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Abstract: Based on the treatment of the chiral Ising model by Mack and Schomerus,
we present examples of localized endomorphisms ρι°c and ρι°?2. It is shown that
they lead to the same superselection sectors as the global ones in the sense that
unitary equivalence τro o ρι°c = π\ and τro o ρι°?2 = τri/2 holds. Araki's formalism
of the selfdual CAR algebra is used for the proof. We prove local normality and
extend representations and localized endomorphisms to a global algebra of observables
which is generated by local von Neumann algebras on the punctured circle. In this
framework, we manifestly prove fusion rules and derive statistics operators.

1. Introduction

In local quantum field theory one considers a Hubert space 3%> of physical states
which decomposes into orthogonal subspaces 3@j (superselection sectors) so that
observables do not make transitions between the sectors. The subspaces J ^ j carry
inequivalent, irreducible representations of the observable algebra ^ , possibly with
some multiplicities [19]. Among the superselection sectors, there is a distinguished
sector 3@§ which contains the vacuum vector |i?o) and carries the vacuum represen-
tation 7Γ().

The starting point in the algebraic approach to quantum field theory is the observ-
able algebra ^Λ which is usually defined as the C* -inductive limit of the net of local
von Neumann algebras {^Λ(@), (9 G <9&}> where 3& denotes the set of open double
cones in D dimensional Minkowski space. The net is assumed to satisfy the Haag-
Kastier-axioms. In general, the observable algebra ^ admits a lot of inequivalent
representations. Therefore one has to find an appropriate selection criterion which
rules out the physically non-relevant representations. Doplicher, Haag and Roberts
[10, 11, 18] developed the theory of locally generated sectors; they suggested that
one has to consider only those representations πj which become equivalent to the
vacuum representation in the restriction to the causal complement & of any suffi-
ciently large double cone & G £%ζ'. That means that for a representation πj satisfying
the DHR criterion, there exists for each sufficiently large double cone & a unitary
V \3%>-*3%j such that
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πj(A) = Vπo(A)V*, A e

The DHR criterion leads to the characterization of superselection sectors by localized
endomorphisms: Usually ^ and TΓOO^) are identified, and one defines

ρj(A) = V*πj(A)V, A e J .

Then ρj is an endomoφhism of the observable algebra and it is localized in &' in
the sense that ρj(A) = A for all A e *s&(0"). Moreover, πo o ρj is a representation
of ^y& in S@§ which is equivalent to πj. The use of DHR endomorphisms allows to
extract all physical information out of the vacuum sector and to work without charged,
unobservable fields. It is another advantage that endomorphisms can be composed;
it is possible to formulate fusion rules in terms of equivalence classes of localized
endomorphisms.

Unfortunately, it seems to be very difficult to construct these endomorphisms
explicitly in models. Although the conformal field theory has turned out to be an
interesting and fruitful area of application of the DHR program, examples of local-
ized endomorphisms which generate charged sectors are known explicitly only for a
rather small number of models, e.g. the U(\) current algebra on the circle [8]. En-
domorphisms have been constructed for Level 1 WZW models [16] and, before that,
for the chiral Ising model [24, 25], however, they are in no sense localized. Mack
and Schomerus had already described the construction of localized endomorphisms
for the chiral Ising model in [24], but it has not yet been proven that they lead to
the same sectors as the global ones and, in particular, that they lead to irreducible
representations. This is done in the present paper.

In two-dimensional conformal field theory one considers as basic observable the
stress energy tensor which generates the space time symmetry. Its light cone compo-
nents T±(z±) live separately on the compactified light cone variables z± e Sι, one
deals with chiral fields. Treating each component for its own, the stress energy tensor
has well-known commutation relations, fixed up to a constant c [29, 23]; the stress
energy tensor generates the Virasoro algebra Vir. In the case c = \ (Ising model)
the Virasoro algebra admits three inequivalent positive energy representations π j ,
J = 0, \, 1, which are lowest weight representations; πo is identified to be the vac-
uum representation. In the chiral Ising model, the stress energy tensor can be built of
a free fermion field, the Majorana field [24, 23]. Smearing out the Majorana field with
test functions having support in a proper subinterval I C Sι and considering bilinear
expressions of it, these objects generate the local C*-algebra ^A?(ΐ) of observables.
Such local algebras ^ ( / ) generate a global observable algebra ^ ^ * v . Unfortunately,
the Virasoro generators are not in ^ ^ v , but they are formal (unbounded) limits of
elements in ^ ^ * v . Mack and Schomerus [24, 25] presented endomorphisms ρj such
that πo o ρj = π j , J = \,\ is fulfilled. But, as already mentioned, these endomor-
phisms are not localized, i.e. there is no interval V φ 0 such that their action is trivial
on <Λ>(Γ). In this paper we present examples ρλ°%, ρι°c of localized endomorphisms
which are unitarily equivalent to those global ones in composition with the vacuum
representation. However, our construction slightly differs from the formalism used by
Mack and Schomerus.

Since the set β> of proper subintervals on the circle is not directed, a global
algebra cannot be defined as the C*-inductive limit of the system {^4(1), I G β^}.
The global algebra -^?^*v has to be considered as the algebra generated freely by all
local algebras ^ ( / ) . This is the universal algebra (but generated by local C*-algebras
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instead of von Neumann algebras) in the sense of Fredenhagen, Rehren and Schroer
[14, 15]. Its center is nontrivial, generated by a unitary element Y. The C* -algebra of
the punctured circle ^S(Iζ) where Iζ = Sι\{ζ}, ζ £ Sι an arbitrary point, has a trivial
center and ^^ιv is generated by *s&(Iζ) and Y. The local algebras ^Λ{ΐ) are even
subalgebras of (selfdual) CAR algebras over spaces L2(I). Also the global observable
algebra ^J^* v is the even subalgebra of a global field algebra, the universal Majorana
algebra Maj. It has the structure of the direct sum of two selfdual CAR algebras
over L 2(5 1). Alternatively, it may be regarded as the algebra which is generated by
an anticommuting universal Majorana field living on the double cover Sι of the unit
circle [24, 25]. For recovering the local algebras *s&(I) as even subalgebras of Maj by
explicit construction, we have to fix an arbitrary reference point ζ ("point at infinity")
on the circle.

The non-trivial center of the global algebra ^ ^ * v implies that its irreducible
representations can no longer be faithful. This leads to some deviations from the
customary DHR program. In particular, the vacuum representation π 0 of ^ ^ * v cannot
be faithful. There is another difference between the formalism used by Mack and
Schomerus and the common DHR framework: The local algebras ^ ( / ) are defined as
C*-algebras instead of von Neumann algebras. But the use of von Neumann algebras
is crucial for the analysis of statistics and fusion. On the other hand, if one works with
local von Neumann algebras (weak closures of ^Λ(ϊ) in the vacuum representation),
the universal algebra becomes even larger, in particular, its center is larger than that
of ^\^* v , generated by Y. Such a universal algebra appears to be hard to handle.

During our investigations, it turned out to be much more comfortable to formulate
the theory on the punctured circle. Such a formulation is possible because in our theory
Haag duality remains valid on the punctured circle. Having fixed a "point at infinity"
ζ G S1, the set βζ of those open intervals such that ζ is not contained in their closures
("finite intervals") is directed by inclusion. So the theory can be developed close to
the DHR program. We define local von Neumann algebras <9&(I) = πo(SS(I))", and
the net {«ΐ?(/),J e β^ζ} generates a global C*-algebra 2lζ in the natural way; %ζ
may be regarded as the algebra of quasilocal observables. The representations TΓJ
and the localized endomorphisms ρljc we present are at first defined on local C*-
algebras ^?(J). We show that they possess an extension to the net of von Neumann
algebras. A local normality relation is used for the proof. Using some results of CAR
theory, we establish that indeed unitary equivalence τro o ρλ*jc = πj holds. Finally, we
manifestly prove the Ising fusion rules in terms of equivalence classes of localized
endomorphisms, and we construct statistics operators and a left inverse.

With respect to the proof of fusion rules, we believe to close a gap left in [24, 25].
Mack and Schomerus had already proven that their global endomorphisms obey Ising
fusion rules. But caused by the use of local C*-algebras and a non-faithful vacuum
representation, this result could not be generalized to all endomorphisms, which lead
to equivalent representations. (There are counterexamples.) The existence of unitary
intertwiners in the observable algebra, being essential for such a generalization, is not
guaranteed if one does not work with von Neumann algebras. However, establishing
a theory based on local von Neumann algebras on the punctured circle, we close the
gap. But it should be mentioned that there exist also successful methods for prov-
ing conformal field theory fusion rules without the use of localized endomorphisms,
e.g. [22, 32].

Our paper is organized as follows. We present Majorana fields, local C*-algebras
of observables and the global algebra ^ ^ * v in Sect. 2. Using some ideas of Szlachanyi
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[31], we discuss the origin of its central element Y. We introduce the universal
Majorana algebra Maj, we describe the representation theory of Maj and - ^ * v and
we introduce the Mack-Schomerus endomoφhisms. Section 3 begins with a brief
recapitulation of the CAR theory and some results we need. Next we describe the
representation theory of Maj and ^ ^ * v in view of Araki's self dual CAR algebra and
quasifree states. We discuss the restriction to the algebra *y&{Iζ) of the punctured
circle. Then we introduce our examples of localized endomoφhisms and we analyze
the induced representations. In Sect. 4 we discuss the extension of representations and
localized endomoφhisms to local von Neumann algebras and to the global algebra
2lζ. In this framework, we prove fusion rules and give statistics operators and a left
inverse.

2. Algebras, Representations and Endomorphisms of the Chiral Ising Model

In this section, we develop and analyze the formalism used by Mack and Schomerus
to describe the chiral Ising model.

2.1. Local C* -Algebras and their Universal Algebra. We begin our investigations with
a brief description of the field algebra, the local and the global observable algebras
of the chiral Ising model. Our starting point is a Majorana field φ on the unit circle
5 1 which has anticommutation relations

{φ{z)\φ(w)} = 2πizδ(z - w) (1)

and hermiticity condition

φ(z)* = zφ{z). (2)

We consider smeared fields

W) = Φ —τf(z)φ(z\ f(z) e L\Sι). (3)
Jsι 2πιz2

These objects obey the canonical anticommutation relations (CAR) of the canonical
generators of Araki's [1,2] self dual CAR-algebra W(β&, Γ) over the Hubert space

' = L2(Sι) with the antiunitary involution Γ of complex conjugation. We have

with

I ^W (5)φ(fT = ψ(Γf), (f,g) = I
JSι

As local algebras ^ ( / ) with some open interval / C Sι, I φ Sι we define those
unital algebras which are generated by bilinear expressions

Bdf, g) = ψ(f)Ψ(g), supp(/) C /, supp(#) c I

in the Majorana fields. These generators are complex linear in both arguments and
obey relations
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2BdfJ) = (ΓfJ)l, (6)
2BI(f,g)BI(g,h) = (Γg,g)BI(fih\ (7)

£/(/,<?)* = BdΓg.Γf), (8)

where /, #, ft G L2(Sι) are functions with support in /. Next we consider the algebras
^&(I) as defined only by these abstract relations. Since the set ^> of open, non-void
intervals / φ Sι on the circle is not directed there is no inductive limit for the algebras
^ ( / ) , / G β^. But with the additional relation

Bi(f,g) = Bj(f,g), IcJ (9)

one can construct a global algebra ^ ^ * v which is generated by all £/(/, g), /, # G
L2(Sι) and / G ̂  [31, 15, 5]. Perhaps one could expect that the result is the even
subalgebra of the selfdual CAR algebra over the whole circle S 1. We will show that
this is actually not the case; instead there occurs a central element Y G ̂ ^ v which
will finally lead to the fact that ^ ^ * v is the direct sum of two of those even CAR
algebras. Let now I\ and Ii be two disjoint intervals and let J+ and J_ be intervals
containing both of them, one from the left side and one from the right side, so that
J+ U J_ = Sι. Choose real functions f3 G L2(Sι) with \\f3 \\2 = 2 with supp(fj) C IJ9

j = 1,2. Then define

2ji). (10)

One finds that Y is unitary, self-adjoint and independent of the special choice of
fiifiihiliiJ+iJ- Moreover, Y is in the center of ^ ^ v For every ζ G 5 1 and
Iζ = Sι\ {C}, the global algebra ^ n v is generated by ^(Iζ) and Y [31, 15, 5].

We now want to reconstruct the global, or, "universal" algebra ^ ? ^ 1 V by a global
field algebra, the universal Majorana algebra.

Definition 2.1. The universal Majorana algebra Maj is defined as the direct sum of
the selfdual CAR algebra over (L2(Sι), Γ) with itself i.e.

Maj = W(L2(Sι),Γ)®W{L2(Sx),Γ). (11)

The center of Maj is generated by the element

y = (-l)Θl (12)

and we have the two subalgebras

MajNS = i ( l - y)Maj, MajR = l-(l + y)Maj. (13)

The universal Majorana algebra is a well defined C*-algebra since W(L2(SX),Γ) is.
For clarifying the connection between our definition and the definition of Maj given
by Mack and Schomerus [24] we consider the following two orthonormal bases of

2 '

and { e n , n G Z } ,

where ea(z) = za for z = eiφ G S\ -π < φ < π, a G \TL. We define the elements of
Maj (Fourier modes)
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br = ψ(er)θ0, r(ΞZ+-,

Then we have

- MajNS is generated by the modes br, r G 7L + | ,
- MajR is generated by the modes bn, n G Z,

- Maj is generated by the modes ba, a G ̂ Z,

and the Fourier modes satisfy relations

l f - c , b*a = b-a, (14){ba,bc}{\ + (\

Yba = (-l)2aba, [Y,ba} = 0, Y = Y*, Y2 = l. (15)

It is convenient to understand the elements of Maj as smeared fields as well. We
define the Hubert space

which may be identified with L2(S\), where S\ denotes the double cover of S1. Hence

each element / G <9& has the unique decomposition

/ = / N S Θ / R , / N S , / R e I 2 ( S ' ) .

On 3& we have the antiunitary involution

Γ = ΓΘΓ.

We define the field ψ(f) GMaj by

W ) = WNS)

so that we have the conjugation

ΦifT = φ(Γf),

anticommutation relations

{Ψ(fY,Ψ(9)} = \d -

boundary condition

Yψ(f) = Ψiyfa y = (-1) θ l G

and

We now want to redefine the local generators Bi(f,g) G ̂ ( / ) as even elements of
Maj. For that we have to fix an arbitrary point C £ Sι. We distinguish between two
cases:
Case 1: For all intervals / G ̂  with £ ^ / we set

M f& ^ (16)
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Case 2: For every interval / G β> with ζ G / the point ζ splits / in two disjoint
intervals I\ and J2 so that / = I\ U {C} U h. Let Xj be the characteristic functions of
I3 and set fj = \jf, gά = χ3g,j = 1,2. Then we set

Bi(f,g) =

Λ = / i ® Λ e ^ , gj=gj®gJ

It is an easy but less beautiful work to control that these Bj(f, #) satisfy the relations
(6) - (9), and that relation (10) is fulfilled with the Y of Definition 2.1, also independent
of the functions and intervals [5]. It is not hard to see that the identifications (16),(17)
define an isomorphism between ^ ^ * v and the even part Maj+ of Maj, too [31]. Thus
we are allowed to identify the global observable algebra ^ ^ * v with the even part of
Maj.

2.2. Representations and Endomorphisms. Each of the algebras MajNS and MajR pos-
sesses a faithful cyclic representation ( J ^ N S ^ N S , | ^ N S ) ) and (J^R,π R , \ΩR)) which
is characterized by

= 0, r > 0 , reZ+-, (18)

= 0, n > 0 , n G Z , (19)

respectively. The NS-representation is uniquely characterized (all matrix-elements can
be computed and the vector |i7NS) is defined to be cyclic). In the R-representation, the
action of the self-adjoint bo on the cyclic \ΩR) is not completely fixed. To determine
the R-representation uniquely too, we require in addition that the vectors \ΩR) and

are orthogonal in J^?R,

= O . (20)

One can consider these representations as those of Maj on the space J ^ N S θ ^ R by
the requirement

πNS(Y) = - 1 , πR(Y) = 1, (21)

which leads automatically to

7rNs(&n) = 0, n(ΞZ and πRφr) = 0, r G Z + - , (22)

i.e. πNs lives only on MajNS and πR on MajR. Of course, both representations are
then no longer faithful. The NS-representation is irreducible, the R-representation is
not; it decomposes into two irreducible subrepresentations ( ^ R , T Γ R ) and {3@R ,TΓR)
(see below) which are generated by the action of πR(Maj) on vectors |i?R) and |i?R ),
respectively, where

These states are eigenstates of τrR(bo) with eigenvalues ± 2 " [30]. We are now
interested in what happens, when the representations of Maj, πNs and π R , are restricted
to the observable algebra which is the even subalgebra of Maj, ^ £ * v = Maj+. It is
known that the NS-representation splits into two irreducibles,
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TINS | ^ σ * = 7Γo Θ 7Γi, J^NS = ^ ) θ ^ l , (23)

and the R-representation decomposes into two equivalent ones,

(24)

The subspaces J^o»

πNS Φ-r2N ' '

7ΓNs(fr-r2jv+i ' '

πRφ-n2N -

7ΓRφ-n2N+ι

^c* = πi/2 θ πl/2'

ζύδ^ Q%^ O T I H Qδ^ 7 '

i > i / z i^

•b-rι)\ΩNS)

• b-nι)\ΩR)

••b-nι)\ΩR)

€ J"

G ^

/2 are spanned by

3>, r eNo + ί,

ί?i, n eNo + ̂ ,

^i/2, «i e No,

K' / 2 ) 7K e No,

vectors

^2τv > ••• > n ,

^2^+1 > > n?

^ 2 Λ Γ ^ ' ' ' ^ ^ 1 j

2̂ΛΓ+1 > > n i ,

with TV E No- We remark that the subspaces J ^ Ί / 2 and 3^[j2 do not coincide with

3@^ and ̂ ^ ~ . How is that possible? The reason is that the subrepresentations π j

and π R , when restricted to the observable algebra ^ ^ * v , become equivalent [30],

and see below. Therefore the decomposition into invariant subspaces is not unique.
Mack and Schomerus [24, 25] defined the following endomorphisms of Maj which

restrict to endomorphisms of the global observable algebra -^^* v .

Definition 2.2. The endomorphisms ρj, J = 0, ̂ , 1 of Maj are defined by their action
on the generators as follows,

ρo = id, (25)

α > \

Qι/2(ba)=\ ^Φι~b_{) a = 0 , ρι/2(Y) = -F, (26)

V. (27)

=

It is shown [24] that these endomorphisms fulfill

= π R , (28)

S, (29)

π0oQj * π j , J = 0 ,- , l , (30)

where relation (29) is the most trivial one because ρ\ is inner in Maj, implemented
by the unitary self-adjoint

R = y/ϊbo + b\ + 6_i G Maj.
2 2

We can define these endomorphisms by the formula

where Vj are the following isometries on S& - L2(Sι) 0 L2(Sι),
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0 \ ^ ( 0 V1/2 \ Λ /F, 0 \

t ) , V>/2={V>/2 o J ' y> = (̂  0 V( ) ' ( 3 1 )

the isometries (Bogoliubov operators, see below) V\/2,V//2,V\,V{ e Jέ?(L2(S1)) are

defined by

oo

0 )Vl/2 = 71 0 β ^ e ° ' " le-i><eol) + i X ] (|en+i)(en

oo

//2 = iΣ(K){en_i\-\e-n)(e_n+ι_\),
ln=l

i ) ( e _ i | + | e _ i ) ( e i | ^

n = l

n=l

It is worthy to note that the two non-vanishing entries, each in V\/2 and V\, are
actually different.

3. Localized Endomorphisms

In this section we present our localized endomoφhisms in terms of Bogoliubov trans-
formations. After a brief summary of mathematical results which we will use, we
introduce them as endomoφhisms of the algebra of the punctured circle.

3.1. The Selfdual CAR Algebra: Some Useful Results. For a better handling of our
techniques we give a brief repetition of Araki's selfdual CAR algebra W(έ%f, Γ) and
quasifree states [1, 2]. We consider a Hubert space 3& with an antiunitary involution
Γ (complex conjugation), Γ2 = 1, which fulfills

The selfdual CAR algebra W{9£,Γ) is defined to be the C*-norm closure of the
algebra which is generated by the image of a linear mapping ψ which maps elements
/ G <9ίf to canonical generators ψ(f), so that

holds. The C*-norm satisfies [2]

mm = =̂
In particular, we have the inequality

mm < II/II (32)

Elements of the set
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, Γ) = {V e 3&{3K) I [V, Γ] = 0, V*V = 1}

of Γ commuting isometries on 3& are called Bogoliubov operators. Every Bogoliubov
operator V G Sf^Sfc, Γ) defines an endomorphism ρy of W(3&', Γ), defined by its
action on the canonical generators,

QvMf)) = Ψ(Vf).

Moreover, if V G S7(3&, Γ) is surjective (i.e. unitary), then ρy is an automorphism.

Definition 3.1. A state ω of W(3O>, Γ) is called quasifree if for all n G N

ω(φ(fι)'"φ(f2n+ύ) = 0, (33)

*]))) (34)

holds. The sum runs over all permutations σ G S%n with the property

σ(l) < σ(2) < < σ(n), σ(j) <σ(j + ή), .7 = 1,.. ., n. (35)

Quasifree states are therefore completely characterized by their two point function. It
is known that there is a one to one correspondence between the set of quasifree states
and the set

given by the formula

(36)

The quasifree state characterized by Eq. (36) is denoted by ωs A quasifree state,
composed with a Bogoliubov endomorphism is again a quasifree state, namely we
have oϋs o ρv = ωv*sv The projections in @(3&, Γ) are called basis projections.
If P is a basis projection then the state ωp is pure and is called a Fock state. The
corresponding GNS representation ( J ^ P , πp, \Ωp)) is irreducible, it is called the Fock
representation; the vector \ΩP) G 3@p is called the Fock vacuum. Araki proved [1,2]
that a state ω of *&(3ϋ>, Γ) which satisfies

ω(φ(f)φ(fT) = 0, / G P9IS (37)

for a basis projection P is automatically the Fock state ω = ωP.
We now come to an important quasiequivalence criterion for quasifree states. It

was developed for the case of gauge invariant quasifree states by Powers and St0rmer
[26] and generalized for arbitrary quasifree states by Araki [1]. Unitary equivalence
(denoted by '"=") or quasiequivalence (denoted by "«") of states means always that
the corresponding GNS representations are unitarily equivalent or quasiequivalent,
respectively.

Theorem 3.2. Two quasifree states ωsx and ωs2 of W(3&', Γ) are quasiequivalent if
and only if

S\ - S\ G βι(3&), (38)

where j%G%*) denotes the ideal ofHilbert Schmidt operators in
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We now can conclude that two Fock states ωPι and ωp2 are unitarily equivalent, if
and only if P\ — P2 is Hubert Schmidt class, or, if ωp is a Fock state and ρy is a
Bogoliubov endomorphism, that ωp oρv « ωp if and only if P — (V*PV) 2 is Hubert
Schmidt class. But in most cases we study representations of the form πpoρv, where
ρy is a Bogoliubov endomorphism and πp a Fock representation of W(3&', Γ). Such
a representation πp o £>y is in general not cyclic but it is equivalent to a multiple
of the GNS representation πy*py of the state ωy*PV = ωp o ρv. The multiplicity
is given by 2Nv where Ny is the dimension of the intersection of kerF* and P3&
[4, 28], i.e.

πpoρv^ 2Nv πv* PV, Nv = dim(kerF* Π P3K). (39)

This is a decomposition of πp o ρy into cyclic subrepresentations but in general
not into irreducibles. A decomposition into irreducibles is provided by the following
theorem which was proven in [6] and, in a different way, in [4].

Theorem 3.3. Let V be a Bogoliubov operator with My = dim kerV* < 00. If My
is an even integer we have (with notations as above)

p/, (40)

where πpr is an (irreducible) Fock representation. If My is odd then we have

My-I

πpoρy^ 2~^(π+ Θ ττ_), (41)

where π+ and π_ are mutually inequivalent, irreducible representations.

The representations π± occurring in Eq. (41) are called pseudo Fock representations
[1]. Consider the automorphism α_i of W(3&, Γ) which is defined by α_i(^(/)) =
—ψ(f). We define the even algebra W(3&, Γ)+ to be the subalgebra of α_i-fixpoints,

)+ = {xe Wψ£, Γ)\<x-i(x) = x}. (42)

We now are interested in what happens when our representations of W{3&, Γ) are
restricted to the even algebra. For basis projections P\,P2, with P\ — P2 Hubert
Schmidt class, Araki and D.E. Evans [3] defined an index, taking values ± 1 ,

ind(P,, P2) = (_i)dim(P,.95? n(i-p2).sso

The automoφhism α_i leaves any quasifree state 0;^ invariant. Thus α_i is imple-
mented in 7Γs. In particular, in a Fock representation πp, α_i extends to an automor-
phism α_i of πp(^(«5^*, Γ))" = M{β@P}. The following proposition is taken from
[2].

Proposition 3.4. Let U e SfiSV!, Γ) be a unitary Bogoliubov operator and let P be
a basis projection such that P — U*PU is Hilbert-Schmidt class. Denote by Q(U) e

the unitary which implements ρu in πp. Then

= σ(U)Q(U), σ(U) = ± 1. (43)

In particular,
σ(U) = ind(P,U*PU). (44)

Furthermore, one has [3, 2]
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Theorem 3.5. Restricted to the even algebra W(3&, Γ)+, a Fock representation πp
splits into two mutually inequivalent, irreducible subrepresentations,

πp I W{,9£,ry = πp Θ TΓp. (45)

Given two basis projections P\, P2, then

π% * π$2 (46)

if and only if Px - P2 G $&&£) and inά(PuP2) = +1, and

π% = ^ 2 (47)

if and only if Pλ - P2 G J%>(5&) and ind(P b P2) = - 1 .

On the other hand, it was proven in [6] that pseudo Fock representations π+ and π_
of Theorem 3.3, when restricted to the even algebra, remain irreducible but become
equivalent. Summarizing we obtain

Theorem 3.6. With notations of Theorem 3.3, a representation πp o ρy restricts as
follows to the even algebra W{β&, Γ)+: If My is even we have

My _

πp o ρv\w{W,rγ = 2 2 (πp, θ π p / ) (48)

with 7Γp, and πp, mutually inequivalent and irreducible. If My is odd, then

ττpoρy\g^sg ,Γ ) + ^ 2 ^ 7 Γ (49)

with π irreducible.

3.2. Restriction to the Algebra of the Punctured Circle. Let us consider the algebra
of the punctured circle *s&(Iζ). There is no Y in ±s&(Iζ) and the generators are of the
form

Biζ(f, 9) = Ψ(f)Ψ(g\ f = / θ /, g = gθg.

Thus we identify ^4(Iζ) as the even algebra W(L2(Sι),Γ)+ and we are allowed to
denote the generators by

£ / ( / , g) = Ψ(f)Ψ(g), f,ge L\i), I c l o

i.e. we work with common CAR algebras. By construction (16) and (17) it is easy to
see that our representations π j , being non-faithful on ^ ^ * v , fulfill

7ΓjM(/C)) = π/GACniv), J = 0, i , 1,

the representation theories of ^Λ{Iζ) and ^ ^ * v are obviously the same. Since
^τβ(Iζ) = W(L2(Sι),ΓY we can identify representations π N S and π R with GNS
representations of quasifree states of W(L2(Sι),Γ) and, correspondingly, representa-
tions πo,πi/2j7i"i with associated restrictions to the even subalgebra. This works as
follows. Consider 6NS, SR G &(L2(Sι),Γ), the Neveu Schwarz operator
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5NS = Σ \e-r)(e-A (50)

is a basis projection, the Ramond operator

Σ>_ n )<e_ n | (51)

is not. By (^s N S ,TΓ 5 N S , |i7^NS)) and ( J ^ 5 R , TΓ5R, | β 5 R ) ) we denote the GNS triples of
the corresponding quasifree states ωsm and ωsR, respectively. We have

ωSm(Ψ(eryψ(er)) = (e r, 5 N S e r ) = 0 , r G No + - ,

and therefore, corresponding to Eq. (18),

πSm(ψ(er))\ΩSm) = 0 , r G No + - ,

as well as

wsκ(ψ(fin)*ψ(en)) = (en, SRen) = 0, n e N,

and therefore, corresponding to Eq. (19),

πsR(ψ(en))\ΩSR)=0, neE.

Since ωsR is quasifree we obtain ωsR(Ψ(eo)) = 0 as the correspondence to the ad-
ditional requirement (20). Consider an arbitrary element x = x^s θ XR of Maj,

,XR € ^(L2(Sι),Γ). By (18), (19) and (22), and taking into consideration that
and πR are defined as cyclic representations of Maj, we identify

TΓNS(^) = 7Γ5NS(xNS), πR(x) = TΓSR(XR).

Now <Λ>(Iζ) is generated by bilinear expressions of Maj with x^s = XR- Therefore,
with identification of ^&{Iζ) and W(L2(Sι),Γ)+, we have to identify π N S with π5NS,
πR with τrsR, and with notations of Theorem 3.5, πo with TΓJNS and π\ with ττsNS Con-
sider our isometry V\/2 (the Bogoliubov operator defined at the end of Subsect. 2.2):
The kernel of its adjoint V*,2 is one-dimensional, spanned by the vector 2~ 5 (ei +e_ i),
i.e. Myι/2 = 1. By Theorem 3.3 we find π5NS o ρvι/2 *= π+ θ π- with inequivalent,
irreducible pseudo Fock representations π±, becoming equivalent in the restriction
to the even algebra by Theorem 3.6. Since SR = V*,2SwsVi/2 m e states ωsR and
<̂ sNs ° QVW2 coincide. By Eq. (39), πsm o ρVχ/2 is indeed a GNS representation of
CJR, the Fock vacuum |ί2sNS) is cyclic for π,sNS o ρVχ/2 since AΓy = 0. This establishes
π^R = τrsNS o ρV]/2 = π+ 0 π_. We conclude that the equivalent restrictions of τr+ and
τr_ to the even algebra correspond to the representations τri/2 and πj /2.
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3.3. Examples of Localized Endomorphisms. We have seen that, when working on
the punctured circle, one has to deal with even CAR algebras. Thus we are allowed
to define endomorphisms of *Λ>{Iζ) simply as Bogoliubov endomorphisms of the un-
derlying algebra W(L2(Sι),Γ). We remark that our endomorphisms ρ\/2 and ρ\ of
^ ^ * v do not restrict to endomorphisms of *y&(Iζ) because of the different entries
Vj and Vj in matrices Vj, J = | , 1 of Eq. (31). For constructing localized endomor-
phisms, we admit as localization regions all open intervals such that their closure is
contained in Iζ, i.e. elements of the set

βζ = {/ e β I C e /'}. (52)

(/' always denotes the interior of the complement Ic = Sι \ I.) As usual, we define
an endomorphism ρ of ̂ &(Iζ) to be localized in some interval / G βς if ρ(A) = A
for all A G ^(h), h G β>ζ,h Π I = 0. We present localized endomorphisms
as Bogoliubov endomorphisms which are induced by pseudolocalized isometries. A
Bogoliubov operator V G ̂ (L2(Sι),Γ) is called pseudolocalized in / G β>ζ if for
all / € L2(Sι)

(Vf)(z) = σ±f(z), zel±, σ ±e{-l,l},

where /+, /_ denote the two connected components of I' Π Iζ. Moreover, V is called
even, if σ+ = σ_, and odd, if σ+ = —σ_. Clearly, a pseudolocalized Bogoliubov oper-
ator induces a localized endomorphism of the even algebra ^Λ{Iζ) = W(L2{Sι), Γ)+.
We give the following examples

Definition 3.7. Let h G L2(Sι) be a real (i.e. Γ-invariant) function, ||/ι|| = 1 and
supp(/i) C I for some I G ̂ ζ . Define W G &(L2(Sι), Γ),

W = 2\h)(h\-1 (53)

and the automorphism ριfc = ρw of W(L2{SX), Γ).

Obviously, W is even pseudolocalized and ρι°c therefore, when restricted to *s&(Iζ),
localized in /.

Lemma 3.8. The automorphism ρι°c is inner in W(L2(Sι),Γ). In restriction to the
even algebra ^S(Iζ) it leads to

π o o β ^ S π , . (54)

Proof. One easily checks that ρw is implemented in W(L2(Sι),Γ) by the unitary
self-adjoint q(W) = y/ϊφQΐ), for all / e L2(Sι) we have

q{W)ψ{f)q(W) =
- 2{φ(h),
= 2(h,f)ψ(h)-ψ(f)
= φ(2(hj)h-f)
= Φ(Wf).

Thus ρw is implemented in πsNS by Q{W) = πsm(q(W)). Obviously we have
ά-ι(Q(U)) = -Q(U) and SNS - W*SNSW is Hubert Schmidt class. By Proposi-
tion 3.4 and Theorem 3.5 we conclude
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+ Λ Λ r^ _ —

which proves the lemma, q.e.d.
In the following we are searching for a localized endomorphism ρι°?2 which leads

to a representation being equivalent to τri/2. It turns out that the discussion becomes
much more complicated. First we fix our point ζ to be ζ = — 1, without loss of
generality. Further, we choose the localization region / to be /2,

so that the open complement I2 is divided by ζ into /_ and /+,

/ _ =

h =

-π < •<-§}•
- < 0 < π | .

The Hubert space L2(Sι) decomposes into a direct sum,

L2(Sι) = L2(I_) Θ L2(I2) Θ L2(I+).

By JPJ+, PJ_ we denote the projections on the subspaces L2(I+), L2(/_), respectively.

Define functions on 5 1 by

^2α

zeSι\i2 '

With

we then obtain two orthonormal bases of the subspace L2(I2) C L2(Sι).

Definition 3.9. We define1 Bogolίubov operators V, V e ^(L2(Sι), Γ) as follows:

V = (55)

n=l

n=l

(56)

feί ίΛβ endomorphisms of W(L2{Sλ), Γ) defined by $*2 = ρv

and

Obviously, V and V1 are odd pseudolocalized and ρι°?2 and σj0^ therefore, when

restricted to ^?(/ζ), localized in I2.

The definition of V was already suggested by Mack and Schomerus [24].
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3.2. Analysis ofρ]°?2 and σ]°?2. In this subsection we establish that πo o ριf?2 is unitarily

equivalent to ττi/2. Furthermore we identify the unitary equivalence class of πo o

Qlι/2Q
l\/2' ^ n e ̂ r s t s t e P *s ̂ e f°H°w mg :

Lemma 3.10. The following operators are Hubert Schmidt class:

V*SNSV-SR G β2(L2(S1)), (57)

VSmV*-SR e β2(L2(S1)), (58)

' * ' S R G &(L\S1)), (59)

SR G ML\SX)\ (60)

Because the proof is ugly work it is banished to the appendix. For drawing our first
conclusions of Lemma 3.10, we remember an estimate which was given by Powers
and St0rmer [26]: For positive operators A, B G J&(β&) the following inequality
holds:

μ i - β i | | | < | | A - B | | i , (61)

where for T G 38(1? (S1)) by | |T||i is denoted the trace norm

||r||!=tr((r*T)i),

and by | |T | | 2 the Hubert Schmidt norm

| |T | | 2 = (tr(T*T))i.

This estimate will be used to see that the operators F * S N S F and V/*S^sV/ differ
from their positive square roots only by Hubert Schmidt operators,

\\(V*SNSV)L2 - V*SmV\\2

2 < \\V*SmV - (

Since 1 — VV* is a rank one projection and therefore trace class, the right-hand side
is finite. Obviously, the same calculation runs for V. More easily one finds

\\si - J 1

It follows immediately from Lemma 3.10:

(V*SmV)i - Si G & ( L \ S 1 ) ) , (V'*SχsV')l -S*e βz(L2(S1)).

Applying Theorem 3.2 this yields ωγ*sNSv ~ ωR and thus

TΓSNS ° QV ^ 7 Γ 5 R ,

the same holds for ρy<. We have already discussed that πsR decomposes into two
inequivalent pseudo Fock representations. Using Theorem 3.3, the same is true for
π̂ Ns ° Qv and π5NS o ρv> since My = My = 1. Thus we have

πsNS o ρv = 7Γ+ Θ τr_ = π5NS o ρv,.

In restriction to the even algebra W(L2(Sι),Γ)+, the representations π+ and π_ be-
come equivalent and have to be identified with ττi/2 This means TΓJNS oρv = πg
and 7ΓJNS o QV, = π^Ns o ρv,. We have proven



Localized Endomorphisms of the Chiral Ising Model 281

Theorem 3.11. The representations of^&(Iζ) obey

π o o ^ ^ π i o ^ * τr1/2, (62)

πo o σ™2 =* π i ° σi°/2 *= τri/2 (63)

Let us now consider the squares Q\ = ρvi and £>y, = ρv,i.

Proposition 3.12. The representations of \A?(1\) obey

λ x * πoθπi, (64)

= π o θ π i . (65)

/ If we multiply the operator in relation (58) with V* from the left and with V
from the right we get

V*SRV - Sm e &(L2(S1)).

Since relation (57) holds we can replace SR by V * 5 N S F , this yields

V*V*SNSVV - SNS

 2 1

In the same way one obtains

V'*V'*SNSV'V - SNS e β2(L2(S1)).

Now the operators 1 - (VV)(VV)* and 1 - (V'V')(V'V'y are rank two projections,
so that we can again conclude

(V*V*SmVV)ϊ - SNS \ 1

and
(V*V'*SssV'V')i - SNS €

By using Theorem 3.2 we obtain for the states

Moreover, the kernel of V* is spanned by the Γ-invariant, normed vector

and the kernel of V* is spanned by eQ . Thus, ker(F*)2 (resp. ker(F7*)2) is spanned
by orthonormal vectors f^2) and Vf^2) (resp. e^2) and V'e^) i.e. M y 2 = M y / 2 = 2;
we conclude

π S N S ° Qv - πSNS θ 7Γ5NS - 7ΓSNS ° ^y/

by Theorem 3.3. In restriction to the even algebra, identified with Λ>(Iζ), this reads

ι \ θ TΓi o ^ 2 ^ 2 = π0 θ πi θ π0 θ πi,

π0 o σ\j2σ
ι^2 θ πi o σ ^ σ 1 ^ ^ π0 θ πi θ τr0 θ πi.

We have to assign the irreducible representations on the right-hand side to the
representations on the left. By Theorem 3.11 we find πo o ριf?2 = π\ o ριf?2 and

therefore πo o ρλγj2ρ
lγj2 = TΓI o Ql\/2^ι/2' Using the same argument, one obtains

π0 o σλη2σ
xη2 * πx o σ ^ σ 1 ^ , q.e.d.
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4. Extension to von Neumann Algebras.

In the DHR theory one usually works with local von Neumann algebras instead of
local C*-algebras. This formalism allows to discover intertwiners in the observable
algebra and this is crucial for the analysis of statistics and fusion. It is our aim to find
a description of the chiral Ising model as close as possible to the DHR formalism.
Therefore we have to extend our local C* -algebras ^ ( / ) , to their weak closures in
the vacuum representation.

4.1. The Net of Local von Neumann Algebras. For intervals / G $> with non-empty
open complement, we define local von Neumann algebras

By Mόbius covariance (some details are presented in the appendix), this defines a
so-called covariant precosheaf on the circle. In particular, we have Haag duality on
the circle [7, 9],

Y = M(Γ). (66)

Since the set of intervals {/ G β ,V φ 0} is not directed we cannot define a global
algebra as the C*-norm closure of the union of all local algebras. Following Fre-
denhagen, Rehren and Schroer [14], one could instead introduce the corresponding
universal algebra. But in our model it seems to be much more comfortable to define
a quasilocal algebra of the punctured circle. (The set j?ζ, Eq. (52), is directed.) This
works as follows. We fix again our point at infinity, without loss of generality, to be
ζ = - 1 and admit only intervals I G βζ. Then we define our algebra 21̂  of quasilocal
observables to be the norm closure of all such local von Neumann algebras,

= U M^

Now choose some interval / G βζ. Let us denote the von Neumann algebra generated
by all M(I0), Io e β'ζ, 70 Π / = 0 by Mζ(Γ). Obviously we have

Mζ(Γ) c M{ϊ).

We claim that equality holds, that means Haag duality holds also on the punctured
circle.

Lemma 4.1. We have Haag duality on the punctured circle. For I G j^ζ the following
relation holds:

M(IY = Mζ(Γ). (68)

Proof. We have to show ^Bζ(Γ) = ^B(I'). It is sufficient to show that each gen-
erator πo(Ψ(f)Ψ(g)), supp(/),supp(#) c / ; of ^B(Γ) is a weak limit point of a net
constructed out of elements in ^Bζ(If). Let /o G βζ, /o D / be an interval such
that IQ is a small neighborhood of ζ. Let χ0 be the characteristic function of Jo and
/o = XoΛ 9o = Xog. Since πo(ψ(fo)Ψ(go)) converges in C*-norm to 7ro(ψ(f)ψ(g)) by
inequality (32) if IQ shrinks to the point ζ it suffices to show that πo(ψ(fo)ψ(go)) is
such a limit point for all such Jo. Now let us denote the two connected components
of /' \ {ζ} by /+ and /_. Define χ± to be the characteristic functions of J±, and we
write f± = χ ± / 0 , g± = χ±g0. Then
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Clearly, the first two terms on the right hand side are elements of <Mζ(Γ). We show
that the third (then, by symmetry, also the fourth) is a weak limit point described
as above. Choose sequences {h^\n G N}, where /ι(±} G L2(Sι) are functions,
Hft^ll = 1, supp(/ι(±}) C l£\ and j£° G ̂  are intervals, 1^ d±Γ) i£, shrinking
to the point ζ. Then define for n G N

Zn = πoiΦih^Mh™)) G M{Γ).

By Mobius covariance of the vacuum sector (appendix), we can choose the hf±* such
that the Zn are related by Mobius transformations (dilations). For all n we have
| | Z n | | < 1. It follows that there exists a weakly convergent subnet { I α , a e L},
that means there is a function F : i —> N (ι a directed set) with the property that
Xa = ZF{OL) for all a e t9 and that for each n ' G N there is an a' G t such that a >- af

implies F(a) > n' [27]. The weak limit point of the net {Xa, a e t} in M(Γ) will
be denoted by X,

w- lim Xa = X.
Oί

For each I\ e βζ all elements R G M>(1\) commute with Zn for sufficiently large n,
thus [X, β] = 0. It follows

and, by irreducibility of the vacuum representation, X is a complex number, X = λl .
We have

λ - <i

by Mobius invariance of the vacuum. We claim that we can choose /ι+1} and h^ such
that λ φ 0. Recall the definition of the Hardy space

H2 = {f e L2(Sι) \ < e _ n , / ) = 0 , n = l , 2 , . . . } .

A Theorem of F. and M. Riesz (see e.g. [12], Th. 6.13) states that

/ G H2, f φ 0 = > /(z) φ 0 almost everywhere. (69)

For example, for a given non-zero function k G S'NS^ 2 (5' 1 ) we find that k1 G H2,
where k'(z) = z^k(z). So kf and hence /c cannot vanish on a set of non-zero measure.
Now we have

λ = (Ωo\Zx\Ωo} = ωoiψih^ψih^)) = (Γh(

+

ι\ S

Define k = 5NS/i(_!} for a given h^ as above. We find k φ 0, otherwise Γ/ι(_!} G

5 ' N S ^ 2 ( ^ 1 ) in contradiction to the fact that h^ and hence Γh^ vanishes outside il! }.
It follows k(z) φ 0 almost everywhere and hence

c =
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If we define, for instance, h^\z) = c~ϊχj{\)(z)k(z), where χ7d) denotes the charac-

teristic function of / j ^ then indeed λ = C2 ^ 0. So we can compute

= λ~ιwΊimπ0(ψ(f+)φ(g-))ZF(a)
a

= λ" 1 w- lim πo(ψ(f+)ψ(h{F(a))))πo(ψ(h(I(a)))ψ(g-)),

i.e. πo(ψ(f+)ψ(g-)) is indeed a weak limit point of a net of elements in ^Bζ(Γ), q.e.d.

4.2. Extension. Because we work on the punctured circle the vacuum representation
is faithful, i.e. πo acts faithfully on *Λ>(Iζ). Thus we are allowed to use the common
convention of identifying observables A with their vacuum representers τro(A). Passing
over to von Neumann algebras, we consider the vacuum representation acting as the
identity on <J%(/), and in the same fashion, we treat local C* -algebras *s€>(I) as
subalgebras of ^B(I), I G βζ. Now we have to check whether we can canonically
extend our representations π j and endomorphisms ρljc, J = | , 1, to the von Neumann
algebras *9&(I), I e βζ, and the global (quasilocal) C*-algebra 2lζ they generate.
Thus we are looking for isomorphisms

satisfying ftj(A) = πj(A) if A e ^ ( / ) , / G βζ, J = \, 1. This means exactly that
we have to check whether the representations π j are quasiequivalent to the identity
(vacuum representation) on local algebras

Theorem 4.2 (Local Normality). In restriction to local C*-algebras ̂ &(l\ I G j ^ ,
the representations πj are quasiequivalent to the vacuum representation τro = id,

πj U(/) « 7Γ0 U(i), / E βζ, J = -, 1. (70)

Proof. First we consider the case J = 1. We have to show that

We have already proven that π^NS = π^Ns o ρw on W(L2(Sι),Γ)+. We show that
π5Ns ° ^ ^ a n c^ πSNs' w n e n r e s t r i c t e ^ t 0 ^(L2{I),Γy, are unitarily equivalent (/ G

βζ). In W(L2(Sι),Γ), ρw is implemented by the unitary g(W) = y/ϊ'φQί). Choose

a real function h! G L2(Sι) such that ||/i'|| = 1 and supp(/ιθ c Jo for some Jo G j ^ ,

/0 Π / = 0 and set U = V2ψ(h'). Then ^(W)C/ is a unitary element of W{L2{Sι), Γ)+

and for x G W(L2{I), Γ)+ we have
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and therefore

which proves the statement. Now consider J = \. By the following Lemma 4.3 we
have quasiequivalence of πsNS and τrsR on W{I?(ΐ), Γ). In restriction to the even
subalgebra, the irreducible 7rsNS splits into πJN S θ π$m , and the two irreducible sub-
representations 7Γ+ and π_ of τrsR become equivalent to an irreducible representation
7r. Thus locally one obtains

where π corresponds to the representation πi/2. Having already established the local

equivalence of TΓJNS and π^Ns this proves the theorem, q.e.d.

Lemma 4.3. For I G j^ς we have the local quasiequivalence

/ We first claim that \ΩsNS) and \ΩsR) remain cyclic for 7rsNS(£^(Z/2(/), Γ)) and
π5 R (^(L 2 (/),Γ)), respectively. Denote by Pj the projection onto L2(I) C L2(Sι).
Then for πsNS the statement is a consequence (of the arguments in the proof) of
Araki's Lemma 4.8 in [1], because

(If k G SNSL
2(Sι), k φ 0, then k\z) = z^k(z) is a function in H2 and hence again

by Eq. (69) k and £/ cannot vanish in the whole interval /.) An analogous argument
runs for πsR, because it is a direct sum of inequivalent pseudo Fock representations
π+ and τr_ which restrict to Fock representations (see [1] for details) πpR of
ΓPRΓ)L2(Sι),Γ) each, where

π=l

is a basis projection of L^S 1 ) = (PR + Γ P R Γ ) L 2 ( 5 1 ) . If PJ0 ) denotes the projection
onto L§(/) = I/^.S'1) Π L2(/) one finds again

because we have PJ0) = P/ — (eo,P/eo)~1P/|eo)(eo|P/ and thus a function k G
(l-PJ 0 ) )L 2

) (5 1 ) is constant in /, k(z) = c, z G / and c G C. On the other hand, for k G
P R L 2 , ^ 1 ) we find Γk-ce H2. Now ΓA:-c vanishes in /, so it follows by Eq. (69)
that Γk—c = 0, i.e. k is constant on the whole circle, k = c. But we have (eo, k) =0 for
k G P R L 2 ^ 1 ) and hence k = 0. So we conclude that the GNS vector \ΩPR) remains
cyclic for π P R (^(L 2 (/) ,Γ)) , thus vectors \Ω±) = \ΩPR) for π ± ( ^ ( L 2 ( / ) , Γ ) ) . By
inequivalence of π+ and τr_, the GNS vector \ΩsR) = 2~ϊ(\Ω+) 0 \Ω-)) remains
cyclic for 7Γ£R(£P(L2(/),P)). Thus, for proving the lemma, we have to show that
states ωsm and ωsR are quasiequivalent on W(L2(I), Γ). We have to show
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Using the inequality (61) it is sufficient to show

We use the parameterization z - elφ, —π<φ<πofSι. Recall that Hubert Schmidt
operators A G β^{L2{Sx^) can be written as square integrable kernels A(φ,φ'). For
instance, a rank-one-projection |e r)(e r | has kernel eιr(Φ-Φ'\ For (small) e > 0 define
operators in 5 ^ , S£° G β^(L2(S1)) by kernels

n=0

and
/ 1 1

—n(iφ—\φ +ε)
1 p—(iφ—Ίφ f +ε) O

Note that e regularizes the singularities for φ — φ1 = 0, ±2ττ. Using Cauchy's integral

formula, it is easy to check that for r , 5 G ^ + | ,

( \ [ άZ f ft?1 7~r~2 7.lS+ϊ

lim {er,S^les) = lim φ -—r- Φ— N ^ ^ N S ^ / - ^Jsx2mzJs.2mz> 1 - ^ e -

lim e χ o εseδr,s r, s < 0 ,

0 otherwise = ( e

Because e s e < 1 for s < 0 this result can be generalized to

lim (f,S$g) = (f,SNSg)

for arbitrary /, g e L2(Sι) by an argument of bounded convergence. So we have weak
convergence w-lime\^0 S^l = £N S. In an analogous way one obtains w-lim^o £^e) =
5R. Thus the difference Δ(e) = S(^ - S^s with kernel

converges weakly to Δ = SR - 5Ns We have to show that X = PiAPi is trace
class. The operator P/ acts as multiplication with the characteristic function χi(φ)
corresponding to z = elφ G /. Now X(e) = PJΔ^PI, converging weakly to X, has
kernel

and is no more singular for e \ 0. Hence

lim (/, X^g) = Γ ψ Γ *f JW)X(e=°\Φ, Φ')9ieφ>), f,9 € L2(Sι),
e\° J-π

 2 7 Γ J-π 2π

by the theorem of bounded convergence. It follows X - X^=^> e β^{L2{S1)). Let
χi be a smooth function on [—π, π] which satisfies χi(φ) = 1 for z = elφ G / and
vanishes in a neighborhood of φ = ±π. We define
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X(Φ, Φ') = Xi(Φ) (- \-—J: ~ I) XdΦ')

such that X = PIXPI and hence

Since X(φ, φf) is a smooth function in φ and φ' it has fast decreasing Fourier coef-
ficients which coincide with matrix elements ( e n , l e m ) , n,m G 7L. This proves the
statement | |X||i < oo, q.e.d.

We have proven local quasiequivalence of our representations πo, π\/2 and π\.
Thus we have an extension to local von Neumann algebras &(I) and to the quasilocal
algebra 2lζ they generate. By unitary equivalence ρψ = π j on ^?(/ζ), i.e. there are
unitaries Uj : J ^ o -> <$&j satisfying ffi(A) = Ujιπj(A)Uj for all A G Λ>(I) and
all / G βζ9 we have an extension of ρljc to 2lζ, too, J = | , 1. These extensions,
denoted by the same symbols, fulfill

(/ denotes the localization region) and also

ρf(M(I0)) c Jg(/0); Jo G ̂ c , / C Jo,

because these endomoφhisms satisfy the corresponding relations on the underlying
C*-algebras *J&(I\) and ^ ( J o ) . We have established that our endomoφhisms ρψ,
J = -I}, 1, are well-defined localized endomoφhisms in the common sense. In addition,
these endomoφhisms are transportable. This follows because the precosheaf {^g(/)}
is Mobius covariant. Thus 2lζ is covariant with respect to the subgroup of Mδbius
transformations leaving ζ, the point at infinity, invariant.

4.3. Fusion Rules of Localized Endomorphisms. The main advantage of working with
local von Neumann algebras is that one can manifestly prove fusion rules in terms of
equivalence classes of localized endomoφhisms. Let ρa and ρ^ be endomoφhisms of
2lζ localized in intervals Ia,h G βζ, respectively. Then there is an interval / G βζ,
JαU Jb C /, such that ρa and ρ^ are localized in /. Suppose that ρa = ρ&, i.e. that there
is a unitary U G ̂ ( J ^ o ) such that ρa(A) = U*ρb(A)U for all A G 2lζ. Exploiting
Haag duality one finds U G *9&(I), i.e. U G 2lζ. This is an important tool which
enables to derive fusion rules in the algebraic framework: If also ρa(A) = U*§b(A)U,
A e 2tζ, for localized endomoφhisms ρa>ρb then ρaρa = ρ^ρb, realized by the
well-defined unitary Qb(U)U. So we can deduce fusion rules in terms of equivalence
classes by computing it for some special representatives. Obviously, this procedure
fails for global endomoφhisms ρj, J = ^, 1, of ^ ^ * v by two reasons: The first one
is that ^ ^ i V is generated by local C*-algebras. But local intertwiners may lie only in
their weak closures; there is a rather small number of endomoφhisms which are inner
equivalent in the C*-algebras. The second reason is that the vacuum representation
does not act faithfully on ^ ^ [ v . In the vacuum representation, too much information
gets lost. For example, the equivalence class of π 0 o ρι/2 does not depend on the
isometry V[,2 at all but the representation π 0 o ρ\,2 does. Counterexamples can be
constructed; there is, for instance, an endomoφhism μ\j2 such that πo o μxj2 =
πo o ρ\j2, but πo o μ2

χ ,2 ψ πo o ρ*,2 as representations of ^ ^ v [5].
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It is no problem to compute the fusion rules for our special examples of localized
endomorphisms, we just have to summarize some of our previous results. Proposition
3.12 gives us the first fusion rule, we have established

We obtain the second fusion rule by the fact that π\ o ρ{°?2 = πχ/2 (Theorem 3.11).

Hence we conclude
^ λ η S 7Γi o ρ^ 2 3ί π 1 / 2 .

Since ρ1™ and ρι°?2 commute if we choose the localization region of ρ]°c disjoint to

that of ρι°?2 we also obtain
_ _ Joe IOC r^j ^

^0 ° 01/201 = πl/2

Trivially, the fact that (ρι°c)2 = id leads us to the third fusion rule

π 0 o ρ^ρY * π 0 .

Denoting by ρo the identity endomoφhism (everywhere localized) and by [ρj] the
equivalence class of localized endomoφhisms being unitarily equivalent to ρljc in the
vacuum representation, we summarize

Theorem 4.4 (Fusion rules of localized endomorphisms).

[0i/2] = [Qol + lQil (72)

[01/20l] = [0101/2] = [01/2], (73)

[0?] = [0o], (74)

i.e. the localized endomoφhisms obey the Ising fusion rules.

4.4. Statistics Operator and Left Inverse. According to the general theory of super-
selection sectors [11, 13, 18], we expect that for each endomoφhism ρ which is
localized in some interval / G β^ζ there exists a unitary ερ £ ^B(I) which commutes
with 2

and fulfills

Therefore the elements n = ρι~ι(ερ), i = 1,2,..., satisfy the Artin relations and
determine a representation of the braid group B^ [11, 13]. The statistics operator is
given by the formula

(76)

where U is unitary such that the (equivalent) endomoφhism ρ, defined by

is localized in some interval /o G ̂ , /o C /'. The statistics operator is independent
of the special choice of ρ as far as Io varies in one of the two connected components
of /' \ {£} but it may depend on the fact whether Io lies in the left or the right
complement of / with respect to our "point at infinity" ζ. The computation of ε6 is
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straightforward for ρ = ριfc. Let ρ be induced by a real function h G L2(Sι) with
support in some interval /, \\h\\2 = 1, as described in Definition 3.7. Analogously, let
ρ be induced by a real function ho, \\ho\\ = 1, with supp(/io) C Jo, Jo Π / = 0. Since
these endomorphisms are unitarily implemented we find

U = 2ψ(ho)ψ(h), U~ι = 2ψ(h)ψ(h0)

and

= 2ψ(-ho)ψ(h) = -U

so that

εβ = -l

expressing nothing but anticommutativity of Majorana fields. We now want to con-
struct the statistics operator εσ for our localized endomorphism σ = σι°?2. It seems to
be very difficult to do that by the formula (76) but to be much easier to determine
it by its properties. The statistics operator commutes with σ2(2lζ). The commutant
σ2(QίζY is spanned by elements 1, Π where the projection Π is defined by

Π = V(e+)V(e_), e± = - ^ (e^2) ± i ^ e

(We remark that the orthonormal vectors e± span the kernel of (V'V'T and satisfy
e+ = Γe-.) This leads us to the ansatz

Now εσ is unitary,

Therefore 7 + 7 + 77 = 0, | α | 2 = 1, we write a = e i ω, ω real. The statistics operator
satisfies Eq. (75); we exclude the case 7 = 0 and find

0 = z-^Ί-\εσσ{εσ)εσ-σ(εσ)εσσ(εσ))

= (7 + l)(iJ - σ(i7)) + 72(iJσ(JZ)7J - σ(Π)Πσ(Π)).

It is not hard to see that Π and σ(J7) can be written in the following way:

Π = l-

The fields obey

and

{VC '̂e^), V(e<2))} = W(y')2eί,2)),M2))} = {^((V)2^), φ(V'e^)} = 0.

Using these relations one finds2

2 With the identification En = σn~ι{Π), n = 1,2,..., this is nothing else but the Temperley-Lieb-Jones
algebra relation

EnEn±ιEn = d{σ)~ En

with statistical dimension d(σ) = y/2.



290 J. Bockenhauer

Πσ(Π)Π = -77, σ(Π)Πσ(Π) = -σ(77),

so that we obtain

Since Π - σ(Π) φ 0 we have

7 2 + 27 + 2 = 0 4=> 7 = - l ± i ,

and therefore
εσ = eiω(l - (1 ± Ϊ)Π).

According to the general theory [11, 13, 18], we expect that there exists also a left
inverse Φσ to our endomorphism σ such that Φσoσ = id. The left inverse is a unital,
positive mapping from 2lζ to 2lζ which satisfies Φσ(^B(I)) C ^B(I) if / D I2. Since
σ is not an automorphism Φσ does in general not respect products but

Φσ(σ(A)Bσ(C)) = AΦσ(B)C

holds for A, B,C e %ζ. In the following we want to derive an explicit description
for Φσ. We introduce an arbitrary orthonormal basis {vn,n G Z,} of L2(Sι) with
VQ = βg2) and Γvn = υ-n. It suffices to consider elements A of %Q which are sums of
monomials X of the form

X = Φ(vn])ψ(vn2) - ψ(vn2K).

Using the anticommutation relations,

in particular ψ(υo)2 = \\, we can write every monomial X such that ψ(vo) appears
at most once. If every monomial X is written in that way we define Φσ as the linear
mapping which preserves the unit and fulfills

Φσ(X) = ψ(Vf*vnι)ψ(V'*vn2) ψ(V'*υn2K).

It is no problem to check that Φσ is well defined and has the required properties. The
general theory says

d(σ)

where ωσ is a phase factor ("statistical phase") and the positive real number d(σ) is
called statistical dimension. Since σ = σι°?2 belongs to the sector [ρ\/2] we expect that

d(σ) = A/2. Using our formula for Φσ we find (respecting that V'e0 is orthogonal to
eo )

Φσ(Π) = Φ

We conclude

in agreement with d(σ) = y/ϊ. At the end we find
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ε σ = ^ ( ( l ± i ) l τ 2 i 7 7 ) . (77)

By the spin and statistics theorem [14] we expect that the statistical phase is given
by ωσ = e 2 π l s , where s is the infimum of the spectrum of the conformal energy
operator LQ in the representation τro o σ. Since σ belongs to the sector [£1/2] we

have s = ^ and therefore ωσ = e1^. However, we did not succeed in computing ωσ

directly. Moreover, we observe the freedom to choose the ±-sign in our formula for
the statistics operator εσ. The change of this sign corresponds to the replacement of
εσ by ε*. The fact that εσ φ ε* goes back to the non-trivial spacetime topology which
is the origin of braid statistics. At the end we remark that the same calculations we
have done for σ = σι°?2 run for the endomorphism ρι^?2\ we just have to replace V

by V and ef by /<2).

A. Appendix: Mobius Covariance of the Vacuum Sector

We will briefly discuss Mobius covariance here. Related topics can be found in the
book of Lang [21]. The Mobius symmetry on the circle Sι is given by the group
Mob = SU(l,l)/Z 2 , where

| α | 2 - l / ? | 2 =S U ( 1 , 1 ) = J 0 = l p Z. 1 G G L 2 ( C )

Its action on the circle is

az-~β

Each element g G SU(1,1) can be decomposed in the product of a rotation r(t) and
a transformation g' = r(t)~ιg leaving the point z = — 1 invariant,

9 = r(t)g>, r(t)=(e~J j j ) , t e ϊ , g' = ( j ,

such that (pJ + β')(a' + β')~x = 1. Since r(t + 2π) = -r(t) we can determine - 2 π <
t <2π uniquely by the additional requirement Re(α') > 0. Then a representation U
of SU(1,1) in our Hubert space of test functions L2(Sι) is defined by

(78)zΓha + βzΓf (
\βz +

where for z = tlφ, —π < φ < π,

e(g; z) - — sign(ί — π — φ) sign(£ + π — φ),

and sign(x) = 1 if x > 0, sign(x) = — 1 if_x < 0. We observe that e(g\ z) is discontin-
uous at z - - 1 and z - g{-\) - - ( α + β)(a + β)~ι. Up to this e-factor, Eq. (78) is
a well-known definition of a representation of SU(1,1). So it remains to be checked
that

ϊιz) = e(gιg2;z).



292 J. Bockenhauer

Since both sides have their discontinuities at z = — 1 and z = g\g2(—l) they can
differ only by a global sign. But this possibility is easily excluded by arguments of
L2-continuity in g. Moreover, by computing (U(g)er, U(g)es) = δr^s for r, s G 7L + \
(NS-base) we can also check that U is unitary,

(U(g)er,U(g)es) = ώ ~^-{a+^z)~\a + βz)'1 ( ^ ^ )

= - ί / άz
2πi Js\

(r-s)! άzr-

s > r
s_χ _

-U) β_

by Cauchy's integral formula, respecting that \a\2 > \β\2 since \a\2 — |/3|2 = 1. Since
the prefactor on the right-hand side in Eq. (78) is real we observe [U(g), Γ] = 0 and
hence each U(g), g e SU(1,1) induces a Bogoliubov automorphism ag = ρu(9) of
W{l?(Sx),Γ\ Hence SU(1,1) is represented by automorphisms of W{L2{Sι),Γ\
and this restricts to a representation of Mob by automoφhisms of W(L2(Sι), Γ)+. In
order to establish Mobius invariance of the vacuum state and hence covariance of the
vacuum sector we show that

i.e. that U(g) respects the polarization of L2(Sι) induced by SNS It is sufficient to
show that

(e_ r , U(g)e8) = 0 , r , s G M 0 + J , g G SU(1,1).

The functions er(z), r G Έ + \ are smooth on Sι except at their cut at z = — 1.
The prefactor e(g; z) in Eq. (78) achieves that (U(g)er)(z) remains a smooth function
except at z = —1, i.e. that the cut is not transported to #(—1). Hence we have

where all the half-odd integer powers are to be taken in the same branch with cut at
z = — 1. So we can compute as follows:

<e_r,t%)eβ) = ±ί ~zr(az + β)-hhά + βz)-i(^ϊS

JS\ 2πιz \βz

1
= ±—- φ άz zr~Haz + ~β)s-i(a + βz)~s-i =0,

2πi Jgi

again by Cauchy's formula, respecting \a\2 > \β\2 and that r,s are positive half-odd
integers here.
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B. Appendix: The Proof of Lemma 5.3

An essential fact we use for the proof of Lemma 3.10 is presented in the following

Lemma B.I. The difference of the two odd pseudolocalized Bogoliubov operators,
given in Definition 3.9 is Hilbert Schmidt class,

V-V eβ2(L2(S1)).

Proof Since 1 — P 0

( 2 ) is Hilbert Schmidt class, where

(79)

= Ph

n=\

it is equivalent to prove

= \\ltf\V-Vt)lf>\\l<oo.

We remember that the square of the Hilbert Schmidt norm is the sum over the squares
of all matrix elements in any Hilbert space basis. Obviously, the Bogoliubov operators
V and V differ only on the subspace L2(I2) C L2(Sι). We compute

e(2))

n=\ m=\

oo —oo
+Σ Σ

71=1 m=—1

— oo oo

n=—\ m=l
— o o — o o

Σ

J2)
τ-V

„ , 6

n=— 1 ra=— 1

Since (e(2), i, e^}) = (e£\ e ( 2 ) j) the first and the fourth summation vanishes, so that

one finds by substituting to positive summation indices

oo oo

- ΣΣ
n-\ m=\

n=l m=l
oo oo

e ( 2 )

e

Λ2)\

Λ2)\
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we used

puted,

^ n + i , e^}) = (e(£>_i, e
(_?m). The remaining matrix elements are easily com-

jϊ) p(2) \ _ 9
2π

_ , (

It follows

< oo, q.e.d.

Now we can start proving Lemma 3.10. We introduce the following notations:

B = V*SNSV-SR,

PQ = |e_i)(e
oo

Pi = 5Z|e_2
n=\

oo

Ie2n+l)(β2n+l|,

•P4 =

oo

n=l
oo

n=l

such that we find

Pi = 1, = P2Γ, Γ P 3 =

At first we have to show, that ||B||2 < 00. Since Po is Hubert Schmidt class it is
equivalent to prove that

<

This will be done by estimating each term \\PiBPj\\2 for its own. Since B = B* we
find

so that we are allowed to treat only those ten of sixteen terms with i < j . Further, by

ΓBΓ = V*ΓSmΓV - ΓSRΓ = V*(l - SmW - (1 - SR) = -B

we find the identity
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| |P iBPi | | 2 = \\ΓP1BPιΓ\\2 = \\P2ΓBΓP2\\2 = \\P2BP2\\2,

and in the same way

\\P3BP3\\2 = \\P4BP4\\2, WPiBPsh = \\PiBP42, WPiBPsh = \\P2BP4\\2.

In each term on the right-hand side one of the projections P2 or P4 appears, but since

PiSR = SRP2 = P4SR = SRPΛ = 0

we have only to prove the finiteness of the six norms

\\P2V*SNSVP2\\2, \\PlV*StisVP2h, \\PιV*SNSVP4\\2,

\\P2V*SmVP4\\2, \\P3V*SmVP4\\2, \\P4V*SmVP4\\2,

and, since V - V is Hubert Schmidt class, this is equivalent to prove the finiteness
of

\\P2V'*SmV'P2\\2, \\PχV'*SmV'P2\\2, \\PχV'*SmVP4\\2,

\\P2V'*SmVP4\\2, \\PiV*SmVP4\\2,

At first we consider

n=\ ?7i=l

oo oo

_ ( e _ r , ^ ' e 2 n + 1 > ( e _ r , y ' e 2 m + 1 ;
n=\ m=\

= ΣΣ

Since (e _,, β2n+i) = 2 2<5n,m the action of V on odd basis vectors e2n+i is simple,

one reads by definition

ί e2n+iθ) z G I-

ie2n+2(z) zel2 neE.
-e2n+i(z) z G 1+

This leads us to
(e-r,V'e2n+i) =

= Γf

 ei(2n+l+r)φ#

7-π ^ 2π

1

π V 2 / (2n + 1 + r)(2n + 2 + r)

Substituting to integer summation indices we obtain

2
/ZΛ 00 00 / 00 \

_ 6 4 V V I Vrτ(1) I
n=l m=\ \ 1=0 /

where
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σ,
.(1) 1

2/ + 5)(4m + 21 + 3)(4ra + 2/ + 5)'

We put off the estimate of this summation for some time and pass over to the next
sum,

Σ (e_r, y/e_2n-i

n=\ m=\

The action of V on vectors e_2n-i is

e-2n-\(z) z e I-

() zel2

-e-2n-i(z) z e 1+

This leads us to

Ί(-\)n ,rπ\
3_r, Ve_2n-i> = sin —-

7Γ V 2 / (2n+l -r)(2n + 2 - r ) '

so that

where

64
00 00 / 00

2 σ
σ n,m,l

(2) _
n,m,l

n=l m=l \ Z=0

1

(An -21 + l)(4n - 21 + 3)(4ra + 2/ + 3)(4m + 2/ + 5)

Analogously,

n=l m=

The action of F on basis vectors e 2 m is

/_

-e2n(z) z e 1+

This leads to

so that

cos

64
00 00 / 00

where

τ(3)

n=\ m=\ \ 1=0

(-i)'
(4n - 2? + l)(4n - 2Z + 3)(4m + 2/ + l)(4m + 2/ + 3)'
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Further,

n=l m=\

e - r , V Γ / e 2 n+i)(e- r , Ve2rι

64 oo oo / oo

n=l m=l \ 1=0

where

τ<4> -

3 ) ( 4 n + 21 + 5)(4m + 2/ + l)(4ra + 2/ + 3)'

In the same way we compute

(e_ r ,

n=\ m=l

The action of V on basis vectors e_ 2 n is

(Ve-2n)(z) = { -ie-2n-i(z)
-e_ 2 n (»

G h n G N.

This leads us to

so that

where

ΎJ\ΎJ (2n-r)(2n-r

64 oo oo / oo

n=\ m=l

σ

1

( 4 n _ 2/ - l)(4n - 21 + l)(4m + 2/ + l)(4m + 2/ + 3)'

Finally,

64 oo oo / oo

n=\ m=\

\ 2

Σ σn]m,l '
n=l ra=l \ /=0

1
where

σ n ' m ' z " (4n + 2/ + l)(4n + 2ί + 3)(4ra + 21 + l)(4m + 21 + 3)"

Next, we turn to the discussion of the operator
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c = vsmv* - sR.

For showing that ||C||2 < oo we prove that

||(1 - PO)C(1 - Po)||2 =

Because C = C* we have again only to treat those terms with i < j . Further, by

ΓCΓ = V(l - Sm)V* - (1 - SR) = (VV* -D-C,

and since 1 — VV* is a rank one projection (i.e. \\VV* — 11|2 = 1), we find

\\PiCPyh =

In the same way one obtains

IIP3CP3II2 < \\P4CP4h + 1, HP2CP3II2 < | | P i C P 4 | | 2 + 1,

and

Again, SR is annihilated by P2 or PΔ, in these terms. Using once more that V — V is
Hubert Schmidt class, we conclude that it is sufficient to prove the finiteness of the
following six terms:

Now we have to work again,

_ r, V*e2m+ι)

n=l m=\

The action of V* on basis vectors e2n+ι is

ί e2n+ι(z)
-ie2n(z)
-e2n+ι(z)

This leads us to

z el-
z e h
z e 1+

so that

where

64
00 00 / 00

n=l m=\ \ 1=0
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i 7 ) 1

+ 21 + i ) ( 4 n + 21 + 3)(4m + 21 + l)(4m + 2ί + 3)'

Further,

_ (e_ r , F*e_2n-i)(e- r , Vr*e2m+i)

n = l 77i=l

The action of F* on basis vectors e_2n-i is

e-2n-i(z) z e I-

(Vr*e_2n-i)(^) = < ie-2n(^) ^ G I 2 n G N.
) ^ G /+

This leads us to

(e_r, l/*e_2n-i) = sin (^)
π \ 2 /

(2n — r)(2n — r + 1)

so that

where

Further,

oo oo / oo

n=l m=l \ 1=0

1

- 2/ - l)(4n - 2/ + l)(4m + 2/ + l)(4m + 2/ + 3)'

n=\ 77i=l

The action of V* on basis vectors e 2 n is

( e2nθ) 2; G /_

- i e 2 n _ i 0 ) z G /2

-e2n(z) z ehThis leads us to

(e_ r , V' e2n) = cos (i) 1

so that

where

oo oo / oo

2 / (2π + r)(2n •

\ 2

- 1 ) '

n=\ m=l

σ
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Further,

Σw =
n=\ m=\

{e-r,V*e2n+i)(e^r,V'*e2rι

64
OO OO / OO

- = ΣΣ Σ-C,
n=\ m=\ \ 1=0

where

Further,

σ,
(10)
n,m,l

(-i)'
(An + 21 + l)(4n + 21 + 3)(4m + 21- l )(4m + 2Z + 1) '

n=l m=l
Σ

The action of V'* on basis vectors e_2n is

e_2n(^)

(y'*e-2n)(z)={ ie_2n

This leads us to

-e-2n(z)

i(-Dn

z e I-
z G h
Z eh

- cos
1

2 / (2n - r)(2n - r - 1)'

so that

where

Finally,

64 oo oo / oo

σ
(11) _
n,m,l

n=l m=\ \ 1=0

1

(4n - 21 - 3)(4n - 2/ - l)(4m + 2/ - l)(4m + 2/ + 1)'

Σl2 =

64
π̂ 1

OO OO / OO

n=l ra=l

\ 2

(e-r,V>*e2n)(e-r,V'e2m)

( 1 2 )

n=l m=l \ Z=0

where
τd2) _ 1

(4n + 2/ - l)(4n + 21 + l)(4ra + 2/ - l)(4m + 21
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We have the following estimate of absolute values of the σ^ }

m ι for j = 1,4,6,7,10,12:

σn]mtι > \σ%mM2\> j = 4,6,7,10,12, n , m G N , / G % (80)

If we omit in our summations I = 0 and / = 1 terms, this corresponds to the replace-
ment of SNS by

Since the difference SNS—S'NS is obviously Hubert Schmidt class, this has no influence
of the property of Σj to be finite or infinite. Hence the estimate (80) tells us that for
the proof of Σj < oo, j = 1,4,6,7,10,12, it is sufficient to prove it for j = 1. We
compute

s Λ

64

OO / OO

n,7n=l \ Z=0
+ 2/ + 3)(4n + 21 + 5)(4ra + 2/ + 3)(4m + 2Z + 5)

oo / oo

1 °° 1
< — V —

96 ^ n 2

n=l

576'

dl

Z v—\ / 1

is finite. On the other hand we find for n, m G N, / G No,

σn,m,l\

τ ( 1 1 ) Iσn,m,l\

(2)
n,m

τ ( 8 )

I (2) I I (11)

Iσn,m,/+2I' \σn,m,l
(3)
n,m
(9)

(11)
σn,m,

(5)

By the same argument, for the proof of Σj < oo, j = 2,3,5,8,9,11, it is sufficient
to prove that

\ 2
64 oo oo / oo

< CXO.

n=l m=l \ Z=0

For this puφose, we decompose the sum over the index / into three parts,
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/ „ σn,m,l

oo 2n-2

/=0 l=2n

2n—2 oo

n,m,ι n,m,zn—i / _j
1=0 l=2n

We begin with estimating the first part. By reversing the order of summation we
obtain

2n-2
JH) _
σn,m,l ~

1=0

2n-2

j ^ (21 + 1)(2Z + 3)(4m + 4n - 21 - 3)(4m + 4n - 2/ - 5)

2n+2m-3 1

n+m—2

= Σ
1=0

n+m—2

= 2 y

4

(2/ + 1

(21 + I) 2

2n+2m—3

l=n+m— 1

•2

(4n

(2Γ

n + 4 m

1

+ 4 m —

f 1)2(4?7

- 2 /

21-

1

- 5 ) 2

5)2

a - 21 - 5)

1=0 x

2 r+m~2 dlΊ'
Jo

^ + 4 m - 5 ) 2 Jo (2/ + l)2(4n + 4 m - 2 / - 5 ) 2

n2n+2m—3 J ^

(An + Am — 5) 2 Jx x2(An + Am — A — x)2

2 1

(An + Am- 5)2 (An + Am- A)2(2n + 2m -

1

(4n + 4m — 4)2(4n + 4m - 5)

1

(4 n + 4m - 4)(2n + 2m - 3)(2π + 2m - 1)

2 /2n + 2 m - l
In(An + 4m - 4)(4n + 4m — 5) (An + 4m — 4)3 \ 2n + 2m — 3

2

(4n + 4m — 4)3

6

ln(4n + 4m — 5)

(2n + 2m - 3)2"

The last estimate is very rough but correct. In our computation we have used the fact
that in an area of strict decrease a summation can be estimated by an integral plus
the first summand. Next we consider the only negative term,
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nn 1 1
n,m,2n l (4n + 4m — 3)(4n + 4m — 1) (2n + 2m — 3 ) 2 '

and finally the remaining summation,

l=2n

We now can

11

conclude

π n=\

1=0 v M + 1)(

(An + 4m -

1

(4n +

(2n +

that

ra=l N

1

2m -

X2n +

21 +

I) 2

I) 2

3) 2 '

8

2m

3)(4n + 4

oo

1 ^ ( 2 ^ +

2

D(2/

40S

+ 3)

fc=0

^4n + 4 m + 2/ + l)

Jk+1

2k + \y ^°°'

the proof of Lemma 3.10 is complete, q.e.d.
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