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Abstract: We construct infinite-dimensional Wiener processes with interactions by
constructing specific quasi-regular Dirichlet forms. Our assumptions are very mild;
accordingly, our results can be applied to singular interactions such as hard core
potentials, Lennard-Jones type potentials, and Dyson's model. We construct non-
equilibrium dynamics.

0. Introduction

Infinite-dimensional Wiener processes with interactions are diffusion processes with
state space (1R^)N (or Θ, where Θ is the set of all locally finite configurations
of particles on R^) with interactions. When interactions come from a smooth pair
potential Φ and martingale terms have constant coefficients 1, these processes are
described by the following SDE;

oo 1

dXι

t=dB\- Σ -VΦ{Xι

t-X{)ά ( l ί / < o o ) , (0.1)
ι

where B\ (1 ^ i < oo) are independent Brownian motion on IR ,̂ and Φ : IR^ —> JR.
The associated (9-valued process is

oo

X; = Σ,δxι (δa is the delta measure at a.) (0.2)
ί = l '

The study of (0.1) has been initiated by Lang [Lai,2]. He solved (0.1) under
suitable conditions on interactions for a set of initial configurations. Shiga [Sh]
completed a gap of Lang's proof. Initial configurations for which (0.1) is solved
were specified by Lippner [Li] and Rost [Ro] for d = 1, and Fritz [F] for d :§ 4.

Since Lang used SDE approach, a smoothness of Φ was crucial. He assumed:

(L.I) Φ e C^IR^), that is, Φ is finite range and of class C3.
(L.2) Φ is super stable in the sense of Ruelle.

As a consequence some interesting examples were excluded.
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The purpose of this paper is to construct infinite-dimensional Wiener processes
with interactions by constructing specific quasi-regular Dirichlet forms on a space Θ
of configurations of infinitely many particles. The forms are governed by probability
measures μ on Θ representing interactions of particles. We restrict our attention to
<9-valued processes like (0.2). One might construct labeled particle dynamics (0.1)
from <9-valued processes (0.2) as functionals of JLt. We will not pursue this here.

The advantage of our approach is the following: 1) Our assumptions are quite
mild and weaker than Lang's assumptions. In our situation VΦ may be distribu-
tions. In particular our results can be applied to singular interactions such as hard
core potentials, Lennard-Jones 6—12 potentials, and Dyson's model [Sp2]. 2) Non-
equilibrium dynamics can be constructed in the sense that we construct a family of
diffusion measures {Ψβ}βeβ starting from each θ G Θ\ however, the uniqueness of
diffusion {Ψe}θeβ fc>r a given equilibrium state μ holds only except for a set Jίμ

of capacity zero. See also Remark (4) (stated after Theorem 3) about a remaining
problem of identification in Lang's case.

We begin with some notations. A Radon measure Θ is called a locally finite con-
figuration if θ is of the form θ = J2n^xn- Here {xn} is a finite or infinite sequence
in R^ with no cluster points and δa is the delta measure at a. By convention we
regard zero measure as a configuration. Let Θ denote the set of all such configura-
tions in R^. We equip Θ with the vague topology. Θ is a Polish space with this
topology. (See Prop. 3.17 in [Re]). Throughout this paper μ will denote a prob-
ability measure on (<9, $B(Θ)). Of course we are interested in the case such that
μ({θ; #(R^) = oo}) = 1. We do not a priori assume μ is a Gibbs measure with a
potential Φ.

We introduce a bilinear form related to infinite dynamics (0.2): Let Θι =

{θ e Θ; θ(W.d) = i} for I G N U {OO}. Let R(/> = Widi for i e N, and R ( o o ) =

{(*/)i^z<oo; (*/)i^/<oo have no cluster points in R^}. A map x'': ΘιΓ —• R ( / )

(1 S i ύ oo) is called a R(/>-coordinate of θ if θ = ΣΪj=\δχJ\θ) f o r a 1 1 θ € Θ^

where xz(0) = (x\θ),...,x*(θ)). Let for 1 ^ / ^ oo,

Here Vy = {^-)\^k^d a n d means the inner product on R^. Let ^ ^ be the set

of all local, smooth functions on Θ given by (1.2) in Sect. 1. For f, g e Θλ™ we
set D[f, g] : Θ -> R by

D[f,g](0) - mfJWm for θeΘ\ 1 ^ ί ^ oo

= 0 for θ e Θ° .

Here x1 is a R(/) -coordinate, and /* is the permutation invariant function on R(z)

such that f(0) = fi^iθ)) for all θ e θ\ We set tf similarly. Note that such f
and gι are unique for each / (1 ^ / ^ oo) and D is well defined. We set

rf(f,g) = /D[f,g](0)φ, ^oo = {f e β% ΠL2(Θ,μ);^(f,f) < oo} . (0.3)
Θ

Our infinite dynamics are diffusion associated with (<f,^oo) on I?(Θ,μ). If one
takes μ as the Poisson random measure on R^ whose intensity measure is Lebesgue
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measure, then ((<ί,^0 O),L2(6),μ)) is associated with IB, = Y^xSBi9 where C#J)/<EN

are infinite-many, independent copies of Brownian motion.
Let Qr = {x G Ί&d; \x\ ^ r}. Let Qr be the i times product of Qr. We set

&r = {θe 6>; θ(Qr) = i} .

We note θ = Σ)Ξo β r W e d e f i n e π r : <9 -* <9 by π r(0) = 0( Π β r ) . A function
x : Θ}. —> gj. is called a βj.-coordinate (or a coordinate on Θj.) of 0 if

W ) , x(β) = (xι(θ)9...,x>(θ)) (0.4)

Permutation invariant functions σι

r : Qι

r —>• R + are called density functions of
μ i f

— / fι

rσ
ι

rdx = / f φ for all bounded σ[πr]-measurable functions f. (0.5)

Here /J. : Q\ —> R is the permutation invariant function such that /j.(x(0)) =
for 0 G ΘJ., where x is a 0-coordinate.

We assume:

(A.I) (^,^00) is closable on L2(Θ,μ),

(A.2) σ̂  E L^iQ^dx) for all z,r, £ /μ(βz

r) < 00 for all r .

By (A.I) we denote by (<f,^) the closure of {{S^^L^Θ.μ)). Now we state
one of our main theorems:

Theorem 1. Suppose that (A.I) and (A.2) AoW. 77/e« (<f,®) w β /oca/, quasi-
regular Dirίchlet form on L2(Θ,μ).

We refer to Ma and Rockner [MR] for the notion of quasi-regularity. Note
that 1 G Q> and <?(1,1) = 0. By virtue of Theorem V.2.13, Proposition V.2.15 and
Theorem V.I. 11 in [MR] we get the following:

Corollary 1. Suppose that (A.I) and (A.2) At>W. 77ze« //ẑ r̂  exists a diffusion
{Ψo}θeΘ associated with ((ίf,£^),Z2((9,μ)). Moreover {Ψe}θeΘ is reversible with
invariant measure μ.

We reduce (A. 1) to a local condition (A. 1 *), which will be used to check (A. 1)
for Gibbs measures.

Theorem 2. (A.I) follows from (A.I*):

(A.Γ) (4>^oo) are closable on L2(Θ,μ)for all 1 ^ z, r < 00 ,

where Sι

r is given by (1.4).

We next consider two types of finite dynamics: Let Sr = Y^ffi and assume
(A.I*). Then by Lemma 2.2 we see (^,^00 Π ^ r ) and (Sr^oo) are closable on
L2(Θ,μ), where @ir is given by (1.1). Let ($r,Q)r) and (gr^r) be closures of

and (δr,®oo) on L2(Θ,μ), respectively. Then {{£r,9r\L2(Θ,μ))
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are our finite dynamics; (($r,<2)r\L2(Θ,μ)) are finite dynamics studied by Lang.
These two sequences of finite dynamics converge to infinite dynamics in the sense
of Theorem 3 below.

Let (Gr,α and (fjα be resolvents of ((£*?, @r),L2(Θ,μ)) and ((#,^),Z2(<9,μ)),

respectively. Since $)r is not dense in L2(Θ,μ), we define <&r,a in the sense

of [Si]. Let (<?,.§) denote the closed form on L2(Θ,μ) given by 9 = Π^i^V

and <ί(f,f) = linv_+oo<fV(f,f). (See Lemma 2.2.) Let <Gr^ and Crα be resolvents of

((<?,., 0 r ) , I 2 ( Θ , μ ) ) and ((<?,§),L2(<9,μ)), respectively.

Theorem 3. (1) tfjrα converge to <Ga strongly in L2(Θ,μ) as r —> oo for all a > 0.

(2) fljr?α converge to <Gα strongly in L2(Θ,μ) as r —> oc /or α// α > 0.

Remark. (1) Suppose μ is a Gibbs measure in Theorem 4 below. Then there exists
diffusions {ΊPr,θ}θeΘ associated with (($r,@r),L2(Θ,μ)) on L2(Θ,μ). {Ψr^}θeΘ
correspond to Lang's ones when μ satisfies the Lang's assumptions.

(2) ({$r,9r\L2(Θ,μ)) is not quasi-regular because {{$r,Θr),L2(Θ,μ)) do not

separate the points in Θ. Let Qr denote the quotient space of Qr identified dQr =

{|JC| = r} with one point. Let Θr denote the set of all configurations on Qr. Then

we can regard {{Sr, @r),L(Θ, μ o π~1)) as a quasi-regular Dirichlet form on Θr.

Accordingly, we can construct the associated diffusions on Θr.

(3) We will see in Lemma 2.2 that 2 C 2ι and <f(f,f) = £{\,\) for all f e <3.

(4) Suppose (L.I) and (L.2) hold. If Q) — Q), then the distribution of our infinite
dynamics {Ψo}θeΘ is the same as that of (0.2) obtained by Lang [Lai, 2]. We
however do not know how to prove 2 = 2. It seems to be related to the explosion
of tagged particles; we conjecture that Q) — 3) holds when all tagged particles have
no explosion.

We next give a sufficient condition for (A.I) and (A.2) when μ is a Gibbs
measure with potential Φ (see Sect. 3 for the definition of Gibbs measure). It is
known [Ru2] that for each z > 0 a Gibbs measure μ with pair potential Φ and
activity z exists if Φ satisfies (A.3)-(A.5):

(A. 3) Φ is superstable in the sense of Ruelle [Ru2].

(A.4) Φ is lower regular in the sense of Ruelle [Ru2]; there exists a pos-
itive decreasing function φ\ on R + such that Φ(x) ^ —φ\(\x\) for all x, and

SϊΦύty-'d < oo.
(A.5) There exist a R\ > 0 and a positive decreasing function </>2 on R + such

that Φ(x) ^ φ2(\x\) for |x| ^ Ru and f™φ2(t)td-ιά < oo.

We will use the following condition to prove (A.I).

(A.6) There exists a i?GlR such that Φ is finite and upper semicontinuous on
{|x| > R} and Φ(x) = oo on {|x| ^ R}.

The constant R in (A.6) is a diameter of hard core particles when R > 0. If
R < 0, (A. 6) means Φ is upper semicontinuous on R^.

Now we state our second main result:

Theorem 4. Suppose Φ satisfies (A.3)-(A.6). Then for each z > 0 ί/zere
Gz'&fo1 measure μ with pair potential Φ and activity z satisfying the assumptions
in Theorem 1.
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We refer to [Rul,2] for examples of pair potential Φ satisfying the conditions
in Theorem 4. We note that Lang's conditions (L.I) and (L.2) imply the conditions
in Theorem 4.

We now give four examples; the first three examples satisfy the assumptions in
Theorem 4, and the last one satisfies ones in Theorem 1. No examples below are
covered by Lang's results because their potentials are singular.

To help reader's understanding we give SDEs corresponding to these models.
We emphasize that we do not solve these SDEs; we construct diffusions in the
category of Dirichlet form theory.

Example 1 (Hard Core Potential). Let Φhard be a hard core potential; R > 0 and

= OO for |x| < R, ΦhardO) = 0 for \x\ ^ R . (0.6)

We call μhard a Gibbs measure with hard core interaction if μhard is associated with
the potential Φhard and an activity z > 0. The diffusion obtained by Theorem 1
for μhard describe the motion of infinitely many hard core Brownian balls with
diameter R.

Example 2 (Lennard-Jones 6-12 Potentials). Let d = 3 and

#6,1200 = 2C{|x|~12 - |x|"6} (C > 0 is a constant).

Then Φβ, i2 satisfies the conditions in Theorem 4 with R = 0. See [Rul,40p]. In
this case the corresponding SDE is

-x{\-lΛ-6\x;-xί\-*}a (i ^ / < oo).
y=l,yφ/

(0.7)

Example 3 (Lennard-Jones Type Potentials). Let a > d. Set Φa(x) = 2|x|" f l. Then
Φa satisfies the conditions in Theorem 4 with R = 0. See [Rul,40ρ]. In this case
the corresponding SDE is

oo

dX\ =dBι

t+ Σ a(x! -χJt)\xl -Xt\ dt (1 S i < oo). (0.8)

Example 4 (Dyson's Model). Let d — 1. Set Φoy(x) = —2 log |x|. The correspond-
ing SDE is

oo

dX\ =dB\+ Σ (xl -χlYXdt (1 ^ / < oo). (0.9)

In [Sp2] Spohn studied (0.9) and called this Dyson's model. The potential ΦDy

does not satisfy Ruelle's conditions, so the existence of the associated Gibbs measure
does not follow from [Ru2]. He constructed an associated equilibrium measure μ
and obtained correlation functions ρj. of μ explicitly. He proved the existence of
the equilibrium dynamics, in the sense of the appropriate Markov semigroup. He
however obtained neither the associated diffusion nor the solution of SDE (0.9).
We can apply Theorem 1 to this model. Indeed (A.I) follows from Proposition 4
in [Sp]. The correlation functions ρι obtained by Spohn are

ρ^jci,...,*i) = det7?m,n, where Rm,n = (2π)~ι J eis{Xm~Xn)ds ,
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where z is a constant. Since correlation functions are bounded, we see μ satisfies
(A.2). We thus construct diffusions associated with ΦDy by Theorem 1. We note
finite dynamics ($r,@r) for Φoy exist because density functions σι

r are continuous.
We however do not know whether {$r,S>r) exist or not.

Now we return to the general situation. One advantage of the Dirichlet form
approach is to give a perturbation result. Combining Theorem 1 with the stated
results in [MR], we can construct non-symmetric diffusions:

Corollary 2. Let (£*,@) be a {non-symmetric) Dirichlet form on L2(Θ,μ) such
that

) ^ rχf,f) for all] e®,

f, g) S C2β& f)1/V(g, g)1/2 for all^e®.

Here Q (i = 1,2) are positive constants. Then there exists a diffusion {Ψβ} asso-
ciated with (S*,2) with invariant measure μ.

In the forthcoming paper we will apply Corollary 4 to construct diffusions de-
scribing infinite many hard core vortexes in viscous planer fluid, and prove a central
limit theorem for tagged particles of this model.

A motivation of our work was to construct infinite many hard core Brownian
motions in Example 1. We consider this as a reflecting barrier Brownian motion JLt

on ΘR = {θ e Θ θ = ΣδXι such that |JCZ — xj\ ^ R} and, to some extent, construct
this from 6>-valued Brownian motion IB,. Recalling the Dirichlet form approach
to reflecting barrier Brownian motion on domains in IR^ [F] [FOT], one may ex-
pect that JLt can be constructed from the Dirichlet form <f (f, g) = JΘ D[f, §]dΛ on

L(ΘR,Λ\OR). However this idea is formal as it is because Λ(ΘR) = 0, unlike the
finitely dimensional case. The point is that we can justify this by replacing Λ\@R by
Gibbs measure μhard with hard core potential Φhard This observation is generalized
to Theorems 1 and 4.

Dirichlet forms associated with (0.1) have been considered in several papers
(see [De, Gu, Spl,2].) In these works except [Sp2] the construction of associated
processes depends on the solution of (0.1) obtained by Lang. In [Spl,2] equilibrium
fluctuations were studied. In [De, Gu] a central limit theorem for a tagged particle of
(0.1) was proved. Recently Tanemura [T] solved SDE (0.1) for hard core potentials.

The organization of this paper is as follows: In Sect. 1 we prepare notations. In
Sect. 2 we prove Theorems 1-3. In Sect. 3 we give a definition of Gibbs measures.
In Sect. 4 we prove Theorem 4.

1. Notations

In this section we introduce bilinear forms describing finite dynamics.
Let πc

r:Θ-*Θ be such that π%θ) = θ( - Π {Ί^d - Qr}). For f: Θ -+ R a
function f\ Θ(x) : Θ x Q\ —• IR is called the ^-representation of f if fέ

rθ satisfies
the following:

(1) fι

rθ(x) is a permutation invariant function on Qι

r for each θ e Θ.

(2) fiΛl)(x) = frΛ2)(x) if π£(0(l)) = π%θ{2)\ 0(1),0(2) G Θ\.

(3) / ; θ(xj.(0)) = f(0) for θ e ΘU where x|.(0) is a ^-coordinate of θ.

(4) fUx) = Ofoτθi θ\.
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Note that fι

r0 is unique and f(0) = Σ/Ξo/rθ( xr(^)) When f is σ[πr]-measurable,
gj.-representations are independent of θ. In this case we often write f\ instead
of frθ. Let Sβ* = {f : Θ -> R; f is σ[πr]-measurable} and J>r = {f G ά9*; f is
bounded}. We set

(1.1)
r=\ r=\

Moreover

&™ = {f G J ^ ; / ^ ( * ) are smooth on Qr for all i,r,θ} . (1.2)

Here fι

r θ are ^-representations of f. It is easy to see

t°CC(β). (1.3)

We will prove in Lemma 2.4 that Q)^ is dense in L2(Θ,μ).
For f and g G &™ we set

Dj.[f,g](0) = D\fr 0, gfj. 0](x}.(0)) (0 G 6>j.), Dj.[f,g](θ) = 0 (0 ^ Θj.).

Here xj.(0) is a gj.-coordinate, and /j. θ and g\ θ are βj.-representations of f and

g, respectively. Note that DJ.[f, g] is well-defined, that is, it is independent of the
choice of (^.-coordinate xι

r(θ). We now define bilinear forms on î oc,:

(1.4)

2. Quasi-Regularity of Dirichlet Forms: Proof of Theorems 1, 2 and 3

In this section we prove Theorems 1-3. We begin with a monotone convergence
theorem on closable forms.

Let {($n,@n)} be a sequence of positive definite, symmetric bilinear forms on
L2(Θ,μ). We write (δx,2>x) ^ (<ί 2 ,^ 2 ) if

£)ιD92 and δι{\,\) ^ <^2(f,f) for all f G ^ 2 .

We say {{gn

i2
n)} is increasing if (δn,2>n) ^ {Sn+\9n+λ) for all w, and we say

{(δn,@n)} is decreasing if (δn

9®
n) ^ ( ^ + ^ w + 1 ) for all n.^

For a given (δ,@) with a dense domain 2) we denote by (^Γeg?^reg) the largest

closable part less than (δ,2ι)\ that is, (? reg )^reg) is closable, (βτQg,S)τQg) ^ ( ? , ^ ) ,

and, if (<?*,§*) is closable and ( ? * , § * ) ^ ( ? , ^ ) , then (<?*,§*) ^ (?reg,^reg).
It is known [Si] that the largest closable part exists uniquely.

In the next lemma domains of symmetric forms are not necessary densely
defined. So their resolvents are defined in the sense of [Si].

Lemma 2.1. (1) Suppose {(£n,@n)} is increasing. Let <ί°°(f,f) = lim^oo <?n(f, f)
with the domain 9°° - {f G f\^ ; sup(T( f , f ) < oc}. Then (S00\Q)°°) is closable
on L2(Θ,μ).

(2) In addition to the assumptions of (I), assume (S>n,^n) are closed. Then
( ( f 0 0 , ^ 0 0 ) is closed and G\ converge to G™ strongly in L2(Θ,μ)for all α > 0.



124 H. Osada

Here Gn

a and G£° are resolvents of {Sn,9n) and {S00^00) on L2(Θ,μ), respec-
tively.

(3) Suppose {(S>n,^n)} is a decreasing sequence of closed forms. Let <^°°(f,f) =
l i m ^ o o ^ U ) with the domain 9°° = \JZL\@n Suppose @°° is dense. Then G£
converge to G™Qg strongly in L2(Θ,μ) for all α > 0. Here G^τQg are resolvents of

the closure of{tf™g,@™g) on L2(Θ,μ) and ( ^ ~ , ® ~ ) is the largest closable part
less than (S00^00).

Proof See [MR, Prop. 1.3.7] for (1), and [Si, Theorem 4.1] for (2) and (3). D

Lemma 2.2. Let £r = Y^Lx£
[

r Suppose (A.I*) holds. Then

(1) ( ^ S o o Π ^ ) and (<Γ,^oo) are closable on L2(Θ,μ)for each r.

Let {Sr,9r) and (δr,2r) denote the closures of (£r^^nJV) and {βr,®oo\
respectively.

(2) {(^r,^oo)}rGN and {(Sr,Θr)}r^n are increasing.
(3) {(<?r,^r)}/ 6N « decreasing.
(4) l i m ^ o o ^ d , ! ) = <ί(f,f) < oo for all f G Θ^.

Proof By (A.I*) (ΣtA>@oo) are closable. Since {(ΣZi<>^oo)}i^<oo is
increasing to converge to (# r ? ^ooλ (^r ?^oo) is again closable by Lemma 2.1. The
closability of (<ίr,^oo Π « r ) follows from that of (<fr,®oo). We thus obtain (1).

Let f G ̂ oo and r < s. Let fl.Θ(x) and fJ

sθ(x) be representations of f on

Θj. and ©ί, respectively. Then for θ G ΘJ. Π ©ί (z g 7) and a β -coordinate

xj.(θ) = (x^,...,xj.), we can choose 0-coordinate of θ such that x{(θ) = (Λ:^,...,

4 , 4 + 1 , . . . , ^ ) Then for θ G Θj. n ©ί (1 ̂  7), we see

A r = l

Noting θj. Π ©ί = 0 if / > 7, we see

00

i f](θ) ^ Σ DUf, f](β) for all θ e 6>.
1=1

Integrating both sides we obtain {(<?,-, ί^oo)} is increasing. So its closure {(<?,., ®r)}
is also increasing. This completes the proof of (2).

Let f e ^ o o Π ^ . Then Σ/=i Dft. fl = Σ,=i lfyf> f] for all r % q. Hence
*A\, ί) - ^,(f, f) = *(f, f)• This implies (3) and (4). D

Proof of Theorem 2. Theorem 2 follows from Lemma 2.1 (1) and Lemma 2.2 (1),
(2), (4). D

Proof of Theorem 3. By Lemma 2.1 (2) and Lemma 2.2 (2) we obtain (2). Let
(<^reg,(U^r)reg) be the largest closable part less than (&,\J2r) and ̂ * its closure.
Recall that 2 is the closure of 9)^ with respect to (<ί,L2(<9,μ)). By Lemma 2.1
(3) and Lemma 2.2 (3) it only remains to show 9* = 2. By using <?r(f, f) = <ί(f, f)
for f G ̂ oo Π * r , we obtain

<fr(f, f) = #(f, f) for f G ̂ r and ^ r C ^ .
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Hence \JΘr C (U® r ) r c g C 9). So taking closures, we see <2)* C Qi. Since Sf^ =
U(^oo Π 08 r) C U^V, we see ^ C (U@r)reg. Hence we have 0 C 0*. Combining
these yields 2 = 0*. D

Lemma 2.3. (gr,3>r\(Srβr\(g,2>) and φβ) are Markoυian.

Proof. For ε > 0 there exists φε G C°°(IR) such that φε(t) = f for all ί € [0,1],
φε(t) G [-ε, 1 4- fi] and |φ ε (0 | ^ 1 for all f G R. Then φε o f G ̂ oo for all f G ̂ oo,
and

<f r ( φ ε o f, φε o f)

1 oo i

= ~/Σ
^ 6) z = i ^

where / ^ is the (^-representation of f. This implies (βr^r) are Markovian. (See
Proposition 1.4.10 in [MR].) Other statements can be proved similarly. D

We next introduce a mollifier on M^. Let j : R^ —> 1R be a non-negative,
smooth function such that J ^dj dx = 1 and j(x) = 0 for |x| ^ ^. Letyε = ε̂ yX /ε)

and Ji(xu... ,^ ) = Π}=i ./ε(*/) F o r ί ^ ^ we set 3r?εf : 0 -> 1R by

for θ G Θr ,

where fι

rβ{x) = fι

r(
χ) is a representation of f on Θι

n a n d / r : IR^Z —> 1R is the

function defined by/ r (x) = fr(x) for x G Q[ and / r (x) = 0 for x $ Q\. Moreover
x(θ) is a ^-coordinate of θ, and * denotes the convolution. Since f is σ[πr]-
measurable, fι

rθ is independent of θ and f is constant on Θj!. It is clear that

Lemma 2.4. (1) Let 0 < δ < r and f G ̂ >_<5. 7%̂ w H7^ Λαfe the following:

3r,εf G^oo /or 0 < ε < δ, (2.1)

l im| |3r, c f-f | | L 2 ( θ , μ ) = 0. (2.2)

(2) Let f G JV swc/z ίΛflί /j. G C°°(βJ.)/or Λ// Z, w/zere /j. <are (^.-representations
of f. Let δ > 0 and Θnδ = {θ e Θ; θ(Qr+δ ~ Qr) = 0}. Then

lίm 3r+5,βf(0) = f(θ) for all θ e θr,δ. (2.3)
0

(3) ^oo w ίfewje m L2(Θ,μ).

Proof Let g = 3r,εf5 and let ^ 0 denote its Qi-representation. Since gι

r Q £ C°°(Qι

r)

for all /, we see g^ 0 G C°°(βί) for all s ^ r and j . Note that g is σ[π r_^+ ε]-

measurable. Hence we also have gj

s θ G C°°(β^) for all s > r and y. Combining

these we see 3r,εf G ̂ c . By this, f^x iμ{Θ[) < oo and the property of the mol-
lifier we obtain (2.1).

Note that (2.2) is obvious if μ = Λ, where A is the Poisson random measure
whose intensity measure is Lebesgue measure. For each δ > 0 there exists an / such
that μ(\Jj>i &r) g δ. Let Ck

r - K\\LOO{gidx) and C = sup{|f(0)|; θ G 6)}. Then
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we see

Z ( β J > μ )

Combining this with (A.2) yields (2.2). Equation (2.3) is clear by the property
of the mollifier. Since @(Θ) = σ[πr;r G N], JΌo is dense in L2(Θ,μ). Hence (3)
follows from (2.2). D

Let A = {a = {ar}r(E^\ar G N, ar ^ ar+\ for all r}. For a = {αr} G A, let
<9[a] = {θ G θ ; 0 ( g r ) ^ αr for all r}. Then β[a] is a compact set. (See Propo-
sition 3.16 in [Re].) We introduce a cut off function χ[a] of (9[a] as follows:

χ [ a ] ( 0 ) - p o rfa(θ), rfβ(θ) = Σ Σ ( ^ - l*, ( 0 ) l ) 2 ( 2 . 4 ), rfβ(θ) = Σ Σ ( ^ - l*, (0)l)2

Lr=iyeJ r

r,β J

Here {xj(θ)} is such that θ = Σδχj(θh \xj(θ)\ ^ l*/+i(0)| f o r a 1 1 Λ a n d

Λ,0 = O' y > flr, χj(θ) G β r } .

p : R -* [0,1] is the function defined by p(t) = l(ί < 0), p(ί) = 1 - ί(0 ^ ί ^ 1),
and p{t) = 0(1 < 0 Note that, if Jr θ = 0 for all r, then dΛ(θ) = 0 and χa(θ) = 1.

Let || ||i be the norm on 0 defined by ||f||? = | | f | |2 2 ( 0 ? μ ) + <f(f,f).

Lemma 2.5. (1) χ[a] = 1 ow Θ[a] and χ[a] = 0 o « 6)[a+]c, w/zβre a + = {1 +

(3)

(4) ||(1 - χ[a])f||! g ^2/Θ [ a ] c{f + D[f,f]}φ/or Λ// f G

/ (1) is clear by definition. We prove (2) and (3). Let χ5[a] = p o^ a , where

<*ί(0) = {Σ '=i ΣjeJr,β (r ~ \Φ)\fY'2- Then / [ a ] e ^ and l i m ^ f [a] = χ[a]

in L2(Θ,μ). A straightforward calculation shows

± Σ (r - \xj(θ)\f = p
r=\jeJrtθ

Then <i(/[a],/[a]) ^ 1/2 for all s. We next note that

D[/[a]f,/[a]f] = fD[/[a],/[a]] + /[a]2D[f,f] + 2f/[a]D[f,/[a]]

^ f + 2D[f,f].

Hence supj|χ5[a]f||i ^ V5||f||i. Combining these we see χ[a]f = l i m ^
weakly in ( 0 , || | | i) and ||χ[a]f||i ^ \/2| |/ | | i. Hence we obtain (2) and (3). The
proof of (4) is similar to (3). D

Lemma 2.6. There exist a« = {an r}reN ^ A(« G N ) such that an r ^ αn +i r

that μiiJZi β [ a « ] ) = l .
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Proof. Since Θ is Polish, there exists an increasing sequence of compact sets Kn

such that μfl j^i Kn)=\Λ\ is known (see [Re, Prop. 3.16]) that a subset A c Θ
is relatively compact if and only if supθeAθ(Qr) < oc for all r. Hence an^r =
supθeKn θ(Qr) satisfy the condition. •

For the reader's convenience we give the definition of quasi-regular Dirichlet
form. We refer to [MR] for detail and related notions. A symmetric Dirichlet form
(ε,F) on L2(Θ,μ) is called quasi-regular if (s,F) satisfies the following:

(Q.I) There exists an ε-nest consisting of compact sets.
(Q.2) There exists an || ||i-dense subset of F whose elements have ε-continuous

μ-versions. Here ||f||? = | | f |β 2 ( θ > μ ) + ε(f,f).

(Q.3) There exist un G F, n G N, having ε-continuous μ-versions un, and an
ε-exceptional set N such that {ύn} separates the points of Θ — N.

Proof of Theorem 1. Let

^o = {χ[aΛ]f; f G ̂ oo, n G N} . (2.5)

By (2) of Lemma 2.5 we obtain 9Q C 2. By Lemma 2.5 (4) and Lemma 2.6
we see ΘOQ C &O, where ~ denotes the closure of with respect to || | |i. By
Ί$Z = 9> we see Wo = 9. Let 3)(rί) = {f G 9; f = 0 a.e. 0 on <9[a+f}. By (1) of
Lemma 2.5 we see

oo

* C U 9{n). (2.6)

Hence {β[a+]} is a compact nest. We thus obtain (Q.I).
Since ^ C C(Θ) and ^oo is dense in 9, (Q.2) is clear.
Let

Uι

r = {u e C°°(££); u is permutation invariant} .

We regard elements of Uι

r as functions on Qrj ~. Here ~ is the equivalence relation
generated by permutations. For each /,r G IN let {wJ.m}mG]N be a sequence in Uj. that
separates the points of Q\l ^ . We can choose {M{.>W}w6N SO as / < 4,m(x) = z> + 1
for all x G 0 . Let uj.>w G @r be such that u^w(θ) = 0 for θ £ Θι

n and u^w(θ) =
MJ.ΪW(X(Θ)) for 0 G 6>j., where x(0) is a ^-coordinate of θ. We set u° w = 0 when
i — 0. Then {ul

r,m}i,r,me¥i separates the points of Θ.

Let Θ\+02^Θ. Since {u^j^mGN separates the points of 6>, there exists
(i,r,m) such that

Let 0 < δ G Q such that θuθ2 G Θr,δ, where Θr,δ = {θ e Θ; θ{Qr+δ - β r ) = 0} as
before. By (2.3) and (2.7) there exists an ε G Q such that

0 < ε < δ.

which implies % = {3r+(5,εUJ.m}ί ,r,m€κ,o<ε<(5eQ separates the points of θ. By (2.1)
^ is a sequence in Q)^. Hence we obtain (Q.3).

Combining these we see {$, Q)) is a quasi-regular Dirichlet form.
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We finally check the local property. Note that the local property is clear for
(£r,2r). So we reduce the local property of (&93f) to that of (<? r,^ r). Let f and
qe@ with supp [f ] Π supp [g] = 0. Since {δr,Θr) is local, we see <fr(f,g) = O.
Hence <?(f,g) = limr_^oo <?r(f,g) = 0, which means (δ9βf) is local. D

3. Gibbs Measures with Potential

In this section we consider the case that μ is a Gibbs measure with pair poten-
tial Φ.

Let Φ : WLd —> IR U {oo} be a measurable function with Φ(x) = Φ(— x). For x =
, r ^ 5 , let

= Σ Φ(**-*7)+ Σ { Σ
leL{r,s) Vλ^k^

where (X0) z )/ is such that 0 = Σ/<V(0) a n d L ( Γ ' 5 ) = ί / ; r < 1 ^ ) 1 = •*}• W e

set

Hι

r θ(x) = lim Hι

r $ s(x\ whenever the limit exists . (3.1)

Let Q(z) = Q\+z, where z eZd. Let

- {θ e θ; sup Γ ^ Σ 0(β(z))2 < oo) . (3.2)) .
J

It is known (see [Ru2, (5.11)]) that the limit in (3.1) exists for θ G 6>0 Let z > 0
be a number. We set

OO £*

Here we set the summand to be 1 for i = 0.

Definition. A probability measure μ on (Θ,3$(Θ)) is called a Gibbs measure with
potential Φ and activity z if μ satisfies the following:

μ(Θ0) = 1 (tempered), (3.3)

μ(A\σ[πc

r])(θ) = $xnr,θ{θλ)dΛ(θλ\ for A £ σ[πr], (3.4)
A

where πc

r : Θ —> Θ such that πc

r(θ) = θ Π (Kd — Qr), and mne is the σ[πr]-measur-
able function defined by mriθ(θ\) = m^.θ(x(θ\)) for θ\ G θ\. Here x(θ\) is a
Qι

r-coordinate of θ\.

We similarly define Gibbs measures on finite domains Qs: For H1

ΓΘSWQ set mι

r β s

and mrtotS similarly as m\d and m r^, respectively. We define μs by dμs = ms^,sdA.

Note that ms^,s is independent of θ.
For μ and μs we define density functions as follows:

-σι

r(x) = fmι

θ(x)dμ9 ττσι

rs(x) = fmι

rθs(x)dμs. (3.5)
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We easily see that σι

r are the same as ones given by (0.5). We quote (see Corollary
5.3, Theorem 5.5, Theorem 5.6 [Ru2]):

Lemma 3.1 (Ruelle). Suppose that Φ satisfies (A.3), (A.4), and (A.5). Then

σι

rs(x) ^ ξι for all i,r,s, where ξ is a constant. (3.6)

Moreover there exists a subsequence {s^} with s> j oo and a Gibbs measure μ
with potential Φ whose density functions σι

r and correlation functions pι satisfy
the following'.

σι

r(x) = lim σι

r (x) uniformly in x for all i,r , (3.7)

σi(x) S ξ for all i,r, p\x) g ξ for all i. (3.8)

We will use the following in the proof of Proposition 4.1.

Lemma 3.2. Let m be a nonnegative, bounded, lower semicontinuous function on
Qr. Let g(f9g) = / β D\f,g\mdx. Then (^Q°°(ρj)) is closable on L2(Qnmdx).

Proof Let Gn = {x G 0r; m(x) > l/n}, and δn{f9g) = J^D^g^dx. Then (£\
C^iβr)) is closable on L2(Q^mdx). Since the sequence {(&",C%°((£))} of clos-
able forms on L2(Qι

nmdx) is increasing, its limit (<^,C£°(gj.)) is also closable by
Lemma 2.1. D

4. Proof of Theorem 4

In this section we assume μ is a Gibbs measure with potential Φ given by
Lemma 3.1. The purpose of this section is to prove Theorem 4.

Let mι

r θ be as in Sect. 3. Let for a.e. θ,

iθ(f>o) = I &[f,g](χHtθWdx> ( / Λ = / f(χ)g(χHtθ(χ)dχ.
& &

T h e n a straightforward calculat ion shows for f,g e ^ o o ?

/U^ ^ (4.1)

(4.2)

where f\ θ and gfj. θ are ̂ -representations of f and g, respectively.

Proposition 4.1. Suppose Φ satisfies the conditions in Theorem 4. Then for a.e.
θ, (<0,q°°(βO) is closable on L^QUm^

Proof For θ € 6>0 we set βj, 0 = {x = (Λ^) G Qr\ \xk - y"(0)| > R for all t,y}.

Here {/(#)} is such that π^(θ) = ][\ <5y(θ), and i? is the diameter of hard core

given by (A.6). By (A.4), (A.5) and (3.2),

Σ s u p ( Σ \Φtf ~ /"(0))|; x = ( ^ ) G ρ Λ < oc for all 0 G βo
7 U=l Ί
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Hence by Lebesgue's convergence theorem Σ/{]CL=i Φ(xk — yJ(θ))} is upper

semicontinuous and bounded from below on Qι

rθ- We used here (A. 6) and the

fact that Φ is bounded from below by (A.3). This implies ml. θ is lower semicontin-

uous and bounded from above on Q\ θ. Since mι

rθ = 0ifHι

rθ = oo, the same also

holds on Qι

r. Combining this with Lemma 3.2 and (3.3) we complete the proof. D

Proof of Theorem 4. (A.2) is clear by (3.8). So we check (A.I*). Let {f(/ι)} be an
(fj.-Cauchy sequence in Q)^ such that ||ί(«)||χ2(6> μ ) —> 0. Then by (4.1) and (4.2),

gdx)dμ = Q, (4.3)

lim Jείθ(Kmiθ-Knίθ,Kmi,θ-Kniβ)dμ = O. (4.4)
n^oo

Here f(«)J. θ are ^-representations of f(τί).

We want to prove <^.(f(«), f(«)) —> 0. For this puφose it is sufficient to show,
for an arbitrary subsequence {!(«*)} °f {f(w)}> w e c a n choose a subsequence {f(w/)}
of {f(wjt)} such that <fj.(f(/i/), f(/ί/)) -> 0. So let {f(^)} be an arbitrary subse-
quence. Then by (4.3) and (4.4) we can choose {f(«/)} in such a way that

2-1. (4.5)

Here

By Borel-Cantelli's lemma we see μ(limsup^4/) = μ(limsup£/) = 0. This means
for a.eJ,lim||f(/i/)^| |Z2 (^w/ f l έ / j c ) = 0 and f(π/)j.ϊθ is an ε^-Cauchy sequence.

Hence by Proposition 4.1,

lim έr θ(Kn,t 0, Kmt β) = 0 for a.e.0. (4.6)
1—>OO ' ' '

Recall that {Vf(«/)j.θ(x)} is Z 2 (g; x Θ,rrirθdxdμ)-Caxιchy by (4.4) and the

definition of εj.. Combining this with (4.1) and (4.6) implies <fj.(f(«/), f(«/)) —> 0.

D
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