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Abstract: We consider the anisotropic and inhomogeneous viscoelastic equation and
we prove that the first and second order energy decay polynomially as time goes
to infinity when the relaxation function also decays polynomially to zero. That is,
if the kernel Gyj; satisfies

1+1 1+1
Giju < —coGl.j;;”; and Gjju, Gij:,” € L'(R) for p > 2 such that 2" — 1 < p,

then the first and second order energy decay as (1++)q with g =2" — 1.

1. Introduction

Several authors have studied the asymptotic stability of the solutions in visco-
elasticity. Thanks to the works [1-5,8,9,11] among others, it is well known
that the stability holds for inhomogeneous and anisotropic n-dimensional materials
and also for one-dimensional nonlinear equations. The question now is about the
uniform rate of decay of the solution as time goes to infinity. Somehow, the
way that the solution goes to zero depends on the decay of the kernel as time
goes to infinity. We may ask, under what conditions on the kernel does the solution
decay to zero exponentially or at least polynomially? To fix ideas, let us consider
the simplest homogeneous isotropic n-dimensional viscoelastic equation with density

p=1
t
uy — pdu — (u+ A)Vdivu + fg(t — )[pdu — (p+ A)Vdivuldt =0, (1.1)
0

where A and p stand for Lame’s constant and by g we denote the relaxation function.
The kernel “g” plays an important role in the study of the asymptotic behaviour of
the solutions.To see this, let us cite a few results about the uniform rate of decay.
For example, in the work of Hrusa [8] the author showed, among others, properties
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that the solution of the one dimensional viscoelastic equation goes to zero expo-
nentially when the kernel is given by

g(t) = cpe 7" .

Dassios and Zafiropoulus [6] showed, for the same kernel, that the solution of
Eq. (1.1) decays as t~3/? for materials which occupy the whole 3-dimensional space,
with a rate of decay that can be improved depending on the symmetry of the
initial data. The solution of the viscoelastic equation decays uniformly (exponentially
in bounded domains and algebraically in IR"), when the kernel is an exponential
function. A serious restriction in this point is that Eq.(1.1) does not behave as
a genuine integro differential equation, because in this particular case the integral
term can be removed so the resulting equation is a partial differential equation. To
see this let us differentiate Eq.(1.1) with respect to time. Using ¢'(¢) = —yg(?),
we can write, in the resulting equation, the first three terms given in Eq. (1.1)
instead of the integral term. So the new equation does not have the integral term;
it has turned into a third order (in time) partial differential equation. To know
how this transformation is useful let us consider the 3-dimensional Cauchy problem
(1.1). Using the Fourier transform we get a third order ordinary differential equation
with coefficients depending on the Fourier parameter £. To know the asymptotic
behaviour of the solution we have to study the behaviour of the real part of the
roots of the characteristic polynomial associated to the ordinary differential equation.
This method works for any ordinary differential equations, with constant coefficients
which do not depend on time, but unfortunately does not work for “genuine” integro-
differential equations.

In [10] one of the authors of this paper improved the result due to Dassios and
Zafiropoulos. In that paper we proved that, when the kernel decays exponentially
to zero, the solution also decays exponentially for bounded domains, while for
materials which occupy the whole IR" space, the solution decays as ¢~"2, with
rates which can be improved depending on the regularity of the initial data. For
kernels which decay exponentially, the asymptotic behavior of the solution is known
for bounded and unbounded domains. But what about no exponential kernels? More
precisely, what can we say when the kernel decays like (1 + ¢#)~7? Does the solution
decay exponentially? Does the solution decay algebraically, for example, like (1 +
t)~9? If this is the case, then what is the relation between p and ¢? It seems to
us that there is no result in the literature concerning these questions, so to fill this
gap, we will study these points here.

The main result of this paper is to show that a uniform rate of decay also holds
for kernels which decay like (14 ¢)77. We will prove that the solution decay to
zero as (1 4+¢)79, where ¢ =2" — 1 and p > 2™ — 1, for some natural number m.
The rate of decay also depends on the LP-regularity of the kernel. This means in our

framework that the kernel must satisfy [ |Gildt < oo and [ IGijkl{l_%d‘L' <

1
oo and also Gijk[ < —CGilj:," for 2" —1 < p and C > 0.

We study in Sect. 2 the asymptotic behaviour of inhomogeneous and anisotropic
bounded material, while in Sect.3 we study the case of materials which occupy
the whole »n-dimensional space. In this later case, to use our approach we consider
isotropics and homogeneous materials, because our method uses the Fourier trans-
form of the solution. The hypotheses we consider here are simpler than others use
in previous works (see [2-5,8,9,11]). Our method is different and explores the
dissipation given by the memory effect as well as the LP-regularity of the kernel,
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to construct a Liapunov functional whose derivative is negative proportional to a
power of itself.

We finish this section giving some notations and introducing the hypotheses we
need to prove our result. For spatial derivatives we use the following notation:

Doeeslls J 150 Js ’
6le N axjs
while for time derivatives we use:
. ow . Pw 4o ofw
wi= —, W= —— an W= — .
ot ot? otk

The viscoelastic equation we study in this paper is:

t
pti; = {Cijrrug1},j — {fGijkl( ot =y (- ,T)df} in 2x]0,7[, (1.2)
0 J

with initial data
u(x,O) = uO(x)a ut(xa O) = ul(x) 5

and supporting the Dirichlet boundary condition,
u=0 in I'x]0,4+oo[ . (13)

Our result is also valid for Newman boundary conditions with normalized initial
data. The proof is essentially the same. Further, we suppose the following conditions
are valid:

Cijk = Cigit,  Gijw = Guyy and  Cyy € C', Gy € C*. (1.4)
Also there exist positive constants a, f§,x, C and vy such that

Cupwiawjr = awiwi,  Gia( -, 0)wywye = Pwywy , (1.5)

1 1
Gy = —k[Gul''7;  Gyu < ClGyu]"™?, for p > 1, (1.6)

oo
f {Cijkl - f G,‘jk] dT} u,-,j uk,zdx ; V(]f ui,jui,j dx . (17)
Q 0 Q
Finally we suppose that the following integrability conditions hold:

oo 1

J Gl ™7 < o0 (1.8)

0
for p > 1.
Remark 1.1. Condition (1.6) says that the kernel is like the function

1
t— .
(I+1)?P

If we take p > 2 then hypothesis (1.8) is always true.
In the next section we will prove that the solution of (1.2) decays uniformly to
zero as time goes to infinity, for bounded domains.
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2. Asymptotic Behaviour

To simplify our analysis we introduce the following notation:
t
GO = [ Gy -t — D)o i(+, 1) — v (-, D Hwi (. 6) — v (-, D)}
0

To prove the polynomial rate of decay we will use the following lemma.

Lemma 2.1. Let us suppose that G satisfies hypothesis (1.4) and Gy € C'. Then
the following identity holds:

t
fGljkl( * 7t - T)Uk,l( ° ,T)dT l}i,j
0

1d 1d
= ~§d—GDa v+ = GDa + Ed— {fGUkld‘CUk[U,j} *Gijk](',t)vk,[l)i,j .

Proof. 1t is easy to see that

86000 = 5 [ Gt = DHori(0) ~ vei(- OH w0 = 0, )
0

. t
=GO +2 [ G+t — D)ok, 1) — v (-, 1)} dT vy
0
. ¢ t
= GD@U+2ijjk[d‘CUk’[U'i,j —ZfGijkl(',t_T)Uk)[(',f)dl'l}i,j .
0 0

From the above it follows that

d
iGD@U—GD&U—}- {fG,jkldrvkgv,]}—Gijk,vk,lvi,j

- 2fGijk1( =g (+,7)dT 0,
0

which proves the lemma. [J
The following lemma plays an important role in the rest of this paper:

Lemma 2.2, Assume that hypotheses of Lemma 2.1 holds. Then for any w,v €
C([0, T1; L*(RQ)), the following inequality is valid:

t
G-t — O){wi (-, 1) = wi (-, 7)}dTo, jdx
20

1 1
2 2
§ C0{fG1+%Dade} {fvi,jvi,jdx} .
Q Q
Proof. Using Holder’s inequality we get

t
ffGijkl( ot =) wi (- ,t) —wi (-, 1)} dTvg pdx

= fijk, Z ijlz”( o= O {wi (1) — wi (-, T)} v, jdx
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1
toqg_1 2 1L 1
= fGijklp dvy [{G 700w}z lv; | dx
0 Q
1 1 1
o1 2 "l 2 2
< {Gz'jklp dt !{G rOowdx gj;v,',jvi,jdx .

From (1.8) we have that the integral:

® 1
IIGijkl("T)ll pd‘l',
0

_1
is bounded. Taking ¢y = { fot Gl.ljk," dr}% our result follows. [

By E(t;v) we denote

1 t
E(t;v) := 5 { Jv0; + GOdvdx + [ {Cijkl — [ Giju dr} v,-,jvk,ldx}.
Q Q 0
Lemma 2.3. Under the above conditions we have

d 1 1 ..
EE(t,u) = —EgGijkl uk,lu,-,jdx+ —is{GEl@udx,

d . 1 . 1, . ) .
—E(t;u) = —= [ Gyt i jdx + = [ GO0udx — [[Gyu( -, up( -, 0)] jii dx .
dt 25 20 2

Proof. Let us multiply Eq. (1.2) by #; to get
1

d .. : .
T, { St + Cijp ui uk,ldx} = [ [Gipa( -t — g (-, 1) dv iy jdx .
Q Q0

Using Lemma 2.1 our first identity holds. To show the second assertion, let us take
the time derivative of Eq. (1.2) to get

®) . L
w; —{Cijmin1},; + {Giju(+,0)u 1}, + { J G-t — g ( ',T)df} =0.
0 »
2.1)

Since Gy = —%G,W, we have

{ JGim( t — D i( - ,T)df} = —{Gyua(+,0)ur1},; + {Gijna (-, Oug1(+,0)} 5
0 J

+ {fGijkl( 0= (- ,T)dT}
0

>J

Substitution of this identity in (2.1) yields:

3) . ! .
u; — {Cijutin1},j — {fGijkl( ot — T (- ,T)df} = {Giju( -, (+,0)} ;.
0

2J
(2.2)
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Multiplying Eq. (2.2) by #; and using the same reasoning as above, we prove the
second part of this theorem. [J

Remark 2.1. In particular Lemma 2.1 implies that the first and second order energy
are bounded, that is:

E(t;u) < EQO;u);  E(t;u) < cE(Ou). O
Let us define the functionals K(¢;v) and I(¢;v) as

1 ... 1 .. .
K(t;v) := 5 [ i dx + 3 J Cijpr V1 0y dx — [ Gijpa( -, 0)ve 1 Uy ; dx
Q Q Q
t
+ 9 Comr v 10y dx — [ [Fya(+ .t — T)og (-, 7)dT0;;dx
Q Q0

1 [ .
I(t;v) == [ 60, dx — Eijjk](',O)Uk,[U[’jdx—ffGijk[dTUk)]Ui,jdX""GD@U,
Q Q Q0

where .
Fiji = yGijir + Gijur - (2.3)

with these conditions we get the following lemma

Lemma 2.4. Under the above notations there exist constants Cy,c,y > 0 satisfying
d - B .. .
E{K(t; u)+ (y — o)t u)} < g(t)cE(0) — ¢ [ it dx — 7 J vy g dx
Q Io}

- %KfG,-j;d( o )yt dx + szGH% Ooudx .
Q Q

Proof. Using the identity
t
{Cijrrur1},; = i + {fGijkl( b= Dug (- ,T)df} ,
0 y
we get that Eq. (2.1) implies:

A3) . .
u; — {Cir i1}, + v + { Gy (= ,0)ur 1}, + Y{Cijra a1},

= - {OfFijkl( = Du( J)df} , (2.4)

sJ

where F, is given by (2.3). Multiplying (2.4) by #;, we have

1d .. . - .
EE {fuiui dx + fCijkl Uk, 1 Uj,j dx} = —yfuiui dx + fGijkI( ° ,O)Mk,] Ui j dx
Q Q Q Q

t
—y[Cipug 1t jdx + [ [ Fia( - ot — ) ug (- ,t)duiijdx .
Q 20
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Using the identities:

. d . ..
S G+, 0)u iy j dx = Ef G+, OYug, 1 i j dx — [Gija(+, 0)eig 1ty dx
Q Q Q

; d . .
—y [ Cijra g, 1 7 j dx = _'VE_[Cijkl g1t dx + 7 [ Cija tigg 1 1, dox
Q Q Q

t

! . d .
ffFijkl( st =) ug( - ,T)dui jdx = —ffFijkl( st =Ty (- ,t)drijdx
Q0 dig

t
— [ Fya( - 0y iz jdx — [ [ Fipa( + ot — Dug (- ,7)dvidjdx
) Q0

we get

zK(t, u) — —'})fuiui dx — fGijkI( . ,O)Mk,l U; j dx + ')’fcijkl U, 1 U, j dx
4 Q Q Q

t .

— [FipaC ot = O{ug (- ,0) — e (- ,0)} dedy
0

— [Fyju( + g vy j dx . (2:5)
Q

Let us multiply Eq. (2.1) by u to get
7 fuiui dx = fuiui dx — fCijkl Uk, 1 U, j dx + fGijkl( . ,O)Mk,lui,j dx
Q Q Q Q
t .
+ ffGijkl( ot =Du (- ,T)dridx .
Q0

From Lemma 2.1 and recalling the definition of / we obtain:

—1(t;u) = [diziydx — [Cijraig iz jdx + [ Gy« )ug i ;dx + [ GOoudx ,
dt Q Q Q Q

(2.6)
which together with relations (2.5) and (2.6) yields:

d
ZZ;{K(t; u) + (y — O)(t;u)} = —c [ dizti; dx + ¢ [ Cip tig s 1z, dx
Q Q
— [ G+, 0V i dx + (v — &) [ Gijua + , ug uyjdx + (y — ¢) [ GO dudx
Q Q Q

t
— [ Fija( + s Oug iz jdx — [ Figa( - ot — D{ug( - 1) — (- 1)} deaig . (2.7)
2 0



590 J.E. Muiioz Rivera, E. Cabanillas Lapa

Since Cyj; is continuous, there exists a positive constant ¢y such that

S{Cijkl Uyt dx < oty j U .
From hypothesis (1.5) and taking ¢ < 5% we conclude
Cg{cijkl Uyt j dx _g{Gijkl( <, 0)iiy iy jdx < “gé‘di,j Uy 1 dx . (2.8)
Using hypothesis (1.6) we get

. 1+1
(v =) [ Gl g uijdx < —(y — o)k [ G, (o, Ougruijdx s (2.9)
2 2

(¢ —c) [ GOoudx — [ Fyu( - ,Oug iz ydx < (7 — )C [ G O dudx
Q Q Q

e { [ G+ dx} { [ G - i1t dx} . @10
Q Q

N

t
beijkl( et =) () —u( - 1)} duay

1 1
2 2
< cz{fG”%Daudx} {fu'iu,-dx} . 2.11)
Q Q

From (2.7)—(2.11) and taking y big enough, our conclusion follows. The proof is
now complete. [J

To get our final result we will use the following lemma.
Lemma 2.5. Let us suppose that f is a nonnegative C'-function satisfying

ki

S0 £ —klfO17 + 55

>

then we have that

1) < pPf(0)+2pPc
T (p+ /(g0)cyt)r

Jor ¢; = komin{1, ﬁ(}%)]“’}.
Proof. Let us denote by A(t) and g(¢) the functions

W) = —2

= m, g(t) = f(t)"i‘h(t)
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We have
gy = f'(t)- (TJFZIE;T < o[ f()]"F — (Tfﬁ
< ko {[f(t)]”% + [m(—lﬁﬁ]%}
=~k LAO177 + ﬁi[h(z)]“%
2ucon!

It follows that there exists a positive constant x; for which we have:

g(1) £ {177 +HO) 7} < —rag@])' 7 .
Our result follows. O

Lemma 2.6. Let us suppose that the function G satisfies:

o

[ G dr< o0, (2.12)
0

for r = Lp_l < 1. Then the following inequality hold:

GOou < {G'" Do} {G" 5 Dau}' =7 .
Proof. Using Holder’s inequality we get:

G'Oou < {G*" 7 Do} {G""F Dou)} (2.13)
for any s = 1, from (2.13) we get:

G Oou < {G' P Ooupt{G"7 Dou}? < (G Doupt {G"F Douyb+
~ —_— | S ——

s=1 s=1-1 s=1-3
< {G'" P Oaup{G" P Ooupdtiti
obvious induction shows our result. [

Theorem 2.1. Under assumptions of Lemma 2.6 and hypotheses (1.4)—(1.6), for
p>2 with 2" — 1 < p, we have that

E(t;u) + E(t;u) < c{E(O;u)+E(0;d)}(l it)q ’

where g = 2™ — 1.
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Proof. Multiplying Eq. (1.2) by u; we get
%guiuidx:gd,ﬁidx— g{C,-jkluk,lu,-,jdx
+ g{ofthjkl( <ot =D (- ,T)dru;jdx
= g{u,- u; dx — g{Ciﬂd - OftGijkg dt}u; j uy dx
+ jGijkl( ot =) {u () —u (- 1) dTug . (2.14)
On the other hand, Lemma 2.6 implies
OftGijkl( et =) {u () —u (- T) drug

1
< =[G Ooudx + 2 [ ugju;dx . (2.15)
Yo o 49

From (2.14) and (2.15) we get

ifdiuidx§fuididx~ ﬁfu,-ju,-jdx—i—CfGH%D@udx. (2.16)
dt g Q 45 77 Q

From Lemmas 2.1,2.3,2.4 and inequality (2.16) positive constants N} and N, exist
such that the function

L(t,u) = ME(t;u) + NLE(tu) + K(tu) + (y — o)l (¢ u) + gcp f uiu; dx
Q

satisfies

2 2t5) < eqlt)

—C() fu,»,ju,,jdx+fﬂi,jzli,jdx—l—fiiiiiidx—i-fGH% O Oudx +f G1+% O oudx ,
Q Q Q Q Q

=R(t) :=S(t)

where ¢, denotes Poincaré’s constant. Using Lemma 2.6, it is not difficult to see that

oM
om

S(t)éc{fGD@udx—kaDddx} . R4 = R(H)PT.
Q Q

So we have 4
2m
Ei’(t;u) < cg(t)+es L (tu)™-1 .

Using Lemma 2.5 our result follows. [
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3. Rates of Decay in R”

In this section we extend the results due to Dassios and Zafiropoulus [6]. We study
the asymptotic behaviour of the energy of the following Cauchy problem:

t
uy — pdu — (u+y)Vdivu + [ g(t — t)du( - ,7)dz
0
t
+ [h(t—1)Vdivu( - ,7)dt =0 in R", (3.17)
0

u(+,0) =up(x);  w(+,0)=wu(x).

To do this we prove that the displacement vector field can be decomposed into
two parts: solenoidal and irrotational, both having the same regularity as u, whose
corrsponding energies decay uniformly to zero with the rate depending on the reg-
ularity of the initial data and the rate of decay of g and 4. The regularity of the
decompositions is similar to the regularity of the solution for the equation:

Au=f inR", (3.18)

whose existence and regularity results are given in the following lemma
Lemma 3.1. Let [ be a C?-function satisfying

fel'MRHNLP(R?) and xw— x*|f(x)| € L'(R) n=2,
for p=2 and o> 0. Then there exists a function

ue C(RHNL®(R?) with Vu € [H'(R*)]?
satisfying (3.18). While for n=23, p> -5, and f satisfying
feL(R)NLI(R"),

there exist a solution of (3.18) satisfying:

uc LP(R"); Vu e [LY(R™)]";  for any g > ;i—l .

In particular we get Vu € [H'(R™))". Finally if p>n>2 we get
u e LP(R") N C(R?)N L=(RR?) .
Proof. Let us denote by U the function:

s-In(|x|) ifn=2
U = — 1 ifn>2"
(n—2)on|x|"=2

where o, is the area of the unit ball of R”. It is well known that the solution of
Eq. (3.18) is given by:

u(x)= [ U(x=&)f(&)d¢.
R”?
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Without loss of generality we can suppose that f has bounded support. To prove
the regularity result we will use the convolution:

fV = pV * f >
where p, is the mollifier satisfying
1

py(—x) = py(x); nil'" p(&)dé=1 and py(x)=0, if |x|] = v

It is well known that f, converges to f strong in L"(R") when f € L"(IR"). Let
us denote by u, the solution of (3.18) for f = f,, then it follows that

uy(x) =n£ Ulx—8)fu(&)d¢. (3.19)
From (3.19) it follows that
[ IVu)dx < [ |w)| £l dx, (3.20)
R” R”
]an | duy(x) — Aup(x)[dx < ]Rf Lfo(x) = fm(@)dx . (321)

First, we prove that u, is bounded in H'(IR"), then that (u,) is a Cauchy sequence
in C(R™")N L>®(IR"). Using (3.19) we have:

f (x— () dE.

Xi

Denoting by y and y. the characteristic functions over the unit ball and its comple-
mentary set respectively, we get

U(Q) = 2U(Q) + xU().

It is easy to see that

2_1’5|~§|’7 if n=2
Pe)= ;
ﬁxz iy if n > 2

and also

6U
6

Using Young’s inequality we get:

e L'(R") and XCZ—U e L'(R") for any r > Ll

ou " oU n
— r < pr < p FmRN
Xaxi*fVEL(IR)W:r:p, XCaXi*fveL(]R)vr>_n_ .

1
Also, 1 1
ou " * LU L7
{ e enfae} = g &2|ae] Jinrae).
ou [P 7P oU Z
{]an Xca—xl*fv dé} < {]I{' Xcaxi dé} flfvldé
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Under these conditions, for p =g = r, we get that

Ou, |7
f Y

U q q

ou
Yo

1

ou
10|t [ A e S
n X; R” R”

which implies that
Ou,

i

s c{lnl, + 1AL fori=1,...n, (3.22)

q

for ¢ > n/(n — 1). To prove that u, is a Cauchy sequence in C(IR?) N L>(RR?), let
us consider

S U(x_é)fv(é)di\ = \i [ 1n Ix—flfv(i)df‘
R” 02 Rrn

|uV| =

;o e ey ae

<e [ k=& |fv(f)|d€+
e x| L
= -1~Ca [ x=&fAoaeg+ [ 'x_fl (&)d¢|
%2 g2 s ]

=2

< Ca]an €A dE .

Repeating the above reasoning for u, — u,, instead of u,, we conclude that u,
is a Cauchy sequence in L°(R?). Since f has bounded support we can apply
Lebesgue’s Convergence Theorem to show that:

lul = Cani 1”1/l dE.

Using (3.20), (3.21) and the fact that £ € L'(IR?) N L?(IR?) we conclude that Vi,
is bounded in H'(R"). So, our result follows for case n =2. For n > 2 using
(3.22) we get that Vu, is bounded in [H?(IR")]". Moreover we have

2U € L'(R™), .U € LP(R") for p > n"—z

From hypotheses on f we get
u, € LA™ NL'(R"),

and also that |

{ I} luvlqu}q < c{lAll, + 1AL} -

where by || - ||, we denote the norm of the space L”. It remains only to prove the
regularity of u when p > n. To do this we will use the following lemma:

Lemma 3.2. Let us suppose that v is a continuous function satisfying

u € LY(RM), Vu e [LP(R™)]",
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for any q = 1 and any p > n. Then the following inequality holds:

@l = ==llvlly + o Vel

Y 2
gl Gy

Using Lemma 3.2 we conclude that u, satisfies

()] < { { J |uv|qu}q T { I IVuv!pdx}p} < Al + 10, + 140

and our result follows. [
Proof of Lemma 3.2. Let us consider the identity:

w(&) —v(x) = va(téJr(l—t)x) (€ —x]dt

Integration over the ball B of center x and radius » = 1 yields

1
= f0f|V0(15+(1 —0)x)-[& —x]|dtd¢
B

u(&)dE — onv(x)
B

1
< [ [IVo@E+ (1 = t)yx)|de dé .
B0

Making a change of variable we get

l,,f V()| dédr
tD

1
</f
0

where D is the disk of center in the origin of coordinates and the radius equals to
t. Since t < 1 and ¢tD C D, it follows that

Jv(&)d¢ — ayu(x)
B

1

JIVu(&)|dédt < R/ Gnt" a,,t"{va(é)pldé}
tD
so we have that:

lv(x)| < v(é)dé‘ +——— { [1Vu(&)? dé}

Using the Holder inequality our conclusion follows. O

Now we are in a position to prove the decomposition of the displacement vector
field.

Lemma 3.3. Let f be a vector field in [H*(R™)]" such that the divergence of F
(div F = f) satisfies the conditions of Lemma 3.1. Then, we can decompose F in
two parts, both in [H*(R™)]", one of them a gradient and the other a solenoidal
Sfunction (that is with null divergence).

Proof. From Lemma 3.1 there exists a function p such that Vp € [H!(R")]"
satisfies:
Ap=div F, in R”.
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Since 4p = div F € H*"1(IR"), then V p € H*(R"). From the identity:
F=Vp+F-Vp),

we obtain the desired decomposition. [

Using Lemma 3.3 we can decompose the initial data of Eq.(3.17) in the fol-
lowing way:
Uy = up + us; up = ul +ul,

where u! and u} are the irrotational and the solenoidal part of the function u;
for i = 1,2 given in Lemma 3.3. Let us denote by u® by u! the solution of the
equations:

t
uy, — pdu® + p [ g(t — 1)4u’(-,7)dt =0 in R", (3.23)
0
u(xao) = us(x)’ ut(-x,o) = u;(x) )
t
uh — Qu+y)au’ + Qu+y) [ 1t —1)Au'(-,1)dr =0 in R", (3.24)
0

ux,0) = up(x);  u(x,0) = ui(x),

respectively. Since divu] = 0 for i = 1,2, the solution #* also satisfies: divu® = 0.
Similarly, since the initial data %/ is such that

dug' _ oyt " oul!

0x j ax,- ’ Ox ' 6x,~ ’

then the solution of (3.23) also satisfies:

ou! our!

ox j - ax,-
Using these properties we conclude that the sum u®+u! is the solution of
Eq. (3.17). Our next goal is to prove that the solution of Eq. (3.23) and (3.24) de-

cay algebraically as time goes to infinity. Without loss of generality we consider the
equation:

t
uy — pdu+p [ g(t — 1)du( -, 7)dt =0 in R", (3.25)
0
u(x»O) = UO()C); ut(xao) = ul(x) .
From now on by g O v we denote:
p 2
gOv= [ gt —Dlo(¢) - v(t)Pde .
0
Let us define the following functionals:

1 t n n
E(t;v) = 5 f [Il}(t)|2 +u (1 - fgdr) S|V + g > g0V, dx.
R? 0 i=1 i=1
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Also we define the density energy function:
R EPINT f 21212, Hiyp2 N
&(& 1) = Elv:(t)l +p (1= [gde)|Ef |5 + -Z—ICI g09; .
0

To get the rate of decay of the energy function we will use the following
lemmas:

Lemma 3.4. Let v be a function in L*(R*)NL'(R") for which there exists
f € LA(R") N L'(R") satisfying
v=20" where |o| =m.

Then we have that

13(6)| < [2m)3 )¢ an |f()|dx V& € R" .

Proof. The proof is immediate. [J

Lemma 3.5. Let m = 1 and s = 0 be two natural numbers. Then we have that
c(m,s)a™" if m<s

c(m,s)a= 6t if m>s+1

c(m,s,n)a*™M if m=s+1

for 0 <n <1, where c(m,s,n) — oo as n — 0.

Proof. Let us denote
o’do

1
I(s,m .
(s,m ;)f (1 + ao)"
Integration by parts shows:

Jl. o'dc 1 !
o (1+ao)y"  a(-m+1);

o*d(1 + ag)~ ™!

1 s _ s L o ldo
— 1 —m+1 U:l
a—m DL (1+a0) ]"—°+a(m—1)0f(1+aa)m—1
1 L ¢ ldo
a(m—1)y (1+ag)y™1’

so we have:

N
I(S,m) é m[(s’— l,m— 1)

Note that a simple calculation shows that

1
I(s,1) = c(s)a_1 fors =2 1, 1(0,m) < p la”l form > 1,
1
1(0,1):n_(1a+_“).

Using the last three inequalities our conclusion follows. [J
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In this condition we are able to prove the uniform rate of decay of the energy
associated to the viscoelastic equation for the whole space R”. Our main result is
summarized in the following theorem:

Theorem 3.1. Let us suppose that the functions g and h satisfy the following
hypotheses:

g0 =0 g0 < —cdF@), g0 ScgtF@),  (326)
At = 0, K(t) < —chTR(r),  W'(1) £ ch'TF @), (3.27)

for p > 2 such that 2" —1 < p and the couple (up,u1) is a vector field in
[H*(R") U LY(R™)]* x [H'(R") U L'(R™)]", such that div uy and div u; satisfy
hypotheses of Lemma 3.3. Then the displacement vector field can be decomposed
into two parts, one of them a solenoidal and the other a gradient of a real function
whose energy decays as:

E(t;u)+ E(t;u) < c{EO;u)+ EQO;u)}——

(1+t)V’
where
2m -1 if2mtl <n—1
)= min{Z’”—l,(%—z—mﬂr—l)n} if2ml >n—1

min{2'”—1,< 2,m)(n )} ifomtl =n.

Moreover if there exist functions f&, f* € L*(R") N L'(R") such that:

o fE=uf, and Pkt =uk . (3.28)
Then )
E(t;u) + E(t;u,) < ¢{E(0;u) + E(0; u,)}(1 i
where
2m — 1 if2mtl <n—1
= | min {2'" L2l o+ ﬁ)} if 2 > 1

min {27 — 1, 22l P0n — )} 2t =g

2’”+1+ﬂ
with f = min{|ox| + L, |Bel; k= 1,...,n}
Proof. From Eq. (3.25) we have that the Fourier transform of u satisfies:

t
dy + [E1%0 — | [ g(t —1)i( - ,7)dr =0, (3.29)
0
Reasoning as in Theorem 2.1 we can prove that:
d 1 1
_éo t 7)) — — 2.7 a ~2 .
i) = S|P’ 00— S gl
Differentiating Eq. (3.29) we get

e + €[4 — g(0)| €[ — |EP [ g'(¢ — 1)i( - ,1)dT =0
0
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Substituting # given by Eq. (3.29) we get:

e + |7 de + g(0)iy — |E Of [9'(t — 7) + g(0)g(z — )] - ,7)dT =0
=f(t—1)

Multiplying the above equation by i, we get:

1d . n . ! . N
zd*t{lutt’2 + |£|2|ut12} = —g(0)|u,,|2 + |é|2ff(t —0)a( + ,7)dtiy ,
0

J

=/

so we have:

1= |f|2 ffd‘cﬁﬁ,,lflz (g(t) —¢(0) + g(0) jgd?:) iy
0 0

— _EPg(ryiy + |E29(0) ( - gdr) i,
0

From this identity we get:

I = —|&Pg(t)ii, — g(0)|¢* (1 - Of gdr) 4> + g(2)g(0)| &[>,

d 2 ! A A
+ 5 {1ePa0) (1= foar) an |

g(O) g(t)g(O) g(0)a 900),
2

Nl + gIEMal + ==& Pl ~ ®

2g0)— < (1 - d)“,},
+|élg()dt{< Ofgr i

where a =1 — f0°°gdt. So we conclude that there exist positive constants N, N
such that the function

LEL) = N E(E tu) + Ny |EPEE tw)|iy | + |EP ] — 9(0)]&]? (1 - fgdf) /i/h
0
satisfies J
where
R(E1) = laa? + 1EMaP° + (PP, L&) = |EPgOa+ [¢*gDa,

and
L) £ aR(E )+ P(E 1)+ cr(E )
with
r(& 1) := |EPlaP + |6 * .
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We will consider two cases. First we prove that the energy density decays alge-

braically as th for |¢| = 1, then that the density energy function decays as when

|€| = 1. In fact, for |[£] = 1 we get
L) £ el (GNP + |EPg0a + |E*g0a .

Since the energy is bounded, and from Lemma 2.6, a positive constant exists (de-
pending on the initial data) satisfying:

l—2,,,
~ n 1 n 1 n
[ |512gmu+|f|4gmudé§cl{ f |é|2g”PDu+|él4g”PDudé} ;
lé1z1 lélz1

[¢lz1 [E]=1

1= om
| 2 )de ém{ f ﬂ(f,t)-ky(é,t)dé} .

We get:

2m

2m—1
[ £ ndé < —Co{ / f(é,t)dé} ,
[g1=1

dtm
which implies that
| L& ndE < flé|;1$(€,0)df
, - L ~9°
S {q+co(flé|;1$(é,0)dé)”t}

so, we have

A d ZL(&,0,4)d 3.30
S gendese | @0 e (330)

Now we consider the case |£| < 1. Since
|EPL(E 1) < es{R(E 8 u)+<7(f,f)}l—_’” Vgl £1, (3.31)

it follows that 4
Zm
5 2En = —cof|[EP L&, D)} T,

which implies
1
L tu)sc . (3.32)

(L(E0)70 + |ty

Since the initial data belongs to L'(IR"), and # is a continuous function, then
we get

L0, =c V¢ 1.

From (3.32) a positive constant ¢ exists satisfying:

c

L h) < mt—)q s
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+1 .
where r := 2 + % = 22,:'_1. It is easy to see that:

G
(14 [eferymt

Using spherical coordinates we conclude that

L& nu) =

1 O.n—ldo.
L taydl < c|———7,
mfgl ! (1+ 7o)

where n is the space dimension. Using Lemma 3.5 our conclusion follows. Finally if
hypothesis (3.28) holds, then a positive number f exists such that £(0,¢) < c|¢f,

so we get,
er e
(L4 1ghe — (L (g

L tu) = c

2m_1
2m+l+ﬂ‘
proof is now complete. [

wherre y 1= q’;:-ﬂ = Again using Lemma 3.5 our conclusion follows. The

Remark 3.1. Theorems 2.1 and 3.1 are optimal in the sense that when m increases,
the rate of decay of the energy also increases. In the limit case when m = oo,
(p = o0) from the hypotheses we get that the kernel of convolution is exponential.
In this case our result is the same as in [10] or in [6].
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