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Abstract: Generalized coherent states provide a means of connecting square inte-
grable representations of a semi-simple Lie group with the symplectic geometry of
some of its homogeneous spaces. In the first part of the present work this point of
view is extended to the supersymmetric context through the study of the OSp(2/2)
coherent states. These are explicitly constructed starting from the known abstract
typical and atypical representations of osp(2/2). Their underlying geometries turn
out to be those of supersymplectic OSp(2/2)-homogeneous spaces. Moment maps
identifying the latter with coadjoint orbits of OSp(2/2) are exhibited via Berezin's
symbols. When considered within Rothstein's general paradigm, these results lead
to a natural general definition of a super-Kahler supermanifold, the supergeometry
of which is determined in terms of the usual geometry of holomorphic Hermitian
vector bundles over Kahler manifolds. In particular, the supergeometry of the above
orbits is interpreted in terms of the geometry of Einstein-Hermitian vector bun-
dles. In the second part, an extension of the full geometric quantization procedure
is applied to the same coadjoint orbits. Thanks to the super-Kahler character of
the latter, this procedure leads to explicit super-unitary irreducible representations
of osp(2/2) in super-Hubert spaces of superholomorphic square-integrable sections
of prequantum bundles of the Kostant type. This work lays the foundations of a
program aimed at classifying Lie supergroups' coadjoint orbits and their associated
irreducible representations, ultimately leading to harmonic superanalysis. For this
purpose a set of consistent conventions is exhibited.
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1. Introduction

7.7. Coherent states were originally those very special quantum states of the har-
monic oscillator first introduced by Schrδdinger [1] and studied further by Glauber
[2]. Their special character stems from their property of being the closest possi-
ble states to the classical theory. This is reflected in the fact that they minimize
Heisenberg's uncertainty relations. Moreover, they form an overcomplete basis of
the Hubert space of quantum states. Since Glauber's contribution, the concept of
coherent states has evolved very rapidly. The key step of this evolution is with-
out any doubt Perelemov's group theoretical generalization [3]. Nowadays coherent
states find applications in several areas of physics and mathematics. Let us men-
tion, for instance, their occurrence in quantum optics [4], in signal analysis (where
they are called wavelets) [5], and in mathematical physics (in connection with
the quantization-versus-classical-limit procedures) [6,7] (see also [3] and references
therein). This last application constitutes the main interest of the present paper. More
precisely, here we extend to the supersymmetric context both the coherent states
approach to the evaluation of the classical limit, and the geometric quantization
of coadjoint orbits. Even though these two points have already been studied in the
case of the OSp(l/2) Lie supergroup in [8,9], the analysis of a richer example, such
as the OSp(2/2) Lie supergroup considered here, brings new insights that improve
our understanding of the very interesting supergeometric structures underlying the
so-called supercoherent states. Let us now present an overview of the subject. More
details and references about coherent states methods can be found in [3,4,10].

1.2. The harmonic oscillator coherent states admit a group theoretical construction
based on the Weyl-Heisenberg group underlying this physical system. By extending
this construction to general Lie groups, Perelomov introduced the notion of gener-
alized coherent states [3]. For a given Lie group G and a given unitary irreducible



Coherent States, Super-Kahler Geometry and Geometric Quantization 523

representation U of G in some Hubert space #ί\ the generalized coherent states are
the states belonging to a t/(G)-orbit in tff through a chosen initial state, usually
called the fiducial state. The generalized coherent states so defined are too general
to share the interesting properties of the harmonic oscillator ones. Indeed, the over-
completeness property holds only when U is a square integrable representation, and
the uncertainty relations associated with the commutation relations of the Lie alge-
bra Q of G are minimized only when the fiducial state is an extremal-weight state
[3,11,12]. In what follows we will only consider this type of generalized coherent
states and we will simply designate them by coherent states (CS) or G-coherent
states (G-CS).

1.3. Not all Lie groups possess square integrable representations. Unfortunately,
most physically interesting groups, such as the Poincare group, do not possess such
representations. There is however enough room to actually take advantage of the
particularly rich properties of CS. Indeed, all representations of compact semi-simple
Lie groups and all discrete series representations of the non-compact semi-simple Lie
groups are square integrable. Moreover, physical interpretations can be attached to
the associated CS. For instance, SU(2)-CS [13] allow a semi-classical description
of spin and the SU(1,1)-CS [12] are optimally localized states for the quantum
mechanics of a free particle on the (1 4- 1 )-dimensional anti-de Sitter spacetime.
It is worth mentioning that the square integrability condition has recently been
replaced by the less restrictive notion of square integrability modulo a subgroup
which allows the construction of (quasi-)coherent states for the Poincare group in
(1 -h 1 )-dimensions [14]. A more general framework is described in [15].

1.4. Let us now discuss the relevance of CS to the quantization-versus-classical-limit
procedures. A classical G-elementary system is generally described by a coadjoint
orbit of G, which is a symplectic G-homogeneous space (G///,ω), where H is a
closed subgroup of G, and ω is a G-invariant, closed and non-degenerate 2-form
on G/H. On the other hand, a quantum G-elementary system is described by a pair
(U,Jtf), where U is a Unitary Irreducible Representation (UIR) of G in a Hubert
space Jtf*. Classical and quantum G-elementary systems are related to each other
by on the one hand the quantization methods, such as the Kirillov-Kostant-Souriau
geometric quantization (also known as the orbit method) [16,17,18], or Berezin's
quantization [6], or the deformation quantization [19], and on the other hand the
classical limit procedures, such as the CS-inspired one described by Onofri [7].
Since at different stages of this work we will be dealing with these two kinds of
procedures, we now briefly hint at their intuitive content.

1.5. Whenever U is a square integrable UIR of G, one can construct a family of
CS parametrized by G/H, where H is the closed subgroup of G which leaves
invariant, up to a phase, the fiducial state. By construction, this family bears in its
very structure enough information to allow one to equip G/H with a G-invariant
symplectic form ω, which makes (G///,ω) into the classical G-elementary system
describing the classical limit of the quantum G-elementary system (U, Jtif). More
precisely, this explicit construction leads to a Kahler G-homogeneous space [7].
Combining this derivation with the evaluation of Berezin's covariant symbols [6]
provides one with a moment map that identifies (G/H, ω) with a coadjoint orbit of
G. Berezin's symbols are the mean values of the quantum representatives of the
generators of g in the CS.
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1.6. Obviously, evaluating the classical limit is more natural than quantizing. How-
ever, because of their better understanding of classical theories, mathematical-
physicists are very much interested in devising a quantization procedure that would
allow the translation of some of the well established classical physical understand-
ing to a quantum counterpart. Several quantization procedures are now available.
We have already mentioned three of them (see 1.4 above). Geometric quantization
is the method that we will be dealing with in this paper. In its simplest version, this
technique associates a quantum G-elementary system to a classical one (G/H,ω\
provided that [ω] is an integral cohomology class and that G/H admits an invariant
polarization.

1.7. The very natural question we address in this work can be formulated as follows:
How do the quantίzatίon-versus-dassical-lίmit procedures depicted above extend
to the supersymmetric context! We provide an answer to this, by studying very
specific though non-trivial examples, namely those of the typical and the atypical
OSp(2/2)-elementary systems. To shed more light on our motivations, we now sit-
uate our present contribution within the framework of the fast developing field of
supermathematics.

1.8. Supermathematics is the collection of mathematical tools developed during
the last thirty years in order to provide physicists with a rigorous framework for
the study of the so-called supersymmetric theories, such as supergravity and su-
perstrings. These are theories that possess symmetries which mix their bosonic and
fermίonic degrees of freedom. Some of the tools were already available before
these theories really triggered the interest of a large number of researchers (see
[20], pp. 26-28). A description of the super extensions of the usual analytic, alge-
braic and geometric concepts that have so far been obtained would unfortunately
lead us too far from the subject of this paper; we refer the interested reader to
the existing literature [21-31] and confine our description to those super ingredients
that are crucial for answering the question raised in 1.7.

1.9. Contrary to Lie superalgebras, there exist several notions of Lie supergroups
which correspond to the different definitions of a supermanifold (see [30] for
more details). Concerning the representation theory, only abstract representations
(i.e. abstract algebraic modules) of some simple Lie superalgebras are known
[22,24,25,32,33]. Using these representations, supercoherent states have recently
been explicitly constructed [34-36]. On the other hand, supergeometric concepts
such as supersymplectic supermanifolds and super coadjoint orbits have been un-
derstood since the end of the 70s [22,28] (see [37] for a recent application in
physics). A very nice characterization of the latter in terms of usual geometric ob-
jects has been obtained by Rothstein [38] (see also [39]). Hence, all the ingredients
needed for answering the question formulated in 1.7 are available. It remains to
extend to the super context the methods described in 1.5 and 1.6. This is explicitly
carried out here for the case of the typical and atypical OSp(2/2)-CS.

1.10. The paper is organized as follows: In Sect. 2 the so-called typical and atypi-
cal super-unitary irreducible representations of the Lie superalgebra osp(2/2) which
super extend the discrete series representations of its subalgebra su( 1,1) are de-
scribed. Then, the typical coherent states are constructed. By doing this we reproduce
the construction of the OSp(2/2)-CS given in [35], and we cure some of the
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discrepancies that appear there. In Sect. 3 a super extension of the methods de-
picted in 1.5 is then applied to these CS. Hence, the OSp(2/2)-homogeneous super-
space parametrizing the latter which we denote by ^l^ is explicitly equipped
with an OSp(2/2)-invariant supersymplectic structure ω. Moreover, a momentum
map that identifies (^(1'2),ω) with an OSp(2/2)-coadjoint orbit is exhibited through
the evaluation of Berezin's covariant symbols. Finally, the invariant super-measure
on ^l2) obtained in [35] is recovered through a much simpler computation. In
Sect. 4, after an introduction to supermanifolds, the supergeometry of (^(1'2),ω)
is studied further. As a result, (^(1'2), ω) is shown to be not only a non-trivial
example of Rothstein's general supersymplectic supermanifolds [38] but also a non-
trivial example of the notion of a super-Kahler supermanifold already discussed
in [8,9]. In this particular setting, we show how Rothstein's characterization can
be improved. In Sect. 5, after a brief introduction to the usual geometric quanti-
zation procedure, a super extension of it is applied to (&l\2\ω). General super-
prequantization has been developed by Kostant [28], however the lack of a notion
of polarization prevented him from completing the quantization. Here, the super-
Kahler character of (&l\2\ω) singles out a natural invariant super-Kahler polar-
ization which leads to the complete quantization. The coherent states associated
to the atypical representations (atypical CS), their underlying supergeometry, and
its quantization are described in Sect. 6. In particular the atypical coadjoint orbit
is identified. Section 7 gathers additional results and discussions, while concluding
remarks and possible extensions of the present work are displayed in Sect. 8. Our
conventions and notations are presented in Appendix A, while useful constructions
are relegated to Appendix B.

1.11. Before presenting the details, we would like to make clear some important
points concerning our approach and strategy. Perelomov's construction of G-CS can
be explicitly carried out starting simply from an infinitesimal version of a UIR of
G [3]. This approach, used in [34,35], is also adopted here. It might also seem
strange that we start with a representation of the Lie superalgebra, evaluate its clas-
sical limit through the associated CS and then quantize the obtained supersymplectic
supermanifold in order to construct a representation of the same Lie superalgebra!
In fact, the representation we start with is, as we will see, an abstract represen-
tation (abstract algebraic module), while the second is an explicit one. The latter,
is realized in a super-Hubert space of superholomorphic sections of a line bundle
sheaf over the considered coadjoint orbit. This representation is an important step
towards constructing explicit super-UIR of Lie supergroups.

2. osp(2/2) Representations and Typical OSp(2/2)-CS

This section is devoted to two main purposes. We first describe the osp(2/2) Lie
superalgebra and its lowest weight typical and atypical representations, then we
construct the associated coherent states.

2.1. osp(2!2) Representations. The superalgebra we consider here is the real ortho-
symplectic Lie superalgebra osp(2/2,1R). Throughout, we will simply denote it
osp(2/2). It is a real non-compact form of the basic classical simple Lie super-
algebra osp(2/2,C), which corresponds to C(2) in Kac's classification [25]. Its
Z2-grading, osp(2/2) = osp(2/2)o Θ osp(2/2)j, is such that the even component
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osp(2/2)o = so(2) Θ sp(2,IR), and the odd component osp(2/2)j is an osp(2/2)0-
module. In what follows, using the isomorphism sp(2,lR) = su(l, 1), we will con-
sider su(l, 1) instead of sp(2, IR).

As for Lie algebras, the construction of representations of osp(2/2) relies on
its complexification osρ(2/2, C). We now display a description of the latter super-
algebra. Since osp(2/2,C) is of type I [25,23], its odd component osp(2/2,C)j
decomposes into two irreducible osp(2/2, C)Q -modules, namely, osp(2/2, (C)j =
osp(2/2,C)_ι Θosp(2/2,C)ι. Moreover osp(2/2,C) admits the following Z2-
compatible ΊL -gradation:

osp(2/2,(C) - osp(2/2,(C)_1 Θ osp(2/2,C)0 Θ osp(2/2,C)ι , (2.1)

where osp(2/2,C)0 = osp(2/2,C)5. Let {B,K^K±\ V±, W±] be the Cartan-Weyl
basis of osρ(2/2,(C). The above mentioned structures of osp(2/2,(C) are explicitly
displayed in the following defining commutation ([,]) and anticommutation ([,]+)
relations:

[K0,K±] = ±K± , [K+9K-} = -2K0 , (2.2a)

[B,K±] = 0, [B,Ko] = 0, (2.2b)

[*o, V±] = ±\v±> [*o, W±] = ±^W±, (2.2c)

[K±, V±\ = 0 , [K±, W±] = 0, (2.2d)

[K±, Fτ] = ^V± , [K±9 WΨ] = ^W± , (2.2e)

[B, V±] = \v±> [*> W±] = ~W±9 (2.2f)

[V±, V±]+ = 0 , [W±, W±]+ = 0 , (2.2g)

[V±, Vτ]+ = 0 , [W±9 W^}+ = 0 , (2.2h)

, W±]+ = K± ,

Clearly, the even component is spanned by {B9Ko,K±}. The ^-generators
form an su(l,l) Lie subalgebra (see (2.2a)), and B spans a one dimensional
center of osp(2/2,C)5 (see (2.2b)). On the other hand, the odd component is
the span of V± and W±. More precisely, {V±} (resp. {W±}) span osp(2/2, (C)ι
(resp. osp(2/2, C)_ι). The fact that each of these two-dimensional vector spaces
carries an irreducible representation of osp(2/2,(C)Q is transparent from Eqs. (2.2c)-
(2.2f); osp(2/2, C)ι and osp(2/2, C)_ι are distinguished by the distinct eigenvalues
of B in (2.2f ).

In order to construct irreducible highest (or lowest) weight representations of
osρ(2/2) one needs to exhibit a Borel subsuperalgebra. In other words, we look for
a decomposition of osp(2/2, C) of the following form:

osp(2/2, C) = rΓ Θ I) Θ n+ , (2.3)

where f) is a Cartan subalgebra of osp(2/2, C)Q, and n~ and n+ are subsuper-
algebras of osp(2/2,C) such that ft,n±] C n^. The subsuperalgebras b+ = ί) 0
n+ and b ~ = ί) Θ n~ are called respectively the positive and the negative Borel
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subsuperalgebras. In terms of the basis of osp(2/2, (C) given above it clearly appears
that ί) is the complex span of {B,Ko}. Moreover, n^ (resp. n^~) can be taken to be
the span of {K+} (resp. {AΓ_}). Having fixed this, it can easily be shown that there
exist three possible Borel subsuperalgebras of osp(2/2, C). Since b± = ί) Θ π^ θ

rip we need only to exhibit the three possible rip These are:

(i) n^ = span{F+, F_} and n^

(ϋ) n^ = span{^+, W-} and n^" = span{F+, F_},

(iiί) n^ - span{F+, W+} and n^ = span{F_, W.}.

A few remarks are now in order.

Remark 2.1. The situation in (i) is symmetric to that in (ii). Moreover, they both fit
with the ^-grading given in (2.1). Indeed, we have that osp(2/2,(C)o = n^~ 0 ί) 0 n^

and osp(2/2,C)±ι = Πp

Remark 2.2. The ± indices carried by the Vs and the Ws are misleading regarding
the root space decomposition of osp(2/2,C) with respect to the I) given above.
Indeed, one can see from (2.2i) that if V+ (resp. W+) is associated to some odd root
α, then W- (resp. F_) is associated to — α. This unconventional choice of notations
is aimed at making the ^-gradation of (2.1) explicit in the defining relations of
osp(2/2,<C) (see (2.2a)-(2.2i)).

Remark 2.3. Since the set of positive roots depends on the positive Borel subsu-
peralgebra considered, we have then here three possible sets of this type. While
the set of positive roots arising from the case (iii) contains two odd simple roots,
those arising from the cases (i) and (ii) contain one odd and one even simple roots
(recall that rank (osp(2/2, C)) = 2). The systems of simple roots of both (i) and
(ii) can be connected to each other by an element of the Weyl group of osp(2/2, C)
(κr*(osρ(2/2,(C)) := ^(osp(2/2,(C)5)); they then give rise to the same Dynkin di-
agram. On the other hand, the system of simple roots of (iii) does not belong to the
^F(osp(2/2, (C))-orbit containing the two previous cases; a different Dynkin diagram
arises then. This situation is a special feature of basic classical simple Lie super-
algebras [40]. Indeed, usual complex simple Lie algebras admit a unique Dynkin
diagram. The two Dynkin diagrams mentioned above exhaust all the possibilities
for osp(2/2, (C) [40]. Notice finally that Kac considered in his original classification
[25] only those Borel subsuperalgebras that lead to the minimum number of odd
simple roots. They were called distinguished Borel subsuperalgebras.

Remark 2.4. Contrary to the two other cases, the choice in (iii) leads to a very inter-
esting Z-grading of osp(2/2,C) [33]. Both different and finer than that of Eq. (2.1),
it is given by:

(-2) (-1) (0) (1) (2)

osp(2/2, C) = nr e nr φ f) 0 nf θ nt . (2.4)

The abstract lowest-weight representations that will be described below are those
obtained using the Borel subsuperalgebras of case (iii). This choice is justified
simply by the fact that, up to some discrepancies that we correct here, the associated
representations are those already used in [35]. A more mathematical description of
these representations is given in [33].

An abstract irreducible lowest-weight osp(2/2)-module is explicitly constru-
cted starting from a lowest- weight state. According to our choice of Borel



528 A.M. El Gradechi, L.M. Nieto

subsuperalgebras, namely the one made above in (iii), the lowest-weight state is the
state, temporarily denoted |0), which is simultaneously annihilated by K-, F_ and
W-, and which moreover is a common eigenstate of both the Cartan subalgebra
generators, B and KQ. Hence, |0) is such that,

*o|0)=τ|0), B \ 0 ) = b \ 0 ) 9 (2.5)

and

AL |o> = F_ |0) = W-|0) = 0 , (2.6)

where 0 < τ £ R and b G IR completely specify a lowest-weight osp(2/2)-module,
which is denoted V(τ,b) throughout. A basis of V(τ,b) is explicitly obtained by
applying to |0) basis elements of the enveloping superalgebra of the Lie subsuper-
algebra n+ (as given in (2.3) and (iii) above). The results of this construction are
now displayed; more details are given in Appendix B.

The following observation simplifies the construction. By restricting (2.5) and
(2.6) to the su(l, 1 )-generators, KQ and K-, it clearly appears that |0) is also the
lowest-weight vector of an irreducible su(l, l)-module D(τ) C V(τ9b)9 namely,

D(τ) = span{|τ,τ-f ra),w € N} . (2.7)

This is the representation space of the well known positive discrete series repre-
sentations of su(l, 1). As a subspace of V(τ,b)9 D(τ) is an eigenspace of B with
eigenvalue b. This is an immediate consequence of both (2.5) and the fact that B
commutes with su(l,l) (see (2.2b)). Combined with (2.7), these facts suggest the
following notation for the lowest-weight state of V(τ9b), namely |0) = \b,τ9τ).

As it is explicitly shown in Appendix B, V(τ9b) is built out of more than
one irreducible su(l, l)-module. Two cases must however be distinguished, namely,
either \b\ < τ or b — ±τ.

Typical When \b\ < τ, as a vector space, V(τ9b)9 turns out to be the direct
sum of irreducible lowest-weight su( 1,1 )-modules (positive discrete series). More
precisely,

K(τ, b) = D(τ) Θ 2 - D (τ + ̂  Θ D(τ + 1) . (2.8)

Here D(τ-f^) appears with multiplicity 2. These two copies of D(τ-f |) are

distinguished eigenspaces of B, with eigenvalues b -f- \ and b — \. The degener-
acy is then raised when one considers the su( 1,1 )-modules appearing in (2.8) as
(su(l, 1) Θ so(2))-modules. An extra subscript has then to be added to our previous
notation in order to take this fact into account. Observing that, as D(τ\D(τ -f 1) is
a ^-eigenspace with eigenvalue b9 we can write the following finer decomposition
of V(τ,b),

V(τ,b)=Db(τ)®Db+L2 (τ + ̂  Θ/),_ι (τ -f ̂  ΘD b(τ + 1) . (2.9)
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More precisely,

F(τ, b) = span < \b, τ, τ -f w), ~ , - , - -

, τ + - , τ H h»Λ , | f c , τ + l , τ + 1 +m);m G N I . (2.10)

Moreover, as a vector superspace, F(τ, &) — FQ(T, &) 0 FJ(T,&), where FQ(T, & ) Ξ Ξ

A,(τ)©A,(τ+1) and Fj(τ,ft) = £> f e 4^(τ + |) θ£>/;_ i (τ + |). (The action of the

generators of osp(2/2, (C) in F(τ,Z?) is explicitly given in Appendix B.) The irre-
ducible osp(2/2)-modules, F(τ, b) for \b\ < τ, are usually called typical represen-
tations [23-25,32].

Atypical. When b — τ (resp. b — — τ), F(τ,τ) (resp. F(τ, — τ)) is no longer ir-
reducible. It contains an osp(2/2)-submodule, F'(τ,τ) = Dτ+\_(τ -f- \] @Dτ(τ + 1)

(resp. F'(τ, —τ) Ξ Z)_ τ_ι(τ + |) θ £)-τ(τ + 1)), generated by the primitive vector

F+|0) (resp. 0 + |0}). The quotient F(τ,τ)/K'(τ,τ) (resp. V(τ,-τ)/V'(τ,-τ)) appears
then as the appropriate irreducible osp(2/2)-module. More precisely,

C/(±τ) = F(τ, iτVF^τ, ±τ) = D±τ(τ) θ D±(τ_ , } (τ + ^] . (2.11)

These representations are known as the atypical representations [23-25, 32].

The above typical and atypical osp(2/2)-modules can be turned into super-unitary
irreducible representations [33] by equipping F(τ,£>) with a super-Hermitian form
{ }. The latter notion was originally introduced in [41]. It has been used in the
context of representation theory of Lie superalgebras in [24], and more recently in
[33]. It is defined in the following way:

( | > : F(τ,6) x F(τ,/>) -> C (2.12)

such that VM, v two homogeneous elements of F(τ,&)

(u\υ) =(- l) f c ( I f ) t ( ι : ) { ι?M), (2.13)

where the parity of a homogeneous element w G F(τ,Z?) is ε(w) = 0(1) for w £
^ό(ϊ)(τ'^) ^ne elements of FQ^ are called even (odd) elements of V ( τ 9 b ) . The
super-Hermitian form is taken linear in the second argument. In what follows we will
consider a homogeneous realization of (2.13), namely, Vw = u$ -\- u\, v = VQ -f v\ £

)\ , (2.14)

where {• )o (resp. ( } ι ) is a Hermitian form, in the usual sense, on FΛ(T, b)

(resp. Fj(τ,Z?)). Since (uk\Vk)k — (^ W ^ ) A - for k = 0,1, one clearly sees that (2.14)
satisfies (2.13). The super-Hermitian form in (2.14) is even.

Besides being an osp(2/2)-module, F(τ,6) will be also considered as a left ^
module, where 3$ = &Q Θ $\ is a complex Grassmann algebra [22,23]. The super
Hermitian form (2.12)-(2.14) will then be extended to the Grassmann envelope of
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the second kind [22] V(τ,b) of V(τ,b\

V(τ,b) = (£®V(τ9b))Q, (2.15)

such that
( | ) : F(τ, fe)x V(τ9b)->aQ. (2.16)

From the next section on & will assume a very specific form as the exterior algebra
over (C4, namely, ^ = Λ^4 (see Appendix A for more details about (2.15) and
(2.16)).

Remark 2.5. The super-Hermitian form in (2.12) and (2.14) is positive definite
on V(τ,b) for \b\ < τ, in the sense that the Hermitian forms on both K0(τ,6) and
Vl(τ,b) are positive definite. In Appendix B, we show how this structure turns the
typical module V(τ,b) into a super-unitary irreducible representation of osp(2/2).

Remark 2.6. The construction of atypical representations (2.11) looks very much
like the construction of the so-called indecomposable representations which, for in-
stance, usually intervene in the description of massless relativistic quantum elemen-
tary systems. This analogy is confirmed by the fact that the super-Hermitian form
(2.14) is no longer positive definite on V(τ, ±τ). Indeed, as it is shown in Appendix
B, F'(τ,τ) (resp. F'(τ,-τ)) is an osp(2/2)-submodule of F(τ,τ) (resp. F(τ,-τ))
made of zero-norm states. In fact, our atypical representations are indecomposable
representations. Finally, notice that the atypical representations are, as the typical
ones, simply expressed in terms of discrete series representations of su(l,l) (see
(2.11)).

Remark 2.7. It is important to note that the atypical modules ί/(±τ) in (2.11)
are irreducible osp(l/2)-modules, where osp(l/2) stands here for the Lie subsu-
peralgebra of osp(2/2) whose Cartan-Weyl basis is {K^K±,^(V± + W±)}. This

interesting observation will be discussed further on in Sect. 6.

We now briefly discuss Schur's lemma. Since osp(2/2, (C) is of rank 2, the center
of its enveloping superalgebra is generated by two osp(2/2,C)-invariants which are,
respectively, quadratic (the Casimir) and cubic in the generators of osp(2/2, C). For
simplicity, we exhibit below only the explicit expression of the former which we
denote Q2. Hence,

β> = C2-B2+KQ- W+V_ - V+W-, (2.17)

where €2 is the Casimir invariant of the su(l,l) subalgebra, namely,

C2=K2
)-KQ-K+K_. (2.18)

The irreducibility of F(τ, b) implies that on K(τ, b) both invariants are constant
multiples of the identity. The exact value of the quadratic invariant on V(τ,b) is
simply obtained by evaluating Q2 on the lowest-weight state |&, τ, τ). Hence,

Q2 = (τ2 - Z?2)E on V(τ,b), since C2 = τ(τ - 1)1 on D(τ) C V(τ,b). (2.19)

One clearly sees that Q2 is identically zero on the atypical modules.
Finally, a lowest-weight irreducible osp(2/2)-module is said to be an inte-

grable module whenever it is also a module over the Lie group Sp(2,R) x SO(2)
whose Lie algebra is osp(2/2)0. Since the maximal torus in OSp(2/2) (and in
Sp(2,R) x SO(2) too) is the [7(1) x ί/(l) subgroup generated by K0 and B, one
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easily sees from (2.5) that V(τ,b) is an integrable osp(2/2)-module if and only
if both τ and b are half integers. Throughout we will only deal with integrable
super-unitary irreducible osp(2/2)-modules, and we will no longer mention this fact.
More precisely, we will restrict our attention to the typical integrable representa-
tions, knowing that all the constructions of the forthcoming sections carry over to
the atypical case. However, some very interesting points concerning the latter are
worth to be mentioned. They are gathered in Sect. 6.

2.2. OSp(2l2) Coherent States. In this section we construct the OSp(2/2)-coherent
states associated to the typical representations described in the previous section. We
should mention that up to some discrepancies that are cured here and a different
choice of conventions (see Appendix A), this construction was originally carried
out in [35].

As stressed in the introduction, the coherent states for a Lie group G are the
quantum states belonging to a G-orbit through a fiducial vector in an irreducible
g-module carrying a unitary representation of G. Here, g stands for the Lie alge-
bra of G. Recall also from the introduction that the minimal requirement for the
construction of G-CS consists in an irreducible unitary g-module. For OSp(2/2),
irreducible super-unitary osp(2/2)-modules are at our disposal.

Considering the lowest-weight state \b, τ, τ) G V(τ,b) as the fiducial state, taking
into account Eqs. (2.5)-(2.6), and extending in a straightforward manner Pere-
lomov's construction [3], the typical OSp(2/2)-coherent states are obtained as
follows:

\a,θ,χ) =^exp(aK+ + ΘV+ + χ W + ) \ b 9 τ , τ ) . (2.20)

They belong to V(τ,b) (see (2.10) and (2.15)), for & the Grassmann algebra gen-
erated by the complex anticommuting variables θ, χ, and their complex conjugates,
θ and /. These are odd elements of ,̂ , while a is an even element of J?. More
details about 3$ are given in Appendix A. In (2.20), Λr is a normalization factor
which will be explicitly determined below.

Since [K+ί V+\ = 0, [K+, W+] = 0 and θ2 = χ2 = 0, we can rewrite (2.20) as
follows,

\a,θ,χ) = ,4"[exp(^+)] ίl + ΘV+ + γW+ + ]-yβ(V+W+ - W+V+)\ \b,τ,τ) .

(2.21)
A simple computation, based on (B.15)-(B.19), leads to:

\b,τ,τ) + θVτ-b

(2.22)

At this point, we introduce the new variable

€. (2.23)
2τ
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Notice that for simplicity we are choosing here (and throughout) z to be a com-
plex number. This choice is discussed in Sect. 7. Finally, using the known action
of K+ in V(τ,b} (see (B.I8)), we get the explicit form of the typical coherent
states (2.22):

z fl γ\ _
Δ > υ"> A / — Σ

Γ(2τ

(2.24)

Now, using the super-Hermitian form (2.16), the fact that the basis of F(τ, b)
in (2.10) is super-orthonormal with respect to (2.14) (see Appendix B), and the
conventions of Appendix A, one easily evaluates J f . Hence,

l + i
τ-b

2 1 - ki2

4τ
(2.25)

Notice here that for obvious reasons we have considered J\f real. Moreover, the
following identity,

Σ * " ' ^K1' (2'26)

has been used in order to write the result (2.25) in a compact form. It is worth
mentioning at this point that when one sets to zero the odd variables θ and χ,
all the previous formulae reduce exactly to those of the SU(1,1)-CS [3]. In that
case, and clearly here too, z spans the unit disc ^(1) = {z £ C; |z < 1};

For a later use we evaluate now the |z, θ, χ) CS, where z, θ and χ are the com-
plex conjugates of z, θ and χ. Straightforwardly,
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1
-,

Σ

the normalizing constant being now

Γ(2τ + m + 2)

m!Γ(2τ + 2) Z '

(2.27)

-(1- z | 2 \ τ .τ-b θθ
2 1 -|z 2 1

(τ 2-£ 2)(τ- 1) θχχθ

4τ 7 2 Λ 2
(2.28)

Having the explicit form of the typical OSp(2/2)-CS, we can now apply to them
a super extension of Onofri's analysis [7] in order to reveal the (super)geometry
underlying them, or equivalently, in order to evaluate the classical limit of the quan-
tum theory described by the typical representation V(τ,b] of the previous subsection.
This analysis is the main concern of the next two sections.

3. Supersymplectic Geometry and the OSp(2/2)-CS

In analogy with the non-super case [3], the results of the previous section suggest
that the space parametrizing the typical OSp(2/2)-CS is the OSp(2/2)-homogeneous
super space OSp(2/2 )/(£/(!) x £/(!)), realized in terms of the coordinates (z,0,χ),
where z parametrizes the unit disc {z G C; z| < 1}. This realization will

be subsequently called the N = 2 super-unit disc, and it will be denoted ^(1'2). We
recall that the TV = 1 super-unit disc ^(1'^ was fully considered in [8,9]. We will
consider here ^(1'2) as a supermanifold, although its complete and precise geometric
characterization will be only given in Sect. 4.

In Sect. 3.1, we carry out our super extension of Onofri's analysis [7] which
only makes use of the explicit form of the CS. This analysis will provide us with
a partial description of the geometric structure underlying the typical OSp(2/2)-
CS. Some of the results obtained here will be revisited in Sect. 4 in light of the
general theory of supermanifolds. Let us recall that in the case of a semi-simple Lie
group, starting from the associated CS, Onofri's analysis allows one to equip the
homogeneous space parametrizing these CS with an invariant symplectic form (i.e.
a closed and non-degenerate 2-form) which is moreover Kahler. Analogously, here
we equip ^(1'2) with an invariant super symplectic form, in the sense of [22,28,38].
Moreover, as it will be discussed in Sect. 4, this form turns out to be super-Kάhler
in a sense to be defined (see also [8,9]). In Sect. 3.2, extending Berezin's notion of
covariant symbols, we evaluate the classical observables (superfunctions on £? ( 1'2 ))
associated to the infinitesimal action of OSp(2/2) on ^(1'2). By doing this we
exhibit a moment map that identifies ^(1'2) with an OSp(2/2)-coadjoint orbit. In the
process, the Hamiltonian vector superfields associated to the classical observables are
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computed. Finally, in Sect. 3.3 we evaluate the Liouville super-measure on
This will be needed in Sect. 5.

3.1. The Super symplectic Form. Onofri's analysis starts by evaluating a real func-
tion from the G-CS; it plays the role of a Kahler potential for a G-invariant Kahler
form on the space parametrizing the G-CS. Here, emphasizing the symplectic output
of this procedure, we extend it to our typical OSp(2/2)-CS. Hence, from Eq. (2.27),
we evaluate the following superfunction on @(*\2\

z,z,θ,θ,χ,χ):=\og\{0\z,θ,d\ 2

InσΠ I- 2\ 1 i1

^gv1 h ) I l 2

τ + b χχ τ2 - b2

θθ

θχχθ
2τ 1 - z|2 4τ2 (1 - |z|2)2

Let now d be the exterior derivative on ^]l2) given by d = δ + <5, where

(3-2)

Notice that here ε(J) = 0, i.e. d is an even quantity.
An even two-superform on ί^1'2) can now be obtained from the superfunction

in (3.1) in the following way:

ω = —iδδf = 0)4 ,

where,
(3.3)

(3.4)

0)2 — — (τ —
( i - M 2 )

- d θ d θ -

- (τ + 6)
- \z\2)

x [χzdzdχ - χzdχdϊ] - χχ- (3.5)

= — i -2-
2τ(l - z|2)2

θχdθdχ-χθdχdθ

2ΘΘ

( i - k 2 )

|z|2)2

2χχ

Θχχ0 dzdz + θe JχJχ + χχ dθdθ

j-[θzdzdθ-θzdθdz]

(3.6)
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This two-superform belongs to the exterior algebra on ^(12). The latter is a
bi-graded 2 x ^ 2 algebra [28], where the Z-gradation is the usual gradation of
de Rham complexes, while the Z2-gradation is the natural gradation accompanying
supersymmetry (i.e. the ^-gradation of the Grassmann algebra $). More precisely,
for any two superforms β\ and /?2 on &l\2\ one has:

βιβ2 = (-lΓa2+blb2β2βι, (3.7)

where a\ (resp. bt) is the degree of the superform β, with respect to the TL (resp. 2£2)
gradation. Hence, in (3.6), dzdz — —dzdz (this is the usual wedge product),
dzdθ = -dθdz and dθdθ = dθdθ.

Using these conventions one can check by explicit calculations that ω is closed,
i.e. dω = 0. In fact, ω is closed by construction. This is a direct consequence of

(3.3). Indeed, since d = δ -f δ, d2 = 0 implies that δ2 = δ = δδ -f δδ — 0. Hence,
(@^\2\ω) is a supersymplectic supermanifold. This particular point will be analyzed
further on in Sect. 4.

3.2. The Classical Observables, In analogy with the non-super case, one can de-
termine the classical observables associated to the generators of the supersymplec-
tic action of OSp(2/2) on &l\2\ This is achieved through the evaluation of the
so-called Berezin covariant symbols [6]. As for the superfunction (3.1), these are
obtained simply from the knowledge of the explicit form of the OSp(2/2)-CS and
the representation V(τ,b) they belong to. Hence, the classical observable Hcl asso-
ciated to an OSp(2/2)-generator H € {B,K^,K±, V±, W±} is given by the Berezin
symbol:

Hcl = Hcl(z,z, θ, θ,χ, χ) := (ϊ, θ,χ\H\z, θ,χ) . (3.8)

After lengthy but straightforward computations based on (2.27) and results from
Appendix B, one obtains:

Bcl = b + i
τ-b θθ

1 - z
— i-

χχ

2 1 - \z\

= τ-
1 - Irl

τ-b

2τ

τ2 -

- |z|2) 2τ2

θχχθ
\-7\2\2

2τz
1 +/-

τ-b

2τ (I- z\2) 2τ

χχ τ2 - b2 θχχθ

2) 2τ2 (1 - Z |2)2

2τz
1+ί-

τ-b b χχ τ2 - b2 θχχθ

2τ (1 - z|2) 2τ 2τ2 (1 - z|2)2

-/(τ - b)θ + (τ + b)zχ
τ2 - b2 (izθ + χ)χθ

2τ ( l - z 2 )

(τ - ί(τ + b)zχ -
τ2 - b2 (zθ + iχ)θχ

2τ - |z|2)
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v_ =
1 - \z\2
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τ2-b2 (ίχ + iθ)χθ]

2τ

(τ - b)zθ - i(τ + b)χ -
2τ

The obtained classical observables satisfy the following relations:

Remark 3.1. Notice that the Berezin symbols (3.8) are defined in terms of z , θ , χ )
instead of \z,θ,χ). In order to justify this choice we need to anticipate future re-
sults. In fact, as it will be shown in Sect. 5, this choice leads to the classical the-
ory whose quantization gives rise to a superholomoφhic representation. The anti-
superholomoφhic one arises as the quantization of the classical theory obtained
from the CS|z,0,χ).

The Hamiltonian vector superfield XH associated to a classical observable Hc{ is
the solution of the following defining equation [28],

XH-\ω = dHcl, (3.11)

where "_j" stands for the interior product and ω is the supersymplectic form (3.3).
Here we display the Hamiltonian vector fields associated to the above observables.
A long computation leads to the following:

Y = - _ - _ •
B I2dθ I2δθ I2

δ_
'~δz

\j \j \j \j \j \j A

XKo = iz— - iz— +i-^~ i- -^ + i- —•I
12 dχ dχ

2 d d nd d
κ+ =iz — - i— + izθ— + izχ— ,+ oz dz oθ dχ

..2 -δ. .
- = ZT" ~ lz T- ~ ίz^ ' IZ1^-- >dz δz δθ δχ

2τ

χ^z-'

2τ

~ δ d ί _ /τ — ό \ Λ _ ι v χ? &--3β + T-hr | β z l -
τ-b\nd .

T i
_ _ δ . ί_ fτ + b\ -_\ d δ

2τ )"dz * \ 2τ JZχ δz * \ \ 2τ ) χ)δθ δχ'

τ-b\Άd ί ίτ + b\ /,^ S d

zy--n ^— }θ--(z-( -^— }xθ)w+ l~dt

(3.12)
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The above vector fields are such that:

XB = XB, XKO = XKO, XK+ — Xκ_^ Xγ+ — iXw-> Xv- — iXw+ (3.13)

The supersymplectic structure on ̂ l2) given in (3.3)-(3.6) defines a Poisson
super-bracket structure on the space of smooth superfunctions on ^l^2\ turning it
into a Poisson superalgebra. The Poisson super-bracket of any two smooth super-
functions g and h on ̂ l2) is defined by:

{g9h} = -iXg-Jdh. (3.14)

A simple computation shows that the classical observables in (3.9) form a Poisson
subsuperalgebra isomorphic to osp(2/2). Hence, the classical observables provide
one with a supersymplectic realization of osp(2/2). What precedes is equivalent to
say that by evaluating the classical observables in (3.9) we have in fact exhibited an
infinitesimally equivariant momentum map [18], J : ̂ ^ — > osp(2/2)* = osp(2/2),
that identifies ^(1|2) with an OSp(2/2)-coadjoint orbit [28]. The latter is realized as
a (2|4)-dimensional subsupermanifold of IR^4'4) defined by two constraints which
correspond to the quadratic and the cubic osp(2/2)-invariants. Indeed, the latter are
identically constant when evaluated in the obtained supersymplectic realization of
osp(2/2). For instance, Qf ΞΞ τ2 - b2 (recall here that \b\ < τ).

This completes the first stage of our description of the geometry underlying
the typical OSp(2/2)-CS. This turns out to be a supersymplectic geometry. The
main purpose of the next and final stage (Sect. 4) is to situate the results of the
present section within the already existing theory of supersymplectic supermanifolds.
Moreover, in analogy with the non-super case [7], one is tempted to go one step
further and consider (^(1'2),ω) as an example of a super-Kahler supermanifold, a
general notion which has not so far been seriously studied (see however [8,9]). In
Sect. 4, this notion will be given the legitimacy which will allow us to extend the
full geometric quantization to the super-Kahler context (see Sect. 5).

Before carrying out this program, we display now a computation, the result of
which will be needed later on in Sect. 5.

3.3. The Lίouville Super- Measure. The notion of a Liouville measure on a symplec-
tic manifold can be extended to the super context. Indeed, this can be done starting
from the supersymplectic form and using Berezin's notion of a density [29]. For
instance, up to a multiplicative constant, an OSp(2/2)-invariant measure on @(l\2)
is given by:

dμ(z,z-,θ,θ,χ,χ) = - sdet\\ωAS\\dZdΞdθdθdχdχ , (3.15)
π

where "sdet" stands for the superdeterminant (or Berezenian) [22], while ||ω^||
stands for the supermatrix form of ω, namely,

ω = dxAωAβdxβ

= dz(a)dz + dz(a)dθ + dz(β)dχ + dθ(y)dΞ + dχ(δ)dz

+ dθ(y)dθ + dθ(r)dχ + dχ(s)dθ + dχ(t)dχ . (3.16)
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More precisely,

°>AB\\ =

the entries of | | ω | | are as follows:

2τ + f(r - 6)1 + ̂  θθ
x
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(3.17)

τ2-b2

α = —- 1 + i - H ι + / Tt ?j ;

= --(τ-A)

τ - t> UV
1 + z

**
2τ

ί = --(τ-

τ - 6 00
1 + /

τ-b θθ
1 i /1 -(- I——

2τ Λ:

•?-#- τ2 - Z>2 .,

2τx2 X

A simple computation leads then to:

dμ(z,z,θ,θ,χ9χ) =
-2τ

π(τ2 -b2)
dzdzdθdθdχdχ.

(3.18)

(3.19)

Clearly, this measure is only valid in the typical case, \b\ < τ, (For the atypical
case see Sect. 6.) Moreover, the choice of normalization in (3.19) is not innocent.
Its usefulness will appear in Sect. 5 (see Remark 5.4). The OSp(2/2)-invariance of
dμ is claimed without proof. In fact, we can show that this is true using the action
of OSp(2/2) on &l\2\ The latter can be derived by integrating the flows of the
Hamiltonian vector fields (3.12) (see Sect. 7,7.5).

At this point, it is worth mentioning that up to a slight variation in the conven-
tions (see Appendix A), the super-measure (3.19) is exactly the one used in [35] in
order to prove the resolution of the identity for the typical OSp(2/2)-CS. The same
result holds here. In our notation, this means that the typical OSp(2/2)-CS (2.27)
form an overcomplete basis of V(τ,b) (see Sect. 7,7.1). From a computational point
of view the way we evaluate here (3.19) is by far simpler than the one used
in [35].

4. More About Supergeometry

The theory of supermanifolds was originally devised in order to provide physicists
with a rigorous framework for studying supersymmetric field theories. Here we are
interested in later developments of this theory that were oriented towards extending
to the super context techniques of symplectic geometry and related methods such
as geometric quantization. We start then this section by presenting a brief account
on the key contributions in those directions (Sect. 4.1). The results of Sect. 3 will
then be rediscussed in the light of the general theory (Sects. 4.2 and 4.3).
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It is worth stressing that the most important point of this section is the exten-
sion of Rothstein's characterization of supersymplectic supermanifolds to the Kahler
context (Sect. 4.3). This extension was already discussed in [8,9] where a defini-
tion and a non-trivial example of the notion of a super-Kahler supermanifold were
exhibited. Here, that definition is made more precise, explicit general formulae are
given, and another non-trivial example is discussed, namely (£^(1'2),ω).

4.1. Supersymplectic Supermanifolds. It is known that the geometry of a mani-
fold can be recovered from its structure sheaf, i.e. the algebra of functions on that
manifold. A supermanifold is defined by extending such an algebra to a supercom-
mutative superalgebra. The supergeometry of this supermanifold is then extracted
from the superstructure sheaf thus obtained through known techniques [28]. As for
usual manifolds, three types of supermanifolds emerge, namely, the C°°, the real-
analytic and the complex-analytic (or holomorphic) supermanifolds. From the results
of the previous section it clearly appears that we are dealing here with the last type
of supermanifolds.

Definition 4.1. [42,43] A (p\q)-dimensional holomorphic supermanifold is a pair
(M, S$M )> where M is a p-dimensional complex manifold with holomorphic struc-
ture sheaf ΘM and S$M is a sheaf of super commutative superalgebras on M, such
that:

(a) J&M/^ ^ isomorphic to ΘM,^ being the subsheaf of nilpotent elements
of S$MΪ and

(b) SUM is locally isomorphic to the exterior sheaf ί\S, where $ = Jf/Λ^2 is
a locally free sheaf over (9u\ equίv alently, for {U%} an open cover of M,
is locally isomorphic to GM(U*) Θ

Here ΛC^ stands for the exterior algebra on <C^, and p (resp. q) is the even
(resp. odd) complex dimension of (M, J/M) Moreover, local supercoordinates on
(M, J/M) are given by a set (zl,...9z

p;θl,...,θq), where (zl

9...9z
p) are local co-

ordinates on M and (Θl

9...9θ
q) form a basis of $ over ΘM. Notice that up to

obvious modifications, Definition 4.1 applies equally well to C°° and real-analytic
supermanifolds.

It is well known that a holomorphic vector bundle over M is completely speci-
fied once its sheaf of holomorphic sections is given. This sheaf is a locally free sheaf
over ΘM Hence, $ in Definition 4.1 represents the sheaf of sections of a rank-g
holomorphic vector bundle F over M . To any holomorphic supermanifold (M,
one can then canonically associate the holomorphic supermanifold (M,
where 0 f̂ (ΛF) is the sheaf of sections of the exterior bundle ΛF —> M. Condition
(b) in Definition 4.1 above implies that (M,^M) and (M, $M(ΛF)) are locally iso-
morphic. The same holds true for C°° and real-analytic supermanifolds. In these two
last instances, this local isomorphism always extends to a global but non-canonical
one [44]. However, this is not always true in the holomorphic case [42,43].

As for usual manifolds, the tangent sheaf is defined as the sheaf of superderiva-
tions of eS/M> and the cotangent sheaf ΏI(S$M) as its dual. Then a super de Rham
complex can be constructed by introducing a coboundary operator d. From these
ingredients one defines the notion of a supersymplectic supermanifold.

Definition 4.2. [28] A supersymplectic supermanifold is a triple (M, £#M,ω), where
ω is a closed and non-degenerate even 2-superform on (



540 A.M. El Gradechi, L.M. Nieto

Rothstein's characterization of C°° supersymplectic supeπnanifolds in terms of
the geometry of vector bundles over the usual symplectic manifolds constitutes a
major contribution to this topic [38]. Indeed, for ω at most quadratic in the odd
coordinates, Rothstein's theorem [38] allows one to completely identify ω in terms
of a symplectic structure on M and extra structures in the vector bundle sector. More
precisely, using the global isomorphism mentioned above, it states that to any C°°
supersymplectic supermanifold (M, j^,ω) there corresponds a set (M,ωo,E,g, V6'),
where (M, CUQ) is a symplectic manifold, IE is a vector bundle over M with metric
g and 0-compatible connection V^, such that S is the sheaf of linear functionals on
IE and ω is completely determined in terms of (ωo,g, Vg) as follows:

co = ωo - dtt2, where α2 = —gabθaDθb . (4.1)

Here D is an operator defined on f\$ with values in ΩI(J/M), such that:

Dθa=dθa-Aa

ibθ
bdxί, a,b£{l9...,q}9 i E {!,...,/? = 2n} , (4.2)

where (xl\θa) are now real supercoordinates on (M,j/M?&0, and Aa

ib are the com-
ponents of V^ in the basis of the generators θa of <f . The explicit form of (4. 1 ) is
given by:

ω = ω0 +
 l-gabR

b

ljcθ
cθadxldxj + gabDθaDθb , (4.3)

where RbjC are the components of
The correspondence mentioned above is one to one only in the C°° case. In the

complex-analytic case either one considers supersymplectic holomorphic superman-
ifolds in the form (M, $M(ΛF),ω), for F a holomorphic vector bundle over M, or
uses only the one way correspondence of Rothstein's theorem [38]. In both situa-
tions, equations similar to (4.1)-(4.3) hold; they are explicitly derived in Sect. 4.3.
In what follows, Rothstein's data will refer to the set (M,ω0,]E,g, Vg) associated
to a supersymplectic supermanifold (M, j3/A/,ω).

Few precisions are now in order. To be able to decompose without any am-
biguity an even two-superform as a sum of homogeneous components in the anti-
commuting variables, one needs to restrict bundle automorphisms of I\S to those
automorphisms induced from bundle automorphisms of & [38]. Moreover, when
ω contains higher order terms in the odd coordinates (more than quadratic), the
identification of Rothstein's data requires the second part of Rothstein's theorem
[38] which states that there exists a superdiffeomorphism p of (M^u) such that
p is the identity modulo Λ2<f, and p*(ω) is at most quadratic in the odd coordi-
nates. Hence, the first part of Rothstein's theorem can be applied to p*(ω). In other
words, for ω — ωo + a>2 + 0)4 + , where the subscripts refer to the degree of ho-
mogeneity in the odd coordinates, one needs first to find the superdiffeomorphism
p (which depends only on ω^ -f ), then one uses it in order to transform ω into
a 2-superform at most quadratic in the odd coordinates. Finally, one can identify
Rothstein's data for ω. On the other hand, given those data one cannot reconstruct
the original 2-superform. Indeed, only the transformed one is at reach, since p can-
not be deduced from the above data. The supersymplectic form considered here (see
(3.3)-(3.6)) is obviously of the preceding form, i.e. it is quartic in the odd coordi-
nates. We will nevertheless show in Sect. 4.3 that 004 can be obtained explicitly from
Rothstein's data of ω0 -f ω2 without having recourse to any superdiffeomorphism p
(see (4.18)). In other words, the whole supersymplectic form can be obtained from



Coherent States, Super-Kahler Geometry and Geometric Quantization 541

the simple knowledge of (M, ωo,E, g, V9). This seems to be a common feature of
super coadjoint orbits of the type considered here.

Our task is now twofold. First, identify Qj(l\2^ as a holomorphic supermanifold,
then identify Rothstein's data for the supersymplectic (^(1'2),ω). The first part is
straightforward. For the second one, we will make use of a very useful lemma
proved in [8] in the case of ^l^ = OSp(l/2)/U(l), and which applies to more
general situations, in particular to the one in hand.

4.2. ^t1'2) as a Holomorphic Supermanifold. As a holomorphic supermanifold, the
OSp(2/2)-homogeneous superspace Q)^^ obtained in Sect. 3 corresponds to the pair
(^(1), j/0(o), where ^(1) is the unit disc, and j^a) ΞΞ j^1!2) = (9&(ι} ® Λ(C2 is the
defining superstructure sheaf. A general section h of j/^1'2^ is a superholomorphic
function,

h(z, Θ9 χ) = A t(z) + Θh2(z) + χh3(z) + χθh4(z) , (4.4)

where the /z/ 's are holomorphic functions on ̂ l\ Moreover, the vector bundle F
is nothing but a trivial rank 2 holomorphic vector bundle over ^(1).

Finally, notice here that the super observables in (3.9) are sections of the com-

plexified superstructure sheaf j/^J = Cg0 ® ΛC4; and the Hamiltonian vector su-

perfields in (3.12) are derivations of jtf^ . The vector bundle canonically associ-

ated to (^(1), j/|j!'2)) is F Θ F, where F is the complex conjugate bundle of F.

4.3. ^(1'2) as a Super-Kahler Supermanifold. Let us now identify the data (M, ωo,
JE,g,V9) for (^(1l2),ω). First of all, it is straightforward from (3.6) that the
symplectic manifold (M, ωo) is here the symplectic unit disc (ί^^ωo), where
ω0 = -2rr(l - \z2)~2dzdz. Indeed, observe that SU(1,1) x U(l) is the body of
OSp(2/2), hence the body of ^(1'2) = OSp(2/2)/(U(l) x U(l)) is SU(1, 1)/U(1) =
^(1). On the other hand, when one sets the odd variables to zero, the OSp(2/2)-CS
become the SU(1,1)-CS, the underlying geometry of which is known to be given
by (£^(1),ω0). Furthermore, according to Rothstein's theorem the vector bundle E
is just F*, the dual of F.

The identification of the remaining data is highly simplified if one makes use
of the results of [8]. Indeed, in [8] it has been shown that Rothstein's data of the
OSp(l/2) coadjoint orbit studied there can be directly read off from the superfunction
/ generating the supersymplectic form. More precisely, if one writes / as /o +
/2 4- /4 + * •> where fιn designates that component of / which is homogeneous
of degree In in the odd coordinates, then it appears that /2 assumes the following
form:

/2 = -i9abθaθh , (4.5)

where g is the sought for Rothstein's metric on E. The $α's are the odd supercoor-
dinates of the considered holomorphic supermanifold. They can also be viewed as
a (local) frame field of F over &l\ The notations in (4.5) are those commonly
used in complex geometry, see for example [45].

At this point it is worth anticipating by mentioning that the above considerations
are valid only in the particular complex-analytic case of a super-Kάhler superman-
ifold, a notion defined in [8] and rediscussed below. Both ^(1|1) [8] and @(l\2} are
non-trivial examples of such a notion.
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We now write the explicit form of g for &l\2\ If the odd coordinates θ and χ
are now denoted, respectively, by θl and θ2, then /2 in (3.1) is given by:

θlθl Θ2Θ2

/> = ' <<- 6> + ' (τ + ft) (4'6)

A simple comparison of (4.5) and (4.6) leads to the following matrix form \\g\\ of
g in the frame field of E over Q)^ which is dual to that of F given above:

\\g\\ =
o

V °

(4.7)

This is a diagonal metric which is clearly Hermitian [45] since we are considering
|*| < τ (typical CS).

It remains now to identify the g-compatible connection V9. For this purpose we
rederive Rothstein's results (4.1)— (4.2) in our particular complex-analytic setting.
Once again this task is highly simplified, thanks to those observations in [8] that
led to formula (4.5). We recall that Rothstein's formulae (4.1)-(4.3) were derived
in the real C°° case [38].

The complex-analytic counterpart of the even 1-superform α2 appearing in (4.1)
can be obtained from (4.5) as follows:

(4.8)

A direct computation based on (4.5), with g a Hermitian metric on a holomorphic
vector bundle IE — > M, leads to:

«2 = \9ab(θaDθb + θbDΘ") , (4.9)

where now
Dθa = dθa + Γa

lbθ
bdz\ Dθa = dθa + Γϊsθ

bd? , (4.10)

and
Γίh = dac'^jf (4.Π)

One easily recognizes here the Γfb's as the components of the (canonical) Hermitian
connection associated to the Hermitian metric g on IE [45]. Notice that these con-
nection components are expressed in the frame field of E, while in the C°° case
of (4.1)-(4.3) the A f b ' s are expressed in the frame field of F, dual to that of E.
As an endomorphism of a fibre, one is minus the transpose of the other [45]. This
explains the sign difference and the change in the notation.

Before stating the final result concerning (^(1'2),ω), let us carry on and evalu-
ate the complex-analytic counterpart of (4.3). From (4.9)-(4.11), a straightforward
computation gives

Jα2 = 9aEDθaDθb - gaERa

ι]cθ
cθbdzldzJ , (4.12)

where
dΓa

R,C = - (4-13)
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From what precedes, we have the following immediate result:

ω2 = — d<*2 •> (4.14)

where ω2 is given in (3.5) and da2 is (4.12) for g the Hermitian metric in (4.7).
Hence, in summary, we have proven the following:

Theorem 4.3. Rothstein's data for (^(1l2),ω) are: (^(1),ω0,E,#, V*), where
in the unit disc, ωo is the SΌ(l,l)-invariant two-form on Q}^ (3.4), IE = F* is
a rank 2 trivial holomorphic vector bundle over &l\g is the Hermitian metric
(4.7) on IE and Vg is the corresponding (canonical) Hermitian connection (the
components of which can be explicitly evaluated using (4.11)).

Notice now that the symplectic manifold (^^,coo) is moreover a Kahler man-
ifold since ωo = — z'δδ/o, where /o, the odd-coordinates-independent part of / in
(3.1), is a Kahler potential for ω0, and d — dz-j^. Hence, one clearly sees that

(£^(1'2),ω) is a non-trivial example of the following definition of a super-Kahler
supermanifold:

Definition 4.4. A super-Kahler supermanifold (M, <s/Λ/,ω) is a holomorphic super-
symplectic supermanifold, whose Rothstein's data, (M, ωo,E, g, V^), are such that
(M,ω0) is a Kahler manifold, (E,#) is a holomorphic Hermitian vector bundle
over M and V9 is the canonical Hermitian connection.

As already mentioned the present situation allows us to go beyond Rothstein's
theorem [38]. Indeed, ω4 in (3.3)-(3.6) can also be rewritten in terms of Rothstein's
data of (&l\2\ω) obtained above. This is achieved by simply noticing that in (3.1),

/4 = (/2) . (4.15)

Then

α4 = --(δ - δ)f4 = /2α2 , (4.16)

such that

ω4 = -da4 = ̂ [/2ω2 - df2^] (4.17)

A simple computation based on (4.5), (4.9) and (4.12), leads to the following:

co4 = —ga5gcj[θaθdDθcDθb + θaθb(DθcDθd - R^&dJd?)} . (4.18)

When g is the Hermitian metric in (4.7), ω4 above is exactly the ω4 of (3.6).
The present extension of Rothstein's theorem is mainly based on the observation
made in (4.15). This is in fact an intrinsic property of super-Kahler coadjoint orbits
of some simple Lie supergroups. For such orbits, Rothstein's data determine the
complete super-Kahler form. A detailed description of a general framework will be
given elsewhere.

In analogy with the non-super case, and in view of (3.3) it is worth calling
the real superfunction / in (3.1) a super-Kahler potential for the super-Kahler
form ω given in (3.3)~(3.6). Such a potential is defined up to the addition of
a superholomorphic or/and an anti-superholomorphic function on ^(1'2). Clearly,
Rothstein's data for a super-Kahler supermanifold are encoded in its super-Kahler
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potential / = /0 -h /2 H Indeed, the body /o of / is a Kahler potential for
the Kahler manifold (M, ωo), while /2 provides the Hermitian structure on the
holomorphic bundle E (see 4.5).

The description of super-Kahler geometry given above is sufficient for our pur-
pose. However, it is worth mentioning that Definition 4.4 can be made much more
precise. Indeed, a deeper analysis of Rothstein's data for (^(1'2),ω) shows that they
determine an Einstein-Hermitian vector bundle [45] (see Sect. 7,7.3). This very in-
teresting observation deserves further investigations. More details will be given in
a forthcoming publication.

The next section addresses the geometric quantization of (&l\2\co). The super-
Kahler character of the latter leads naturally to the existence of a super-Kahler
polarization which makes the complete quantization program successful.

5. Geometric Quantization

By geometric quantization we refer here to the celebrated method, independently
devised by Kostant [17] and Souriau [18], which associates to a given classical
mechanics a quantum counterpart. Kostant-Souriau quantization procedure meets
Kirillov's method of orbits [16] when the classical mechanics is described by a
coadjoint orbit of a Lie group G. The quantum output comes then in the form of
a Unitary Irreducible Representation (UIR) of the considered group G. This is the
case we are interested in extending to the super context. From now on we will
focus our attention on this kind of situation.

In practice, geometric quantization proceeds in two steps. The first one, called
prequantization, consists in exhibiting a complex line bundle over (M = G/H, ω),
with Hermitian structure and compatible connection V, such that curv V = ω. Such
a line bundle exists whenever [ω] is an integral cohomology class (integrality con-
dition). When lifted to this line bundle, the transitive (and symplectic) action of
G on M gives rise to a unitary but reducible representation of G. The second step
consists in using a polarization in order to select an irreducible subrepresentation of
the prequantum representation. More precisely, the group action is restricted to the
subspace of those L2 sections of the prequantum line bundle which are covariantly
constant along the vector fields generating the polarization. More details concerning
the general procedure of geometric quantization can be found in [46,47].

Super-prequantization was partly developed by Kostant [28]. Tuynman [48] com-
pleted that construction by equipping Kostant's super-prequantum bundle with a
super-Hermitian structure compatible with the connection. We will follow here that
construction, assuming that the reader is at least familiar with Kostant's work. On
the other hand, because of the lack of a notion of polarization, the second part
of the program was not considered in [28]. Here, as a super-Kahler supermanifold
(^(1'2),ω) is naturally equipped with a super-Kahler polarization that allows us to
carry out the whole quantization program.

Before giving the details of the construction, it is worth mentioning that the
notion of a polarization in the super context and in connection with geometric
quantization already appeared in the literature. For instance, in the real case, a
general definition of a polarization was given in [48]; it was then used to quantize
the BRST charge. On the other hand, a super-Kahler polarization was introduced
in [49] in order to quantize a field theory with fermionic degrees of freedom,
i.e. an infinite dimensional flat phase space. Here we use a general notion in the
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complex-analytic case which allows quantizing non-trivial super phase spaces such
as coadjoint orbits.

Finally, let us mention that recently another quantization method, namely the
deformation quantization, has been extended to the super context in [50]; this method
was applied in particular to the super-unit disc Q)(l\l\ Geometric quantization of
the latter is considered in [9].

5.7. Super-Prequantίzatίon . Following Kostant's general scheme [28], in order to
prequantize (^(1'2),ω), one needs to exhibit a complex line bundle sheaf «^f(1'2)

with connection V over &l\2\ such that curvV = ω. Such a line bundle sheaf
exists if and only if there exists a complex line bundle 1L with connection VQ over
^(1), such that curvVo = ω0 (i.e. iff (^(1),ω0) is prequantizable) [28]. Since our
coo is exact, it is known that such an 1L always exists. It is then not hard to see
that,

M\2)
i. } .

. I )

where 5£^ is the sheaf of C°° sections of 1L.
To the classical observables in (3.9) one can associate the so-called prequantum

operators which act in the space of C°° sections of jSf^'2\ These operators are
obtained using the following formula [28],

H = -iVχH + //, where VχH = XH - (5.2)

and

= -iδf = -2iτ
zdz

1 - IzP
l+i-

τ-b

2τ 1 - l z 2 2τ 1 - l z P

τ2 - b2 θχχθ

2τ2 ( l - z 2 1+ί-
XX

2τ

1 - l z
1 + ϊ

τ — ,

2τ 1
(5.3)

is a 1-superform potential for the connection V equipping the prequantum bundle
^; it is such that ω = —dϋ. A straightforward computation gives,

» = _ _ , ,
^

- _ _ _ __ ___ __

° ~ z " z - + " + ~

— τ2
d

oz oz
zθ

oθ

d_
% 2τz

δ _23 - δ _ _ δ

dz Z 8z Z6dθ Zχdχ
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n __ .v- = -<— " - -- z + 2

2τ Λ & V 2τ J 8z

- - i(τ + b)χ . (5.4)

One easily verifies that these operators close to the osp(2/2) Lie superalgebra. They
provide thus a representation of osp(2/2) in the space of C°° sections of J^OI2).

In the next subsection, using a natural invariant super-Kάhler polarization on

0012) We will select a subsheaf ^1|2) of J^OI2); J^>1|2) will then be equipped with

a V-compatible super-Hermitian structure. When restricted to S£^ the above
prequantum representation will reduce to a super-unitary irreducible representation
of osp(2/2).

5.2. Super-Polarization. As for the Kahler unit disc 00) a natural super-polarization,
called here super-Kάhler and denoted ,̂ exists on 00|2)< ^ js spanned by the vector
superfields ^,^ and ^-. One easily verifies that this is actually a good candidate

for a super-polarization. Indeed, ^ fulfills all the required conditions, namely,

(i) & is involutive;
(ii) ^ is maximal isotropic, i.e. ω(Z, 7) = 0,V Z, 7 e ̂  and dim^ = (1|2) =

dim^0|2) as a hoiomorphic supermanifold.

Moreover, one can easily verify that,

(iii) ^Π^ = {0};
(iv) ^ is invariant, namely, for XH one of the Hamiltonian vector fields in

(3.12), [Xfj,Z] G ̂ ,V Z G ̂  (brackets denote here a commutator or an anticom-
mutator).

Property (iii) confirms, in agreement with the results of Sect. 4, that & deserves
to be called a super Kahler polarization for ^0|2) QΠ me Other hand, property
(iv) means that the Hamiltonian flows of the classical observables (3.9) preserve
^ the importance of this property will be stressed soon. Moreover, as it will be
shown at the end of this section, & is positive. This property ensures that the final
representation space is non-trivial. In summary, & is a positive invariant super-
Kahler polarization.

This polarization is now used in order to select a subsheaf J£?p of jSfOI 2)> jne

latter consists of the sections \l/(z,z,θ,θ,χ,χ) of J2?0|2)(0(i)) whίch are covariantly
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constant along ,̂ i.e. those sections ψ which are such that:

Vd_\l/ = 09 V?m\l/ = Q9 and V a> = 0 ,

547

(5.5)

where from now on the covariant superderivation is taken as in (5.2) but with
$, the superpolarization-adapted 1-superform potential for V, replaced by the real
1-superform potential α given by,

= iτ

/

2

zdz

1 -

τ-

2

τ +

2

jr. f

-frfz - b θθ τ-
1 T

±b U
- |z|2 [x " 2τ 1 - |z|2 ' * 2τ 1 - |z

& r f θ θ +

i - l

b dχχ +
1 -

Jθθ Γ

* 2 [

dϊl
z 2

1 -\- b ΎΎ
1 I / λλ

-
1 ' l r\ 1 I I ?2τ I - |z|2

"l f 1 " ^ ^
2τ 1 - |z 2

2τ2

(5.6)

In (5.6) / = f(z,z,θ,θ,χ,χ) is the super-Kahler potential (3.1). Solutions to (5.5)
are of the form

ι l / ( z , z , θ 9 θ , χ , χ ) = exp(-//2)φ(z,θ,χ) , (5.7)

where φ is a superholomoφhic section of

and (3.1)). Notice from (5.7) that JS

, and exp(— //2) = yK; (see (2.28)

is isomorphic to j/(1'2), the superstructure

sheaf of ^I2) viewed as a holomorphic supermanifold. Moreover, property (iv)

above ensures that the action of the prequantum operators (5.4) in J2?p leaves
the latter invariant.

Let us now equip ^p2)(^(1)) with a super-Hermitian structure (•,•)• F°r

<A = ιAό + </T and ψ' = ̂  + ̂ f G ^p

1|2)(^^) - &W\&»)δ θ ^p

1|2)(^(1))f, this
is given by:

The latter clearly satisfies (2.13). Notice however that ( - , ) is not homogeneous,
i.e. it is not of the form (2.14). Moreover, it is not hard to verify that the super-
connection V on ^(1I2) is compatible with (5.8), i.e.

(5.9)

of parity ε(ι//), X is a real

, and Vx = X — LY"_Jα, for

where ψr is now a homogeneous section of ̂ ^\

vector superfield on ^^l2) homogeneous of parity
α given in (5.6).

As for the usual geometric quantization in the presence of a Kahler polariza-
tion, using the super-Hermitian structure (5.8), the superspace of sections ψ of

can be equipped with a super-inner product given by:

(5.10)
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where dμ = dμ(z,z,θ,θ,χ,χ) is the OSp(2/2)-invariant super-measure on ̂ !'2) ob-
tained from ω in (3.19). Because of the isomorphism mentioned after (5.7), this
super-inner product can be understood as an inner product on the space of sections
φ of j/(1'2) (i.e. the space of superholomorphic sections of <^f(1'2)). Hence, using
(5.7), we can write

((φ',φ))τtb = / e-f(φ'9φ)dμ. (5.11)

Let us now investigate the status of this super-inner product from the Hubert space
point of view.

Since \b\ < τ, one can always write a superholomorphic function </>(z, 0, χ) on
as follows:

φ(z,θ,χ) = φι(z)

where φl9 ί = 1,...,4, are holomorphic functions on
The super integration in (5.11) can be partially carried out. Indeed, replacing

(3.1), (3.19), (5.8) and (5.12) in (5.11), and using Berezin integration over the odd
Grassmann variables [22], namely, the only non-zero integral being / dθdθdχdχ

1» one obtains:

+ l(Φ'39φ3)k=τ+l+(Φ4,φ4}k=τ+l E C , (5.13)

where

2k — ] _ dz dz 1
(φ',φ)k = - / φ'(z)φ(z) , for * > - , (5.14)

π ^(i) v 1 — \z\ ) L

is the usual inner product on the representation space of the holomorphic (positive)
discrete series D(k} of SU(1, 1) which arise through geometric quantization of the
unit disc (^(1),ω0) [12,51,52].

We can now define a natural notion of square integrability of superholomorphic
sections of a prequantum bundle sheaf, and thus that of a super-Hubert space.
First observe that {{•, ))τ,6 is an even super- Hermίΐίan form on the space of
superholomorphic sections of ^(1'2). Indeed,

, ψ,Φ'})τ,b , (5.15)

and moreover,

((Φ',Φ)}τ.b = ((Φ'δ,Φ<i))τ,b,<i + i((Φ\,Φύ)τ,b,ϊ (5 16)

The new quantities and notation in the above equation can be easily identified in
terms of the old ones appearing in (5.7), (5.13) and (5.14). A simple comparison
of (5.15) and (5.16) with respectively (2.13) and (2.14) confirms our claim. This
suggests the following natural definition:

Definition 5.1. A superholomorphic section φ = ΦQ + φ\ of ^l^ is said to be
square integrable if both φ$ and φ^ are respectively square integrable with respect
to the Hermitian forms (( , }}τ^^ and (( , )}τΛ[.
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A definition of a super-Hilbert space, different from those proposed in [27,53,
54], immediately follows.

Definition 5.2. A super-Hilbert space is a pair (^\((>, •))), where ,ff Ξ
2^1 is a complex super space equipped with a super-Hermitian form, ((-

« , »ό + '<( . »Γ. such that (^δ,{{ , »δ) and (-T,, (( , » r) are both
Hilbert spaces.

According to these definitions, the space of superholomorphic sections of
'2) equipped with the super-Hermitian form (5.13) can be turned into a super-

Hilbert space simply by taking </>,, / = 1,.. .,4, to be L2 functions on the unit disc
with respect to the corresponding Hermitian forms, namely, that | |0ι| | j?= τ < oo,

i|02||^τ+, < oo, ||</>3 | |;Lτ+ι < oo and | |</>4 | |λ

2= τ f i < oo. Accordingly, φ ( z , θ , χ ) in

(5.12) can be called an L2 superholomorphic section of j^(1'2) with respect to
the super-Hermitian form (5.11). The obtained super-Hilbert space, denoted sub-
sequently #f τjj, constitutes then the representation superspace carrying an explicit
realization of the typical irreducible representation V(τ,b} of osp(2/2).

Remark 5.3.We could have equipped <£^\2\Q ̂ ) with an even super-Hermitian
structure ((•,•)) instead of the one of indefinite parity introduced in (5.8). The

former would assume the following form ((ι//,ι//)) Ξ 1/^1/^5 + Ψ'\Ψ\- ^n tms case (5-9)

will be true only modulo odd quantities. However, {{ , }}τ^ = f^d\2) ( , }dμ —

f(^(i\2) ( ( ' , )}dμ, since ((•,•)) an^ ( , ) differ only by odd quantities which dis-
appear when one integrates over anti-commuting variables using Berezin integration.
For the same reason, all the results following (5.10) will still hold true.

Remark 5.4.The important result in (5.13)-(5.14) follows from the special form
adopted for φ in (5.12), and the choice of normalization made for dμ in Sect. 3.3,
namely, /^(φ) exp(-f)dμ= 1.

The generators of osp(2/2) are represented in <#%,/> by the super holomorphic
restrictions of the prequantum operators (5.4). More precisely,

- θ c γ c - d θ c / c
B=-—-t~—+h, KQ=z~ + -— —

2 oθ 2 dχ cz 2 cϋ
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The obtained representation is super-unitary. Indeed, in agreement with (5.9),

the superadjoint (or super Hermitian conjugate) X^ of an operator X acting in
3tfτ is defined as follows:

))τ,b = (-iY^^m((φf,Xφ))τ,b, (5.18)

for φ' a homogeneous superholomorphic section of J^1'2) and X a homogeneous

operator. Hence, the quantum counterpart H of a real classical observable //cl is

a self-superadjoint operator acting in J"f τ,&, i.e. H^ = H. Specifically, since both
Bcl and ^Q1 are real (see (3.10)), the associated quantum operators in (5.17) are
self-superadjoint:

B^ =B and £0

f = KQ . (5.19)

On the other hand, the reality of (/q1 +/Γ1), (V^ + iW^) and of similar combi-
nations that can be obtained from (3.10) leads to the following,

(K+γ = K-9 (V+Ϋ = iW- and (F_) f - iW+ . (5.20)

As it should be, these results are in perfect agreement with the relations we started
with at the level of the abstract representation theory (compare (5.18)-(5.20), with
(B.10),(B.13) and (B.14)).

Geometric quantization of (^Jl2\ω) is hence completed. It remains now to
integrate the obtained super-unitary irreducible representation of osp(2/2) to a rep-
resentation of OSp(2/2) (see Sect. 7,7.5). The integrability condition, which we
assumed from the beginning, ensures that such a procedure leads actually to a non-
trivial representation of OSp(2/2). Indeed, recall that we started with an integrable
typical osp(2/2)-module V(τ, b\ i.e. both b and τ G ̂ N (with τ > \, in agreement
with (5.14)).

Finally, we briefly discuss the positivity of our super-Kahler polarization 2P. In
the non-super context, the positivity of a Kahler polarization ensures that the unitary
irreducible representation obtained is non-trivial, i.e. the corresponding Hubert space
does not reduce to the zero function [46]. Because ^τ^ is clearly non-trivial, our
polarization 3P is then positive with respect to the putative extension to the super
context of the positivity condition. An analysis of the present situation and of the
one considered in [9] leads to a natural supergeometric definition of the positivity
of a super-Kahler polarization. This will be given elsewhere.

6. Atypical OSp(2/2)-CS and Associated Orbits

We now briefly discuss the main results concerning the OSp(2/2) atypical repre-
sentations: the atypical coherent states and their underlying supergeometry. Recall
that the atypical representations occur when \b\ = τ. It is then not hard to see that
by taking b —» τ or b —> -τ, almost all the results obtained in the previous sections
reduce to atypical analogs. Here we emphasize the main features of the case b = — τ
(similar considerations applied to the case b — τ lead to the same results).

If b = —τ, the lowest-weight vector is | — τ,τ,τ) = τ,τ). As it is shown in
Appendix B, W+\τ,τ) is a primitive vector generating an osp(2/2)-submodule of
zero-norm states. Hence, |τ,τ) satisfies not only (2.5)-(2.6), but it is also such that

^+|τ?τ} = 0. (6.1)
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The appropriate irreducible osp(2/2)-module is no longer F(τ, b)9 given in (2.9),
but the one given in (2.11). Instead of having four families of states, as in (2.10)
or (B.I), we have only two:

K?\τ,τ) and τ,τ), m ί> 0 . (6.2)

In other words,

C/(τ) = K(τ, -τ)/F'(τ, -τ) = span j τ, τ + m), τ+ ~, m G N

(6.3)

The same techniques as in Sect. 2 lead to the following atypical CS in U(τ).
Starting with |τ, τ), these CS appear to be parametrized only by two variables.
Indeed, as a consequence of (6.1),

\a,θ,χ) = + ΘV+ + χW+)\τ,τ) ,

-f ΘK+)|τ,τ) = |z,0) , (6.4)

where α € ^o, and θ,χ G JΊ such that z — a - γτγβ G C. A simple comparison
of (6.4) with the corresponding equation for the typical CS in Sect. 2 shows that
the atypical CS are simply obtained from the typical ones by taking b = — τ; they
clearly do not depend on χ. More precisely,

1
-,

where the real normalization constant is

1 +iτ
θθ

1 -

(6.5)

(6.6)

At this point, it is worth noticing in connection with Remark 2.7 that the atypical
CS are nothing but OSp(l/2)-CS [34,8], where here OSp(l/2) is the Lie subsuper-

group of OSp(2/2) whose Lie superalgebra has {K^K±,F± = (V± -f W±)/V2} as
a Cartan-Weyl basis. More precisely,

z,θ) - -f (6.7)

once again this is a direct consequence of (6.1). Hence, up to the above rescaling
of $, the analysis of the supergeometry underlying the OSp(2/2) atypical CS and
its geometric quantization are almost the same as those already considered in [8,9].
The main differences are discussed below.

The variables z and θ above parametrize the N = 1 super-unit disc OSp(l/2)/
U(l) = ® ( 1I1 } [8]. The super-Kahler potential on ^(1I1} is given by,

1-2 = -2τ log( l- |z | 2 )-/
1 - Iri 2

(6.8)
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and the super-Kahler superform is simply,

-2/τ Γ. .,„ 1 + *F 1 , ,. 2τ
ω = i + /gg,. L </zdf- ——^dθdθ

2τ — [ΘΞdzdθ-θzdθdz] . (6.9)

The osp(2/2) classical observables are obtained from (3.9) by taking b = —τ,
or equivalently by formally setting χ = 0. When evaluated as in the typical case,
the Hamiltonian vector superfields assume now the following form,

., β d θ d „ . d ..d . β d θ d

^ = fe2-+ί *-= - ^ - ^ - (6 π)

^=4+Ii -̂ = -fe44 (6 12)

^-=ei+4' ^=-4-4- (6 13)

This corresponds to simultaneously taking b — -τ and eliminating χ in (3.12).
From these explicit expressions one immediately identifies the superalgebra

of the isotropy subsupergroup GO at the origin (z = 0, θ — 0) of the atypical
phase space. Clearly, XB,Xκ^Xv_ and Xψ+ act trivially at the origin. Hence,
the isotropy subsupergroup is generated by {B9KQ,V-,W+}. From the commuta-
tion relations (2.2) it appears that G0 = U(1/1), and thus the atypical OSp(2/2>
CS are parametrized by the super-Kahler homogeneous space OSp(2/2)/U(l/l) =
(^(1!1},ω). This could have been already deduced from (2.5)-(2.6) and (6.1).

Rothstein's data for (&l\l\ω) are given in [8]. They can be rederived by simply
using results of Sect. 4. Indeed, the rank 2 holomorphic vector bundles IE and F
reduce both to a holomorphic line bundle. Moreover, from (4.7) one easily sees
that when b — — τ, we are left with the Hermitian metric \\g\\ = gu- — 2τ/(l — |z 2).
This is twice the metric obtained in [8].

On the other hand geometric quantization leads to the super-Hubert space ob-
tained in [9]. This result corresponds to taking b — —τ in Sect. 5. Generators of
osp(2/2) are however represented by the following operators,

-< a = . + ? + t .
K+ = z2- + zθ z + 2τz, - = - , (6.15)

V+ = -izθ- - 2iτθ, W- = i (6.16)
oz oθ

(6 17)



Coherent States, Super-Kahler Geometry and Geometric Quantization 553

Finally, the super-measure on ^^'^ can not be obtained simply as the limit
b — > — τ of (3.19). It has to be evaluated starting from (6.9) using the same tech-
nique as in Sect. 3.3. This leads to,

- |z|2)
l+i

1 -
dzdzdθdθ. (6.18)

7. Miscellaneous Results and Discussions

Here are gathered a few consequences of the main results of the paper. A few other
important points are discussed further.

7.1. Square integrability. When speaking about coherent states the first of their
properties that comes to mind is the so-called resolution of the identity. In the non-
super case this property reflects the square integrability of the unitary irreducible
representation these special states belong to. Does this notion extend to the super
case? The answer is yes. A simple computation based on (3.19), (2.27) and the
Berezin integration leads to the following:

I. (7.1)
0012)

Here I = IF(T,£)- A similar identity holds for the atypical CS. Hence, this allows
a straightforward super extension of the definition of a square integrable represen-
tation. The above identity (7.1) provides a new argument that can be added to
those already listed in [33] in order to justify calling the super-unitary irreducible
representations of osp(2/2) considered here discrete series representations. As for
usual CS, another immediate consequence of (7.1) is that Jf7^ is a reproducing
super-Hubert space. This applies to both typical and atypical super-Hubert spaces.

7.2. Status of z. For simplicity, the variable z was considered from the beginning
as a usual complex variable (see (2.23)). The main reason behind this choice is to
make the connection between the results of Sects. 2 and 3, and Rothstein's approach
to supersymplectic supergeometry as described in Sect. 4, free of any change of
coordinates. The same argument applies to the integrals over the unit disc Q)^
that appear in Sect. 5 (see (5.13)-(5.14)). Indeed, if the soul of z was different
from zero, then those integrals and the complex geometry of Sect. 4 would be
meaningless, unless a change of coordinates transforming z into a "soulless" variable
is performed. Hence, our initial choice prevents us from making any change of
coordinates.

7.3. Whitney sum and Einstein-Hermitian vector bundles. The rank 2 holomorphic
vector bundle E intervening in Rothstein's data for the typical orbits (see Theorem
4.3) is the Whitney sum of two holomorphic line bundles over the unit disc ̂ l\ i.e.
IE = EI Θ E2 Independently, each component of IE provides Rothstein's data for a
super-Kahler subsupermanifold of (^(1'2),ω). More precisely, (^l\ωo9JEi9gi9V

gι)
for i = I or 2, are such data for a ( 1 1 1 )-dimensional super-Kahler supermanifold,

denoted &τ±b > where g\ (resp. #2) is the Hermitίan metric on EI (resp. E2) given in
(4.7) as the first (resp. second) diagonal entry, and V9' are the associated Hermitian
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connections. These supermanifolds are N = I super-Kahler extensions of (& I\CUQ).
Their 2-superforms are obtained from (3.3)-(3.6) by setting χ = 0 in the first in-
stance and θ = 0 in the second. These two super-unit discs are in fact OSp(2/2)-
homogeneous spaces superdiffeomorphic to ^(1I!), the TV = 1 super-unit disc which
is a supersymplectic homogeneous space for both OSp(2/2) and OSp(l/2) (see
Sect. 6). Since both EI and IE2 are trivial line bundles over &l\ Rothstein's data

for 3)(^ and 3>(^ differ only by the constant factor, τ±b, in front of the Her-
mitian structure on these bundles (see (4.7)).

The above observations lead to the following interesting picture. Let us de-
note by R;t the data (^(1),ω0,E;L,^, V^)» where ω0 is given in (3.4), E;̂  is a
trivial holomorphic line bundle over ^(1), ||0;J| = λ(\ — \z\2)~l (with λ ^ 0) is a
Hermitian structure on E;, and V^; is the corresponding Hermitian connection. Then
we have: (i) Rothstein's data for the atypical OSp(2/2)-coadjoint orbit realized as
ί^1'1) are given by R2τ; (ii) Rothstein's data for the typical OSp(2/2)-coadjoint orbit
realized as ^(1I2) are given by R;q Θ R;.2 such that λ\ + λ2 — 2τ. Here the symbol
UΘ" indicates that we have to take the Whitney sum of (E;tpg;u2) and (E;t2,#;L2).
We recall at this point that the information in Rτ_^ Θ Rτ+& is sufficient to entirely
reconstruct the 2-superform (3.3)-(3.6) (see Sect. 4). Hence, this suggests that R;
is the basic building block for describing super-Kahler coadjoint orbits of simple
Lie supergroups super extending SU(1,1).

A deeper analysis of R;t = (®(1),ωo5E;u,gf;.,V^) shows that (E ^g ^V^) is an
Eίnstein-Hermίtian vector bundle [45] over the Kahler SU( 1 , 1 )-homogeneous space
(@^\O)Q). Similarly, one can show that EI Θ E2 is also an Einstein-Hermitian
vector bundle over (^(1),ω0). These very interesting and important observations
not only improve the characterization of a super-Kahler coadjoint orbit, but they
suggest a way of extending to the super context the known classification of
irreducible bounded symmetric Hermitian domains. This direction is now under
investigation.

7.4. Realizations of the typical and atypical representations. In agreement with
the descriptions of Sect. 2 and Appendix B, results of Sect. 5 show that the typical
super-Hubert space Hτ^ of L2 superholomorphic sections of J^1'2) is the direct sum
of Hubert spaces of four holomorphic discrete series representations of SU(1,1).
More precisely, as a vector superspace

&τ,b = ^*=τ θ 2 Jffk=τ+ l 0 Jf?k=τ+l , (7.2)

where ffl^ is the Hubert space carrying the holomorphic discrete series representa-
tion D(k) of SU(1,1) (see (5.14) and (2.8)-(2.10)). This suggests that the osp(2/2)
operators obtained in (5.17) and which act in the left-hand side of (7.2) can be
replaced by matrix valued and thus anticommutating-variables free operators acting
in the right-hand side of (7.2) [55]. The former realization is much more convenient
than the latter. Indeed, for example for osp(Λ//2) the matrices can be of dimension
2N x 2N . We insist here on the fact that our main goal in Sect. 5 was to show
that geometric quantization extends to the super context, at least when applied
to coadjoint orbits admitting a super-Kahler polarization. We not only succeeded
in achieving this, but the above observation confirms that our output constitutes
an intrinsically supersymmetric alternative to the matrix realization. The same dis-
cussion applies to the atypical representations.
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7,5. OSp(2/2) representations. Throughout, we have been considering only repre-
sentations of the Lie superalgebra. Explicit representations of OSp(2/2) can be in
fact obtained from those of osp(2/2) exhibited in Sects. 5 and 6. The procedure
does not present any difficulties. The first step towards this construction consists
in finding the explicit action of OSp(2/2) on ^(1|2) and ̂ (1!υ by integrating the
Hamiltonian vector fields in (3.12) and (6.10)-(6.13). This amounts to solving
super-Riccati differential equations which have already been considered in [56].
The full construction will be given elsewhere.

8. Conclusions and Outlook

Although our present contribution treats a specific example, the obtained results
pave the way to harmonic superanalysis. It must be regarded as the first important
step of a program aimed at classifying Lie supergroups' coadjoint orbits and the
associated irreducible representations.

In this work several closely related questions have been addressed, and several
new notions have been introduced. The consistency of our conventions is manifest
throughout the paper, from abstract to explicit representation theory via super-Kahler
geometry. The main results are now summarized:

(a) Starting with a comprehensive description of the abstract typical and atypical
representations of osp(2/2), the associated OSp(2/2) coherent states are constructed.

(b) Their underlying geometries are exhibited, and are shown to be those
of OSp(2/2) coadjoint orbits. The latter are OSp(2/2)-supersymplectic homoge-
neous spaces: ^(1'2) = OSp(2/2)/(U(l) x U(l)) for the typical CS, and ^(1I1} ΞΞ
OSp(2/2)/U(l/l) for the atypical CS.

(c) The identification of Rothstein's data for ^l2) and S(1']) draws us to
generalizing Rothstein's theorem to the complex-analytic setting. This leads to a
natural definition of a super-Kahler supermanifold, ^l^ and ί^1'^ being non-
trivial examples of such a notion. We moreover show that in this context, Rothstein's
theorem can be refined. More precisely, the complete supersymplectic structure of
a super-Kahler coadjoint orbit can be encoded in an elementary building block of
the type mentioned in point 7.3 of the previous section.

(d) Finally, geometric quantization is successfully extended to the super-Kahler
context examplified by the typical and atypical coadjoint orbits of OSp(2/2).
A super-Kahler polarization is exhibited in each case. This leads to an explicit
super-unitary irreducible typical (atypical) representation of osp(2/2) in a super-
Hubert space of square integrable superholomorphic sections of a complex line
bundle sheaf over

Possible generalizations of our results are numerous and worth considering. At
both the representation theoretic and the geometric levels, the present work relies
essentially on known results from the non-super context. For instance, the represen-
tation theory of osp(2/2) is based on that of su(l, 1) C osp(2/2), while the superge-
ometry of the 7V — 2 (resp. N = 1) super-unit disc ^]l2^ (resp. ^l'^) is based on
that of the unit disc ^(1). Our results show precisely how the super extension occurs
(see Sect. 7,7.3). One can now seriously consider other Lie supergroups, and look
for a classification of their super-Kahler homogeneous spaces along the known clas-
sification of the Kahler homogeneous spaces of their body Lie groups. Geometric
quantization will then provide a classification of their associated representations.
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A. Conventions and Notation

One of the main features of the present work is the complete consistency of the
conventions used throughout. The latter are displayed here. They concern the super-
algebra $ introduced in Sect. 2, and its interactions with both the Lie superalgebra
and modules over it.

A complex superalgebra is a complex vector superspace (i.e. a ^-graded linear
space) $ — ̂ o Θ ̂ i equipped with a Z2-compatible product, namely 36 ̂  $ι C
$k+ι\$ is considered associative and unital. Note that, ̂ 0 (resp. 3$\) is called the
even (resp. odd) part of $. Accordingly, elements of ̂ 0 (resp. 36\) are called even
(resp. odd) elements of £%. A homogeneous element of $ is either even or odd.
The parity of such an element u G 36 \^ denoted ε(u), is defined by ε(u) = k. The
superalgebra & is supercommutative if

uv = (-\Y(u)ε(v}vu , (A.I)

for u and v two homogeneous elements of 36.
The complex supercommutative superalgebra with unit $ considered in the

present work is the complex Grassmann algebra [22,23] generated by (0,χ) and
their complex conjugates (Θ9χ). These are anticommuting variables. In other words

$ is the complex exterior algebra over C4 = C2 Θ C . Its even (resp. odd) part
is spanned by the products of an even (resp. odd) number of generators, and the
dimension of ̂  is 16. The decomposition of any element Θ G $ in a given basis
of 36 assumes the following form:

0 = 0 - 1 + 0*, , (A.2)

where the purely nilpotent component Θn\\ is called the soul of Θ while the com-
ponent Θ along the identity of 0$ is called the body of θ.

The complex conjugation maps C2 9 (θ,χ) ι-> (θ,χ) G C . Its extension to & is
completely defined by the following rule:

0ι Θ2 = 0ι 02, V0ι, 02 6 36 . (A.3)

The other properties are:

0 = 0 and w0 = w 0, Vw G C and 0 <Ξ ̂  . (A.4)

An element Θ G ̂  is real if 0 = 0. Using (A.3) one easily sees that 00 is real
for 0 G ^o and imaginary for 0 G 3$\.

It is important to note that our convention in (A.3) is different from the one
introduced by Berezin [21,22] and commonly used in the literature (see [53]
and references therein). In that case the complex conjugate of a product is such
that

0Γ02 = 020ι> V0ι,0 2 6^. (A.5)
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Hence, for Θ a homogeneous element of ,̂ ΘΘ is real independently of the parity
of Θ. Using these conventions one faces serious inconsistencies. The most obvious
one was encountered in [8] (see also [50]), where the author followed Berezin's
conventions already used in [34]; the super-Kahler 2-foπn obtained there was neither
real nor imaginary! As a consequence, the classical observables and their associated
Hamiltonian vector fields were not satisfying any property of the type of (3.10) and
(3.13) which are crucial in identifying a real observable and then the associated
self-superadjoint operator. Combined with the notion of a super-Hermitian structure
introduced in [41], our convention (A.3) cures this discrepancy. More precisely,
the arguments invoked in [53] in order to justify the choice in (A. 5) apply to our
choice (A.3) too, provided one considers the notion of a super-Hermitian structure
(2.12)-(2.16) and its consequences. (The problem in [8] mentioned above is cured
in [9].)

Finally, all vector superspaces appearing in this work are considered as left -̂
modules. Let V = V$ Θ V\ be such a ^-module. Then, for v and Θ homogeneous
elements in V and 38 respectively, we have

Θv = (-iyvvΘ . (A.6)

This applies equally well to V = osp(2/2,€), V = V(τ,b) or V = C/(±τ). When V
is equipped with an additional structure, such as a super-Hermitian form ( } (see
(2.12)-(2.14)) or a super-bracket [,], then that structure can be extended to the
Grassmann envelope of second type V of V . The latter is defined as follows [22],

V = (β Θ F)o - (#o Θ Fb) θ (β\ ® Vι ) , (A.7)

and the above structures are extended in the following way:

(Θιυ\θ2u) = (-\Y(v}ε(Θ^ΘlΘ2(v u)

and
] , (A.8)

where 02,v and X are homogeneous elements in respectively ,̂ V(τ,b) and
osp(2/2,(C). We end this appendix by giving a formula which is useful for some
of the computations of Sect. 2 and Appendix B. Let Θ and v be homogeneous el-
ements of respectively V(τ,b) and J*, the super Hermitian conjugate of \Θv) £
V(τ,b) with respect to the super Hermitian form (2.13)-(2.16) is obtained as
follows:

(Θ\v)γ = Θ(\v))* = (ίY(v}Θ(v\ . (A.9)

B. osp(2/2) Representations: More Details

Finite and infinite dimensional irreducible representations of osp(2/2) have already
been studied in [32,33,35]. The description of the infinite dimensional ones given
in [35] is the most convenient for our purpose, but since it suffers from some
discrepancies we consider important to reexpose the construction. This appendix
must be viewed as a complement to Sect. 2.

The equations defining the lowest-weight vector |0) (2.5)-(2.6), together with
the observation that |0) is the lowest-weight vector of a discrete series representation
D(τ) of su(l, 1) (2.7), are our starting points.
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The osp(2/2)-module V(τ,b) of Sect. 2 is generated by applying arbitrary poly-
nomials in the generators of n+ = span{£+, F+, W+} (2.3) to |0). Using the com-
mutation relations and the results mentioned above, one can see that V(τ,b) is
spanned by the following vectors:

K™\Q), K™V+\Q), K™W+\Q), K™V+W+\0), m e N . (B.I)

The latter are eigenstates of B:

B(K'?W+\0))=(b--}(Kl?W+\0)),
!_

2

:*F+fF+|0)) - b(K™V+W+\Q)), (B.2)

and also of Kr\:

(B.3)

but not all of them are eigenstates of the su(l, 1) Casimir €2 given in (2.18):

- (τ + b)(K™+ '|0}) . (B.4)

The last equation suggests to use another family of states instead of KfV+W+\0).
Indeed, notice that the vectors

(or (-2τK^W+V+ + (τ - ^)^+)|0)) , (B.5)
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are such that

B(2τK™ V+ W+-(τ + b)K™+l )|0) = b(2τK^ V+ W+ - (τ + b)K™+l )|0) ,

V+ W+-(τ + b)K™+} )|0) = (τ + 1 )τ(2τK™K+ W+- (τ

F+ ff+ - (τ + A)AΓ7+1 )|0) = (τ + 1 + m) (2τK™ V+ W+ - (τ

(B.6)

The previous results suggest to use the following notation:

|i,τ,τ) = |0),

• 4- l,τ 4- 1} oc (2τV+W+ — (τ

ϊ^ϊ^ϊ

(B.7)

The osp(2/2)-module V(τ,b) obtained in this way is irreducible only when 6φ
± τ. For b = ±τ, F(τ,fe) contains a primitive vector. Indeed, using (2.2a)-(2.2i)
and (2.5)-(2.6), one easily sees that:

when 6 = τ, ^_(K+|0)) = K_(K+|0)) - FΓ_(K+ |0)) = 0 , (B.8)

and

when fe = -τ, ^_(ίΓ+|0>) = F_(FF+|0)) = fΓ_(fΓ+|0)) = 0 . (B.9)

These two situations being very similar, we focus here only on the second one.
Hence, in that instance, W+\ty generates an osp(2/2)-submodule of V(τ,b), de-
noted K7(τ, — τ). An irreducible osp(2/2)-module emerges then as the quotient
F(τ,-τ)/F;(τ,-τ) = ί/(-τ). Notice that V'(τ,-τ) is spanned by the last two se-
ries in (B.I), while U(—τ) is spanned by the two first ones modulo the two last
ones.

In order to obtain the proportionality constants in (B.7) it is necessary to equip
V(τ,b) with a super-Hermitian form [41,24] of the type described in (2.12)-(2.14).
The super-adjoint A^ (denoted A and called differently in [24]) of a homogeneous
operator A acting in F(τ, b) is defined as follows:

(A^u v) = (-\)ε(uW>(u\Av), Vu,υ <Ξ V(τ,b) with u homogeneous . (B.10)

Hence, A is self-superadjoint if A^ —A. Moreover, one can check from (B.10) that

G^)1 =A and (AB)^ = (-iγ^^B^A^ . (B.ll)

Consequently,
[A,BΫ = ~[A\BΪ] . (B.12)

Using this equation, the relations in (2.2a)-(2.2i) and the root space decomposition
of osp(2/2,C) given in Sect. 2, one easily shows that

£f - B, K^ = KQ,

iW and
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Using the above results, Eq. (A.9), and assuming that the vectors on the left-
hand side of the equations in (B.7) are normalized to one with respect to
(according to their parity) one obtains:

F+|i,τ,τ> -

' ) θ ( l )

(B.15)

W+\b,τ,τ) = (B.16)

- b2)(2τ + l)2τ |δ,

Clearly, these results are valid only if \b\ rg τ. When 6φ ±τ, this means that
the super-Hermitian structure introduced above, turns the irreducible osp(2/2)-
modules V(τ,b) into super-unitary representations only if \b\ < τ. On the other
hand, when b = ±τ one sees from (B.15)-(B.17) that the primitive vectors gen-
erating the submodules F'(τ, ±τ) are zero-norm states, and thus the entire sub-
modules are made of zero-norm states. Moding out the latter from F(τ, ±τ) turns
ί/(±τ) into super-unitary irreducible modules. Moreover, (2.9) and (2.11) are di-
rect consequences of (B.15)-(B.17) and (2.2a)-(2.2i). Indeed, the four states
|Z>,τ,τ), K+|i,τ,τ), W+\b,τ,τ) and (2τV+W+ - (τ + έ)^+)|6,τ,τ> are orthogonal
with respect to the super Hermitian structure, and each of them is a lowest state
of an su(l, 1) irreducible module. The latter are generated from the former su(l, 1)
lowest- weight states through the action of powers of K+ :

K"

We end this appendix by displaying the action of the osp(2/2) generators
on the different vectors. The following formulae are straightforward consequences
of (2.2a)-(2.2i) and the results described above;

= v/(2τ + m)(m + 1) \b, τ, τ -f m + 1)

- l)m\b,τ,τ

2τ

(τ - b)m

2τ

2τ

(τ -I-

2τ
fc- -,

!_

b~r"
_!
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1
-,

1
-, L ? -o,

w+

Ί
?

2τ

2τ
-f m)

(τ - b)(2τ + m)

2τ

2τ
l , τ + H-m- 1} ,

1 1

2 ' τ + 2 ? 1

2'^ 2"

2τ

,,
|Z>,τ,τ Hh

2τ

b- -,τH- -,τ+-

V+\b,τ+ l , τ + 1 4- w) - -

F_|Z?,τ+ l , τ + 1 + m) - -

1 + m -

l,τ-f H-/w> =

2τ

2τ

2τ

2τ

1 1

-,

The discrepancies mentioned at the beginning of this appendix can be easily seen
by comparing (B.I9) with its analog in [35].

Note added in proof. The definition of self-superadjointness given in Sect. 5 is purely formal. It
does not take into account the necessary domain considerations. The latter are indeed necessary in
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the present situation since the first order differential superoperators (quantum operators) obtained
in Sects. 5 and 6 are unbounded. These considerations are described and analyzed in detail in
[55].

References

1. Schrόdinger, E.: Der stetige Ubergang von der Mikro-zur Makromechanik. Naturwissenschaften
14, 664 (1926)

2. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963); Co-
herent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

3. Perelomov, A.: Generalized Coherent States and Their Applications. Berlin, Heidelberg,
New York: Springer, 1986

4. Klauder, J.R., Skagerstam, B.-S.: Coherent States - Applications in Physics and Mathematical
Physics. Singapore: World Scientific, 1985

5. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics 61, Philadelphia: SI AM, 1992

6. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153 (1975)
7. Onofri, E.: A note on coherent state representations of Lie groups. J. Math. Phys. 16, 1087

(1975)
8. El Gradechi, A.M.: On the supersymplectic homogeneous superspace underlying the OSp(l/2)

coherent states. J. Math. Phys. 34, 5951 (1993)
9. El Gradechi, A.M.: Geometric quantization of an OSp(l/2) coadjoint orbit. Lett. Math. Phys.

35, 13 (1995)
10. Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: Theory and some applications. Rev.

Mod. Phys. 26, 867 (1990)
11. Delbourgo, R.: Minimal uncertainty states for the rotation and allied groups. J. Phys. A: Math.

Gen. 10, 1837 (1977); Delbourgo, R., Fox, J.R.: Maximum weight vectors possess minimal
uncertainty. J. Phys. A: Math. Gen. 10, L235 (1977)

12. De Bievre, S., El Gradechi, A.M.: Quantum mechanics and coherent states on the anti-de
Sitter spacetime and their Poincare contraction. Ann. Inst. H. Poincare 57, 403 (1992)

13. Radcliffe, J.M.: Some properties of spin coherent states. J. Phys. A: Gen. Phys. 4, 313 (1971)
14. AH, S.T., Antoine, J.-P.: Coherent states of the 1 + 1-dimensional Poincare group: Square

integrability and a relativistic Weyl transform. Ann. Inst. H. Poincare 51, 23 (1989); Ali,
S.T., Antoine, J.-P., Gazeau, J.-P.: De Sitter to Poincare contraction and relativistic coherent
states. Ann. Inst. H. Poincare 52, 83 (1990)

15. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Square integrability of group representations on ho-
mogeneous spaces. I. Reproducing triples and frames. Ann. Inst. H. Poincare 55, 829 (1991);
II. Coherent and quasi-coherent states. The case of the Poincare group. Ann. Inst. H. Poincare
55, 857 (1991)

16. Kirillov, A.: Elements de la theorie des representations. Moscou: Editions Mir, 1974; The
method of orbits in representation theory. In: Lie Groups and Their Representations.
Gelfand, I.M. (ed.), Budapest: Akademiai Kiadό, 1975, p. 219

17. Kostant, B.: Quantization and unitary representation In: Lecture Notes in Mathematics 170,
Berlin, Heidelberg, New York: Springer, 1970, p. 87

18. Souriau, J.M.: Structure des systemes dynamiques. Paris: Dunod, 1970
19. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and

quantization. Ann. Phys. (N.Y.) Ill, 61 (1978)
20. Freund, P.G.O.: Introduction to Supersymmetry. Cambridge: Cambridge University Press, 1986
21. Berezin, F.A.: The Method of Second Quantization. New York: Academic Press, 1966
22. Berezin, F.A.: Introduction to Superanalysis. Dordrecht: Reidel, 1987; The mathematical basis

of supersymmetric field theories. Soviet J. Nucl. Phys. 29, 857 (1979)
23. Cornwell, J.F.: Group Theory in Physics Vol. 3 - Supersymmetries and Infinite Dimensional

Algebras. London: Academic Press, 1989
24. Scheunert, M.: The Theory of Lie Superalgebras - An Introduction. Lecture Notes in Mathe-

matics 716, Berlin, Heidelberg, New York: Springer, 1979
25. Kac, V.: Representations of classical Lie superalgebras. In: Lecture Notes in Mathematics 676,

Berlin: Springer-Verlag, 1978, p. 597



Coherent States, Super-Kahler Geometry and Geometric Quantization 563

26. Leites, D.A.: Introduction to the theory of supermanifolds. Russ. Math. Surv. 35, 1 (1980)
27. DeWitt, B.S.: Supermanifolds. 2nd Edition, Cambridge: Cambridge University Press, 1992
28. Kostant, B.: Graded manifolds, graded Lie theory and prequantization. In: Conference on

Differential Geometric Methods in Mathematical Physics. Bleuler, K., Reetz, A.: eds., Lecture
Notes in Mathematics 570, Berlin, Heidelberg, New York: Springer, 1977, p. 177

29. Manin, Y.I.: Gauge Field Theory and Complex Geometry. Berlin: Springer, 1988
30. Bartocci, C., Bruzzo, U., Hernandez-Ruiperez, D.: The Geometry of Supermanifolds. Dor-

drecht: Kluwer Academic Publishers, 1991
31. Tuynman, G.M.: Supermanifolds: A Geometric Approach. Book in preparation
32. Scheunert, M., Nahm, W., Rittenberg, V.: Irreducible representations of the osp(2,1) and

spl(2,l) graded Lie algebras. J. Math. Phys. 18, 155 (1977)
33. Nishiyama, K.: Characters and super-characters of discrete series representations for orthosym-

plectic Lie superalgebras. J. Algebra 141, 399 (1991)
34. Balantekin, A.B., Schmitt, H.A., Barrett, B.R.: Coherent states for the harmonic oscillator rep-

resentations of the orthosymplectic supergroup OSp(l/2N,R). J. Math. Phys. 29, 1634 (1988)
35. Balantekin, A.B., Schmitt, H.A., Halse, P.: Coherent states for the noncompact supergroups

O$p(2/2N,R). J. Math. Phys. 30, 274 (1989)
36. Fatyga, B.W., Kostelecky, V.A., Nieto, M.M., Truax, D.R.: Supercoherent states. Phys. Rev.

D43, 1403 (1991)
37. Duval, C., Horvathy, P.A.: On Schrδdinger superalgebras. J. Math. Phys. 35, 2516 (1994)
38. Rothstein, M.: The structure of supersymplectic supermanifolds. In: Differential Geometric

Methods in Mathematical Physics, Bartocci, C., Bruzzo, U., Cianci, R. eds., Lecture Notes in
Physics 375, Berlin, Heidelberg, New York: Springer, 1991, p. 331

39. Monterde, J.: A characterization of graded symplectic structures. Differential Geom. Appl. 2,
81 (1992)

40. Frappat, L., Sciarrino, A., Sorba, P.: Structure of basic Lie superalgebras and of their affine
extensions. Commun. Math. Phys. 121, 457 (1989), and references therein

41. Sternberg, S., Wolf, J.: Hermitian Lie algebras and metaplectic representations. Trans. Am.
Math. Soc. 238, 1 (1978)

42. Green, P.: On holomorphic graded manifolds. Proc. Am. Math. Soc. 85, 587 (1982)
43. Rothstein, M.: Deformations of complex supermanifolds. Proc. Am. Math. Soc. 95, 255 (1985)
44. Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329 (1979)
45. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton, NJ: Princeton

University Press, 1987
46. Woodhouse, N.M.J.: Geometric Quantization. Oxford: Clarendon Press, 1980
47. Kirillov, A.A.: Geometric quantization. In: Dynamical Systems IV, ArnoΓd, V.I., Novikov, S.P.

eds., Berlin, Heidelberg, New York: Springer, 1990, p. 137
48. Tuynman, G.M.: Geometric quantization of the BRST charge. Commun. Math. Phys. 150, 237

(1992)
49. Schaller, P., Schwarz, G.: Anomalies from geometric quantization of fermionic field theories.

J. Math. Phys. 31, 2366 (1990)
50. Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Super Toeplitz operators and non-

perturbative quantization of supermanifolds. Commun. Math. Phys. 153, 49 (1993)
51. Tuynman, G.M.: Quantization: Towards a comparison between methods. J. Math. Phys. 28,

2829 (1987)
52. Renouard, P.: Varietes symplectiques et quantification. These, Universie d'Orsay, 1969
53. Schmitt, T.: Supergeometry and hermitian conjugation. J. Geom. Phys. 7, 141 (1990)
54. Nagamachi, S., Kobayashi, Y.: Hubert superspace. J. Math. Phys. 33, 4274 (1992)
55. El Gradechi, A.M.: On the super-unitarity of discrete series representations of orthosymplectic

Lie superalgebras. Preprint CRM-2279. Submitted
56. Beckers, J., Gagnon, L., Hussin, V., Winternitz, P.: Superposition formulas for nonlinear su-

perequations. J. Math. Phys. 31, 2528 (1990)

Communicated by S.-T. Yau






