit of type I
C* -algebras. More precisely, it is either an inductive limit of direct sums of four
circle algebras, or an inductive limit of direct sums of two C* -algebras each of
which is a matrix algebra over a rational rotation algebra (including the commu-
tative 2-torus), or a rational 3-torus.

(2) Two 3-tori are stably isomorphίc if and only if the range of the canonical
trace on the K^-group of one torus is a real multiple of that of another torus.

Proof. Following from some standard fact and Proposition 1 in [EL2], we know
that a non-commutative 3 -torus A is non-simple if and only if

rank(τΛ*o(Λ))) ^ 2 ,

and rational if and only if

where IA denotes the canonical trace on A.
Thus the first statement is obvious in the case where

Now, we consider the case where A is a 3 -torus with

= 2 .

In this case, an easy consequence of a theorem of Poguntke ([Po], see the
appendix of our paper for a direct proof) asserts that A is strongly Morita equivalent
to AQ 0 C(T), where θ is an irrational number.

Applying the main theorem of [EE], in this situation, there is an increasing
sequence of unital C*-subalgebras {An} in some unital C* -algebra such that
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and there is a projection e G U/S=ι ^« suc^

n=\

For a sufficiently large n, there is a projection e' in ^4W and a unitary W in

^L! Λ such that
Ad(W)(e') = e.

Notice that

We may replace the sequence {An} by {Aά(W)(An}} and therefore e is in
Aά(W)(An), for all sufficiently large n.

Then the first statement in this case follows from the bijective correspondence
between the isomorphic classes of the algebras, each of which is a matrix algebra
over a rational rotation algebra, and the equivalent classes of projections in
C(Ί2)®K (cf. Sect. 3 in [R2]).

For the second statement, the "only if" part follows easily from the
following general fact (we will supply a proof in the appendix): for two «-tori A
and 5,

(*5) O there is γ G R+ such that γ τA(KQ(A)) = τB(K0(B)) .

Now, for two 3-tori A and B satisfying the condition of the "if" part of the
second statement of the corollary, let us consider the argument used in the beginning
of the proof of this corollary. We can see that A and B are either both simple
or both non-simple, both rational or both non-rational. Thus the "if" part of the
second statement follows from the classification theorem of Elliott for simple tori
(Theorem 7.1 of [E]) and the Morita equivalence result of Rieffel for rational tori
(Theorem 3.1 of [R2]).

To finish the proof, assume that A and B are two 3 -tori satisfying the condition
(*5) and the additional condition that

- 2 .

Then by a consequence of Poguntke's theorem (see [Po] and the appendix of our
paper), we have

A <g) K ^ Aθl (g) C(T) ® K and B®K^Aθ2® C(T) ® K ,

where θ\ and 62 are two irrational numbers.
Following from our proof of this result in the appendix, we can choose θ\ and 82

in the way that there are positive integers q\ and qi such that { l / q \ , θ \ / q ι } forms
an integral basis of TA(KQ(A)) and {1/^2,^2/^2} forms a basis of τB(Ko(B)).

Since
y τA(K0(A)) = τB(K0(B)) ,
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{y/q\9yθ\/q\} is an integral basis of τB(Ko(B)) as well. Therefore, there is a
matrix S in GL(2, Z) such that

S(l,0 2) τ=/(l,θι)T,

where / = yq2/q\ This shows that (see Theorem 4 of [Rl])

Aθl ®K ^ Aθ2®K .

Thus A and B are stably isomorphic. D

Because of the corollary of the local reduction theorem and the remark afterward,
to prove the main theorem, we only need to find pairs of non-zero integral vectors
(μ, v ) satisfying all the conditions in the local reduction theorem as well as those
in its corollary.

In the article [EL2], we proved a number theoretical lemma, which will serve
as our starting point.

A Number Theoretical Lemma. For each vector θ = (\9θ\9...9θn) with ratio-
nally independent components (where 0 < θj < 1) and 0 < ε < \/(n + 2), there is a

positive integral basis A\9...9An+\9 such that

(1) the vector θ is in the positive cone generated by A/s, namely,

n+l

(2) άist(Aj,ΘR)<ε;

(3) if p\j denotes the first component of Aj9 then there is a 1 ^ j ^ n + 1
such that

Notice that, when n = 3, the condition that

1 1

Ϊ5<PIJ*J<2

implies that there are 1 ^ k9 i ^ 4 with k φ / such that

(*6) — < piM + pikUk < ^ -

To see this, let us observe that there exists a / ή=j such that

We have either
1 1
-<pliui + p l J x J < - 9

or for /φ/,7 and A:φ/,y,

1 _, 1 1
7 < 2-^ PlqUq ~ ~ < p\k%k + PUOLI < ~
0 q^j 5 2

In either case, we have (*6) inequality.
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Thus if we take Θ = (1, #12, #13, #23) and an integral basis {A\,Aι,A^,A^\
satisfying the corresponding conditions in the number theoretical lemma above,
then we may assume

1 1
— <pn<xι + pu%2 < ~

Also, we denote by (/>//) the matrix (A\,A2,Ai,A4\ and we may assume

Lemma 2. Denote by Pj the vector (p2j> Pij, P4j) in Z3 and by (α/y) the inverse
matrix of (pij). Then

P\\*\ + PnU2 = P\\a\\ + P\2d2\ + ((p\\Pι ~ PnP\) x (p\3?4 - P\*P?,\®} ,

where Θ = ( θ\2, θ\ 3, $23)- (Warning: Do not confuse this with "Θ" used in the last
sectionl)

Proof From the definition of α/s, we know that

α/ = aβ

Thus it suffices to prove that

\ 1 4 \ 2 4 /

But this follows directly from the general algebraic relation of the a^'s and the
Pi/s. D

Denote by μ the vector p\\Pι — p\ιP\ and by v* the vector p\^P^
We will see that the pair (μ,v*) satisfies all the conditions required for the local
reduction theorem as well as its corollary.

Lemma 3. The integral vector

μ f v

is primitive.s prmve.

Proof Since, for any integral vector X, (μ x v*, X) is a multiple of (p\ι,pu)
(p\3,Pi4), it suffices to show that

(Pn, Pu)(pi39 PIA) £ (μ x v,Z } .

Observe that

(μxv,Λ) =

( μ x v,P2) =

( μ x v,P3) =

( μ x v,P4) = Papuan + p\2a2\) .
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Thus (pu, p\2)(pi3<*3\ + Pi4<*4i) and (pu, pu)(puan + Pn^i) are both in
(μ x v, Z3}. The expected conclusion follows from the identity

p\\a\\ + Pi2<*2i + Pπasi + pucm = 1 . D

Notice that the above proof also shows the rational independence of μ and v.

Proof of the Main Theorem. Using the notations as in the technical condition (*2),
Lemma 3 tells us that, for our special choice of (μ, v*) from Lemma 2,

P = (Pn,Pi2), k = ( p u , p i 4 ) and pa = p\\a\\ + pua^ .

Therefore, the technical condition (*2) is satisfied by this pair (μ,v).
Notice that

\\Pj- pιjθ\\ gdistG?y,0R)<e, 7 = 1,2,3,4,

the extra conditions in the local reduction theorem follow from the following two
identities:

μx β+Λ xP2 = (P\ - p\ιθ) x (P2-

vxΘ+P3xP4 = (P3- Pl3θ) x (P4 -

Finally, it is easy to check that the conditions (*4) in the corollary of the
local reduction theorem are all satisfied. Thus by this corollary, the cut-down of
{U\9 £/2> ^3} by the projection e(Uv, U^) will lead to the desired local approximation
by direct sums of circle algebras. D

We make a few remarks.

Remarks.

(1) The work above and the work of [EL2] together show that, for each simple
3 -torus A with a fixed canonical unitary generator {U\9 C/2, U^} and each ε > 0, there
is a unital C*-subalgebra Aε of A with the same unit such that

(i) Aε = direct sums of four circle algebras,
(ii) the unitary U\, C/2, t/3 are all within the distance ε from Aε.

Then, by a general procedure as described in [Br], we can express A as an
inductive limit of direct sums of four circle algebras. We briefly describe the in-
duction step of this procedure to remind the reader.

Suppose we have 1 G Ank cA and a finite subset Yk C Ank, where Ank is a
unital copy of direct sums of four circle algebras. Let us fix canonical generators
α/'s of Ank.

For each ,̂ there is a C*-subalgebra Ank+l of A containing \A such that

ί/i, C/2, ί/3 are all within the distance E+Γ from ^nkl and, for each z,

An k+l

to within r, where Ank+l is a unital copy of direct sums of four circle algebras.
Then by the stability of the generating relation of circle algebras (cf. [E]), we

can perturb the set {άϊ} to a set {«/} C Ank+l such that

(i) di ~ α/, to within q , for each /, where / is a positive function depending
on the algebraic type of An, only and f(t) -^ 0 when t —> Q,
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(ii) the assignment {α/ ι-> α, : /} can be extended to a C*-algebraic embedding
of Ank into Ank+l. We denote it by φk.

Now, we can choose δk so small that the diagram

id
A — > A

k ΐ T ik+i
A"k * A»k+\

Φk

approximately commutes on the set {«/} U Yk to within ^y, where ik is the natural
inclusion map. We choose a finite subset Yk+\ C Ank+l such that

Finally, an argument similar to the approximately intertwining one as described
in the beginning of [E] shows that, with Y^ chosen inductively and carefully,

limz* : Hm(Ank,φk) H-> A
~*k ~^k

is a C* -algebraic isomorphism.
(2) In the same way as in [Bo], one can show that the flip fixed point algebra

of any simple 3 -torus is AF-algebra.
(3) The success in our case might indicate some general way to show the quasi-

diagonality of the crossed product of certain non-commutative C* -algebras by Z.
(4) The method used here might be possible to extend to a higher dimensional

simple torus. At first, the local reduction theorem and its corollary can be extended
to higher dimensional tori without essential difficulty. The difficulty lies in the
Diophantine approximation. It seems that we should understand how the equivalence
classes of projections with different trace order (i.e. the order of polynomial in %'s)
sitting inside the order structure of the AΓ0-group. Are they really indistinguishable
from the ordered group structure?

Appendix

We first give a direct proof of a consequence of Poguntke's theorem ([Po]) by
some standard constructions of rotation algebras.

Recall that a projection in a C*-algebra is full if the closed 2-sided ideal
generated by this projection is the entire C*-algebra.

Lemma 4. Every non-zero projection of a rational rotation algebra is full

Proof. Let us look at Ap/q, where p and q are positive integers which are relatively

prime. It is well known that we can view Ap/q as a M^(C)-bundle over T2. Let e be
a non-zero projection of Ap/q and denote by (e) the closed 2-sided ideal generated
by e. Since Γ2 is connected, e(jc)φO for each x E T2. Since Mq(C) is simple, at

each point Λ: in T2, there is a positive element ax in (e) such that ax(x) is invertible
in Mq(C). Combining the compactness of T2 and the elementary fact that, for any
two q x q positive matrices A and B with one of them invertible, the matrix A + B
is invertible, we get an invertible element in (e). This leads to the conclusion. D
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Proposition 5. Any non-commutative 3-torus is stably isomorphic to its center
tensored by a simple torus.

Proof. Let A be a non-simple 3-torus with commutation parameters θ//'s. By
Proposition 1 of [EL2], we know that

ιank(τΛAo(Λ))) ^ 2 ,

where τA is the canonical trace on A. If

then A must be a rational torus which is stably isomorphic to its center (cf. [R2]).
So we may assume that

rank(τA(K0(A))) = 2 .

We claim that there is a θ' G TA(KQ(A)) and an integer q such that

-Z + θ'Z

To see this, let Θ\,Θ2 be any basis of the rank 2 free Abelian group
We may assume that none of θ/s is of the form \/q for some integer q. Thus,
there are two nonzero integers a and b such that

1 = aθi + bθ2 .

Denote by q the g.c.d.(0, b\ There are integers u and v such that

a b
-u+ -v= 1 .
q q

Consequently,

v a
Θ2 = (vθi -uθ2).

Then, we may take θ' — vθ\ — uθ2 and write

/ 0 012 0,3 \ j

θ:=l-0, 2 0 023 1 =-C + (vθι-uθ2)C,

where C and C are integral skew symmetric matrices.
Applying Theorem IV. 1. of [N] to C, up to an integral conjugation, we may

assume that

1
0 0 0

-0 0 |r

0 -£ 0

where θ is an irrational number and q1, p' are integers with (p',q')= 1.
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Let C/i, C/2, C/3 be unitary generators of A with (*7) as the matrix of their com-
mutation parameters, then

Let us take a minimal projection e of C*(C/2, C/3), which is full in C* (C/2, C/3 )
(by Lemma 4 above), and a unitary W in C* (C/2, C/3 ) such that

Aά(Uι)(e) = Aά(W)(e) .

At first, following the strong Morita equivalence of a rational rotation algebra
and the commutative 2-torus (cf. Sect. 3 of [R2]), we have

Secondly, since U\WU\ e C*(C/2, C/3), by induction, we have that

upu^u?1 eC*(u2,u3) (w*Uι)nι .

For instance, one can check

C/2 2 C/3"
3 C/!2 - C/2 2 C/3"

3 ( C/i »Ί/* ) W( W C/i )2 .

Therefore,

where we use Ex. 2 in p. 220 of [T] to get the tensor product expression.
Notice that the projection e is full in C*(C/ι, C/2, C/s) as well. The rest follows

from a result of [BGR] concerning Morita equivalence and stable isomorphism. D

Proposition 6. Let A and B be two non-commutative n-tori, then

<£=> there is a positive real number y such that y IA(KQ(A)) =

Proof. Since a rational «-torus A is strongly Morita equivalent to C(TΛ) (cf. [R2]),
in this case we have that

** (K0(C(Ύn ),

Therefore by the uniqueness of the state on (KQ(C(T)9K^(C(T))9[1C(^)]) (see
6.10.3. of [B]), any non-zero ordered group map from (Ko(A)9 KQ (A)) into R is a
multiple of TΛ and rank(τ^(^o(^))) = 1. As an easy consequence, if A is rational,
the following four statements are equivalent:

(1)

(2)

(3) there is a real number y such that y

(4) B is rational.

Therefore we only need to consider the case where A and B are both non-
rational. We will keep this convention for the rest of the proof.
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Following from Rieffel ([R3]), the order structure for the KQ-group of a non-
rational torus is the strict one induced from the canonical trace.

"=»" For a cφO in KQ(A)9

τA(x) = 0 if and only if for any non-zero y G K^(A), τA(y ± x) > 0 .

The "only if" part of this statement is trivial. To see the converse, suppose that
ΪA(X) > 0 (consider — x if τA(x) < 0), then x > 0 and τA(x — x) = 0.

Let φ : (Ko(A), KQ (A)) \ — > (KQ(B), KQ (B)) be an ordered group isomoφhism.
Thus

τA(χ) = 0 4==> for any y > 0 in K$(A\ y ±x > 0 ,

for any z > 0 in KQ(B\ z ± φ(x) > 0 ,

τB(φ(x)) = 0 .

Consequently, φ induces an ordered group isomoφhism φ from IA(KQ(A)) onto
τB(KQ(B)) such that

φoτB = τA°φ .

Since both A and B are non-rational, the additive subgroups τA(Ko(A)) and
τB(K()(B)) of R are both dense in R. Then a standard argument shows that the
ordered isomoφhism φ maps Cauchy sequence to Cauchy sequence and vice versa.
Therefore, the map φ extends uniquely to an additive automoφhism of R by
continuity. A well-known elementary argument shows that φ must be linear. The
conclusion follows.

"<^ "̂ Define an ordered group isomoφhism of IA(KQ(A)) onto τβ(Ko(B)} by

φ(x) = yx ,

where y > 0 is the one appeared in the statement of the proposition.
Since τA(Ko(A)) and τB(Ko(B)) are free,

Since K$(A) and K$(B) are both free Abelian groups of the same rank, the
group isomoφhism φ of τA(K.Q(A)) onto τB(KQ(B)) can be extended to a group
isomoφhism φ of KQ(A) onto £oC#) in the way that

τBoφ — φoτA .

This implies that φ is an ordered isomoφhism as well. D

With a little more effort, we can use the same argument as above to prove the
following result. Since we do not use it here, we state it without proof.

Proposition 7. If A and B are two non-rational n-tori and the rank of
ker(τ^ : KQ(A) \ — > R) is not one, then

+(A\[\A]) ^ (K,(B\K+(B\[\B}}

if and only if
τA(KQ(A)) = τB(K0(B)) .
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Remark. It seems to be known that the range of the canonical trace on the KQ-
group is not a complete invariant even for a simple non-commutative torus. This
statement can be made more precise, not only by Proposition 6 but also by the
following example. Let q, p, p' be positive integers such that

(?» P) = (#> P') =1 and pφ ±p' (mod q)

also let θ\ and Θ2 be two real numbers such that l,0ι,02 are rationally independent.
Let {C/ι,C/2} be a canonical unitary generator of Ap/q and {U\9U2} be a canon-
ical unitary generator of Apι/q. Let α and α be automoφhisms of Ap/q and ^//^
respectively given by

α(£/ι) - (exp2πι0ι)t/ι and α(£/2) - (exp2πϊ02)ί/2,

α( £/Ί ) = (exp 2πι'θι ) fΛ and α( U2 ) = (exp 2π/02 ) Z72 .

Then A = Ap/q x α Z and B =Ap//q x$Z are both simple and have the same range
of the trace on the ΛVgroups. But

This last statement follows from the natural embedding of

(KQ(Apιq\K+(Aplq\[\Aplqγ> .— > (Kϋ(A\K+(A\[\A}) ,

the strong Morita equivalence of Ap/q with the commutative 2-torus (cf. Sect. 3 of
[R2]) and the structure of all vector bundles over T2. The problem lies in the order
unit.
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