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Abstract: The external algebra over holomorphic first order differential forms on
a complex Lie group G is endowed with the structure of a graded Poisson Lie
algebra. This structure is introduced via graded bicovariant brackets that are shown
to be in one to one correspondence with G-invariant tensors of special symmetry.
Complete classification of graded Poisson Lie structures defined by homogeneous
brackets is obtained for the case of classical complex Lie groups.

1. Introduction

The aim of this paper is to classify homogeneous Poisson Lie structures on the
algebra of differential forms on a classical complex Lie group. This investigation
is inspired by the issue of differential calculus on quantum groups for which the
structures in question appear in the semiclassical approximation. Such a connection
between graded Poisson Lie structures and differential calculus on quantum groups
reflects the general Faddeev concept [1] that all objects in the quantum group the-
ory should appear as the result of deformation (quantization) of appropriate Poisson
structures [2—6].

Note that the notion of graded Poisson Lie structures [7] and the studies
of their special examples [8—10] were stimulated by the papers [11, 12] where it was
proved that bicovariant differential calculus on quantum groups can be supplied
with the structure of a graded (super) Hopf algebra. At the semiclassical level
this fact indicates the existence of graded Poisson Lie structures and the close
analogy between such structures and Poisson Lie groups. Namely, a graded
Poisson Lie structure governs the deformations of the external algebra in the
same way as Poisson Lie group structures determine the deformation of the
function algebra in the category of Hopf algebras. These deformed algebras can
be viewed as algebras of external forms (functions) on a corresponding quantum

group.
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The recent developments' of bicovariant differential calculi for various quan-
tum groups follow the general scheme elaborated by Woronowicz [13, 14]. Recall
that Woronowicz starts with the function algebra &/ on a quantum group and
introduces a bicovariant bimodule £, i.e., a bimodule over ./ supplied with
two coactions 4,: Q2 — Q® . and 4;: Q2 — o ® Q satisfying the set of ax-
ioms [14]. Then a first order differential calculus is defined as a pair (2,d),
where d : &/ — Q is a nilpotent mapping obeying the Leibnitz rule. It is proved that
any first order differential calculus can be lifted to higher order differential forms.

Aside from the obvious theoretical meaning the deformation approach also
has practical significance. The point is that there is a number of open ques-
tions in Woronowicz’s theory, which arise when one incorporates information
specifying a quantum group into the above scheme. For instance, the explicit de-
scription of defining relations of quantum external algebras appears to be a nontrivial
task [15-18]. Another complicated problem is to check for these algebras the
Diamond Condition [17-22]. Concerning simple quantum groups one finds that
the set of generators for Q involves additional elements that have no natural
classical counterparts [23]. All these phenomena are usually treated as being of
specific quantum nature. At the same time our analysis [7-9] reveals the similar
phenomena just at the level of Poisson Lie structures. Hence, one has a chance to
clarify these questions by using the powerful tools of classical (non-quantum) group
theory.

Let us briefly describe the main points of our construction as well as the struc-
ture of the paper. Section 2 collects the definitions concerning Poisson Lie groups
and classical matrix Lie algebras. In Sect. 3 we define on the external algebra Q
over the cotangent bundle of a Lie group G a special bilinear operation called the
bracket. The right (left) translations of G are lifted to Q2. Following Woronowicz
we require bicovariance, i.e., covariance under right and left translations to be the
main characteristic property of this bracket. Further we use the bicovariant bracket
to define the structure of a graded Poisson Lie algebra.

In Sect. 4 the notion of bicovariant bracket is investigated. We indicate that all
bicovariant brackets on € are in one to one correspondence with G-invariant tensors
with special symmetry. Having in mind the connection with bicovariant differential
calculi on corresponding quantum groups we restrict ourselves to the case of a
homogeneous bicovariant bracket. In Sect. 5 we derive necessary conditions on this
bracket to supply € with the structure of a graded Poisson Lie algebra. Here we
note that the main obstruction arises from the Jacobi identity involving only odd
generators of Q.

In Sect. 6, by using the concept of a fundamental Poisson bracket we prove our
main result (Theorem 3) about the classification of graded Poisson Lie structures
determined by homogeneous brackets. We find that if G is of type 4,—1, n > 2, then
there exist four such structures and if G is one of types B,, C, or D, (we exclude
the classical isomorphisms), then the graded Poisson Lie structure determined by a
homogeneous bracket does not exist. The case of 4 is distinguished since it admits
two structures in question. The consequences of this theorem are discussed in the
Conclusion.

1 The list of references can be found in [8].
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2. Preliminaries and Notation

This section serves to fix the notation.?

Let G be a Lie group with a Lie algebra 4 and let o/ be the algebra of
holomorphic functions on G. This is a Hopf algebra with the comultiplication 4,
the counit ¢ and the antipod S.

A Lie group is called a Poisson Lie group, if .7 is supplied with a Poisson
bracket {, }¢ satisfying the relation

A{f,h}c ={4f,4h}sxq » 2.1)

where G x G is equipped with the product Poisson structure.

Let T = (tl.j fV ;=1 be an exact holomorphic representation of G in a vector space
V and 7 be the corresponding representation of ¢. It is suitable to define a Poisson
structure on G in terms of matrix coefficients ¢/. If G is a semisimple connected Lie
group, then for this set of generators a Poisson bracket on .o/ defining the structure

of a Poisson Lie group has the form [2]
{N, L} =[(t®0), 1 T2], (22)

where we have used the standard tensor notation: 7' =T Q® 1, T, =1Q® T, etc., to
suppress matrix indices. Here » € A’% is the classical r-matrix, i.e. a solution of
the modified Yang Baxter Equation (mYBE) that requires an element

[[r,7]] dg[rlz,rn + 3] + [r13, 73] € A°G (2.3)

to be invariant under the adjoint action of %.
For simple Lie algebras it holds

Proposition 1 [2]. If 9 is a simple Lie algebra, then there exists a unique (up to
a multiplicative constant) invariant element in N\*%. In a basis {e,} of ¥ it can
be presented in the form [K\3,Kj3], where K = g''e, ® e, and g*' is the inverse
of the Killing tensor.

Hence, in the case of a simple ¥ the mYBE reads [[r,7]] = —«[K13,K23], Where
o0 is a complex parameter.

Now we list some conventional notations concerning classical series of Lie alge-
bras. Let 4 be a simple Lie algebra corresponding to one of the classical series 4,
(sI(N),N = n), By(so(N),N =2n+1), C,(sp(N),N = 2n) or D,(so(N),N = 2n).
In fundamental representation

4 = {X € Mat(N,C)|trX =0} for A, ;

4 = {X € Mat(N,C)| X' = —CxC~'} for B,,Cp,D, .

Here X' means the transpose and C = (Cj;) is an N x N metric: Cj; = &0y,
i"=N+1—1i such that all ¢ =1 for B, and D,, and ¢ =1, i=1,...,N/2,
g =—1, i=N/2+1,...,N for C,. By definition, we put C~! = (C?).

Throughout the paper Latin and Greek letters are used to run the sets {1,...,N}
and {1,...,dim %} respectively.

2 The nice introduction to Poisson Lie groups can be found in [24].
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3. Definition of Graded Poisson Lie Structure

Let G be a complex matrix Lie group and Q' = T*G be the cotangent bundle over
G. Introduce a Z-graded vector space

o=@ o,

n=0

where Q0 = .o/ and Q" is the space of differential #-forms. Q is a bimodule over
. In the following we treat elements of &/ C Q as forms of order zero. For the
sake of shortness we will denote the product in by the symbol x, i.e. it will stand
both for the usual and for the wedge product.

Let h be the adjoint representation of G. Denote by 4, its matrix elements:
Adge, = hy(g)ev,g € G. Clearly, this implies that

An, = h @ b, . (3.1)

We use (k) to introduce the linear mappings 4,:Q — Q® </ and 4;:
Q — o/ @ Q, called the left and right coactions respectively.
Definition 1.

i) If ¢ € o, then A, = A1 = A¢;
ii) let {¢"} be a basis of right-invariant forms in Q' corresponding to {e,},

then
At =1, (32)

At =h ¢, (3.3)

where every matrix coefficient h, is regarded as an element of o/,
i) if o =puxve Q, then

Ar,lw = Ar,l,u * Ar,lv .

With respect to 4,; the space Q is naturally endowed with the structure of
a bicovariant bimodule [14]. Note that the definition of 4,(4;) is independent of
the particular choice of a basis in Q'. We use {¢*} as the most suitable for our
treatment.

Now we introduce the following concept.

Definition 2. A bilinear operation {,}:Q2Q Q — Q is called a bicovariant
bracket if:

1) for any homogeneous elements w,v,p € Q it satisfies
i) the graded Leibnitz rule
{o*v,p} =@ x {n,p} + (=1)*"* % {w,p} x v ; (34)
i) the graded symmetry property
{w,v} = —(=1)*e@de (y )}, deg{w,v} = (degw +degv)mod 2;  (3.5)

2) on zero and first order differential forms the coactions A, are the homo-
morphisms with respect to the bracket operation:

A{w,v} = {4,0, 4V} o, A{w,v} = {410,4} g0 , (3.6)
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where for any homogeneous elements u,v,w,p € Q:

{H®v,0®plage = {Hw} @vrp+p* 0@ {v,p}. (3.7)

If 1.i) and 2) are fulfilled, then one can easily see that bicovariance conditions

Ar,l{w’ P} = {Ar,lw, Ar,lp}Q@Q (3.8)

take place for any w,p € Q. Moreover, a bicovariant bracket on Q is completely
defined as soon as it is defined on zero and first order forms. In the sequel the
brackets {¢*,¢}, ¢ € o/ and {&",¢"} will be refered to as the first and the second
order brackets respectively.

Definition 3. A bicovariant bracket defines on Q the structure of a graded Poisson
Lie algebra if for any homogeneous elements w,v,p € Q it satisfies the Jacobi
identity:

(_l)degwdegp{{w’ V},p} 4 (_l)degpdegv{{p,w}’ V} + (_l)deg(udeg\r{{v,p}’w} .
3.9)

4. Explicit Form of Bicovariant Bracket

In this section supposing the existence of a bicovariant bracket on Q we will derive
the explicit form of its restriction on the subalgebra A" C Q generated by the set
(hg,e“ ), o, e =1,...,dim%. We use generators hE and " as the most convenient
to pose and solve the bicovariance condition (3.8) explicitly. In Sect. 6 we show
how one can restore a bicovariant bracket on suitable generators of .«7.

For the rest of the paper G will be simple. Denote by h the adjoint representation
of %. In a basis {e,} of % with structure coefficients ch, we have (A(e,))t = cb,.

According to Definitions 1 and 2 a bicovariant bracket reduced on .7 defines on
G the structure of a Poisson Lie group. Thus, by virtue of (2.2) a bracket {hg, h,f
should have the form:

{h1,h2} = [hiha,m12] (4.1)

where 7, is the r-matrix in representation h. Since 4 is taken to be the antihomo-
morphism G — Aut%, the sign in the r.h.s. of (4.1) is opposite to (2.2).
Consider the second order bracket. Equation (3.8) shows that if w and p are
right-invariant first order forms, then the bracket {w, p} also defines a right-invariant
element of Q. Therefore, taking into account the graded symmetry property (3.5)
we have:
{gﬂ’sé} _ zk nﬁfwuksm Ao A gt (4.2)

even

where for each & a numerical tensor nﬁf.“,tk is symmetric in upper indices and
absolutely antisymmetric in lower indices.

Further restrictions on #’s are imposed by 4;-covariance. Applying 4; to both
sides of (4.2), we get

(W@ i@}y =t -Hinh? , @@ A Nek).
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Using Eq. (3.7) one can easily see that the last equation is equivalent to the set of
relations:

1 v
for k=21 o({Mh. W} — {W).H3}) + Wihinty = Wbl (4.3)
and
for k > 2: nfly,..vkhghg = ! heﬁ"]ﬁ?‘lk : (44)

With the help of the permutation matrix P : Pﬁ; = 0,0}, Eq. (4.3) can be written as

1
5(1 — Pio){hi, b2} = [hha,mi2] . (4.5)
By definition, put
1
012 = 5(1 —Pp)ri; —n2. (4.6)

Then, using (4.1), we see that Eq. (4.3) is equivalent to the following condition on

012: [mha,012] = 0.
We can use the nondegenerate Killing metric to raise and lower indices of #’s.
Clearly, for corresponding contravariant tensors Eq. (4.4) reads

r]ﬂl"'”kh;ill . h'l‘illcC — ’,IV1~--vk , (47)

i.e., y#l"# appears to be a G-invariant tensor.
Derivation of the first order bracket retraces the same steps. Let us sketch them
briefly. The bracket {sﬂ,hé} should be a differential form of odd range. Therefore,

(P} = 5 (e Ao N (48)
o]

where this time for each set of indices an element (ééﬂ.,.vk )ﬁ belongs to 7.
Condition (3.8) of 4,-covariance requires all £ in (4.8) to form a subset in &/
for which the comultiplication reduces to

Ay = oy X OB 49)
Comparing the last equation with (3.1) one finds that it has a unique solution given
by
& L =nd .. (4.10)
Here for each & {ﬁf v 18 a numerical tensor.

Now it is not hard to verify that the requirement of A;-covariance yields the
following first order bracket:

{1}y = Wrlier + 3 WU e AN (4.11)
odd k
where tensors Cﬁf 140 obey the relation
BA Vo vy 2.8 sty
C#l“'ﬂkéhﬁhl - hlel a 'hﬂll hécvl“'”kﬁ : (4.12)
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Thus, we proved the

Theorem 1. For any simple connected Lie group the restriction of a bicovariant
bracket on N is generated by the relations

{1, 10} = rid Wy — Wl (4.13)
{eﬂ,hi} = hgrvﬁgav + Z hgcﬁlm” 68#1 Ao A ghk (4.14)
oddk 1R
(£, =rBoe N7+ 3 0 A e 4.15)
even k

1) . PR . I .
where rfy = r“"cﬁac‘fy is the r-matrix in representation h and corresponding con-

travariant tensors (, 3 are invariant with respect to the adjoint action. In addition
nﬁf... e 18 symmetric in upper indices and absolutely antisymmetric in lower indices,
whereas Cﬁf 146 is absolutely antisymmetric in ui,..., .

Consider the tensors (% and 5% from the theorem. Their invariance means that
{n € R(9®?%,99?), where R(9%2,%4%?) is the commuting algebra of & ® h. If we
go over from the representation /4 of a Lie group to the corresponding representation
h of a Lie algebra the last observation can be expressed as

[WX)®I+1®hX),Z]=0 forany X € %, (4.16)

where Z is { or #.

If all tensors { and n from Theorem 1 equal zero except CZ’J and nze, then
we say that the corresponding bicovariant bracket is homogeneous. Clearly, any
homogeneous bicovariant bracket is characterized by the triple (r,{,#), where {,n
belong to R(%%?,%%?) and have the symmetry prescribed by Theorem 1. In view
of applications to bicovariant differential calculi on quantum groups in the sequel
we confine ourselves to the study of homogeneous bicovariant brackets only.

5. The Jacobi Identity

In this section we examine the case when a homogeneous bicovariant bracket (7, {,#)
defines on € the structure of a graded Poisson algebra.

It is readily seen that if » is a solution of the mYBE, then the Jacobi identity for
a homogeneous bicovariant bracket reduces to the following system of identities:

Ji = {{e Y} gy — {{e" By by} — et {hy i} = 0, (CRY)
o= {e e b} — {{eh e} + {e (e i} = 0, (52)
Jy={{, L e} + {{e e’} + ({0} = 0. (53)

Solutions of (5.1)—(5.3) are described by the

Theorem 2. Let r be a solution of the mYBE with a parameter o.+0. A bicovari-
ant homogeneous bracket (r,(,n) defines on Q the structure of a graded Poisson
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algebra if the following conditions hold:
i)
[C13, (23] = o[Ki3,K23] 5 (54)
i)
oK1z, Kas 100, — > nume =0, (5.5)
(ﬂ 0,v)(o 1, 2)

Moreover, Egs. (5.1) and (5.2) are fulfilled regardless of ii).
Note that in Eq. (5.5) the sum is taken both over the cyclic permutations of (f,d, v)
and over the cyclic permutations of (o, u, A).
Proof. To simplify the calculations we put {e¥, h"} = h‘;aff;s and {et, &'} =
A A ef, where o*§ = r* 4 ("} and Al =i+l

We start with (5.1). By straightforward calculations one obtains

S = 'R ML

where M is of the form
M =[012,013 + 03] + [013,023] . (5.6)

Now substituting ¢ in (5.6) and having in mind that {€R(%®?,4%2?) (see
Eq. (4.16)), we get M = [[r,r]] + [{13, {23]. Thus, if { obeys Eq. (5.4) identity (5.1)
is fulfilled due to the mYBE.

The next identity involves two ¢ and one 4 generators. This time we find

1
Jp = =5 A PHELLy — Ly

where L is of the form
L =[A12,013 + 023] + [013,023] . (5.7)

Since both { and # satisfies Eq. (4.16), we obtain that L = —[#12,{13 + (23] = 0.
Hence, under condition (5.4) identity (5.2) is satisfied automatically, i.e., it does
not contain any new restrictions on { and #.
Substituting the explicit form of the bracket {¢*,¢"} in the Lh.s. of identity (5.3)
one gets
I ={0l + 1 ne' e} + cp. (5.8)

One more substitution of {&*,¢"} into (5.8) results in

(ﬂ;){{e’is‘s},s”} Z(rff P — BT e A e A g
,0,V

+ Z ((’1 nyoc)ryv_l'(rﬁé—rﬁé)r]',v)s /\8‘“/\8
(B,6,v)

Z ((nw — e N et A (5.9)
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The further analysis of (5.9) will be done in two steps.

1. As the first step we consider only the first sum coming in (5.9). Performing
the cyclic permutations it is easy to find that
> B — B e Net N et = —[[nrllhe* At At (5.10)
(B,6,v)
i.e., it reduces to the lLh.s. of the mYBE.
2. As the second step let us consider the contribution to J3 delivered by the
second sum of (5.9). After performing the cyclic permutations this sum can be
written as

S 1 S A
sy — r,ﬁﬂyf + ﬂﬁ&rf{ —rinBye* net Ae

5
— (il — roonl s — rlonf)et et A e
0 ) B S
+ (o — P+ — e net A (5.11)

Now using the fact that 7-matrix is taken in representation A expression (5.11)
can be written as

([, h(ey) ® I +1 ® h(e,)])hh(e,);e* A et A&
+r([h(ey) ® 1 +1 @ h(e,),m))oyh(e,)oe* A e A &
+ 771, h(e,) @ I + 1 @ h(e,))5h(e, )56 A& Net. (5.12)

Since # is invariant under the adjoint action of ¢ each summand coming in
(5.12) is equal to zero and, therefore, the sum under consideration does not con-
tribute to the L.h.s. of the Jacobi identity.

6. Fundamental Poisson Bracket

The aim of this section is to find solutions of Eq.(5.5) for simple complex Lie
groups corresponding to classical series. This will be achieved by introducing the
fundamental Poisson bracket. The main result to be proven here is the

Theorem 3. Let G be a simple Lie group corresponding to one of Ay—1, By, Cy,
D, series.

i) If G is of type Ay—1, n > 2 then Q admits four different Poisson Lie
structures defined by homogeneous brackets;

il) If G is Ay, then Q admits two different Poisson Lie structures defined by
homogeneous brackets;

iii) if G is one of types B, (n =2 2), C, (n = 3) or D, (n = 4), then the
Poisson Lie structure defined by homogeneous brackets does not exist.

Denote by 0 = e, = (Oij ) the Lie-valued right-invariant canonical one-form on

G. Let G be realized as a matrix group, i.e.,, G3>g= (t,-j )2,]:1 in the space V.
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Consider T = (t,.j ) as the fundamental holomorphic representation of G. Note that
the set (6/,t/) generates Q.

127

Now by using Egs. (4.14) and (4.15) we define on Q the structure of a graded
Poisson algebra in terms of generators (0;,¢/). Following [1] we will refer to the
corresponding brackets between these generators as fundamental. Note that entries
of 0 as well as entries of 7 are not independent so there will be some relations
between brackets involving different generators.

According to Sect.2 the bracket {¢/ ,t,i} coincides with (2.2), where 7 is the
identical representation of 4 (¥ is a matrix algebra).

Evidently, we can put

{6/,0;} = {&","}e (e - (6.1)
Substituting (4.15) in (6.1), we get
(67,6, = (rlyy + mip)en) (en)ie* NP . (6.2)

The first summand in the r.h.s. of (6.2) can be written as

1ok

Lcspen)(eie” A& = rPley, el [es, eplie” A&

= r"[e,, 01/ A [es, 0]. . (6.3)

In the second summand we raise indices of tensor # with the help of the Killing
metric g,, = tr(e,e,):

1" grugsp(en) (en)he® A &P = ™ (e)l (en)htr (e,0) A tr(es0) . (6.4)

Denote by #1234 € 9®* (here the subscripts label the corresponding factors in ¥®4)
a tensor:

Mo = 1" ()] (e )k (e, es, (6.5)

Note that by Theorem 1 #1234 is an element of S’% ® A’%, where S°% stands for
the symmetric part of 4%
Combining (6.2)—(6.4) and adopting tensor notation introduced in Sect. 2, we

get for (6.1),
{61,602} = {61,[02, 7121} + tr34 (112340504) , (6.6)

where trace with subscript stands for the matrix trace applied to corresponding
factors in 4®*. In the r.h.s. of Eq.(6.6) we use square brackets (braces) for the
commutator (anticommutator) in a matrix algebra. To simplify the notation we omit
here and below the sign of the wedge product of differential forms keeping in mind
that 676 = —6.6;.

To make the picture complete we write out the brackets {67,7}. According to
[2] for simple ¢ Eq. (4.14) has only two solutions { = ++/0K, where K = g"’¢, ®
e,. Multiplying both sides of (4.14) by (e,)(e; ),’( and using the same arguments
as above, we get

{6/,(Te,S(T))i o = (7 £ Vag" ey, 01/ ey, Te,S(T)]; . (6.7)

Here the subscript £ on the Lh.s. indicates the choice of { and S(T') = T~ stands
for the antipod of 7.
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The bracket on the Lh.s. of (6.7) satisfies the obvious identity: {0{ ,Te,S(T)}+
= T([S(T){¢,T}+,e]) S(T), where for each i and j [,] means the commutator
of the matrices: S(T){¢,,T}+ and e,. Therefore, for (6.7) we have

IS0/, T}, &1k = (£ Vag ey, 01/ [S(T)e, T, )] - (6:8)

Since A is irreducible the last equation is solved elementary and we get two (%)
brackets

{01, o}z = [r12 £ VoK1, 01]Ts . (6.9)

Hence, relations (2.2), (6.6) and (6.9) are the defining relations of a bicovariant
bracket on Q.
The next lemma is an analog of Theorem 2 for the fundamental Poisson bracket.

Lemma 1. Suppose r € A’°% is a solution of the mYBE with a parameter a+0;
then the bicovariant bracket given by Egs. (2.2),(6.6), and (6.9), defines the fun-
damental Poisson bracket iff there exists an invariant element 11334 € S*°9 @ N>%
such that the following relation is satisfied.

o [01, {02, [0, [K13, K2311}] — 2trase (S123a56040566) = 0, (6.10)
where

Si2sass = D try(M12y673y45) -
cp.

Proof. According to Theorem 2 what we need is to check that the identity
> ep123)1{01,62}, 03} = 0 reduces to Eq. (6.10). By construction of the fundamen-

tal bracket this statement follows directly from Eq. (5.5).

Proof of Theorem 3. By Lemma 1 Q admits the graded Poisson Lie structure
defined by a homogeneous bracket if there exists a G-invariant tensor # such that
the corresponding #1734 satisfies (6.10). Our strategy will be the following. First we
describe explicitly all invariant tensors in S?% ® A?%. The second step will be to
check which of them obeys (6.10).

For later convenience we introduce the generators {f7} corresponding to one-
parameter subgroups of G:

A 1.
(fHr=6l] — Nﬁ{é,ﬂ for A, series (6.11)

and ) ) .
(f)h = 8!8 — eCyC/' for B,,C, and D, series, (6.12)

where ¢ = 1 for B,,D, and ¢ = —1 for C,.
Having in mind that G is realized as the matrix group in the space V we
consider a tensor representation 7 of G in W = V'®*,

Lemma 2. If n*"*F is a G-invariant tensor, then niys € 9%* belongs to the com-
muting algebra R(W, W) of W.

The proof follows easily from Definition (6.5).

The first and the second statements of Theorem 3 deal with A4,_; series and the
third one with B,, C, and D,. According to this we divide the proof of the theorem
in two parts.

1) The next well-known lemma describes R(W, W) for G of type A4,_;.
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Lemma 3 [27]. Let G be of type A,—1, then R(W, W) = R, where R is the group
algebra of the permutation group Ss.

Thus, the general form of #1234 € R(W, W) is

l]kl::l; = Z /1(6)50(1)66(k)53(m)50(p)’ ’1(0') eC. (613)

Here the r.h.s. realizes the representation of the group algebra of S; in W.

Lemma 4. If G is of type A,_1, then in the space S*°% ® N*% there is a unique
(up to a multiplicative constant) element 1234 € R(W, W) given by

i = (L fE+ DU 2D - (6.14)

Proof. Consider Eq.(6.13). The requirement on #4234 to be an element of
S29 @ N2% defines it uniquely (up to a multiplicative constant):
l’kl,f,’; = 5’5S5”51 + 65515},’,5,{ — 6{”6,{6;‘,5,1” — 5{5,{,5{(’6;’
2 2 2
— ]vé,lféf-é,ﬁé; - N&{éiéﬁéi + ﬁéféf,é,iéf + Né,’éfnépés (6.15)
Such a tensor 71234 being written via generators {f ,’ } for A, acquires the form
(6.14). Note that in this form the desired symmetry of #;334 is obvious.
Substituting the explicit form (6.15) of #7234 multiplied by an arbitrary constant,
say f3, in (6.10) it is not hard to prove by direct calculations that (6.10) is fulfilled

only for two values of 8: f = ++/a. To complete the proof of 1) we write down
the corresponding bracket {60;,0,} 1 labeled by the sign + or —:

2 2
{91,92}:1: = {01[02,}’]} + \/& (91P92 + 0,P0; — ]v9101 - ]—\/:9292) 5 (6.16)

where P is a permutation matrix: Pf = 65!,

If N =2, then the sum in parentheses equals zero. Therefore for SL(2,C) the
bracket {6;,6,} is unique. Combining it with one of (6.9) we get the graded Poisson
Lie structure on SL(2,C).

It remains to note that when N > 2 fundamental Poisson brackets (2.2), (6.9),
and (6.16) define four different (by Theorem 2 four choices of the signs & in (6.9)
and (6.16) are admissible) graded Poisson Lie structures on €.

2) The analog of Lemma 2 for G belonging to one of types B,, C, or D, is
the following

Lemma 5. Let G be one of types B, (n = 2), C, (n = 3) or D, (n > 4), then a
general form of maa € R(W, W) is

jlns Ne(l) sa(n) so(s)
zjkmp Z )“1(0-)50(1)60'(k)50(m)5a(17) + ZG:S /12(0',8)Co(i)o(k)cs(j)£( )52(21)5:;@)
0,6€8,

+ Zs 230, 8)Coirote) Co(mys( p) CIHD CEAMEAL) | (6.17)
0,8€54

where all the coefficients 1; € C, i = 1,2,3.
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The proof is analogous to the case of 4,_; and will be omitted. We only
stress that the presence of the second and the third sum in (6.17) is due to the
metric C, which gives rise to the contraction operation commuting with the group
action in W. Constraints on » indicated in the lemma become clear due to the
remark below.

Remark. Suppose G = SO(N, C); then there exists the absolutely antisymmetric G-
invariant tensor &N, One may use it to construct new elements from R(W, W). If
N > 8, then there are no elements in R(W, W) generated by &1V, If N = 8, then
elements of the type

ilns jlnsiyipizi,
"{kmp = g/ * Ciiy Chiy Ciniy Cpiy

belong to R(W, W). However, using this # it is impossible to form a tensor with
symmetry properties required by Theorem 2. It is also readily seen that the ab-
solutely antisymmetric tensor for SO(5,C) and SO(7,C) does not contribute to
R(W,W).

Let G be one of SO(3,C), SO(4,C) or SO(6,C), then the corresponding ab-
solutely antisymmetric tensors generate new elements of R(W, W). For example, in
the case of SO(6,C) there exists the following tensor with the desired symmetry:

jins jln 5 jln ¢s Jls _]IS
”ikmp 1mp6 + gkmpél - glmpék - gkmp

where 8,-];,; = g/M1253Cy Cpi,y C iy However, by virtue of classical isomorphisms of
Lie algebras:

50(3,C) ~ s1(2,C) ~ sp(2,C),

so(4,C) ~ s1(2,C) @ sl1(2,C),

50(6,C) ~ sl(4,C)

the study of the commuting algebra for corresponding G reduces to the previous
case of the 4,_; series.

Lemma 6. If G is one of types B, (n = 2), C, (n = 3) or D, (n = 4), then in
the space S°% @ N*@ there is no nontrivial element 11234 € R(W, W).

Proof. First we find the values of A; for which tensor #1234 becomes an element of
%4 For this purpose we project the general form (6.17) on the space ¥%*. Let @
be an operator in Mat (N, C)®* with matrix coefficients:

! 4~
(@)rih il = (pIl (i

It is easy to see that if # € Mat (N, C)®4, then Oy € ¥®* and this projection com-
mutes with the group action.

The set of generators { f ,J } form a tensor f, with elements f l]kl =(f ,’ );. Then
Definition (6.12) implies that f1, € 9®2, i.e. for each i = 1,2 the following relation
holds:

= —CifnC'. (6.18)

Here ¢#; stands for the matrix transposition in i’s factor of ¥®? and C; is the matrix
C acting in the space i of ¥%2,
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Acting on (6.17) with @ and using (6.18) we obtain the most general form of
fl123a € R(W, W) lying in the space ¥®*:

jlns Jlnsiyipizia o j1j2J3/a
Mitomp = (O Viompjy 7sja Miiisis

= Y (o)t (a(fDa(fi)) e (a(f2)a(fP))

0ES,

+ 3 (o) tr(a(fHa(fDa(f1)a(fP)), (6.19)

TESY

where for each permutation ¢ the numerical coefficients u; (o), up(0) are some com-
binations of A;.

Now to obtain an element 7,554 € S?% ® A% we apply to factors 1 and 2 of
#1234 the symmetrization and to factors 3 and 4 the antisymmetrization:

fli23a = fio3a + Ma13s — Mi2as — 2143 - (6.20)
This yields a unique (up to a multiplicative constant) tensor:
T = w((fLfE+ FLEDU . FED)

which is of the same fc_)rm as for A4, series (cf.(6.14)). However, #5534, = 0.
Indeed, the generators f/ have the following commutation relations:

. 1 .
1. 10 = 5Dkt (621)
where
DI = 61518 — 166", + CuCV 8L, + ComC' 8! + Crye C6!

+ CuiC'"3] — CaC"8] — CpCI15} . (6.22)
By using the explicit form of generators f’ ,’ one can also check the useful identity:

DIm —w(fIflfm).

Now it is not hard to prove that D € A3% is G-invariant. (Recall that for simple
@ the space of G-invariant elements in A% is one-dimensional.) Thus, if G is one
of types B, (n = 2), C, (n = 3) or D, (n = 4), then

~jlnp __ ynpe
nikms - Dmsa

(D} + D) =0.

Since a0, tensor #1234 = 0 does not fulfill Eq. (6.10). This completes the proof
of Theorem 3.

Remark. If G is of type A,—1, then for the structure tensor Dﬂ we have

D =w(flLrirnD . (623)

In this case D is G-invariant but it is not an element of A3%.
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7. Conclusion

This paper provides a complete classification of graded Poisson Lie structures de-
fined by homogeneous brackets for the case of classical complex Lie groups. Here
we indicate the connection of our construction with bicovariant differential calculus
on quantum groups.

We consider graded Poisson Lie structures as a useful tool to describe the exter-
nal algebra formalism on a quantum group. In the non-commutative setting [13] the
external algebra Q is uniquely defined through the tensor algebra over the bimodule
Q' of quantum first order differential forms and a natural generalization of the flip
automorphism. Note that @ is found to be a graded bicovariant algebra.

In our approach we also aimed to construct a graded bicovariant algebra Q2 being
the deformation of the external algebra Q. over the cotangent bundle Q!, of a Lie
group G. We assume that in the semiclassical approximation the product in Q is
determined by a graded Poisson Lie structure, e.g.

okxv=wAv+i{o,v}+---,

where 7 is a deformation parameter. Algebra Q (with % product) is uniquely defined
by requiring to have a unique basis of ordered monomials. For known examples of
graded Poisson Lie structures this construction of € can be carried out completely.
For instance, all graded Poisson Lie structures on SL(N) can be quantized in the
above sense and the corresponding Q is described explicitly in terms of defining
relations [8, 18]. From this point of view £ appears as the quantized algebra.

In Woronowicz’s scheme the operator d of the exterior derivative is introduced
by using the extended bimodule method. Bimodule Q! with classical dimension
(dim Q! = dim G) is extended to Q! by adding the left- and right-invariant first order
form X. Geometrically, extensions of the corresponding Q!; are obtained through

embeddings: Q!, C O!,, where @, is the cotangent bundle over a group G D G.
Indeed, bicovariant differential calculi on simple quantum groups [15,16,25] are
related with graded brackets on GL(NV) that are bicovariant (but non-Poisson) with
respect to the action of a simple G [9]. The operator d defined on the extended
algebra Q D Q as the graded commutator: d = [X; - | obeys the Leibnitz rule. The
last formula has a direct analogue for the case of graded Poisson Lie structures
associated with GL(N). Namely, the classical exterior derivative d can be expressed
as an internal object of a Poisson structure: d = {X; - }. Moreover, due to the Jacobi
identity d obeys the Leibnitz-like rule with respect the corresponding bracket:

d{o.y} = {d¢,y} + {4y}, 4,0 € o/ . (7.24)

This implies the general definition of a differential Poisson Lie structure as a graded
Poisson Lie structure for which Eq. (7.24) takes place.

Now one can raise a question if graded Poisson Lie structures on simple
Lie groups are differential ones. For the case of SL(N), computations [8] reveal
the negative answer, which shows the crucial difference between the SL(N) and
GL(N) cases [7,22]. Moreover, since the classical d does not admit representation
d = {X, - } the corresponding quantized algebras can not be supplied with an op-
erator of exterior derivative obeying the Leibnitz rule [18]. Clearly, this is a price
we pay for keeping the classical dimension of Q.

The case of other simple groups is more delicate and needs further investigation.
By Theorem 3 we have an obstruction to deform the external algebra, which is
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absent in Woronowicz’s scheme. This obstruction comes from the Jacobi identity
for the bracket of the second order. Evidently, if we do not require this identity, then
by virtue of Theorems 2 and 3 the bicovariant bracket exists. We suppose that the
Jacobi identity for a bicovariant bracket arises as the semiclassical approximation
of the Diamond Condition [28] for corresponding quantized algebras. Note that in
Woronowicz’s scheme the question about the fulfillment of the Diamond Condition
for graded bicovariant algebras on simple quantum groups remains open.

Another problem related to simple groups is to establish the existence of nonho-
mogeneous Poisson Lie structures. To this end one should classify all G-invariant
tensors of higher ranks with special symmetry (Theorem 2) and then to check the
Jacobi identity.

Note also that results for compact groups do not follow straightforwardly from
our scheme and this will be the subject of forthcoming papers.
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