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Abstract: We consider the Anderson tight binding model H = — A + V acting in

l2(Zd) and its restriction HΛ to finite hypercubes A C Zd. Here V = {Vx; x G Zd}
is a random potential consisting of independent identically distributed random vari-
ables. Let {Ej(Λ)}j be the eigenvalues of HΛ, and let ξj(Λ9E) = \Λ\(Ej(A) - E),
j ^ 1, be its rescaled eigenvalues. Then assuming that the exponential decay of
the fractional moment of the Green function holds for complex energies near E
and that the density of states n(E) exists at E, we shall prove that the random se-

quence {ξj(A,E)}j 9 considered as a point process on R1, converges weakly to the
stationary Poisson point process with intensity measure n(E)dx as A gets large, thus
extending the result of Molchanov proved for a one-dimensional continuum random
Schrόdinger operator. On the other hand, the exponential decay of the fractional
moment of the Green function was established recently by Aizenman, Molchanov
and Graf as a technical lemma for proving Anderson localization at large disorder
or at extreme energy. Thus our result in this paper can be summarized as follows:
near the energy E where Anderson localization is expected, there is no correlation
between eigenvalues of HΛ if A is large.

1. Introduction

In this paper, we treat the multi-dimensional Anderson tight binding model, namely
the discretized Schrόdinger operator H with a random potential V

H = -Δ + V (1.1)

acting in /2(Z^), where A is the discrete Laplacian defined by

(Au)(x)= E u(y). (1.2)

We also consider the restriction HΛ of H under the Dirichlet boundary condition

to finite hypercubes A C Z^,
, (1.3)
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where χ^ is the multiplication by the indicator function of A. In the following,
we assume that the random potential V — {V^\ x £ Z^} consists of independent,
identically distributed random variables and that their common distribution has a
bounded density, namely we assume

(1.4)

with
\\P\\ao < O C . (1.5)

Let
(1.6)

be the eigenvalues of HA. Since V = {Vx}x is an ergodic random field, for almost
all realizations of F, the limit

N(E) = lίm j y ί ϋ I Ej(Λ) ^ E} (1.7)

exists for all E E R (see [C-L]). This limit is called the integrated density of states.
Since N(E) is a non-decreasing function of E, it is differentiable almost everywhere,
and if its derivative n(E) — dN(E)/dE exists at E £ R, we call it the density of
states at the energy E. Actually under our assumption (1.4) and (1.5), N( ) is
known to be absolutely continuous, so that (1.7) tells us that average spacing of
eigenvalues is of order of \A\~l near the energy E where the density of states
n(E) exists and is positive. A natural question then arises as to measuring the local
fluctuation of the spectrum, namely one will be interested in the limiting probability
distribution of the rescaled spectrum

ξj(Λ 9 E ) = \Λ\(Ej(Λ)-E), j=l,...,\Λ\, (1.8)

as A gets large. To give a concise formulation of the problem, it is appropriate to
use the notion of point process and their weak convergence.

Let ^(R1) be the space of all non-negative Radon measures on R1. We say
that a sequence {mn}n in ^(R1) converges to m e ^(R1) vaguely if

lim fφ(x)mn(dx) = fφ(x)m(dx) (1.9)
n — »oo

holds for all φ which belong to (^(R1), the space of all non-negative continuous
functions with compact support.

This convergence concept defines a topology on ^(R1) which is called the
vague topology. Let further <Jίp(Rl) be the subspace of ^(R1) consisting of all

integer valued Radon measures on R1. Each ξ E ̂ (R1) can be written as

x) (1.10)
J

with a sequence { ξ j } having no finite accumulation point. It is known that Jtfp(R})

is closed in ^(R1) with respect to the vague topology. A random variable ξω

taking values in ^(R1) is called a point process. We say μ(dx) is the intensity
measure of ξω if

μ(A) = E[ξω(A)] (1.11)

for each Borel set A.
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Now consider a sequence {£Jf}« of point processes defined on a probability
space (Ω, J%P). This sequence converges weakly to a point process ξω defined on
a (possibly different) probability space (ί2,^,P) iff, by definition, for any bounded
continuous function Φ(ζ) on ^^(R1) one has

lim fΦ(ξ%)P(dω) = JΦ(ξώ)P(dώ) . (1.12)
n— >oo

On the other hand, this abstract definition is known to be equivalent to each of the
following two statements:

l im E r f e - ] = E p f έ r ] , (1.13)
71— »00

where we have set

C(<?) = fφ(x)ξn(dx)9 etc.;

(2) For any / ^ 1, &/ ^ 0, and disjoint intervals //, 7 = I , . . . ,/ , such that

P(£(3/, ) >0) = 0 , (1.14)

one has

lim P(4(/;) = *,, 7 = 1, . . . , / ) = P(ξ(Ij) = kj, j=l,...,l). (1.15)
n — »oo

Among elementary examples of point processes, the Poisson point process is
the most important one. ξω is said to be the Poisson point process with intensity
measure μ(dx) if it satisfies the following two conditions:

(a) For each bounded Borel set A, ζω(A} obeys the Poisson distribution with
parameter μ(A), namely

P(ξω(A) = k) = e~μ(A} - , k ^ 0 (1.16)

(b) If A\,...,An are disjoint, then ξ(A\ ),..., ξ(An) are independent random
variables.

Now we can state our result. Let A = [l,L]d, L = 1,2, . . . , be hypercubes in Zd

and for z with $z > 0 let

GA(z;x9y) = (HA-z)-\x,y) (1.17)

and

G(z ,x9y) = (H-zΓl(x,y) (1-18)

be the Green functions of HΛ and H respectively. Define the point process
ξ(Λ;E) by

ξ(Λ E)(dx) = Eδ\Λ\(Ej(Λ)-E)(dx) , (1.19)
j

where Ej(Λ) are eigenvalues of HΛ as in (1.6), and δx is the Dirac measure con-
centrated at x. Then we can prove
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Theorem. Suppose that the density of states n(E) exists at E and is positive and
that the fractional moment of the Green function decays exponentially fast in the
following sense:

There are SQ G (0,1), C > 0, m > 0 and r > 0 such that

E[\GD(z χ,y)\s°] ^ Ce~m\χ-y\

for any hyper cube D c. Zd, x G Z), y G dD, and

z G {z|3z > 0, |z - E\ < r} . (1.20)

Here we shall say y G dD iff y G D and there is a y' G Dc such that \y — y'\ = 1.
Under these conditions, the point process ξ(A E) defined by (1.19) converges
weakly, as L —> oo, to the Poίsson point process ξ with intensity measure n(E)dx.

Remark. The following sufficient conditions for (1.20) were obtained by Aizenman,
Molchanov and Graf:

i) If p(x) is bounded and if there is a compact interval [a, b] such that p(x) is
non-decreasing on (—oc,a] and is non-increasing on [6,00), then there is an E(p)
such that (1.20) is true for \E\ > E(p) (see Sect. 3 of [A-M]);

ii) If l l p H o o is sufficiently small, then (1.20) holds for all E (see [G]).

In case d — 1, if we assume the finiteness of ||p||oo and E[\VX

 ε] for some ε > 0,
then (1.20) holds for any E. The proof of this fact will be given in the Appendix
for the reader's convenience.

A limit theorem of this type was first proved by Molchanov ([Mo2]) for the
one-dimensional random Schrόdinger operator

-^ +F(xt(ω)\ -cc<t<™ (1.21)

and its restriction to large finite intervals under the Dirichlet boundary condition.
Here {xt(ω)} is the stationary Brownian motion on a compact Riemannian manifold
K and F is a smooth, "non-flat" function on K with mfxF(x) = 0.

The random Schrodinger operator (1.21) was the first mathematical model for
which Anderson localization was rigorously established (see [G-M-P] and [Mol]).
Moreover the density of states n(E) exists and is positive for all E > 0, and accord-
ingly the convergence of ξ(A',E), where A — [0,Z/], to the Poisson point process
holds for any E > 0.

Molchanov's result is very beautiful and physically significant, as it is one of
few examples of energy level statistics which can be rigorously performed. (See
however [Mi] for an elementary example of a Schrodinger operator for which a
different kind of energy level statistics can be performed and an approximate Poisson
statistics is obtained.) Molchanov's proof is based on some precise analysis of
localization on a large finite interval which had been done in [Mol]. Although his
idea was intuitively very natural and independent of the dimensionality of the space,
as we shall show below, the technique he used is valid only in one-dimensional
models. Since nowadays we have a fairly good understanding of localization for the
Anderson tight binding model in general dimension, it is desirable to give a direct
justification of the above mentioned idea to obtain a dimension-independent proof
of the local Poisson nature of the spectrum.



Local Fluctuation of Spectra of Anderson Models 713

Now let us describe the basic idea behind our theorem. First note that the con-
dition (1.4-5) and (1.20) imply that we have Anderson localization for H. Namely
with probability one, the spectrum of H is pure point in the vicinity of E, and
corresponding eigenfunctions decay exponentially fast. This can be easily seen by
slightly modifying the argument of Delyon, Levy and Souillard [D-L-S]. Suppose
the exponential decay of eigenfunctions holds also for HΛ when A = [l,L]d is large.
In other words, suppose that for each eigenfunction \l/Ej of HΛ with eigenvalue Ej9

which is in the vicinity of E, we can somehow define a "center" XEj of localization

so that ΨEJ(X) decays like exp[— α x — XEJ\] for some α > 0. It is natural to suppose
that those XEj are distributed in A "uniformly" so that if we divide A into small
cells Cp of side length ~ La

9 0 < a < 1, then most eigenfunctions ψE would have
their center inside some Cp away from the boundary so that \ψE (x)\ would be very
small on SCP. (In fact, this is exactly what Molchanov showed for the model (1.21)
and it would be a nice mathematical problem to do the same thing for the multi-
dimensional Anderson tight binding model.) This suggests to us that as far as the
spectral properties of HΛ near the energy E concerns, we could approximate HΛ by
the direct sum of HCP. Since HCP are statistically independent for different p, this
means that the spectrum of HA near E, viewed as a point process, is approximated
by a superposition of independent point processes, each of which coming from HCP .
Hence if we set

η(Cp;E)(dX) = Σδ\Λ\(Ej(cp)-E)(dx) , (1.22)

{Ej(Cp)}j being the eigenvalues of HCP, then ξ(A E) can be approximated by

. (1.23)

As remarked above, {η(Cp;E)}p are independent for different p. On the other hand,
the mean spacing of the eigenvalues {Ej(Cp)}j is of order L~ad , so that by (1.22),
each η(Cp;E) is asymptotically negligible as L — > oo. (See [D-V] and the next
section for the precise meaning of "negligibility.") Hence by the general theory of
point processes (see Theorem 9.2. V of [D-V]), η(L;E)9 being the superposition of
a uniformly asymptotically negligible array, converges weakly to the Poisson point
process with intensity measure n(E)dx as soon as for any bounded interval A9 the
following two conditions hold:

ΣP(η(Cp;E)(A) * 1) -> n(E)\A\ (1.24)
P

ΣP(η(Cp;E)(A)^2)^ 0. (1.25)
P

The justification that ξ(A E) can be replaced by η(L;E) as well as the verification
of the above two conditions will be given in the next section. It seems that the
importance of the conditions like (1.24) and (1.25) is overlooked by most physicists.
In fact, all we can tell from the fact that our ξ(A E) can be approximated by the
superposition of small independent point processes is that the limit of ξ(A E),
if any, is an infinitely divisible point process, which may be quite different from
Poisson point process, and in fact it is the verification of these conditions which
consists of the main and the hardest part of the proof in [Mo2].
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2. Proof of Theorem

The proof breaks into several steps.

Step 1. Define the class stf of test functions of the form

(ID

with n ^ 1, τ > 0 and aj > 0, σ/ G R for j = 1, . . . , /ι.

Lemma 1. Lei ^π, w ^ 1, and ξ be point processes on R1 with intensity measures
μn(dx) and μ(dx) respectively. Suppose there is a constant c > 0 such that

μn(dx) ^ cdx, n ^ 1, μ(dx) ^ cdx . (2.2)

Then the following two assertions are equivalent:
(i) ξn converges weakly to ξ;

(ii) for any f G j

lim E[exp(-α/))] = E[exp(-£(/))] . (2.3)
n — > oo

Proof. For a non-negative Borel function φ, define for ^ ^ 1,

J^(φ) - E[exp(-<Uφ))] (2.4)

and
JS?(φ) = E[exp(-#φ))] . (2.5)

Then the assertion (i) is equivalent to
(i)7 ^n(φ) -+ &(φ)9 for any φ G C+.
Let L1^ be the totality of all non-negative elements in L^R1). It is easily seen

from our assumption (2.2) that the functionals 5£n and 3? are uniformly equi-
continuous on L\_. Since C^(R ) is dense in Ll

+, the assertion (i); can be extended
to hold for all φ G L+, and in particular for all φ G stf . Hence (i) implies (ii). To
show the converse, it suffices, by the same reason, to prove that jtf is dense in L\.
For this purpose, it is sufficient to prove that for any bounded interval (α,&), its
indicator l(a,b)(x) can be approximated in the U -sense by elements in stf .

Now for τ > 0 and n — 1,2,..., define

w=ln{(X-Jy + *dσ (2 6)

and

n .=0^-ϋB.r-,..?• (2 7)

where

σ« = α + ̂ . (2.8)

We shall show that
lim Φ«,τ = Φτ (2.9)

n—>oo
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and
limΦ τ = l(α>a
τjO

hold both in I1-sense.
To show (2.9), set

Ψ(x,σ) =
(σ - σ»)(2x - σ - σ»

715

(2.10)

(2.11)

where σ G [a,b) and σ" is chosen so that σ e [σy,σ"+1). Then for some constant
C = Cτ > 0, we have

\ΨM\ g C
n(l+jc 2) 2 , for J C £ [ Λ - 1,6+1]

and

so that

;t,σ)| ^ C-, for xe[a- 1,

b oo

f d σ f dx\Ψ(x,σ)\ = O(n
a —oo

(2.12)

(2.13)

(2.14)

To show (2.10), note that

Hence if a < x < b, we have 0 < Φτ(x) < 1 and Φτ(jc) | 1 as τ j 0. On the
other hand,

Φτ(χ)dx = b-a= (2.16)

From these considerations, it is easy to conclude (2.10). D

Step 2. Let ξ be the Poisson point process on R1 with intensity measure μ(dx) =
n(E)dx. Let us verify that this ξ and ξ(A E) defined by (1.19) satisfy the conditions
of Lemma 1 .

To this end, let

for arbitrary ζ = σ + iτ e C+, where C+ is the open upper half plane. Then

E [ ξ ( Λ ; E ) ( f ζ ) ] = E
-E)-σY

1

RΓ
1

J_
Ri.

-E-

(2.18)
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If we construct for z G C+

G\z) = (-HΛ - Vxδx - z)-1 , (2.19)

where δx € l2(Zd) is defined by δx(y) = δxy, then by the resolvent equation

GΛ(E + \Λ\-lζ;x,x) = —ί— ,

where
(2.21)

Since 3Γ > 0, we can compute

/

°cΓ

= Woo / Mx)dx.
— oo

This shows

and by Wegner's inequality (see Theorem 3.2 of [S]),

n(E) £ \\p\\oo .

(2.22)

(2.23)

(2.24)

Hence according to Lemma 1, in order to prove Theorem, it suffices to prove for
any aj > 0, j = !,...,« and ζj = σ; + /τ, σy G R, y = 1,..., w, τ > 0 that

lim E
L-»oo

where

and

= &P(φ), (2.25)

(2.26)

(2.27)

ξ being the Poisson point process with intensity measure n(E)dx.

Remark. Actually we have

- exp < Λ - l)dx } , (2.28)

for any non-negative integrable function /. But we do not need this formula
explicitly.
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Step 3. Let {NL} and {//,} be increasing integer valued sequences diverging to
infinity as L — > oo in such a way that

NL = o(L), lL=o(L/NL). (2.29)

We shall choose NL and \ι more specifically later.
Now divide (09L]d C R^ into N£ equal cubes Cp, p=l,...,Ng, with side

length L/NL and of the form (α, b]d, and define

, (2.30)

and
= {x G ς, I dist(x,dCp) > /L} . (2.31)

For any z G C+ and Λ: G int(Cp), we have by the well known perturbation formula
(see e.g. Sect. 4 of [S]),

G\z'^x) = Gc'(zιx9x)+ Σ GcP(z',x,y)GΛ(z;y',x) , (2.32)

where {̂ , /) G 5C^ means that y G Cp, / G Zd\Cp and |.y - /| = 1. Then it is
easy to see

πΣ Σ
l^1! P ι6Cp\int(Cp)

-Σ Σ Σ \Gc»(z;X,y)\\GA(z;y',X)\
p xeaΛ(Cp)(y,y')edCp

= AL+BL. (2.33)

As in (2.22), E[3sGcP(z;x,x)] and EfQG^ίz ^jc)] are bounded by some constant
independent of x, p, Λ and z € C+. Hence

E[Λi] = 0(L-dNd

L(L/NL)d-llL) = 0(NLL-llL) (2.34)

as L — > (X).
On the other hand, we can write

Σ Σ
p x

Σ

(2.35)

By formula (2.22) of [A-M] or Lemma 5 of [G], E\GΛ(z; y',x)\s° is bounded by
some constant independent of A, z G C+? and jc, y' G A. Hence by condition (1.20),
we obtain the estimation

ΣE[BS

L

Q/2] ^ const. \Λ\-*>/2 Σ Σ
p)(y,y'}£dCp

(2.36)



718 N. Minami

If we take NL — L* with 0 < α < 1 and \ι = βlnL with sufficiently large β, say

/ J > I { r f ( 2 - | ) - l - α ( , / - l ) } , (2.37)

then we will have
E[AL] = 0(L*-\nL) = o(l) (2.38)

and
E[^0/2] - O(L~βlnL) = 0(1) (2.39)

with

β = d(2-^}-l-<*(d--l)-mβ>Q. (2.40)

In particular, we have

AL + BL -» 0 (in probability) , (2.41 )

uniformly in z e {|z — E\ < r} Π C+. From this and (2.33), it is easily seen that
in order to prove our theorem, it is sufficient to prove

lim E = XP(φ) (2.42)

instead of (2.25).
Now let Ej(Cp) be the eigenvalues of HCP, and consider the point process

η(Cp;E)9 1 ^ p <£ TV/, defined by (1.22), and let η(L;E) be their superposition as
in (1.23). Then we can rewrite (2.42) as

lim E[exp{-ι/(Z; £)(<?)}] = &p(<P) (2.43)
L — >oo

with φ running through jtf. Since, as before, we can show

E[η(Cp;E)(dx)] £ ^||p||oo ̂  (2.44)

and
E[η(L E)(dx)] ^ \\p\\oodx, (2.45)

Lemma 1 and (2.43) tell us that our theorem is a direct consequence of the following

Proposition. As L — > oo, η(L;E) converges weakly to the Poisson point process
with the intensity measure n(E)dx.

Step 4. We turn now to the proof of the proposition. It is clear that η(Cp\E) are
independent for different /?, and (2.44) shows they constitute a uniformly asymp-
totically negligible array in the sense that for all bounded Borel sets A,

lim sup P(η(Cp;E)(A) > 0) = 0 (2.46)
~

(see Sect. 9.2 of [D-V]). Hence by Theorem 9.2. V. of [D-V], to prove that their
superposition η(Cp;E) converges weakly to the Poisson point process with intensity
measure n(E)dx9 it suffices to show that (1.24) and (1.25) hold for any bounded
interval A C R. For this purpose, it is enough to show for any ζ — σ + iτ G C+,

> πn(E) (2.47)
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and

E Σ/c(Λ)/cθ!/) \=o(Nϊd) (2.48)
.'*> J

uniformly in /?, where fζ was defined in (2.17) and we have set

yj = \Λ\(Ej(Cp)-E). (2.49)

In fact, if we note (2.44) and the fact that 1A is approximated by elements in j/,
it is easy to conclude from (2.47) that

Nd

LE[n(Cp;E)(A)} -> n(E)\A\ . (2.50)

Moreover for any finite interval A, we can choose ζ e C+ and a > 0 so that

I A < α/c (2.51)

holds. Hence (2.48) implies

E Σ 1X^)1XJ>,) = o(Nϊd) . (2.52)
N J

To show that (2.50) and (2.52) imply (1.24) and (1.25), note that

OO

Σ P(η(Cp;E)(A) ^ y) = Σ U ~ l)P(η(Cp;E)(A)=j)
7^2 7=2

oo

= E[η(Cp;E)(A){η(Cp;E)(A) - 1}]

) , (2.53)

uniformly in p, which yields (1.25) at once. On the other hand, (1.24) is a direct
consequence of (2.50), (2.53) and

P(η(Cp;E) ^ 1) = E[η(Cp;EXA)] - Σ P(η(Cp; E)(A) ^ j) . (2.54)
j*2

Step 5. Let us prove (2.47). As before, we have

E[η(Cp;E)(fζ)] = -

_ F J V^ -4- V* I °tnCP( 1- Y Ύ \ (Ί ^\~ i / l l I ' j ^ / j ( ^^ ^\A,x.,x) , (^z.jj;
I71! [ [xeint(Cp) ΛreCp\int(Cp)J

where λ = E + \Λ\~lζ. In the same way as we estimated E[Aι] in Step 3, we can
estimate the second term on the right-hand side of (2.55) to be of

O(L~d(L/NL)d-llL) = o(N~d) (2.56)

if we choose NL and 1L as in Step 3.
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On the other hand, for x G int(Cp) and z G C+, we have

GCP(Z;X,X) = G(z;x9x) -
<*

Hence

(2.57)

Σ Έ[\G^(λ'9x9y)G(λ'9y
f

9x)\]
(y,yf)edcp

Σ

Σ

= O(L(3-s°}d~lN-Me~mlL/2) . (2.58)

In the above calculation, we used the condition (1.20) and the fact that

\GcP(z'^y)\ ^ (SzΓ1; \G(z9x9y)\ ^ (Qz)-1 (2.59)

and that E|G(z;;/*)|5() is bounded by a constant independent of y',x e Z^ and
z G C+ . Now let us take //, = β' In L with jβ; large enough. Then we will have

E[%GcP(λ',x,x)] = E[3tG(λ'9x,x)] + o(l) (2.60)

as Z — > oo, where o(l) is uniform in x G Zrf. But as is well known, for all jc G Z^,

l dN(ύ) . (2.61)

If N(u) is diίferentiable at w = E, then the right-hand side converges to

πn(E) = π—^ (2.62)

as L — » CXD, since λ -^ E non-tangentially (see Chapter IV of [D]). Combining these
estimates with (2.55), we arrive at

(2.63)

as — •>• oo.

. To finish the proof of the theorem, we shall now prove (2.48). In view
of (2.49), the left-hand side of (2.48) multiplied by \Λ\2 can be rewritten as

E
-λ Ej(Cp)-λ



Local Fluctuation of Spectra of Anderson Models 721

= E ; y, y) - , y9x)}

(2.64)

where as before λ = E+\Λ\~lζ. Since \Λ\ = Ld and \CP\ ~ (L/NL)d uniformly
in /?, (2.48) is an immediate consequence of the following

Lemma 2. For any z e C+, Z> C ZJ, and x,yeD with xή=y, one has

E det < πz

Proof. Set

If we define V — V — Vxδx — Vyδy and if we construct from this F,

HD = -AD + V\ GD(z) = (HD - z)-1

and
(GD(z χ,x) GD(z;x9y)\

g(Z) \GD(z;x,y) GD(z;y,y)J '

then by Krein's formula (see Appendix I of [A-M]), we obtain

i -1

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

Now for any invertible complex matrix A9 we have in general

A~l -A~l =A~l(A-A)A~l =A-l(A-A)A~l , (2.70)

where A is the complex conjugate of A. Using this formula twice, we can compute

i — g(z) — g(z)

so that

where we have set

υ =
Vx 0
0 Vv

(2.71)

(2.72)

(2.73)
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We shall now prove

= π2|det#(z)|2{det3#(z)(detS#(z) + GD(Z;JC,^)|2)}~1/2 , (2.74)

which gives (2.65) because of (2.72) and condition (1.4-5). To prove (2.74), we let

T£-\(2J5)

Note that this matrix depends neither on Vx nor ,̂. Then

Idetίr + ̂ zΓ1)!-2 = \(VX +a)(Vy + c)-b2 ~2 , (2.76)

and by shifting the variable of integration, the right-hand side of (2.74) becomes

= J IK , ;.2 / 7^ ^2 (2 77)-oo \Vχ + ιaιγ _oo y . f . b 2 \\

Now if ^sζ φ 0, we have

* * " (2.78)

We will apply this formula to compute the integral (2.77). For this purpose, first
note that by (2.70),

- (2.79)

Since ^(z) is a positive definite matrix, we have

det = |det^(z)|-2det(^(z)) > 0 . (2.80)

In particular, we have αiΦO and ciΦO. Hence we can compute without difficulty

IC2 ~ y

2 1

C2
/

>0, (2.81)
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where we have set for brevity

•=(££)• <2 82>
so that by using (2.78) twice, the right-hand side of (2.77) is computed to give

2 "I -1

c2(vx-—} +-detA(|ft | 2

\ C2 J C2

= π
2 2 ~1/2

det/0}~ . (2.83)

Equation (2.74) now follows at once if we substitute (2.80), (2.82) and

b = -(detg(z)ΓlGD(z;x,y) (2.84)

The proof of Lemma 2, and hence of our theorem is now complete. D

Appendix. On the Condition (1.20) in the One-Dimensional Case

In this appendix, we shall prove the following proposition announced in the remark
after the statement of the theorem.

Proposition A.I. In the case of d = 1, if we suppose

/ \v\εp(v)dv < oc for some ε > 0 (A.I)

in addition to (1.4-5), then condition (1.20) is true for all E G R.

Proof. We will use some techniques in [C-K-M], [v-K] and [K-L-S] by "complex-
ifying" them.

Let A = [a,b], a ^ x < b and y = b G dΛ. By the resolvent equation, we get

G[a*b\z',x, b) = (?[*'*](z;jc, 6){1 + G[a>b\z;x,x - 1)} (A.2)

for all z G C+. Since we already know that Έ,\GΛ(z'9x9 y)\s is bounded uniformly
in A9 x, y G A and z G C+ for each s G (0, 1 ), it suffices to prove the exponential
decay of E\G[x>b](z;x, b)\s for some s G (0, 1).

To this end, consider
f f f o b ] = H[x,b] _ ipb 9 (A3)

where P^ is the projection onto the one-dimensional subspace of /2(Z !) spanned
by δb. Then for any z G C+, H^b^ — z is invertible. To see this, suppose
(7/M] -z)φ = Q with φ = φ(x) vanishing outside of [jt, b]. Then (H - z)φ(t) = 0
for t G [x, b — 1]. Hence we have φ(t) = φ(x)ψ(t) for t G [x, b], where ψ is the
solution of Hψ = zψ satisfying ψ(x — 1) = 0 and ψ(x) = 1. Suppose φ(;c)φO, then
we would have from this (H&'W — z)(\l/l[Xtb]) = 0, in particular

- 1) + (Vb - z)ψ(b) - iψ(b) = 0 . (A.4)

But since (H — z)ψ(b) — 0, this leads to

\l/(b + \) - i\l/(b) = Q . (A.5)
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In view of Lemma A.2 below, (A.5) shows ψ(t) = 0, which is a contradiction, and
hence we must have φ(x) — 0, namely φ(t) = 0.

Lemma A.2. For any y > x, we have

\ιl/(y + 1) - iψ(y}\2 = \ψ(y + 1)|2 + \ιKy)\ + 3* Σ IΆO')|2 - (A.6)
j=χ

Now we can consider G[x'b](z) = (Hίx>b] -z)"1. Then we have

Gίx>b\z;x, b) = {ψ(b + 1) - zW)}"1 . (A.7)

In fact, if we set
«(/) = &*'b\z; t, b) - (&*>b\z)δb)(t} , (A.8)

then we must have (Hu)(t) = 0 for t&[x,b-\]. Hence u(t) = u(x)ψ(t) for
t 6 [x, b]. But

-κ(A - 1) + (F4 - z)u(b) - iu(b)

Vb- z)ψ(b) - iψ(b)}

= Gίx'b\z;x, b){ψ(b + 1) - iψ(b)} (A.9)

as desired.
On the other hand, again by the resolvent equation,

G[x'b\z;x, b) = Gίx b\z;x, b) - i(G[x'b](z)PbG
[x'b\z))(x, b)

= &-x'b\z;x,b)[\-ίG^b\z b,b)}.

Again since
E\G[x>b\z'9b,b)\s

is bounded for any s 6 (0, 1 ), we only need to prove the exponential decay of

for some s 6 (0,1). But since we have by (A.7) and Lemma A.2,

m j ' ' (A H>
and since Lemma 5.1 of [C-K-M] is still valid for complex parameter E, we
are done. D

Proof of Lemma A.2. Substitute

ψ(y + l)ψ(y) - ψ(y + l)ψ(y)

l) + (K,- j
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into
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