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Abstract: We compute the smooth cohomology (both unrestricted and compactly
supported) of the supercharge of an ultraviolet cutoff N — 2 supersymmetric Landau-
Ginzburg field theory.

I. Introduction

LA. The two-dimensional N = 2 supersymmetric Landau-Ginzburg models (also
known as Wess-Zumίno models) were introduced in the physics literature in the
seventies. For early results, see [CGP] and references therein. Constructive field
theory aspects of these models were a subject of many investigations, see [JL] and
[J] for references. The Landau-Ginzburg models provide useful examples to study
complex physical and mathematical phenomena of supersymmetric quantum field
theory which are much harder to control in the four dimensional world. Recent
revival of interest in the Landau-Ginzburg models stems largely from the fact that
they seem to play a role in various "compactification" scenarios of string theory
(see e.g. [CV] and references therein).

Supersymmetric quantum field theories provide non-trivial examples of infinite
dimensional non-commutative geometries [C]. In particular, supersymmetric field
theories with N = 2 supersymmetries lead naturally to structures which can be re-
garded as examples of non-commutative Kahler geometry. For the Landau-Ginzburg
models, the underlying infinite dimensional geometry is flat. What makes them non-
trivial is the non-linear self-interaction term in the Hamiltonian. One of the funda-
mental difficulties in studying the mathematical structures associated with this model
is of technical character: to show that the Hamiltonian is well defined on a dense
domain, and that its heat kernel is trace class. This requires a detailed analysis of
a suitably regularized form of the Hamiltonian.

LB. In this paper, we choose a particular regularization, namely the sharp ultra-
violet cutoff M. This amounts to suppressing all the modes with \p\ > M in the
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Fourier expansion of the field operators. The regularized Hamiltonian has then the
following form. Let δM be the following regularized delta function,

sm σ/2

By 7μ we denote the two-dimensional Dirac matrices,

1

o * (L2)

and define the chiral projections,

(1.3)

Finally, we define the following operator:

Dv(σ) = iyι dσ + Λ+PM V2 K(φ(σ)) + yl-PMV2F((/>(σ)) , (1.4)

where V is a (polynomial) superpotential, and where the projection operator PM is
denned by (PMf)(σ) = !sιδM(σ - τ)f(τ)dτ. Then

Ώy = /(π(σ)π(σ) + dσ~φ(σ)dσφ(σ))dσ + / ψ(σ)Dy(σ)ψ(σ)dσ

, (1-5)

where π(σ) is the canonical momentum operator, and where

(1-6)'Ψ2(<r)/

Throughout this paper, we work with the regularized theory only. All our results
are, however, uniform in the cutoff M, and we believe that they hold true for a
suitably defined limit M — > oo.

7. C. A particular feature of the above regularized Hamiltonian is that it is a square
of a fermionic operator, the supercharge. Specifically, with

Qγ = -]=f(-i^(σ)(π(σ) - daφ(σ))
V2sι

+ iψι(σ)VV(φ(σ)) + ψ2(σWV(φ(σ)))dσ + herm. conj., (1.7)

2
we have D^ = Qv. This property indicates that Qv is a Dirac type operator, and
the natural problem is to studyj he properties of its kernel and in particular its
index. Physically, the kernel of Qv consists of the (zero energy) ground states of

the Hamiltonian. It is easy to see that Qv has the structure Qv — ~dy + dv, where

dy is a coboundary operator, and where dv denotes its hermitian adjoint.
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In this paper we are concerned with the cohomology groups of the operator dy
which we believe are related to the space of harmonic forms of Dp. We explicitly
compute the smooth and compactly supported cohomology groups of this operator,
and show that they depend only on the singularity structure of the superpotential.
We establish a vanishing theorem for the smooth cohomology associated with the
operator dγ\ only cohomology groups of definite parity are non-trivial. Furthermore,
we show that the cohomology groups are independent of the ultraviolet cutoff M.
We believe that similar results hold for the space of harmonic forms of Dp, and
present partial arguments to support this hypothesis.

ID. The paper is organized as follows. In Sect. II we define the smooth coho-
mology complex which corresponds to the Landau-Ginzburg model and state our
main results. These results are proved in Sects. Ill and IV. In Sect. V we define
the square integrable cohomology corresponding to the Landau-Ginzburg model,
formulate a technical conjecture, and study its consequences.

II. The Landau-Ginzburg Complex

II. A. In this section we define the equivariant cohomology of a perturbed d operator
on the space EM = Cw x C2wM, where n ^ 1 and M ^ 0 are integers. We will
regard EM as a vector bundle over C77 with fiber C2wM. We represent a point z e EM

as z — (Z_M> ,Z-\,ZQ,ZI, - ,ZM\ where zp G Cw. In the language of quantum field
theory, z0 represents the zero modes while the z/s with 1 ^ \p\ rg M represent
the excited modes. The integer M is the ultraviolet cutoff.

The relevant complex is defined as follows. We let f\p'q(EM} denote the

space of smooth (/>,g)-forms on EM and let <9 : /\p'q(EM) — > /\P'q+\EM) and

d : f\p'q(EM} — > ΛP+1'^(^M) denote the usual Dolbeault coboundary operators.
Let S1 be the circle of circumference 1. There is a natural S ̂ action on EM,

zp -> e-2πipσzp, σ e Sl, \p\£M, (Π.l)

which is generated by the following holomorphic vector field:

K(z} = -2πi £ pzpVp , (II.2)

where V^ = d/dzp. K acts on forms by interior multiplication; we denote the corre-

sponding operator mapping /\p'q(EM) into /\p~l'q(EM} by i(K\ Clearly, i(K)2 = 0
and di(K) -f i(K)d = 0. As a consequence, the operator

satisfies d0 — 0. It is an Sl -equivariant version of the Dolbeault operator.

II. B. We will be concerned with the cohomology of a perturbation of <30 by a
holomorphic 1-form. Let f\(EM} = 0p f\p'q(EM) be the Grassmann algebra over
EM We define the usual ^-grading on /\(£M),

/\(EM) = Λ(£M)° θ Λ(£M)' , (Π.4)
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where

Λ(^Af)°= Θ l\p'q(EM\ A(^)1 = Θ l\
p+q even p+q odd

For σ G Sl we define the following field operators on /\(EM)'

)= Σ

b(σ)=

Σ

Φ(σ)= Σ e2πipσzP,
\p\^M

K(σ) = -2πi Σ pe"Mpσzp = dσφ(σ) ,
|p |gM

K(σ) = 2πi Σ ^2π/>% = 3σφ(σ) ,
|/7|^M

π(σ) - -ί Σ e-21*^ ,

I^I^M

-ί Σ ^2π/>σ^ (Π.6)

(these are actually vectors of operators; we will put the indices whenever necessary).
In terms of these operators,

do - ifb*(σ)π(σ)dσ + / b(σ)dσφ(σ)dσ . (Π.7)
s1 s1

Let now V\ Cn — > (C be a holomorphic polynomial (the superpotential). We
consider the following function of EM'

h(z) = ίV(φ(σ))dσ = JV I Σ β~2π^% J dσ . (II.8)

Clearly, A is holomorphic on EM Its differential dh is a holomorphic 1-form on
EM and acts on f\(EM) by exterior multiplication. We denote the corresponding

operator mapping /\p'q(EM) into f\p+ ^(EM) by δγ. In terms of the field operators
(Π.6),

δv = fb*(σ)VV(φ(σ))dσ .
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Clearly, b\ = 0, and dδγ + δyd = 0. Furthermore,

i(K)δv + δvi(K) = fVV(φ(σ))dσφ(σ)dσ = f--V(φ(σ))dσ = 0 .
sl sl aσ

As a consequence, the operator

~3V = d + i(K) + δv = ~d0 + δv (Π.IO)

_ 2 _

satisfies dv — 0. Note also that dv is odd with respect to the 2Z2-grading defined in
(II.4). We thus have a complex

Let Hζ (EM) denote the cohomology of this complex. For future reference, we ob-
°v

serve that H* (EM) arises as the total cohomology of the following double complex:

d I d

l\2k+l(F^ -^ Λ z

/\ \&M) * l\

'd (11.12)
I

Λ (^M) > *

where

/? even j7 odd

and where
zlF = i(K) + δv . (11.14)

Finally, let Qk(^n) denote the space of holomorphic £-forms on <£n and let K^(€n)
be the cohomology of the following Koszul complex:

. . . 1L, Q\<£") -^ Ωk+\€n) ̂  . . - . (11.15)

II. C. Our first main result is contained in the following theorem.

Theorem Π.l. We have the following isomorphisms:

(Cw). (11.16)
v

We prove this theorem in Sect. III.
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The complex (11.11) is precisely the complex which was studied in [CGP] and
[KL1] in connection with N = 2 supersymmetric quantum mechanics (which corre-
sponds to M — 0 in our notation). The above theorem asserts that the topological
content of the regularized N — 2 supersymmetric Landau-Ginzburg theory is iden-
tical to that of the zero mode limit of the theory. Furthermore, it is well known
(see e.g. [GH]) that if the critical set of V,cr(V\ is finite, then

~ <
0, if k < n

fπ-1(Cπ), i f k = n.

We thus obtain the following corollary.

Corollary Π.2. Let cr(V) be finite. Then

I (EM) * ί Ω"^dV Λ Ω"-1^), i f n is even
όy tO, if n is odd

and
' ", if n is even

., . ,, (Π.19)
if n is odd.

The space Ωn(€n)/dV Λ Ωn~l(<Cn) has dimension equal to #cr(K), the number
of critical points of V. We thus obtain the following result.

Corollary Π.3. Lέtf cr(F) be finite. Then

(11.20)
V |/ l^J/

//./). Our second main result concerns the compactly supported cohomology of
dγ. We let H- (EM) denote the compactly supported cohomology of dγ. In

vy, comp

other words, H^ (EM) arises as the cohomology of the complex (11.11) with
vy, comp

/\p'q(EM) replaced by the corresponding space Λfόmp(^) °̂  smooth forms with
compact supports.

Theorem Π.4. Let cr(V) be finite. Then there is an isomorphism

~dv, comp ~dy

We prove this theorem in Sect. IV.

III. The Smooth Cohomology

///. A. Our proof of Theorem II. 1 is based on two lemmas which we first formulate
and prove. Let Ωk(EM) denote the space of holomorphic &-forms on EM and let

Ω(EMf= φ Ωk(EM), Ω(EM)l= ®Ωk(EM). (III.l)
k even k odd
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Consider the following complex:

and let H%v(EM) denote its cohomology groups.

Lemma III.l. The complex (11.11) is quasί-isomorphίc to the complex (III.2).

Proof. We use the technique of spectral sequences (see e.g. [McC]). We observe that
the first filtration associated with the double complex (11.12) is bounded. Therefore,
Έ*'* converges. By Dolbeault's lemma,

( 0, if q > 0

Έ™ ~ I Ω(EM)°, if 0 = 0, /? even (ffl.3)

(Ω(EM)\ if 0 = 0, /? odd;

and the claim follows. D

We let s : <Cn —> EM denote the natural holomorphic embedding,

and consider the spaces

Uk(EM) = {ω e Ωk(EM) : s*ω = 0} , (III.5)

and the corresponding spaces Ω(EM)* defined in analogy with (III.l). In the above
expression, s*ω denotes the pullback of ω under s. We note that if s*ω = 0, then
also s*A γω = 0, and so the following complex is defined:

We let HAV(EM) denote its cohomology groups.

Lemma III.2. The complex (III.6) has a trivial cohomology.

Proof. We observe that H^v(EM) arises as the total cohomology of the following
double complex:

-Z* Ωk(EM) «+ . - .

} UK) (IΠ.7)

&(EU) ^ &+\EM} ^ •••

We claim that H^y(EM) ~ 0. To prove this, consider a column in (IΠ.7):

—> 0 .



650 S. Klimek, A. Lesniewski

We will construct a homotopy operator for (III.8). We write zp = (zp\9...9zpn)9

2pα £ <C, \p\ ^ M9 and represent a form θ G Ωk(EM) as

θ(z) = Σ Σ ωαι...αm(z)</zoαι Λ - - - Λ </zoαw , (IIL9)
m αι,...,αw

where the forms ωαι...αm(z) do not involve factors of dz0α, 1 ^ α ^ «. Let now
ω(z) = f(z)dzPlΛpι Λ - - Λ dz^α^ , bi I ̂  1, . . . , \pk\ ^ 1, be a homogeneous com-
ponent in ωαι...αw(z). We set

(Jω)(z) = -̂ Σ -ftkτ- f(^tz')dtdzp0ί Λ <&„« Λ - - - Λ <fe^a , (IILIO)
Zπ | /? |^ l ,α P 0 OZP*

where z' = (Z_M, . . . ,z_ι,zι, . . . ,ZM) € C2wM. This defines an operator J : Ωk(EM) -*
Ωk+l(EM) An elementary (if slightly tedious) computation shows that

+ Ji(K))ω(z)= f(tf(z^z'))dtdzPιapι/\ /\dzpk0ίpk . (ffl . l l)
o aι

We claim that /^ ±(tk f(z^tz'))dt = /(z). Indeed, this is clear if k > 0. If k = 0,

then ω(z) = /(z), and /(z0,0) = /ω(z) = 0 which implies our claim. Conse-
quently, (III.ll) equals ω(z), which means that i(K)J + J i(K) = Id. We have thus
shown that J is a homotopy operator for the complex (III.8).

It is now easy to show that the total cohomology of (III.7) is zero. Indeed, the
first filtration associated with (III.7) is bounded, and thus 'E1*'* converges. Since,
by the above argument, the rows of (III.7) have zero cohomologies, it follows that
'£*'* ^ 0, and the lemma is proven. Π

ΠI.B. We are now ready to prove Theorem ILL

Proof of Theorem ILL Observe that

Ω(EMγ/Ω(EMγ ~ ί2(C")* , (111.12)

which yields the following short exact sequence of complexes:

0 — •* Ω(EM)* — > Ω(EMT — » Ω(<C")* — » 0 . (IΠ.13)

From the associated long sequence of cohomology groups

Hl

Ay(EM)

and Lemma IIL2 it follows that HJy(EM) ~ ®jK$J+*(1Cn). But by Lemma IΠ.l
— K (EM) and the theorem is proven. D

IV. The Compactly Supported Cohomology

IV. A. The proof of Theorem II.4 is based on the following lemma.
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Lemma IV. 1. Let U C EM be an open set such that U Πs(cr(V)) — 0 (cr(V) is
not assumed to be finite). Then the cohomology of dγ restricted to U is trivial.

Proof. Consider the double complex (11.12) with EM replaced by U. The second
filtration associated with (11.12) is bounded, and thus "£*'* converges. We claim
that "E*>* ~ 0. Indeed, let L be the following operator:

-b(σ)VV(φ(σ)))dσ, (IV.l)

where

W(z)= f \dσφ(σ)\2 dσ + f VV(φ(σ))δM(σ - τ)VV(φ(τ))dσdτ , (IV.2)

where the regularized delta function OM is given by (I.I). Since fF(z)φO, for
z ^ s(cr(V)), L is well defined. It is easy to see that LΔV -h ΔVL — Id, i.e. L is a
homotopy operator for Aγ. This proves that "£*'* ~ 0. D

IV. B. We can now prove Theorem II.4.

Proof of Theorem IL4. Since the coboundary operator dv is local, the complex
of compactly supported smooth forms is a subcomplex of the complex of smooth
forms. Let / denote the natural injection. We claim i induces an isomorphism of
cohomologies. Indeed:

(i) i is a monomorphism. To prove this, we consider a compactly supported
form ω such that ω = dγη, η G /\(EM) Let D\ and D2 be open balls such that
suppωUs(cr(K)) C A C D\ C D2, and let U be the complement of D\. Then
dvη = 0 on U. As a consequence of Lemma IV.l, there is a smooth form ζ on U
such that η — dyζ on U. We choose a smooth function χ on EM such that

X ' 1 on DC

2

and set η' = η - dγ(χζ). Then η' is compactly supported, cohomologous to η, and
ω — dγη' on EM This shows that ω is trivial in compactly supported cohomology.

(ii) i induces an epimorphism. Let ω be smooth and let dy ω = 0. Let D\ and
D2 be two open_balls in EM such that s(cr(V)) C D\ C D\ C D2, and let U be the
complement of D\. As a consequence of Lemma IV.l, there is a smooth form ψ on
U such that ω = ~dyψ on U. We choose χ as in (IV.3) and set ω' = ω — dv(χψ).
The ω7 is compactly supported, closed, and cohomologous to ω. As a consequence,
the cohomology class of ω contains a compactly supported representative. D

V. The /ΛCohomology

V.A. We now turn to the analytic part of this study, namely the square integrable
cohomology of the operator δy and its relation to the previously studied smooth
cohomologies. The content of this section has a largely conjectural character, as the
proofs of some crucial technical results are still missing.

Let if : /\P'**(EM) —* f\ P(EM) be the Hodge star operator, and
let (ω, 77) = /£ *ω Λ η be the usual inner product defined on Λfomp(^) ^e ^et

denote the completion of Λfomp(^) ^n me norm induced by this inner
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product. By /\2(EM) we denote the direct sum of the above Hubert spaces, and
by /\2(EM)$ and /\2(EM)\ we denote its even and odd subspaces, respectively.
The operators (Π.6) act on /\2(EM)- Note that the fermionic operators are bounded
while the bosonic operators are unbounded operators, defined on the dense invariant

domain ^0 = Λcomp(^) (say) Note also that b (σ),b*(σ),φ(σ\K(σ) and π(σ)

are the respective adjoints of ~b(σ),b(σ),φ(σ\K(σ), and π(σ). We will use the
following notation:

V.B. Consider now the Dirac type operator

~QV =~dv+~d*y 9 (V.2)

defined on ^0 Clearly, Qv is symmetric and odd with respect to the Z2-grading

\2(EM). Its square, ΠF = Qvon /\2(EM} Its square, Ώv = Qv ^ 0, is given by

Πy= f ( π ( σ ) π ( σ ) + dσφ(σ)dσφ(σ))dσ+ f (b*(σ)dσb (σ)-b(σ)dσb(σ))dσ

+ /(5*(σ)\

-h / VV(φ(σ))δM(σ-τ)VV(φ(τ))dσdτ9 (V.3)

where δM is given by (I.I). The Friedrichs extension of D^ defines a positive
self-adjoint operator which we denote by the same symbol. The above Laplace
operator is precisely the Hamiltonian of the regularized N =2 supersymmetric
Landau-Ginzburg quantum field theory. We define X to be the generator of the
circle action (II. 1) on /\2(EM) Explicitly,

X = f (dσφ(σ)π(σ) - π(σ)dσφ(σ))dσ + / (b*(σ)idσb(σ) - idσb(σ)b (σ))dσ ,
s1 51

(V.4)
or, in terms of the Fourier modes

*= Σ X*Λ + W+ Σ p(zPVp+zpVp). (V.5)

In the physics language, X is the momentum operator.
To make contact with the usual field theoretical expressions for the Hamiltonian

(V.3) and the momentum operator (V.4), we introduce the Dirac field operators,

- - f W*) (V 6)
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Then Ώv is given by (1.5), and

χ=f (dσφ(σ)π(σ) - π(σ)dσφ(σ))dσ + fψ(σ)iγQ8σψ(σ)dσ . (V.I)
si s1

K C. Below we formulate a conjecture concerning the analytic properties of Dj/
which will be relevant for our purposes. The particular properties whose validity we
conjecture to hold are motivated by the results obtained in [KL1, AO, and BI] for the
case of supersymmetric quantum mechanics, M = 0. To formulate the conjecture,
we need to introduce a technical assumption on the superpotential V. We say that
V is elliptic if, for each multiindex α, there exist positive constants εα and Cα such
that for all z,

|ST(z)| £ εα|z|*->l _ Cα , (V.8)

where d denotes the algebraic degree of V. In other words, we exclude superpo-
tentials V which have flat directions.

Conjecture V.I. Let V be an elliptic superpotential Then:
(i) for all t ^ 0, _

Tr(exp{-ίDF}) < oo . (V.9)

(ii) Every eigenvector ω ofΏγ is smooth. Furthermore, there exist constants
a > 0 and C such that

|ω(z)| ^ Cexp{-α|z|}. (V.10)

V.D. We now consider the square integrable cohomology H* (EM), defined as
Oγ,2

the cohomology of the complex (11.11) with [\p'q (EM) replaced by the cor-
responding space /\2'q (EM ) of square integrable forms, and with the operator
~dv defined as the closure of the corresponding operator with domain 2$. Let
Harm^E^) = {ω £ /\2(EM)' ΠF&> — 0} denote the space of harmonic forms of
Dj/, and let Ra,rmv(EMY denote the corresponding even and odd subspaces. The
following corollary to Conjecture V.I is a version of Hodge's theorem.

Corollary V.2. Let V be elliptic and assume that Conjecture V.I is true. Then:
(i) dim Harmγ(EM) < oc;

(ii) we have the decomposition

Λ2 (EM)* = HarmF(^)* 0 dv(dvGv /\2 (EM)*) Θ dv(dvGv /\2 (EMY) , (V.I

where Gγ is a self-adjoint compact operator^

(iii) there is a canonical isomorphism

Proof. The proof follows the standard arguments (see e.g. [GH]). Part (i) follows
immediately from part (i) of Conjecture V.I. To prove part (ii), we set

-ίl

on

on the orthogonal complement of

Part (iii) is a consequence of part (ii). D
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V.E. The next corollary to Conjecture V.I is a vanishing theorem for Qv (a spe-
cial case of the vanishing theorem was first conjectured in [JL]). It states that the
kernel of Qv consists of forms which are either purely bosonic or purely fermionic,
depending on the superpotential.

Corollary V.3. Assume that Conjecture V.I is true. Then there is an isomorphism,

(V.13)

In particular, the kernel of Qv consists of elements of definite parity.

Proof. Since \~\v is elliptic, the harmonic forms of DF are smooth, and so we have
a homomorphism i : Harmf/O^M)* — * H* (EM) We assert that ΐ is an isomorphism.

(i) i is a monomorphism. Let ω be harmonic, and let [ω] be its image in
H^ (EM)' Assume that [ω] = 0, i.e. ω = dyη. We claim that this implies ω = 0.

For the proof, we need the following result [H].

Lemma V.4. There exists an operator J : /\p'q (<CD) -» /\p'q~l (CD), q ^ 1, such
that J maps polynomially bounded forms into polynomially bounded forms, and

Jd + dJ = I. (V.14)

We verify easily the identity (d + Δy)(I + ΔyJ) — (I + ΔyJ)d, which implies
that

(3 + Δv) , (V.15)

where the inverse is defined by a formal power series (note that this formal power
series terminates, so no convergence questions arise). This, in turn, implies that

~ϋγ = ~dyJ(I + ΔyJ)~ldy . (V.16)

Applying this identity to η yields

and so ω = ~dyγ\f , with η' =J(I + ΔyJ)~lω. Since ω is bounded, and J maps
polynomially bounded forms into polynomially bounded forms, this implies that η'
is polynomially bounded, and our claim follows.

(ii) i is an epimorphism. By Theorem II.4, every smooth cohomology class [ω]
has a compactly supported representative COQ. In particular, ω0 is square integrable,
and so by Corollary V.2 it is cohomologous to a harmonic form. D

The above corollary can be also rephrased as the following index theorem.

Corollary V.5. Assume that Conjecture V. 1 is true. Then the index of the Dίrac
operator Qv is given by _

Ind(βF) = (-ir#cr(F) . (V.17)

V. F. We end this section by describing the N = 2 supersymmetry structure of the
Landau-Ginzburg theory and the underlying Kahler geometry. We define a second
coboundary operator,

dv = if b*(σ)π(σ)dσ - / b(σ)dσφ(σ)dσ + / b (σ)VV(φ(σ))dσ (V.18)
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and the corresponding Dirac type operator,

We verify that the square of Qγ is equal to the square of Qv, and that Qv and
Qv anticommute. Let us record these facts in the form of the following algebra. As
operators on ̂ 0»

{Qv,Qy} = 2DF, {Qv.Qv} = 2DK, {Qv,Qv} = 0 , (V.20)

where { , } denotes the anticommutator. In fact, (V.20) is a consequence of an
algebra satisfied by the coboundary operators and their adjoints:

{dv,d
v
} = 0, {dγ

9
dv} = -iX, {d

v
,d

v
} = D

F
, {d

v
,d*

v
} = 0 ,

[d
v
,d

v
] = 0, {δ

F
,δ*

F
} = Ώy, {dv~d*

v
} = 0, {d*,d*

v
} = 0 ,

{d^y} - ίx, {dy,dy} = o . (v.2i)

These relations are reminiscent of the algebraic relations arising in ordinary
Kahler geometry. We also note that the Hubert space /\2 (EM ) carries a represen-
tation of 5/(2). Namely, we define the operators

A = / (b(σ)b (σ) - b*(σ)b(σ))dσ = ί

L = / b*(σ}b(σYdσ = f:ψl(σ)\l/ι(σ)dσ ,

Λ = / b(σ)b(σ) dσ = f Ψ2(σ)ψ2(σ) dσ , (V.22)

and verify that they satisfy the following set of relations:

[A, L] = -2L, [A, A] = 2A, [A, L] = h . (V.23)
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