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Abstract: A theory of principal bundles possessing quantum structure groups and
classical base manifolds is presented. Structural analysis of such quantum principal
bundles is performed. A differential calculus is constructed, combining differential
forms on the base manifold with an appropriate differential calculus on the structure
quantum group. Relations between the calculus on the group and the calculus on
the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The for-
malism of connections is developed. In particular, operators of horizontal projection,
covariant derivative and curvature are constructed and analyzed. Generalizations of
the first Structure Equation and of the Bianchi identity are found. Illustrative examples
are presented.
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1. Introduction

In diversity of mathematical concepts and theories a fundamental role is played by
those giving a unified treatment of different and at a first sight mutually independent
circles of problems.

As far as classical differential geometry is concerned, such a fundamental role
is given to the theory of principal bundles [3]. Various basic concepts of theoretical
physics are also naturally expressible in the language of principal bundles. Classical
gauge theory is a paradigmic example.

In this work a quantum generalization of the theory of principal bundles will be
presented. All constructions and considerations will be performed within a conceptual
framework of noncommutative differential geometry [1,2].

The generalization will be twofold. First of all, quantum groups will play the role
of structure groups. Secondly, appropriate quantum spaces will play the role of base
manifolds.

This paper is devoted to the study of quantum principal bundles over classical
smooth manifolds.

The paper is organized as follows.

Section 2 begins with a definition of quantum principal bundles. For technical
reasons, it will be assumed that a base manifold M is compact. Concerning a structure
quantum group G, it will be a compact matrix quantum group (pseudogroup), in the
sense of [8].

We shall prove that, as a consequence of an inherent geometrical inhomogeneity
of quantum groups, there exists a natural correspondence between quantum principal
bundles, and classical principal bundles over the same manifold M, with the structure
group Gcl consisting of "classical points" of G. Informally speaking, if we start from
a quantum principal bundle P then the corresponding classical principal bundle Pcl

consists precisely of "classical points" of P. Conversely, starting from a GcΓbundle
Pcl, the bundle P can be recovered applying a variant of the classical procedure of
extending structure groups.

Section 3 is devoted to the study of differential calculus on quantum principal
bundles. At first, general properties for differential calculus on P will be formulated,
including relations with differential structures over M and G. The main idea is that
local trivializations of the bundle locally trivialize the calculus, too.

A differential calculus over M will be the standard one, specified by differential
forms. A differential calculus on the structure quantum group G will be based on the
universal envelope of an appropriate first-order differential calculus Γ. This universal
envelope can be constructed by applying an extended bimodule technique [7,9]. As we
shall see, the mentioned local triviality property of the calculus on the bundle implies
certain restrictions on the calculus Γ. Informally speaking, Γ should be compatible
with all possible "transition functions" for P. Motivated by this observation, we shall
introduce a notion of admissibility to distinguish first-order differential structures on
G for which the mentioned compatibility holds.

The next theme of Sect. 3 is a construction of the calculus on P, starting from
differential forms on M and a given admissible first-order calculus Γ over G. As a
result we obtain a graded differential algebra Ω(P, Γ), representing the calculus on
the bundle P. We shall prove the uniqueness of this algebra.

After this, various properties of Ω(P,Γ) will be studied (the existence of re-
structures, the right covariance and the existence of the graded-differential extension
of the dualized right action of G on P). These properties are closely related to similar



Quantum Principal Bundles 459

properties of Γ. On the other hand, independently of the choice of Γ there exists a
natural left coaction of G on J?(P, Γ), becoming trivial in the classical case.

In Sect. 3 the structure of admissible calculi is studied, too. In particular, left-
covariant admissible calculi are characterized in terms of the corresponding right
ideals in the algebra *Λ> of "polynomial functions" on G. It turns out that there exists
the "simplest" left-covariant admissible calculus (which is automatically bicovariant
and *-covariant).

Finally, at the end of Sect. 3 we introduce and briefly analyze analogs of horizontal
and verticalized differential forms on the bundle.

The study of connections on quantum principal bundles is the main topic of Sects.
4 and 5. Through these sections we shall assume that .Γ is the simplest left-covariant
admissible calculus.

In Sect. 4 we shall first generalize the classical concept of (pseudo) tensoriality.
Together with certain considerations performed in Sect. 3 this will enable us to intro-
duce connection forms, in analogy with classical geometry. We then pass to the study
of local representations of connections, in terms of gauge potentials.

Further, we shall prove that each connection on P admits a decomposition into a
"classical connection," interpretable as an ordinary connection on Pcl, and an appro-
priate "purely quantum" tensorial 1-form.

Each connection decomposes the algebra J?(P, -Γ) into a tensor product of spaces
of horizontal forms and left-invariant forms on G. With the help of this decomposition
we shall introduce the horizontal projection operator. This will enable us to define
the analogs of covariant derivative and curvature operators, which will be studied in
Sect. 5. In particular, we shall analyze local representations of covariant derivative
and curvature, and find counterparts of the first Structure Equation and the Bianchi
identity.

In Sect. 6 some concrete examples are worked out. Considerations are mainly
confined to specific properties of the calculus on structure quantum group G, and to
the presentation of "quantum phenomena" appearing at the level of connections. A
particular care is devoted to the example with the quantum SU(2) group. Finally, we
shall briefly discuss a possible formulation of a "gauge theory" in the framework of
quantum principal bundles.

The paper ends with three technical appendices. In Appendix A relevant properties
of the set Gcl of classical points of G are collected. Some concrete examples are
computed.

In the second appendix properties of universal envelopes of first-order differential
structures are analyzed in detail. It is important to mention that, in the general case,
the universal envelope of a bicovariant first-order calculus does not coincide with the
exterior algebra constructed in [10], although in the case of ordinary Lie groups (and
ordinary 1-forms on them) two structures coincide. We shall see that, quite generally,
the universal envelope coincides with the graded-differential algebra constructed by
applying the mentioned extended bimodule technique. A reason for our choice of
higher-order calculus on G lies in the conceptual simplicity of the universal calculus,
which is independent of the group structure on G (in contrast to the exterior algebra
construction). Because of this, similar considerations can be applied to more general
fiberings, for example of the type of associated bundles where fibers are diffeomorphic
to an arbitrary quantum space. On the other hand, we are able to consider examples
in which Γ is not bicovariant.

We shall also prove that 1?(P, Γ) can be understood as the universal envelope
over its first-order part.
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In Appendix C some properties of the already mentioned minimal admissible
first-order calculi are collected.

Concerning the notation of quantum group entities, we shall follow [8]. A quantum
group G will be represented as a pair G = (A,u), where A is the C* -algebra of
"continuous functions" on the space G and u G Mn(A) is the matrix determining
the group structure. The *-algebra representing "polynomial functions" on G will be
denoted by ̂ . This *-algebra is generated by entries of u. The comultiplication, the
counit and the antipode will be denoted by φ, e and K respectively.

We shall write symbolically

φ(a) = α(1) 0 α(2)

for each α G Λ>. Similarly, the symbol α(1) 0 . . . α(n) denotes the result of a (n — 1)-
fold comultiplication of α G ^% (due to the coassociativity property of φ this is
independent of the way in which comultiplications are performed).

We shall denote by ad: *Λ> — » ̂ ®^ the adjoint action of G on itself. Explicitly,
this map is given by

If M is a smooth manifold we shall denote by S(M) the *-algebra of complex
smooth functions on M. Similarly, SC(M) will be the *-algebra consisting of smooth
functions having a compact support.

2. Structure of Quantum Principal Bundles

Let us consider a compact matrix quantum group G. Let M be a compact smooth
manifold.

Definition 2.1. A (quantum) principal G-bundle over M is a triplet of the form
P = (^,ΐ,F) where ̂  is a (unital) *-algebra, i : S(M) — > JSf is a unital linear
map and F : & -̂  & 0 ̂  is a linear map such that for each x G M there exists an
open set [7 C M containing x and a *-homomorphism π^ : JS — > 5(C7) 0 ̂  such
that the following properties hold:

) We have

for each / G S'(M).

(qpb2) If q = i(ψ)b where </? G 5c(ί7) then π^^) = 0 implies q = 0.

(qpb3 ) We have

(id 0 φ)πυ = (π^ 0 id)F π^(^) D 5C(I7) 0 Λ>.

A motivation for this definition comes from classical differential geometry. The
map i : S(M) — > ̂  is interpretable as the "dualized projection" of the bundle P on
its base M. The map F plays the role of a dualized right action of G on P. Finally,
maps πu are dualized local trivializations of the bundle.

Let P = (38, i, F) be a principal G-bundle over M.

Definition 2.2. A local trivialization for P is a pair (C7, π^) consisting of a non-
empty open set U C M and a *-homomorphism π^ : ̂  -> 5(C7) 0 ̂  such that
properties listed in the previous definition hold. A trivialization system for P is a
family r = (KU^UZW where ̂  is a finite open cover of M and for each U G ̂
the pair (£7, TT^) is a local trivialization for P.
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Let r = (^u)Ue^ be a trivialization system for P.

Lemma 2.1. The family r distinguishes elements of ̂ .

Proof. Let us consider a partition of unity w = (φ\j)u^/y ^or ̂  ^n otner words
φu G Sc(t/) and

According to Definition 2.1 if 6 belongs to the intesection of kernels of maps πu

then πuMφ^b) = 0, and hence ^φ^b = 0, for each U G .̂ Summing over ̂  we
conclude that 6 = 0. D

Lemma 2.2. (/) 77ze map i: S(M) — » J?? is a *-monomorphism.

(ii) The image ί(S(M)) is contained in the centre of &.

Proof. The following equalities hold

1 = 0,

1 = 0,

0 1 = 0.

Using Lemma 2.1 we conclude that i is a * -homomorphism and that (ii) holds. If
/ G ker(i) then f\u = 0 for each U G ̂  and hence / = 0. D

Lemma 2.3. (/) The map F is a unital * -homomorphism.

(ii) The following identities hold

(F 0 id)F = (id 0 φ)F, (2.1)

(id 0 e)F = id. (2.2)

(Hi) An element b G JS belongs to i(S(M)] iff

b®l. (2.3)

In other words F defines a right action of G on P. The corresponding ί( orbit
space " coincides with the base manifold M.

Proof. According to Definition 2.1,

(πv 0 id)F(6*) = (id 0 </>)*„&*) = ((id 0 φ)πv(b)Y

= ((KV 0 id)F(6))* =

as well as

(πσ 0 id)F(bq) = (id 0 0)π[/(6(?) = (id 0 0)(π|7(6)

= ((id (g) 0^(6)) ((id 0 0)71

for each U G ̂ . Hence, F is a ^-homomorphism. Equations (2.1)-(2.2) as well as
the identity



462 Mico Durdevic

F i ( f ) = i(f) <8> 1

can be checked in a similar way.
Let us assume that F(b) = 601. We have then

(πσ 0 id)F(i(φu)b) = πu(i(φu)b) 0 1 = (id 0 0)71-̂ (̂ )6),

where (ψu)ue^ *s a Part^on °f UIUty f°r ̂
Acting by id 0 c 0 id on the second equality we obtain

7z(y? I 7)6 0 1.

It follows that

i(Ψu)b = *(%)>

where ηv = (id 0 €)πu(ί(φu)b). Summing over ί/'s we obtain

Finally, the unitality of F directly follows from («7) and from the unitality of i. D

We pass to the study of internal structure of quantum principal bundles, in terms
of the corresponding "G-cocycles."

For a given open cover 06 of M, we shall denote by Nk(ύέά) the set of all
A -tuples (Uv..., Uk), where U.\ G % are such that Uv Π - - Π Uk i 0.

Definition 2.3. Let ύl6 be a finite open cover of M. A (smooth, quantum} G-cocycle

over (M, «£) is a system ^ = |̂ w | ([/, F) G ΛΓ2(^)| of non-trivial S(E7 n V)-

linear *-homomoφhisms ψ^Λ/: 5(ί/ Π V) 0 ̂ β —> 5(f/ Π F) 0 ̂  such that

(0 The diagram

id (8) φ\ id 0 φ (2.4)

Π V) 0 Λ> 0 ̂

is commutative.

(iί) We have

for each (U, V, W) G N3(^) and y? G 5C(Ϊ7 Π V Π

Let us observe that 5(17 Π y)-linearity property of maps T/^ implies

for each (nonempty) open set W C U Π V. Furthermore, maps ^/^ are completely
determined by their restrictions on SC(U Π V).

The following proposition completely describes G-cocycles. Let Gcl be the classi-
cal part of G (Appendix A). This is a classical group (a "subgroup" of G) consisting
of points of G (formally * -characters on ̂ ).
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Proposition 2.4. For each G-cocycle W - [ψuy \ (U,V) G 7V2(^)| there exists

the unique collection of smooth maps gvu : (U Π V) — > Gcl such that

) <g> α(2). (2.6)

Maps g^jy form a classical Gcl-cocycle over (M, &£).
Conversely, if g^jy form a classical Gcl-cocycle then formula (2.6) determines a

quantum G-cocycle over (M, &£).

Proof. Let W = ί̂  | (17, V) G AΓ2(^)| be a G-cocycle. For each (f/,y) G

let us define a map μw : ̂  -» 5(17 Π V) by

μw(α) = (id ® eWcTvΛl <8> α). (2.7)

Acting by id ® e (8) id on both wings of diagram (2.4) we obtain

ψm(φ <g> α) = (^μw(α(1)) 0 α(2). (2.8)

Maps μw are unital *-homomorphisms. Equivalently, they can be naturally under-
stood as smooth maps gvu : (U Π V) -* Gcl, by exchanging the order of arguments:

[μvu(a)](x)= ^w(a:)](α).

We see that (2.6) holds. Now acting by id 0 e on (2.5), using (2.6) and the definition
of the product in Gcl we conclude that

9uv9vw = 9uw (2 9)

for each (t/, V, W) G N3(ό<te). In other words, maps gvu form a classical Gc^-cocycle
over (M, ̂ ). The second part of the proposition easily follows from the coassocia-
tivity of φ and the definition of the product in Gcl. D

Property (2.6) implies that maps ψ^jy are bijective. Indeed, the inverse is explicitly
given by

ψ^(ψ 0 a)\χ = φguv(x)(a(V) ® α(2). (2.10)

In particular, (2.5) implies

We see that G-cocycles are in a natural correspondence with GcΓcocycles. On
the other hand, GcZ-cocycles are in a natural correspondence with classical principal
Gcl -bundles over M (endowed with a trivialization system).

A similar correspondence holds between quantum G-cocycles and quantum prin-
cipal G-bundles. Let P - (̂ ?, i, F) be a quantum principal G-bundle over M. For a
given (nonempty) open set V C M let us denote by Iv the lineal in ̂  consisting
of elements of the form q = i(φ)b, where b G & and φ G SC(V). Lemma 2.2 (iί)
implies that Iv is a (two-sided) *-ideal in ^5*.

Let ([/, π^) be a local trivialization of P. The following lemma is a direct conse-
quence of properties listed in Definition 2.1.
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Lemma 2.5. Let V C U be a nonempty open set. Then

and the restriction (ττu \IV): Iv — -> 5>c( V) <8) ̂  w α ^-isomorphism.

Let ̂  : 5c(ί7) 0 ̂  — > ̂  be a *-monomorphism defined by

D

Evidently, the diagram

Φl.

\ά®φ\

)Λ>

(2.12)

is commutative.
Let us consider a trivialization system r = (7rc

Lemma 2.6. Γftere

satisfying

G-cocycle

for P.

(U,V) G

for each (U, V) e and q G SC(U Π V) 0

The above formula defines maps ^^ on algebras 5c(ί7 Π V) 0 ̂ . These
maps are S(U Π F)-linear. Because of this it is possible to extend them uniquely to
*-homomorphisms ιφuv : S(UΓ\V)®^& -* 5(£/n F)®^. Covariance property (2.4)
follows from (2.12). Cocycle condition (2.5) is a direct consequence of the definition
of maps Ψuy α

Let us consider an arbitrary G-cocycle W - < /φuv \ (U, V) G N2(^) K and let

us define a *-algebra ̂  as a direct sum

Let J^ be a set consisting of elements b G £7* satisfying

(ulunv ^id)P[/(&) = Ψuv(v\unv ®ίΦPv(δ) (2.14)

for each (C7, V") G 7V2(^), where p^ and ^/l^πy are the corresponding coordinate
projections and restriction maps.

All maps figuring in (2.14) are *-homomorphisms. Hence, 38 is a *-subalgebra
of έr. The formula

= (id 0 (2.15)
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determines a *-homomorphims F>7- : &* — > J^ 0 , €. Diagram (2.4) implies that ,̂ ?

is F^-invariant, in the sense that F^(,39) C ,2? ® , ^. Let F: ,22 -> ,%t 0 ^4 be
the corresponding restriction map. The formula

PιAO = ( / f c / ) ® l (2.16)

defines a *-homomorphism 2: £(M) — » ,β?. Let πσ: ,^9 — » 5(C7) (8) -^ be the
restrictions of coordinate projection maps.

Proposition 2.7. Γ/z^ triplet P = (-̂ , ϊ, F) zs α principal G -bundle over M. The

family r - (πτj)ueM ^ a trivialization system for P. The corresponding G-cocycle
coincides with the initial one. In other words W = %'Ύ. D

The above proposition directly follows from the construction of P. Let P = (,j^, i, F)
be a principal Gf-bundle over M, with a trivialization system r.

Lemma 2.8. The following identities hold

v unv

where fφuv are transition functions from Wr.

Proof. It is sufficient to check that above equalities hold on elements of the form
q = i(ψ)b, where ψ G SC(U Π V). However, this is equivalent to

which is the definition of ψyy. D

Proposition 2.9. L^ί P = (*'j$,ι,F) be a principal G-bundle constructed from the
G-cocycle ^r. Then the *-homomorphίsm jr : ,#? — > 3F defined by

PuJr=7ΓU (2 18)

isomorphically maps ,23 onto ,3Θ. Moreover, the following equalities hold

(2.19)

jτi = i. (2.20)

Proof. According to Lemma 2.8 we have jr( &) C ,23 . Further

for each ψ G S(M) and U G #£. Thus (2.20) holds. Together with (2.18) this implies

where ^v are the corresponding right inverses for ,! JΘ.

The map jτ is surjective, because spaces ^ [5C(C7) 0 , iί] linearly span ,̂ ?.

Injectivity of jτ is a consequence of Lemma 2.1. Hence, jτ : .JS* <-» .̂ .
Finally, we have

= (id 0 0)π^ - (id 0 0)pt/jr = (pv 0 id)Fjr,

for each t7 G ̂ . Consequently, (2.19) holds. Π
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In summary, the following natural correspondences hold:

( quantum principal! r , f ( classical principal!
1 ^u AΛ Γ ~ {G-cocycles} ~ {GcΓcocycles} <-> { „ * A, \
\ G-bundles J cί ( GcΓbundles J

In this sense, each quantum G-bundle P determines a classical GcΓbundle Pcl,
and vice versa.

The correspondence P <-> Pcl has a simple geometrical explanation. Each quan-
tum group G is inherently inhomogeneous, because it always possesses a nontrivial
classical part Gcl consisting of points of G (because of e € Gcl) and (as far as ̂ ? is
not commutative) a nontrivial quantum part, imaginable as the "complement" to Gcl in
G. It is clear that "transition functions" being diffeomorphisms at the level of spaces,
preserve this intrinsic decomposition. As a result, because of the right covariance,
transition functions are completely determined by their "restrictions" on Gcl.

In fact the correspondence P <-> Pcl can be formulated independently of trivial-
ization systems r. If P = (38, i, F) is given then the elements of Pcl are in a natural
bijection with ^-characters of J&. In other words, Pd is consisting of classical points
of P.

Conversely, if Pcl is given then P can be recovered by applying a variant of the
classical construction of extending structure groups.

Let r : g ι-> rg be the (left) action of Gcl on the algebra S(Pcl\ induced by the
right action of Gcl on Pcl. Let ζ* : g h-» ζ* be the left action of Gcl on *Λ>. Explicitly,

rg(φ)(x) = φ(xg\ (2.22)

(2.23)

- cl *
corresponding fixed-point subalgebra. It is easy to see that formulas

Operators r 0 ζ* are automorphisms of a *-algebra S(Pcl) ® ̂ . Let «Ĵ 5* be the

(2.24)

(2.25)

where πM : Pcl -+ M is the projection, define *-homomorphisms i : S(M) — > 38 and
F: Jg* -> 3Θ (8) ̂  such that P = (Jg1, z, F) is a principal G-bundle over M. The
initial bundle ί̂  is realized as the set of classical points of P.

3. Differential Calculus

Let P = (38, i, F) be a quantum principal G-bundle over M. As the starting point for
this section, we shall formulate three basic assumptions about a differential calculus
over P. We shall assume that the calculus on P is based on a graded-differential
algebra

J u p ~" / " " p

fc>0

possessing the following properties:

(diffl) The algebra ̂  is realized as the Oth order summand of Ωp. In other
words, Ω°p = 38.

(diffl) As a differential algebra, Ωp is generated by 38.
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The next (and the last) assumption expresses an idea of local triviality of the
calculus. It relates the calculus over the bundle P with differential structures over the
structure quantum group G and the base manifold M. The calculus over M will be the
classical one, based on a graded-differential algebra Ω(M) consisting of differential
forms. For each open set U C M we shall denote by Ω(U} and ΩC(U) algebras of
differential forms on U (having compact supports).

Concerning the calculus over G, it will be based on the universal differential
envelope ΓΛ of a given first-order differential calculus Γ over G. Properties of such
structures are collected in Appendix B. A symbol <S> will be used for the graded tensor
product of graded (differential) algebras.

(dίffS) Let (U, πjj) be a local trivialization for P and ψυ: SC(U) 0^& —» & the
corresponding "right inverse." Then πv and rφυ are extendible to homomorphisms
ττ£: Ωp -> ί?([/)ΘΓΛ and ψf}: ΩC(U)®Γ^ -* Ωp of (graded-) differential algebras.

Property άiffl as well as the fact that ΩC(U) 0 ΓΛ is generated, as a differen-
tial algebra, by SC(U) ® ̂ , imply that homomoφhisms πf) and ψ£j are uniquely
determined. It is easy to see that

for each™ G ΩC(U)®ΓΛ.
For a given open set V C M let Iy C j?p be the differential subalgebra generated

by Iv C ̂ .

Lemma 3.1. (/) Algebras Iy are ideals in Ωp.

(U) If(U, TTjj) is a local trivialization for P and ifVC.U then

Proof. The second statement follows directly from Lemma 2.5 and definition (2.11).
Concerning (/), let us prove it first in a special case described in (U). It is sufficient to
check that 6^£(/), ^(/)6, d&V$(/) and V>cX/)d& belong to /£ = ̂ (^C(W^A),
for each / G Γ?C(V) § ΓΛ and 6 G Jg*. Each / G ί2c(V) § ΓΛ can be writ-
ten as a sum of elements of the form fQdf{ ... d/fc, where /4 G 5C(F) 0 ̂ . We
have b ψ { } ( f 0 d f l . . . d f k ) = bφu(f^d'φu(fl)...dφu(f^ G 1$ because ^[/(/0) ^
ψ^S^V) (8) )̂. Inclusions ψfj(f)b G /{) follow in a similar manner. Further,
d^(/) = d(bφύ(f)) ~ bψ£(df) G /{), and similarly ^(/)d6 G /{).

Let F C M be an arbitrary open set and r = (7rc/)t/e^ an arbitrary trivialization
system for P. It is then easy to see that Iy is linearly spanned by ideals Iynu, where
U G ̂ . Thus, /{> is an ideal in Ωp. D

Lemma 3.2. L ί̂ τ be a trivialization system for P. Then every map ψjjyfrom the cor-
responding G-cocycle Wτ is uniquely extendible to a graded-differential automorphism

<φύy: Ω(U n V) § ΓΛ -̂  Ω(U Π V) § ΓΛ.

Proof. It is sufficient to construct ψ^y as automorphisms of ΩC(U Π V) § ΓΛ. For
each (f7,1/) G N2(2ό) let us define ^^ to be the composition of the isomorphisms

ψ^ : Ωc(UnV)®ΓΛ -> /^)ny and (^Γ1: ̂ ny -̂  ΩC(UΓ\V)®Γ*. By construction
ψ^ is a grade-preserving differential automorphism which extends the action of Φuv-
Uniqueness follows from the fact that Sc(UnV)®^ generates the differential algebra

Ω(UΠV)®Γ*. D
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Consequently, not all differential structures over G are relevant for our consider-
ations. The calculus Γ must be compatible with transition functions ψyy. This is a
motivation for the following

Definition 3.1. A first-order differential calculus Γ over G is called admissible iff
for each G-cocycle W every transition map ψyy : S(U Π V) <8> ̂  — > S(U Π V) <8> ̂
is extendible to a homomorphism ̂  : Ω(U Π V) § ΓΛ -» β(E7 Π V) § ΓΛ of
differential algebras. Maps ψyy are grade preserving, bijective, Ω(U Π Vr)-linear and
uniquely determined.

As we shall prove, each admissible calculus over G, together with requirements diffl-
3 , completely determines the corresponding calculus Ωp over P. At first, the notion
of admissibility will be analyzed in more detail.

As explained in Appendix A, the Lie algebra ίie(GcZ) can be naturally understood
as the space of (hermitian) functionals X : ̂  — > C satisfying

X(ab) = e(a)X(b) + e(b)X(a)

for each α, b G ̂ . Hence, for each X G ίie(Gd) the map

lχ = -(X 0 id)0 (3.2)

is a derivation on ?̂. Further, ί: ίie(GcZ) — > Der(^) is a monomorphism of Lie
algebras. The image of ^ consists precisely of right-invariant derivations on *s&.

Let W = j^^ I (E7,\0 G ΛΓ2(^)| be a G-cocycle over (M, ̂ ). For each

([/, y) G 7V2(«^) we shall denote by dm : ̂  -̂  β(ί7 Π F) a linear map defined by

)) . (3.3)

It is easy to see that

duv(ab) = €(0)5^(6) + e(6)9w(α) (3.4)

for each α, 6 G ̂ . Hence, d1^ can be understood in a natural manner as an element
of the space Ω(U Π V) 0 ίie(Gcί).

Lemma 3.3. A first-order calculus Γ over G is admissible iff the following implica-
tions hold

(3-5)

(3 6)

/or ^αc/z p G Gcl and X G ίie(GcZ).

Proof. Maps ^^V ^ave me ̂ orm

(3.7)

where y?^ : — > β(t/ Π F) 0 ΓΛ are (unique) graded-differential homomorphisms
extending the maps
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φuv(a) = gvu(a(V)®a(2\ (3.8)

If V" a db =0 then
-̂— <ι l τ

0 = 4V Σ β î = Σ(W<4!)) ® af}d(9vυ(b^) ® bf)

according to Definition 3.1. Comparing bidegrees we find

Because of arbitrariness of the G-cocycle, the above equations imply (3.5)-(3.6).
Conversely, if (3.5)-(3.6) hold then the formula

consistently defines a linear map JJ^ : Γ — » J?(t/ Π F) § ΓΛ. It is easy to check that

for each α,6 G ̂ . According to Proposition B.2 there exists the unique homomor-
phism ψyy : ΓΛ -̂  ί2(C7 Π V) §> ΓΛ of graded-differential algebras which extends
both φuv and ̂ uv. Let us define maps ^^ by (3.7). These maps are differential
homomorphisms extending the cocycle maps Ψuy Π

If implication (3.5) holds then the formula

ζ*g(adb) = ζ*g(a)dζ*g(b) (3.9)

consistently determines a left action of Gcl by automorphisms of Γ.
It is easy to see that if (3.5) holds then

(a<)d6< + ai^(6<) = 0} (3 10)

for each X G [ieίG^^). In other words, the formula

iχ (adb) = lx (a)db + adlχ (6) (3.11)

consistently determines a linear map tx : Γ —> Γ. Evidently, the following equalities
hold

(α)(a)-x - x
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Let us now suppose that (3.6) holds. In this case the formula

a£χ(b) (3.12)

consistently determines a bimodule homomorphism ιχ : Γ — >• ^/&.
It is worth noticing that the mentioned left action of Gcl on Γ (and ̂ ) is, accord-

ing to Proposition B.2, uniquely extendible to the left action of Gcl by automorphisms
of the graded-differential algebra ΓΛ. Moreover, operators ίχ and ux are uniquely
extendible to a grade-preserving derivation £χ : ΓΛ — > PΛ commuting with d, and
an antiderivation ιχ : PΛ — » PΛ of order — 1 respectively. Classical identities

iχiγ + iγiχ = 0 [£χ,iγ] = L[X,Y]

iχ = dίχ + tχd

hold.

Lemma 3.4. If Gcl is connected then the admissibίlίty property is equivalent to impli-
cations (3.6) and (3.10).

Proof. Let us suppose that ) ^.aidbi = 0. It is easy to see that

Σ
, ,

ζgtfa^dζgtφj) = 0 (3.13)
I

for each t G 3ί and X G [ie(Gd), where t h-> p* is the 1-parameter subgroup of Gcί

generated by X. Consequently, there exists an open set TV 3 e such that

=θ|
*

(3.14)

for each cf* G N. If Gd is connected then each g G Gd is a product of some elements
from TV. Inductively applying (3.14) we find that (3.5) holds in the full generality. D

On the other hand, implications (3.6) and (3.10) are equivalent to the possibility
of constructing the maps ιχ : ΓΛ —> ΓΛ.

We pass to the construction of a calculus over P. Let us fix a trivialization system
T = (7rt/)[/e?^ for P, and an admissible first-order calculus Γ over G.

For each ([/, V) G TV2(^) the corresponding cocycle map ψyy admits a natural

extension ψyy: β(C/ Π V) (§) ΓA —> β(ί/ Π V) <§) ΓΛ characterized as the unique
graded differential homomorphism extending ψjjy. By definition, the maps ^^ are
β(C7 Π F)-linear. In particular, subalgebras ΩC(W) (8) PA are φ^y-invariant for each
open set W C U Π y.

Lemma 3.5. (/) Γ/zβ m«p5 "φuv are bijectίve and

(Ψuv^~l = Ψvu- (3.15)

(//) We have

for each (U, V, W) G TV3(«£) and ψ G ΩC(U Π V Π W) § ΓΛ.
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Proof. Everything follows from similar properties of transition functions ψyy, and
from the fact that ψyy are differential homomorphisms. Π

Let us consider a graded-differential algebra

and let Ω(P, r, Γ) C J^Λ be a subset consisting of all w G J^Λ satisfying

uπv (3.17)

for each ([/, V) G N2(%), where p^ are corresponding coordinate projections.
All maps figuring in (3.17) are graded-differential homomorphisms. This implies

that Ω(P, τ, Γ) is a graded-differential subalgebra of ̂ Λ.
The Oth part of Ω(P, r, Γ) can be, according to Proposition 2.9, identified with

^5*. By the use of the previous analysis, it can be shown easily that β(P, r, Γ) C J^Λ

satisfies requirements diffl and dzjffJ too.
We shall now prove that Ω(P,r,Γ) is, up to isomorphism, the unique graded-

differential algebra satisfying conditions diffl -3.
Let & be an arbitrary algebra possessing this property.

Lemma 3.6. We have

Ψw(v uπv ®id)<(w) = (u\unv ®id)7r£(^) (3.18)

for each ({/, V) G 7V2(«^) and it; G gΓ.

/ Both sides of (3.18) are differential algebra homomorphisms coinciding on
38 = < °̂, according to Lemma 2.8. Property diff2 implies that they coincide on the
whole (% . D

Lemma 3.7. The system of maps TA = (πfj^uew distinguishes elements of ?».

Proof. Let (ψu^Uζ?/? ^e an arbitrary smooth partition of unity for $£, and let us
assume that w G ker(π^)) for each U G %. Then {(φ ̂ w G If) Π ker(π^)) for each
U G &£. Hence, we have ί(φjj)w = 0. Summing over 06 we obtain ^ = 0. D

Proposition 3.8. (z) Γ/ιere ejcz'̂ ί^ ί/iβ unique homomorphism j£ : ̂  -̂  ί?(P, r, Γ) of

differential algebras, extending the map jτ : ^3 — » &.

(zz) Γ/i^ map j^ w bijective.

Proof. Let us define a graded-differential homomorphism j£: & — > J^Λ by equalities

ΓJ

According to Lemma 3.6 we have

The map j^: & —>• β(P, r, P) is injective, according to Lemma 3.7. The above
equality implies

j Λ ^ Λ _ X / \ (3.19)
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where ψ£) : ΩC(U) <§ ΓΛ -» Ω(P, τ, Γ) is the unique graded-differential extension of

ψυ : SC(U)®^4 -» &ί. Surjectivity of j* now follows from the fact that β(P, r, Γ) is

linearly generated by spaces im(^c/). Uniqueness of j£ directly follows from property
diffl. D

We see that β(P, r, Γ) is essentially independent of a trivialization system r.
For this reason we shall simplify the notation and write β(P,Γ) = β(P,τ,Γ). It is
worth noticing that the algebra Ω(P, Γ) can be understood as the universal differential
envelope of its first-order part (understood as a first-order calculus over J??).

In the rest of this section algebraic properties of β(P, Γ) will be analyzed in more
detail. It will be assumed that a trivialization system r is fixed.

Let us observe that the formula

determines (the unique) graded-differential homomorphism ίΛ: Ω(M)
which extends the map i. The map iΛ is injective and

iΛ(a)w = (-l)dwdawiΛ(a)

(3.20)

Ω(P,Γ)

(3.21)

for each α G Ω(M) and w G β(P, Γ).
As we shall now see, it is possible to introduce a natural coaction of G on f?(P, Γ),

trivialized in classical geometry. Let c : ΓΛ 0 <^& — > ^ΓΛ be a natural coaction map,
defined in Appendix B.

Lemma 3.9. The diagram

id<8>c
-

π y) § ΓΛ

l i d O c (3.22)
4-

Ω(U n y> § ΓΛ

is commutative, for each (U, V) G

Proof. A direct computation gives

c)(tι; ® o) = ̂

= (id ® c)(^^y

Proposition 3.10. (i) Γ/iβre exwto ίΛe wn/^we Z\ : β(P,
ί/ι^ diagram

πΛ 0 id

.G

zij

β(P, Γ)

α(2))

|id(g)c

Ω(U) 0 ΓΛ

α(3))

β(P, Γ) Λ WC/Z ίftαί

(3.23)
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is commutative, for each U G &£.

(ii ) The following identities hold

Δ(w (g 06) = Δ (Δ(w <g α) <g 6) , (3.24)

) α) = 2\(w 0 α(1))Zi(^ (g α(2)), (3.25)

w 0 1) = w, (3.26)

α) = i*(a)Δ(w (g α). (3.27)

Proof. Uniqueness of Z\ is a direct consequence of the fact that maps π^ distinguish

elements of β(P, .Γ). To prove the existence, consider a map zi : ̂ Λ 0 ̂  — -> ̂ Λ

defined by
3̂ 4(11; Θ α) = (id (g) c)(pσ(w) Θ α).

Lemma 3.9 implies that Δ(Ω(P, Γ) (g ̂ ) C J?(P, Γ). The restriction of Δ on
1?(P,Γ) gives the desired map zi: β(P,Γ) Θ ̂  -> β(P,Γ). Evidently, diagram
(3.23) is commutative.

A direct computation gives

α)) = ( - 1 ) ^ ^ . 0 c(ΰ> .̂ 0 α)

ύ'

= X^ί-l)^^^- ® c(^ 0 α^^^- (g) α(2))
u

= π^(zi(^ (g a(l})Λ(u (g α(2))),

Similarly

π^ (Δ(w 0 α6)) = ̂  α - (g c(^ (g αfe) = ̂  α (g c(c(α (g α) (g 6)

and finally

0 o) = ((αf^) 01)^^0 c(&i 0 α) = π^)(^Λ(α)Zi(^ (g α)),

where 7r£(w) = ̂  α- 0 ̂  and π^)(w) = ]P .̂  (g ̂ .. Hence (3.24)-(3.27) hold. D

In the case when Γ admits the ^-structure, or if it is right-covariant [9] the algebra
β(P, Γ) possesses a similar property, too. To prove this we need a technical lemma.

Lemma 3.11. (/) If Γ is a *-calculus then ψyy preserve the natural ^-structure on
Ω(U Π V) § ΓΛ.

(ii) If Γ is right-covariant then the diagrams

(3.28)
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are commutative. Here, p^ : PΛ — > PΛ 0^ is a natural extension of the right action
<pr : Γ -> Γ 0 ^4.

Proof. Elements of the form w = a 0 α^ύ^ . . . dan, where α G β(ί7 Π V) and
α0, α1 ? . . . , αn G ̂ , linearly span !?([/ Π F) 0 ΓΛ. If Γ is *-covariant then

according to (3.8) and Proposition B.3. Similarly, if Γ is right-covariant then Propo-
sition B.6 (iί) implies

(id 0 PrWuvW = (id ̂
=a[(φυv 0 iά)φ(aQ)][(dφuv 0 id)0(α1)] . . . [(dφ^ 0 id)φ(an)]

Proposition 3.12. If Γ is *-covariant then there exists the unique antilinear map
*: β(P,Γ) -> β(P,Γ) extending *: J51 -> J51, satisfying (wu)* = (-l)dwduu*w*
and commuting with d: J?(P, Γ) — > β(P, Γ). The following identities hold

iΛ(α*) = zΛ(α)*, (3.29)

(w*)* = w, (3.30)

/Xw 0 α)* = Z\(tί;* 0 «(α)*). (3.31)

Proof. If P is a *-calculus then tensoring the natural *-structure on Ω(U) with the
corresponding ^-structure on ΓΛ and taking the direct sum we obtain a ^-structure
on ̂ Λ. It is easy to see that

(wu)* = (-lfwduu*w* d(w*) = d(w)* iΛ(α*) = iΛ(α)*

for each u,w G J^Λ and a G Ω(M). According to Lemma 3.11 (/), the algebra
β(P, P) C «5rΛ is *-invariant. The restriction of the *-operation on i?(P, P) gives
the desired involution.

Applying the definition of Δ and elementary properties of c we obtain

π£ |/\(w 0 α)*] =Σa*® c^ι ® α)* = Σ α? ̂  c^ΐ ^ ̂ ^α^*^
i i

= 7Γτr Γ^(lt7* 0 AC(fl)*)

for each U G ̂ . Uniqueness of * directly follows from property diff2 for β(P, P).
Π

Proposition 3.13. (z) If Γ is right-covariant then there exists the unique homomor-
phism FΛ : β(P, P) —> β(P, P) 0 ̂  which extends F and such that

(3.32)

The following identities hold
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(id <g> e)PΛ = id,

(id <g> </>)PΛ = (PΛ 0 id)PΛ ,

FΛΔ(w 0 α) = Σ (2)α ) 0 « ( α ) c f e α(1) (3)

(3.33)

(3.34)

(3.35)

(3.36)

(ίi) If Γ is also a ^-calculus then PΛ is hermitian, in a natural manner.

Proof. If Γ is right-covariant then a map F£ : defined by

is a homomoφhism which, according to Proposition B.6 (//), satisfies the following
equations

(id <g) e)F£ = id,

= α id,

where pv(a) e β(ί7) Θ 1 for each C7 G ̂ . Now Lemma 3.11 (ίi) implies that
J?(P, Γ) = f?(P, r, Γ) is a F^-invariant subalgebra of J^, in other words we have

the inclusion F^ (β(P, Γ)) C β(P, Γ)(g)^. The restriction of F^ on β(P, Γ) gives
the desired map FΛ.

According to Lemma B.7

α) = (id α)

α(2))

id) α(2)) 0 /<α(1))C/cα
(3)

for each C7 € ύ&>. Here, c^ . Uniqueness of FA is a direct

consequence of property diffl. If P is in addition *-covariant then β(P, P) is a *-
subalgebra of J^Λ and P^ is hermitian, according to Proposition B.6. D

From this moment we shall assume that P is left-covariant. The space of left-
invariant elements of P will be denoted by Γmυ. Further, J% C ker(e) will be the
right ^-ideal which canonically [9] determines this calculus.

Proposition 3.14. A left-covariant calculus Γ is admissible iff

(X (g) id)ad(^g) = {0} (3.37)

for each X G ϊic(Gc/).
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Proof. If Γ is admissible (and left-covariant) then the following equality holds

^π(α) = dvu(a(Ά) ® κ(am)a(3) + lunv ® π(α). (3.38)

Indeed,

4)

)

® π(α)

according to (3.3) and (B.29).
Ifa&M then

= 0. (3.39)

It is easy to see that, because of arbitrariness of r, Eqs. (3.39) are equivalent to Eqs.
(3.37).

Conversely, let us assume that (3.37) holds for each X e lit(Gcl). To prove
admissibility of Γ it is sufficient to check implication (3.6), because (3.5) is satisfied
automatically for left-covariant differential structures. As a consequence of (3.37), the
formula

Mα(1))α(3) (3.40)

consistently defines a linear map pχ : Γinv — > ̂ , for each X G ϋt(Gcl).

Now if V^ a db = 0 then

o - Σ «X' W M2))) = Σ ̂

because of (B.31) and the fact that Γ is free over Γinv as a left/right ^-module. G

There exists "the simplest" left-covariant admissible calculus. It is based on the

right ^-ideal J? consisting of all elements α G ker(e) annihilated by operators
(X 0 id)ad. This calculus is also bico variant and * -co variant. It is analyzed in more
details in Appendix C.

Now we are going to construct the total "pull back" for the right action of G
on P. We shall assume that Γ is bicovariant. As shown in Proposition B.ll, the
comultiplication map admits a natural extension φ: ΓΛ — > ΓΛ § ΓΛ, which is a
graded differential algebra homomorphism.
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Lemma 3.15. The diagram

Ω(U n V) g ΓΛ

id <8) ? j

Ω(U n V) g ΓΛ g ΓΛ

Ω(U n V) g ΓΛ

jid (g> 0

Ω(U n V) § ΓΛ g ΓΛ

(3.41)

is* commutative.

Proof. All maps figuring in this diagram are homomorphisms of graded differential
algebras, and Ω(U Π V)-linear in a natural manner. Hence, it is sufficent to check the
commutativity in the Oth order level. However, this is just the covariance condition
for the cocycle maps. D

Proposition 3.16. (i) There exists the unique homomorphism

F : β(P, Γ) -> β(P, Γ) g ΓΛ

of graded-differential algebras which extends the map F.

(ii) The diagram

J?(P,Γ)gΓ

(3.42)

β(P, Γ) g Γ β(P, Γ) g ΓΛ g Γ

commutative and the following identities hold

FΛ = (id^p0)F,

(id 0 eΛ)F = id,

(3.43)

(3.44)

Fi*(ά) = i*(ά)®l. (3.45)

(///) 7/1/" is in addition *-covariant then F preserves canonical ^-structures.

Proof. Let us consider a linear map F^ : J^Λ — > ̂ Λ g ΓΛ given by

(pυ <8) id)F^ = (id (g) φ)pv.

This map is a homomorphism of graded-differential algebras and F^(a) = a (g) 1 for
each α G ^Jί, where

According to Lemma 3.15 the algebra β(P, Γ) = β(P, r, Γ) is F^ -invariant, in the

sense that ί> (β(P, Γ)) C β(P, Γ) g ΓΛ.



478 Mico Durdevic

Let F: Ω(P, Γ) -> β(P, Γ) 0 ΓΛ be the corresponding restriction. The diagram
(3.42) and Eq. (3.44) directly follow from (B.38) and (B.39).

Let us consider a map (id 0 p0)F : J?(P, Γ) -> β(P, Γ) 0 ̂ . Evidently, this is a
homomoφhism which extends F. Moreover,

(id 0 po)Fd(w) = (id 0 p0)(d 0 id + (- l ) * i d 0 d)F(w) = (d 0 p0)F(iϋ)

for each u> G β(P, /""). Proposition 3.13 implies that (id0p0)jF = FΛ. Uniqueness of

F follows from property diff2.

Finally, if Γ is *-covariant then φ is hermitian. This implies that Fτ is hermitian,

too. Hermicity of F also directly follows from hermicity of F, and hermicity of all
differentials appearing in the game. D

Let us define the graded *-algebra of horizontal forms to be the tensor product

f)ot(P) = Ω(M) 0M Jg>. (3.46)

This algebra can be understood as a subalgebra of β(P, Γ) consisting of all u> satis-
fying

π£}(w)e Ω(U)®^ (3.47)

for each U G ̂ . By construction, f)ot(P) is independent of a choice of P.
Let us now define a graded algebra of "verticalized" differential forms to be, as a

graded vector space

) = ̂ 0^ (3.48)

while the product is specified by

(q O ή)(b ®ΰ) = qbk®(ηo ck}ϋ, (3.49)

where bk®ck = F(b). Here, o is the left-invariant restriction of the coaction map

c. Associativity of this product easily follows from the main properties of F and o.
We see that ̂  and Γ^v are subalgebras of Der(P, Γ1), in a natural manner. For each
U G 96 the map

π^ 0 id : der(P, Γ) -> 5(f/) 0 ̂  0 Γ^ ̂  S(tf) 0 ΓΛ

becomes a homomorphism of graded algebras. Actually this property characterizes the
product in oet(P, F), because the maps πu 0 id distinguish elements of this algebra.

The algebra Det(P, Γ) can be equipped with a natural differential, defined by

dυ(b ®ΰ) = bk® π(ck^ + b®dΰ. (3.50)
k

We have

(πσ 0 id)dυ(b 0 T?) = J^ α4 0 o^ 0 π(af V + ̂ 0^0 di? , (3.51)
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where π^δ) = Y^.α^ 0 aτ. We see that locally

dv «-» (id 0 d): S(U) 0 ΓΛ -> S([7) 0 ΓΛ.

Furthermore, right actions of G on J5* and Γ^v naturally induce the right action
Fv of G on t>et(P, P). More precisely,

~ (3.52)

where Π7Λ($) = ̂  ^^ 0 dz. This action can be also characterized by relations

(πσ 0 iά2)Fv = (id 0 ^XTT^ 0 id). (3.53)

The differential dυ is F^ -co variant, in the sense that

Fυdv = (dυ®id)Fυ. (3.54)

Indeed, we have

Fvdυ(b ® tf) = ]Γ) (bfc Θ τr(c(

fe

3))7?z 0
kl

(

fc

2)dz + 6fc 0 dΰ1^ 0 cfcdz = (dv 0 ic

Graded-differential algebra Det(P, P) can be also obtained from β(P, P) by factor-
ing through horizontal forms. More precisely, let H be the ideal in Ω(P, P) generated
dί(S(M)). Then αer(P, P) is naturally isomorphic to the factor-algebra Ω(P,Γ)/H.
Moreover, H is a right-invariant ideal and, according to (3.51) and (3.53) the fac-
torized FΛ and d coincide with Fv and dv respectively. We shall denote by πυ the
factor projection map.

The homomorphism ττv : Ω(P, P) —» det(P, P) possesses the following properties

(πυ 0 id)PΛ = Fυπυ, (3.55)

πυd = dυπυ, (3.56)

πυ(6) = 601. (3.57)

The last two properties uniquely characterize πυ.
Finally if P is *-co variant then H is *-invariant and there exists the unique *-

structure on der(P, P) such that πv is hermitian. Explicitly, this *-structure is given
by

(b 0 7?)* = ]Γ 6* 0 (&* o c*). (3.58)
k
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4. Connections and Pseudotensorial Forms

This section is devoted to the study of counterparts of (pseudo)tensorial forms. In
particular, we shall develop the formalism of connections.

At first, the classical concept of pseudotensoriality will be translated into the
noncommutative context. Let us assume for a moment that the bundle is classical. Let
us consider a representation p: G — > lin(V) in a vector space V. Then a F-valued
/υ-form w on P is called pseudotensoήal of (p, \0-type [3] iff

g*(w) = ρ(g~l)w

for each g £ G, where g* is the pull back of the corresponding right action. The form
w is called tensorial, if it vanishes whenever at least one argument is vertical.

The pseudotensoriality property can be equivalently formulated in terms of the
map w : V * — > Ω(P), where w(ϋ) = Όw, via the following diagram

F* w ) β(P)

P(g) g* (4.1)

V* - > β(P)
w

where p is the contragradient representation of p. Moreover, w is tensorial iff w(ΰ)
is horizontal for each ϋ G V* .

Let us turn back to the noncommutative context. Let P - (38, i, F) be a quantum
principal G-bundle over M and p: L — > L 0 ̂  a (nonsingular) representation [8] of
G in a complex vector space L. Let Γ be an admissible right-covariant calculus over
G. The above diagram naturally suggests to define pseudotensorial forms as linear
maps w : L — > Ω(P, Γ) such that the diagram

W , Γ)

is commutative.
Let us denote by ψ(P, p, Γ) the space of corresponding pseudotensorial forms.

This space is naturally graded

^(P,p,Γ), (4.3)

where the grading is induced from Ω(P, Γ). Strictly speaking the above decomposition
holds if L is finite-dimensional. The space ψ(P, p, Γ) is a bimodule over Ω(M\ in a
natural manner. According to (3.32), the space of pseudotensorial forms is invariant
under compositions with d: Ω(P,Γ) — > Ω(P,Γ).

We shall denote by τ(P, p) the subspace consisting of tensorial forms w, charac-
terized by

w(L) C ί)ot(P). (4.4)
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Actually τ(P, p) is a graded ί?(M)-submodule of τ/>(P, p, P). Let us observe that
τ(P, p) is independent of a specification of Γ.

If L is endowed with an antilinear involution * : L — > L such that p is hermitian,
in a natural manner, and if Γ is a *-calculus then the formula

defines a ^-structure on ψ(P, p, Γ). The space r(P, p) is * -invariant.
Tensorial forms possess a simple local representation.

Proposition 4.1. (/) For each w G τ(P, p) am/ U £ ̂  there exists the unique linear
map φu : L — > j?([7) swc/z ί/zαί

7Γ0W = (φu <g> id)p. (4.5)

We /zαve

(c*) (4 6)

G L and (U, V) G N2(^\ where tf fc 0 ck =

(ίί) Conversely, if maps φv satisfy equalities (4.6) then there exists the unique
w G τ(P, p) such that (4.5) holds.

Proof. We have
π^ιo(L) C Ω(U) ® Λ>

for each w G τ(P, p) and C7 G %. On the other hand (4.2) is equivalent to the
following equations

(id (g) ^) [π^(τ?)j = (π^ 0 id)p(^). (4.7)

Acting by id 0 e 0 id on both sides of this equation we obtain (4.5) with φυ -
(id (g) e)π^w. Conversely, a direct verification shows that (4.7) follows from (4.5).

Let us now analyze how φu and φv are related on the overlapping of regions U
andTΛ

For an arbitrary system of linear maps φυ : L — > 17(ί7), the formula (4.5) de-
termines a linear map w: L — > J^Λ. According to (3.17) a necessary and sufficient
condition for the inclusion w(L) C β(P, r, P) can be written in the form

id)(φu Θ id)p(ί?) - vlc/nv K (^))^w(4υ) ® 42), (4.8)

which is equivalent to (4.6). D

From this moment it will be assumed that P is the simplest left-covariant ad-

missible calculus. Explicitly, P is a first-order calculus based on the right ideal ̂
consisting of all a G ker(e) such that (X 0 id)ad(α) = 0 for each X G [ie(Gd). As
explained in Appendix C, this is a bicovariant ^-calculus.

Furthermore, we shall restrict the consideration to the case
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In this case we shall simplify the notation and write ί2(P), det(P), τ(P) and
for the corresponding algebras and modules.

Finally, we shall fix a section η: S%* — > Γinv of v: Γinv — > 3§* (Appendix C)
which intertwines ^-structures and adjoint actions of Gcl. Hence we can write

, (4.9)

with ηv playing the role of the projection on the first factor.
If φu are local representatives of w G τ(P) then maps

7 I

satisfy (4.6), too. This, together with Proposition 4.1, enables us to introduce the
"classical" and the "quantum" component of w, by

By construction,
W ~ Wcl + W±

We shall denote by τcl(P) and τ_j_(P) corresponding mutually complementary
graded *-,ί7(M)-submodules of r(P). Elements of τcl(P) will be called classical
tensorial forms.

Proposition 4.2. A tensorial form w is classical iff the diagram

(4.10)

is commutative.

Proof. Let us suppose that w is classical. In local trivialization terms, this means

φu(
f^ o α) = €(ά)φu('&)1 (4.11)

for each ϋ G Γirw, U G 06 and α G ̂ ?. On the other hand, according to (3.23) and
(B.20), commutativity of (4.10) is equivalent to equalities

k

= y^ Ψu(^k^ ® ft(α(1))cfcα
(2) = π£Δ [w(ΰ) 0 a], (4.12)

where tu(7?) = .

If (4.11) holds then, evidently, (4.12) holds. Conversely, if (4.12) holds then acting
by id 0 e on both sides of the third equality we obtain (4.11). D

We pass to the study of connection forms.



Quantum Principal Bundles 483

Definition 4.1. A connection on P is every pseudotensorial 1-form ω satisfying

ω(tf*) = ωO?)*, (4.13)

πυcj(tf) = 1 <8> tf (4.14)

for each ΰ £ Γίnv.

Condition (4.14) plays the role of the classical requirement that connections map
fundamental vector fields into their generators. Connections naturally form an infinite-
dimensional affine space (as far as Γinv is non- trivial).

Lemma 4.3. (/) Each quantum principal bundle P admits a connection.

(ίi) For an arbitrary connection ω on P, and a linear map a: Γinv — > Ω(P\ the
map a + ω is a connection iff a is a hermitian 1 -order tensorial form.

Proof. Let us consider an arbitrary smooth partition of unity (pu)uεV6 ^or ̂ ' anc*
define a map ω : Γίnv — > Ω(P) by

This map is a connection on P. The second statement easily follows from Defini-
tion 4.1. D

Let con(P) be the affine space of all connections on P. The following proposition
describes connections in terms of gauge potentials.

Proposition 4.4. (i) For each ω G con(P) there exist the unique system of linear maps
Au:Γinv ~*Ω(U} such that

(4.16)

for each U G % where ) ^k®ck = w(ΰ)> These maps are hermitian and
' K

(Av(ύ)\unv) = Σ(Au(^unv)9Uv(ck') + θuvW (4.1?)
fc

for each (U, V) e N2(^\ where d^π

(ii) Conversely, if hermitian maps Aυ\ Γinv — > Ω(U) are given such that (4.17)
holds, then the formula (4.16) determines a connection on P.

Proof. The proof is essentially the same as for Proposition 4.1. D

Definition 4.2. A connection ω is called classical iff the diagram

Δ

is commutative.

ω ® i d | [ω (4.18)

fl(P)



484 Mico Durdevic

Proposition 4.5. A connection ω is classical iff

for each U G 06.

Proof. A similar reasoning as in the proof of Proposition 4.2. D

Every connection can be written as a sum of a classical connection, and a "purely
quantum" part.

Proposition 4.6. For each ω G con(P) there exist the unique classical connection ωcl

and hermίtian tensorial I -form ω± G τ±(P) such that

ω = ωcl+ω_L. ' (4.19)

Proof. Let us start from the corresponding gauge potentials Aσ and define

- = Au —

From (4.17) it follows that

It is easy to see that A^ and A^j are hermitian. Hence, there exist a classical connec-

tion ωcl and a hermitian element ω± G τ]_(P) such that

π^u Jtf) = (A£ 0 id)tu(^)

for each 7? G Γίnυ. Evidently, (4.19) holds. This decomposition is unique, because of
mutual complementarity between τcl(P) and Tj_(P). D

From this moment it will be assumed that the subalgebra Γ^υ of left-invariant

elements is realized as a complement to the space S^ C Γ^υ9 with the help of a

linear section i : Γ^υ — •» Γ®v of the factorization map, which intertwines *- structures
and adjoint actions of G. Here S£nv is the left-invariant part of the ideal 5Λ C Γ®

and Γfav is the tensor algebra over Γinv (Appendix B).
It is easy to see (for example, applying a quantum analog of the method of group

projectors) that i always exists. If Γinυ is finite-dimensional then i can be constructed
by identifying Γ^υ with the orthocomplement of 5 ,̂ with respect to an appropriate
scalar product.

However, it is important to mention that in various interesting situations (for
example, if G = SμU(2) and μ G (-1, 1) \ {0}) the space Γinv will be infinite-
dimensional.

For each connection ω, let us denote by ω® : Γ^v — » Ω(P) the corresponding
unital multiplicative extension. Let α;Λ : Γ^v — » Ω(P) be the composition of maps i
andu;®.
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Proposition 4.7. (/) The diagram

Γ1 inv

I 1
Λ

(4.20)

(8) id

is commutative,

(ii) We have

πυω
Λ(ΰ)= 1 0τ? (4.21)

for each $ £ Γ^v.

(Hi) The map α;Λ is ^-preserving.

(iv) Ifω is classical then α;Λ is multiplicative and the diagram

(4.22)

is commutative.

Proof. Property (/) is a simple consequence of the pseudotensoriality of ω and of the
ΐu®-invariance of i(Γ ̂ ). Property (//) follows from (4.14), and the multiplicativity
of πv.

To prove (Hi), it is sufficient to observe that ω® intertwines *-structures on Γ®v

and Ω(P).
Let us assume that ω is classical. We shall prove that α;Θ vanishes on the ideal

Sfav C Γ®v. In accordance with considerations performed in Appendix B, it is suffi-
cient to check that

ω® [π(α(1)) 0 π(α(2))] = 0 (4.23)

for each α <E &>. In the local trivialization system, this is equivalent to the following
equalities

] π(α(2)) + π(α(1)) [(Av

+ [(A^ 0 id)tuπ(α(1))] [(Au 0 id)tuπ(α(2))] = 0.

A direct calculation shows that the last term, as well as the sum of the first two,
vanishes. Consequently ω^ is multiplicative.

Commutativity of (4.22) is a direct consequence of (3.25), (B.27) and (4.10), and
the multiplicativity of αA Π
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With the help of ωΛ the space Ω(P) can be naturally decomposed into a tensor
product of f)θt(P) and Γ^v.

Let us suppose that Df)(P) = f)θt(P) &> Γ^υ is endowed with a graded *-algebra
structure, via the natural identification

ί)θt(P) ® Γ^v <-> β(M) 0M det(P). (4.24)

The algebra t)f)(P) represents "vertically-horizontally" decomposed forms on the bun-
dle. We shall denote by F^ the natural right action of G on ϋf)(P).

For each ω G cαn(P) the formula

mω(φ Θ tf) = (^Λ0?) (4.25)

defines a linear grade-preserving map m^ : dPj(P) — •> Ω(P).

Proposition 4.8. (z) TTze m<2/? mω w bijective.

(//) Γ/ιβ diagram

t)f)(P) - ~ >

Λ (4.26)

m^ (8) id

w commutative.

(Hi) Ifω is classical then mω is an isomorphism of graded *-algebras.

Proof. At first we prove that mω is injective. Each α G Df)(P) \ {0} can be written in

the form a = \^wi®
r&i+'ψ, where ι&i G Γ££ are homogeneous linearly independent

elements and wi ^ 0, while ψ is the element having the second degrees less than k.
If mω(α) = 0 then

for each [7 G Φό. This implies /J.^ (8) '&i - 0, which is a contradiction.

In order to prove that rnω is surjective, it is sufficient to check that

for each U G ̂  and fc > 0.
For fc = 0 the statement is obvious. Let us suppose that the above inclusion holds

for degrees up to some fixed fc. Equation (4.16) together with the definition of ωΛ

gives

π£ [mω(w ® ??)] = 2 α . ® α^ + /3, (4.27)
I

where tf G (P^)fc+1 and ̂  = ̂ 0(5^.^ ® αt), while /? G βc(U) ® ΓΛ, with the

second degrees less than k + 1.
Acting by ^£} on both sides of (4.27) we get
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By the inductive assumption, the right-hand side of the above equality belongs to
\m(mω). Hence mω is bijective.

The commutativity of (4.26) is a direct consequence of (4.25), and Proposition 4.7

(0-
Finally, let us suppose that ω is classical. According to Proposition 4.7 (iv) and

definition (3.49) of the product in t>et(P), we have

(u 0 0)(u; ® η) = ( - l w u w k <g> (7? o c fc)r/, (4.28)
/c

and hence

[(u <

= mω(u (8) fym (w

Here FA(w) = y . wk ® ck an<^ we nave used me identity

k

where a is arbitrary (and w is horizontal). Similarly, the *-structure on ttf)(P) is given
by

(w <8> 7?)* = Σ wk ® (^* ° 4)» (4 3°)

and hence

k k

It is of some interest to analyze in more detail the question of the multiplicativity

Definition 4.3. A connection ω is called multiplicative iff

Equivalently, ω is multiplicative iff 6JΛ is a multiplicative map. In this case ω^ is
independent of the embedding L, and coincides with ω^ /S^v. As already mentioned,
the multiplicativity of ωΛ is equivalent to (4.23). This gives a quadratic constraint
in con(P). In the general case the left-hand side of (4.23) determines a linear map

rω : ^B —> Ω(P). This map "measures" a lack of multiplicativity of ω.
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Proposition 4.9. We have

Tω = mΩ(W±π ® ^_Lπ)</N (4 31)

where mΩ is the product map in Ω(P). In local terms

π^ ω=(r£®id)(adr^), (4 32)

where r^(a) = ̂ 4^π(α(1))A^π(α(2)). In particular rω is a horizontally-valued map.

Proof. Using local expressions for ωcl and ω±, Eqs. (4.23) and (B.30), and Proposi-
tion 4.5 we obtain

πyrω(ά) — π^m^ω^π 0 ωjLπ)φ(a) = π^m^ω^π 0 ωclπ)φ(ά)

+ π^mΩ(ωclπ 0 ω^_π)φ(a)

) ® «(α<V4)

for each α £ J%. Remembering that & is ad-invariant we conclude that the above
terms vanish. Hence (4.31) holds. Property (4.32) simply follows from (4.31). D

5. Horizontal Projection, Covariant Derivative and Curvature

For each ω G con(P) let hω : Ω(P) — » Ω(P) be a linear map given by

hω=mω(id®p0

inuym-1. (5.1)

Let Dω : Ω(P) — » Ω(P) be a linear map defined as a composition

Dω = hωd. (5.2)

Evidently, both maps are f)ot(P)- valued.

Definition 5.1. Operators hω and Dω are called the horizontal projection and the
covariant derivative associated to ω.

The following statement easily follows from the analysis of the previous section.

Proposition 5.1. (/) The map hω is Ω(M)-linear and projects Ω(P) onto f)θt(P).

(iz) We have

(Dω - d)(Ω(M)) = {0} Dω(wφ) = (dw)hω(φ) + (-lfwwDω(φ) (5.3)

for each w e Ω(M) and φ G Ω(P).

(in) Maps hω and Dω are invariant under the action of G. In other words, the
diagrams
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Ω(P) ~̂ -> Ω(P) <g) . y? Ω(P) F ) Ω(P) <8> ,,--#

^id (5.4)

Ω(P) - > J?(P)®,^ Ω(P)

commutative.

(zv) /f u; z's classical then hω is a *-homomorphism. Furthermore

1 = D

ω(Ψϊhω(φ} + (-\)°Vhω(ψ)Dω(φ) (5.5)

for each ψ, φ G Ω(P). Q

By construction, the space f)or(P) is Dω-invariant. The corresponding restriction
is described by the following

Proposition 5.2. I f φ E f)θt(P) then

Dω(φ) - d(φ) - (-l)0φmΩ(id 0 ωπ)FΛ(φ). (5.6)

7/ι /c»cα/ terms,

i

where \. ai ® a

l — ^ί}(ψ)

Proof. We have

" f/^V^K/ ~ / ^ I

i

and hence

a A

according to Definition 5.1. This proves (5.7). Let us compute the right-hand side of
(5.6). We have

π£ [d(φ) - (-I)^mr2(i
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For given linear maps α, β: Γinv — » Ω(P) we shall denote by [a, β] and (α, β) linear
maps defined by

[a,β] = mΩ(a®β)cΎ, (5.8)

(α,/?)=mβ(α<g)/3)<$, (5.9)

where cτ : Γιnυ — > /^ ® Γίm; is the "transposed commutator" map [9] explicitly
given by (C.ll) and δ: Γinv — > Γinυ ® Γίm; is the "embedded differential" defined by

δ(ff) = ιd(ff). (5.10)

If a,β G ψ(P) then (α,/3), [α,/?] G ?/>(P), according to Lemma C.4. In particular
these brackets map τ(P) x τ(P) into r(P). Similar brackets can be introduced for
maps valued in an arbitrary algebra.

According to Proposition 5.1 the space ψ(P) is mapped, via compositions with
hω and Dω, into τ(P). In particular τ(P) is D^ -invariant.

Proposition 5.3. (z) We

id)tu(tf), (5.11)

where φu are local representatives of φ G r(P).

(//) The following identity describes the action of Dω on tensorial forms

]. (5.12)

We have

where ϋk® ck = vo(&). Taking the horizontal projection we obtain

cf

A computation of the right-hand side of (5.12) gives

Let g^: ^(P) ~^ ^(P) be a linear map defined by

qω(φ) = (ω,φ) - (-l)d^(φ,ω) - (-l)**>[φ,ω]. (5.13)

By definition, this map is β(M)-linear from the right.
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Proposition 5.4. The space τ(P) is qω-invariant.

Proof. For a given ΰ e Γτnv let us choose a e ker(e) satisfying conditions listed in
Lemma C.5 (/). We have then

Aurtc™) ® cf

> κ(a(1))a(3)π(a(4))

for each y> G τ(P).
On the other hand, applying (B.30) and (B.25) we find

Combining the above equalities we obtain finally

«}<?<») (0) = (Λ) ® id)G7(tf), (5.14)

where

^(^) - {̂ , ̂ } - (-l)^(^, Λσ) - (-lf*[φu, Aσ]. (5.15)

We see that qω(φ) is tensorial. D

If ω is classical then the operator qω vanishes on tensorial forms. Indeed, in this
case

Ajjπ(ab) = e(ά)Auπ(b)

which, together with (5.8)-(5.9), implies

Consequently, in the general case the operator qω \r(P) depends only on the quantum
part ω± of ω, and can be written in an explicitly tensorial form

qω(φ) = (ω^φ) - (-\)d*(φ,ω±) - (-1)^ ,̂̂ ],
TT I 0 1 0 1 (j.lO)

qu

ω(φ) = (A^ Ψu} - (-l)^(^, A^) - (-\f*[Ψu, A^l

The rest of the section is devoted to the introduction and the analysis of the
curvature form.

Definition 5.2. A tensorial 2-form

Rω = Dωω (5.17)

is called the curvature of ω.
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This definition directly follows classical differential geometry. However, in con-
trast to the classical case, the curvature is generally ^-dependent.

Proposition 5.5. We have

πύRω(ΰ) = (Fu <g> id)G7(tf), (5.18)

where

Fu = dAu-(Au,Au). (5.19)

Proof. A direct calculation gives

Ij, <8> π(α(1))π(α(2)) + A^a™) <8> «(α(1

»τr(α(1))τr(α(2))
' k

On the other hand

> π(α(1))π(α(2))

Here w(ΰ) = ^fc (g) ck and α G ker(e) is chosen as explained in Lemma C.5.

Combining the above expressions we find

πσ (dω (tf) - ϋΛdtf)) =Σ{d^£/(^ fc)®c fc - (^c/,^)^)®^}. (5.20)
fc

To complete the proof it is sufficient to observe that two summands in the right-
hand side of the above equation are horizontal while the left second summand is
completely "vertical." D

Now, the analogs of classical Structure Equation and Bianchi identity will be
derived.

Proposition 5.6. The following identities hold

Rω=dω-(ω,ω), (5.21)
DωR

ω ~ QU(RJ = K. K.WL)) - {K,ω±,},ωx}. (5.22)

Proof. The previous proposition and Eqs. (5.20) imply

for each ϋ e Γinυ and U e ̂ . Hence (5.21) holds.
Equation (5.15) and Proposition 5.3 imply
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= Σ

k

fc

On the other hand, using Lemma C.6 we conclude that

\AUI (Ajj, AJJ)) — ((Ay, Ay), Ajjj = \Ajy, (Ay, Ajj)) — ((A^, Ay), Ay).

This is the local expression for the right-hand side of (5.22). D

If ω is classical then (5.21)-(5.22) are equivalent to the classical Structure Equation
and Bianchi identity for ω, if ω is understood as a (standard) connection on Pcl.

More generally, if ω is multiplicative then the right-hand side of (5.22) vanishes.
Indeed in this case we have

(c<;_L,α;_L}π(α) = —ω ±π(a^)ω ±π(d®)

for each α £ ̂ .
It is important to mention that the proofs of identities contained in Proposi-

tions 5.4-5.6, the choice of an embedding i figures only via its restriction on d(Γinv),
which determines the embedded differential map 6.

Generally, a map δ can be constructed by fixing a * /^-invariant ad-invariant com-

plement S§ C ker(e) of Jg, and defining

- δ = (π (g) π)φ(π\&Γ (5.23)

If, in addition, φ(3§) C 10^ + ̂ 01+^0^ then the above δ satisfies

(6 0 id)δ = (id 0 δ)δ

and right-hand side of (5.22) vanishes identically.
Our restriction to the minimal admissible left-covariant calculus Γ is not essen-

tial. All considerations can be performed using an arbitrary admissible bicovariant
*-calculus. Moreover, if the bundle is trivial we can abandon the assumption of ad-
missibility, and work in a fixed global trivialization.

For example if we take ^B = {0} then Γ becomes the "maximal" calculus. In this
case Γmv = ker(e) and ΓΛ = Γ® is the universal differential envelope of ̂  (modulo
the relation dl =0). Because of SΛ = {0}, every connection is multiplicative and δ
is uniquely determined.

6. Examples

In this section we consider some illustrative examples related to the presented theory.
We shall discuss "nonclassical" phenomena appearing in the formalism of connections,
as well as interesting properties of appropriate differential caluli over the structure
group G.

Two types of G will be considered. The case of a classical Lie group G, and the
quantum case G = S U(2).

As a possible application in theoretical physics, we shall briefly describe a "gauge
theory" based on quantum principal bundles.
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Classical Structure Groups

Let us assume that G is a classical compact Lie group (̂ ? is commutative and
Gcl = G). The corresponding principal bundles are objects of classical differential
geometry.

The minimal admissible calculus over G coincides with the classical one, based on
standard 1-forms. The corresponding universal differential envelope gives the classical
higher-order calculus on G, based on standard differential forms.

The classical calculus on G, together with the classical calculus on the base
manifold M, induces the classical differential calculus on corresponding principal
bundles. The whole theory presented in this paper is equivalent to the classical theory.

However, if we start from a nonstandard differential calculus on G then, generally,
"quantum phenomena" will enter the game.

Let Γ be an arbitrary admissible bicovariant *-calculus over G, and let & C ker(e)
be the corresponding ^-ideal. We have

M C ker(e)2

because of the admissibility of Γ.
For example, if & = ker(e)fc with k > 2, then Γinυ is naturally isomorphic to the

space of (k — l)-jets in the neutral element e G G.
Let P be a principal G-bundle over M and ω G con(P). After choosing a splitting

(4.9) the "classical-quantum" decomposition of ω can be performed. Components of
the field ω± are "labeled" by elements of the space ker(z/). The field ω± figures in
"quantum terms" introduced in the previous two sections. Generally these terms do
not vanish. Moreover they already figure in the case of a finite group G.

The Minimal Admissible Calculus For Quantum SU(2 )

This subsection is devoted to the analysis of the minimal admissible left-covariant
calculus Γ over the group G = S U(2). We shall also briefly discuss certain features
of corresponding principal bundles.

As first, let us assume that μ G (— 1, 1) \ {0}. As explained in Appendix A,
Gcl = U(\ ) in a natural manner. The (complex) Lie algebra of Gcl is spanned by a
single element X : *Λ> — > C determined by

X(a) = -X(a*)=± X(7) = W) = 0. (6.1)

The correspondence X <-> I enables us to identify lie(Gd) = C. In particular, the
space Γmv can be viewed (via the map p) as a certain subspace of ̂ .

Proposition 6.1. The map p : Γinv —> ̂  is a bijection onto the subalgebra & C ̂
consisting of left U(l)-invariant elements. A natural basis in Q is given by elements

fn.fc' where n£% ana k G N U {0} and

( ' }
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Proof. According to [7] the elements an^k7*r form a basis in ^& (by definition
oΓn - α*n). It is easy to see that g e U(l) acts on the left by multiplying these ele-
ments by zn~k+r', where z - g(o). Hence, @ is spanned by basis elements satisfying
n — k + r = 0. Equivalently, elements (6.2) form a basis in @.

We have to verify that @ = p(Γinυ). According to Lemma C.7 (/) the image of
p is contained in @. It is easy to see that

=--77* M7*) = «*7*2 , /; (6.3)
2 * ! pπ(7) = —cr/= //77* - - p '

Furthermore, a straightforward calculation gives

d Q ̂  _ ..—2fc—|n|t , / . |n| _ —2k—\n\\t (f\ A\
Sn,fc ° " ~ ̂  ζn,fc + VM M 'sn,fc+lϊ v° ̂ '

£n,fc ° «* = M2fc+|n|in,fe + M2(M |n| - M2fc+3|n|)C,fc+i, (6.5)

ζn, f c°7 = (1 - M2(fc+n))d,fc, n>0, (6.6)

^n,fc°'y*=(l-M 2 ( f c-n )Xn_,, f c, "<0, (6.7)

Cn ; f co 7 =(l-μ-2k)ξn+ίMί+μ-2k(l-μ2(k-n))ξn+ΪM2 n < 0, (6.8)

Cn,fc o 7* = (1 - M-2fc)^_,,fe+1 + M-2fcd - μ2(k+n^n-lM2 n>0. (6.9)

The o operation is given by ξ o α = /ί(α(1))ξα(2). We see that @ is invariant under o.
Above formulas imply that @ is generated, as a right ^-module, by elements (6.3).
Having in mind that p(Γzrw) is a right ^-submodule of Q (as follows from (C.7))
we conclude that p is surjective. Π

The following proposition describes the right ̂ -ideal ̂  corresponding to the
calculus Γ.

Proposition 6.2. We have

M= (μ2a + α* - (1 + μ2)l) ker(e). (6.10)

Proof. Let 3% be the right-hand side of (6.10). According to Lemma C.7 (zz) the

space ,5% is contained in &>.
On the other hand, the space of ad-invariant elements of ̂  consists precisely of

polynomials of μ2a + α* and we have

ad(6α) = 6ad(α)

for each α G ̂  and an ad-invariant element b G «./& In particular, corresponding
multiple irreducible subspaces are closed under the left multiplication by ad-invariant
elements. Furthermore, primitive elements for nonsinglet multiple irreducible sub-
spaces of ad are of the form p(μ2a + α*)7fe and p(μ2a + α*)7*fe, corresponding to
spin fc highest and lowest weights respectively. Hence, in the decomposition of the
factorized adjoint action on ker(e)/o% each irreducible multiplet appears no more than
once. On the other hand, elements pττ(7n), pπ(7*n) and pπ(μ2α+α*) are all non-zero
(as follows from (6.3), (6.6)-(6.7) and (C.7)). Therefore, for each spin value, the rep-

resentation ad contains at least one irreducible multiplet. Consequently & = &>. Π
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We pass to the detailed analysis of the adjoint action w. In terms of the identifi-
cation Γ - @ we haveιnv

Let us assume that Γιnυ is endowed with a natural tu-invariant scalar product, induced
by the Haar measure (as explained in Appendix C). We are going to decompose w
into irreducible multiplets. Let us consider operators

K± = (id ® X±)w K3 = (id 0 X)w, (6.11)

which are counteφarts for the "creation" and "anihilation," as well as the "third spin
component" operator. Here X± : ̂  -* C are linear functional satisfying

X±(ab) = X±(a)χ(b) + c(a)X±(b), (6.12)

where x : ^& — > C is a multiplicative functional determined by

χ(α) = - χ(α*) = μ ^(7) = χ(7*) = 0.
μ

We shall adopt the following normalization

X±(ά) = X±(a*) = X+(Ί) = X_(7*) = 0 - μX+(7*) = X_(7) = 1-

It turns out that the following identities hold

1 _ »-4K3

K+K__ - μ2K_K+ = μ_2 , (6.13)
1 μ

K3 K+ - K+K3 = K+ K3K_ -K_K3 = -K_, (6. 14)

(6.15)

η), (6.16)

where x^ = (id (8) χ)^ Furthermore, we have

~'~-'^ l-μ*

Now (6.17H6.18) imply that

where @k are irreducible subspaces for the k-spin representation. In particular

<% = Σe<sU' (6 19)

|m|</c

where @k m = ker(ml — K3) Π ̂ . The spaces @k m are 1-dimensional. Hence it
is possible to construct an orthonormal basis in @ by choosing unit vectors ζk G
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Qk τn . A priori, there exists an ambiguity for this choice, one phase factor for each
ζk m. However, requiring that non- vanishing matrix elements of K± are positive, the
ambiguity is reduced to one phase factor for each multiplet. According to [7], we
have

where

Let ̂  be the space of one- variable polynomials. It is easy to see that

), (6.21)

where pk e ̂  are kύi order polynomials orthonormal with respect to a scalar product
given by

(p,q)= p*q. (6.22)

Here / : .^ — > C is a linear functional given by

)-1. (6.23)

We shall assume that leading coefficients of polynomials pk are positive. This com-
pletely fixes vectors ζk m.

Proposition 6.3. (/) Polynomials pk are given by

k

(6.24)

where ck > 0 are normalization constants and d: ̂  —> ̂  is a linear map specified
by

d(xn) = nμx
n~l. (6.25)

(ίi) The following identities hold

-m ! 1 / 2

(6'26)

T—τΊl

where m G {0,. . . , A;} am/ n ! = I I j .
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Proof. The map d satisfies the following "Leibniz rule"

d(pq)(x) = (dp)(x)q(x) + p(μ2x)(dq)(x), (6.27)

as it directly follows from (6.25). More generally

n fn\
dn(pq)(x) = Σ ( k ) (dn-kp)(μ2kx)(dkq)(x) (6.28)

fc=0 ̂  'V-

for each n G H. In the above formula

^??Λ

kμl(n-k)μl'

It is easy to see that

' d(p)=p(l)-p(0) (6.29)

for each p G &. Inductively using (6.27) and (6.29) we obtain the following "partial
integration" rule

r

J q

n 2 nn(n-1) f((dnq)p(μ2nx).

It is now easy to prove that polynomials pk given by (6.24) are mutually orthog-
onal. Furthermore, leading coefficients of these polynomials are positive. Having in
mind that pk are normed we conclude that (6.21) holds.

To prove (iz) it is sufficient to act by K™ on both sides of (6.21), and to apply
(6.18) and (6.20). D

It is worth noticing that 0 is * -invariant. The map *: & —> @ corresponds to
the canonical ^-structure on Γinυ. We have

In the classical limit the algebra *s& consists of polynomial functions on the group
517(2). The subalgebra & then consists of polynomial functions invariant under left
translations by diagonal matrices from U(l). Equivalently, @ can be described as the
algebra of polynomial functions on the 2-sphere 52, because the above mentioned
action defines the Hopf fibering 53 — > 52. In this picture ζk m become spherical
harmonics, and K3, K± correspond to standard angular momentum operators.

Of course, for μ = I the minimal admissible calculus is just the classical 3-
dimensional one. As we shall see later, a similar situation holds for μ = — 1.

In the general case the algebra @ represents polynomial functions on a "quantum
2-sphere" [5]. At the level of spaces, the inclusion & °-» ̂  is interpretable as the
"quantum Hopf fibering."
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Proposition 6.4. The space S^v consists precisely of elements of the form

g = l ( g ) π(6) + 0(7*7) °b + π(fr) + τ(7*7) ° b ® 1
L 1 — μ2 J L 1 - μ2 J

μ2)77* 0 77* + μα*7* 0 c*7 + -cry ® α*7* (o
1

9 V f-~ / i i ^ i i f— / x_^ /

— μz L μ

b G ker(e).

f. The statement follows from Lemma B.10, Proposition 6.2, and properties
(B.30) and (6.3). D

Let us now consider a quantum principal G-bundle P over a compact manifold
M. According to the results of Sect. 2, the structure of P is completely determined
by its classical part Pcl, which is a classical [/(l)-bundle over M. Let us consider a
connection ω, and describe its components ωcl and ω_|_. At first, we have to specify
a splitting (4.9). Modulo the identification Γinv = @ we have v - (e\&). With the
help of v, let us identify J3ί* with the 1-dimensional subspace in Γinυ generated by
1. The elements of the subspace <5f * are characterized by ξ o α = e(a)ξ.

Therefore, the classical component ωcl is locally determined by 1-form A^l).
From the point of view of classical geometry, this 1-form is a gauge potential of
ωcl, understood as a connection on Pcl. On the other hand, the quantum component
ω± is locally determined by a collection of 1-forms A^n fc), where (n, fc) ̂  (0,0).
Globally, we have a collection of tensorial 1-forms on Pcl.

It is important to mention that such a classical reinterpretation of connections de-
stroys the information about the irreducible multiplet structure of corersponding gauge
potentials. Because of mutual incompatibility of decompositions (4.9) and (6.19).

Let us now describe a construction of the embedded differential map δ. In the
context of this example, δ can be naturally introduced with the help of a splitting

ker(e) = *&& 0 J ,̂ where S% C ker(e) is the minimal ad-invariant lineal which
contains μ2a + α* — (1 + μ2)! and 7^, for each k G N. Explicitly, this lineal can be
constructed by extracting irreducible multiplets from ad(7fc). The map 6 is given by
(5.23).

According to (5.19) the local expression for the curvature is given by

where α G S§ .
Let us consider the case μ = — 1 . As explained in Appendix A, the classical part

of G is isomorphic to a semidirect product of groups U(l) and Z2 = {—1,1}. The
corresponding Lie algebra is generated by a single element X, as in the previous
example. Let Γ be the minimal admissible left-covariant calculus. Equations (6.3)
reduce to

= 70;,

1 (6.30)
pττ(α) = -ρπ(α*) = - - 77*.

The o-structure is given by

ττ(7) o {α, α*} = -π(7) π(7*) o {α, α*} = -π(7*),

π{7, 7*} o {7, 7*} = {0} π(α) o α = e(α)π(rv).
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Consequently, elements

Ή+ = ττ(7) % = π(α - α*) η_ = π(7*)

form a basis in ΓίτMJ.
From (6.31) and Lemma B.13 it follows that the flip-over operator σ is just the

standard transposition. Furthermore, the space S^υ is consisting precisely of symmet-

ric elements of Γ®£.

It is worth noticing that the map δ is uniquely determined, because Γ®% contains
only one irreducible triplet. Explicitly,

and hence

6 = -^cτ (6.33)

in accordance with Lemma C.5 (ι7). Furthermore, we have

^Γ= ker(e)2 (6.34)

as in the classical case.
The formalism of connections, based on this calculus Γ, becomes essentially the

same as in the classical SU(2) case. In particular, because of the symmetricity of
Smυ> every connection is multiplicative. Hence, the right-hand side of the Bianchi
identity vanishes. Further, the "perturbation" qω also vanishes, as follows directly
from (6.32)-(6.33) and (5.16). The presence of the decomposition ω = ωcl +ω± is the
only nonclassical phenomena appearing at the level of connections.

Trivial Bundles and N on- Admissible Structures

According to the previous example, compatibility conditions between a left-covariant
differential calculus Γ over G = S U(2), and "transition functions" of an appro-
priate principal bundle can be fulfilled only in the infinite-dimensional case. This
automatically rules out various interesting finite-dimensional differential structures.

Such obstructions can be avoided if we restrict the formalism on trivial principal
bundles. In this case & = S(M) 0 ,̂ and a differential calculus on P can be
constructed by taking the product β(M) 0 ΓΛ = Ω(P).

Of course, such a calculus over P does not satisfy the property diff3. On the other
hand, if Γ is an arbitrary bicovariant * -calculus then essentially all considerations of
Sects. 4 and 5 can be repeated in this "trivial" framework. The only exception is that
there exist no analogs for classical connections. Because it is no longer possible to
construct the restriction map v\ Γinv —> 3Z* .

Each connection ω possesses a global gauge potential Aω : Γinυ — > β(M), given
by

ω(ϋ) = (Aω 0 id)n7(tf) + 1M 0 ΰ. (6.35)

The curvature is of the form
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Rω = (Fω <g> iά)w Fω = dAω - (Aω,Aω). (6.36)

As a concrete illustration, let us consider the case G = SμU(2) where μ G

(— 1, 1) \ {0}, and let jΓ be a 4-dimensional calculus described in [9]. By definition,
the corresponding right .^-ideal ^B is generated by multiplets

7 = a(μ2a + α* - (1 + μ2)l) , 3 = 07, α(α - α*), α7* ,

5 = { 7

2, 7(α - α*), μ2α*2 - (1 + μ2)(αα* - 77*) + α2, 7*(α - α*), 7*
2 },

where α = μ2α + α* — (μ3 + l/μ)l. It turns out that the elements

τ = π(μ2a + a*) η+ = π(7) ?73 = τr(α — α*) ?7_ = π(7*) (6.37)

form a basis in Γίrw. The canonical right ./^-module structure on Γιnv is given by

μ

) # 1+μ4 μ(l
η roa = — - r-τ -- - - = - η3/+ 2 2

„ (1 - μ)(l - μ3) 1+μ4 (1 - μ)(l - μ3)
T O 7* = - η roa =— - 57- r + - - - r- -

μ '- μ(l+μ2) μ(l+μ2)

- * n * -o 7 = -- r/+ r?+ o 7 = ry_ 07 =0 7 / 3 0 7 = -- r/_
μ μ

o α ^ μ2) τ 2μ
3 μ(l+ μ2)(l - μ3) 1 + μ2 3 τ?+ ° α = f?+ = τ?+ ° a*

μ(\ + μ)(l - μ2) 2μ η_ o a = η_ = η_ o a*

The ideal ,ίg is ad, *κ>invariant. This means [9] that Γ is a bicovariant *-calculus.
By the use of (B.33) and (B.37) it is easy to determine the ^-involution and the adjoint
action w. We have

η+ = m_ 77* = -7/3 μη*_ = η+

r* = -r w(τ) = r ® 1

w(η+) = τ/+ 0 α2 - 7/3 (g) α7 + μ2τ/_ 0 72 (6.39)

1^7(7/3) = (1 + μ2)τ/+ 0 7*α + τ/3 <8) (αα* - 77*) - (1 + μ2)τ/_ (g) 70;*

τ/_) = η+ 0 7*2 -f 7/3 0 α*7* + τ/_ 0 o;*2.

We see that r form a singlet, while {τ/+, /73, τ/_} form a triplet, relative to w.

We are now going to compute the space S^v C Γ^2. Acting by (π ® π)0 on the
generating elements of J?, using (6.38) and (B.30), and taking linear combinations
we obtain a lineal spanned by
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η_ (g) η_ }

+ μ2η3 0 η_ J '

{ 1 4 ^

7^3 (r ®ηj + ηj (8) r) + (1 - μ)χ.|j G {+, -, 3} I, (6.40)
i μ j

+ μ + μ 2

+ ® ??_ + μ V 0 τj+) i ,
J

where we have used the following abbreviations

_- μ2η_

Lemma 6.5. 7ί ίwras owί ί/z«ί 5̂  coincides with the lineal generated by the above
elements.

Proof. According to equation (B.42) elements of S^v are σ-invariant, where σ is the
canonical flip-over operator. On the other hand, the space ker(/— σ) is 10-dimensional,
spanned by the above elements and r & r. Consequently, in order to determine S^v,
it is sufficient to analyze elements of the form (π 0 π)0(α), where α G & is ad-
invariant. This follows from the fact that (π0π)0 intertwines ad and w®2. However,
ad-invariant elements of &> are just linear combinations of terms of the form

rn = (μ2a + α* - (μ3 + l/μ)l) (μ2α + α* - (1 + μ2)l)(μ2α

Inductively using (B.30) and (6.38) we find

(π Θ π)0(rn) = μ~2n(l + μ6)n(π

On the other hand, the last (singlet) term in (6.40) coincides with the element
(μ(l + μ2)/(l - μ)(l - μ5))(π (g) π)0(r0). Hence, elements (6.40) generate 5 .̂ D

Let us compute the differential d: ΓΛ -+ ΓΛ. As first, let us observe that

n 3(1 - μ)(l - μ3)
a ~

for each α G ̂ . Indeed, it is evident that (6.41) holds for α = 1, and from (6.38)
we conclude that it holds for α G {α,α*,7,7*}. Remembering that {α,α*,7,7*}
generate ̂  and using (B.30) and linearity of both sides of (6.41) we conclude that
the above equality holds for all α G ̂ .

As a consequence of identities (6.41) and (B.31)-(B.32) we find

Λ 3(1 - μ)(l - μ3)
(6.42)

for each ϋ G ΓΛ.
Now we shall compute the braid operator σ: Γ®2 — > Γ^2. Using Lemma B.I 3,

and properties (6.38)-(6.39) we obtain the following expressions
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σ(η+ 0 η+) = η+ 0 η+ &(η_ 0 η_) = η_ 0 η_ σ(ΰ 0 r) = r

, 1+μ6

σ(τ <g> η_) = η_ ® r_ -
μ2(l+μ2) μ2

6

as well as

σ(τ?3 0 773) = (3 - μ2 -- -)τ?3
μ

1-μ4

_

(i + μ)(i-μ2) i
σ(η+ ® J?3) = 7?3 ® τ?+ -- 271 - K-'k ® r + C1 - ~ K

μ V.A μ y μ

σ(?7_ 0 ?73) = ?73 0 ?7_ + - 3 - ry_ 0 r + (1 - μ2)τ?_
1 — μ

+ M

1 -μ>

+ μ)(l -μ2) ^ .„ 1
,,, ,x . ,_®r + (l ^-)%®ίy_

μ^l-μi) μL

ίπfe* ® % Jίί ISΓΛV3 ® r

Furthermore, sp(σ) = {1,—μ2, — 1/μ2}. The operator σ is diagonalized in the
basis consisting of vectors (6.40), r 0 r, and the following two tu®2-triplets

7 1-μ3 j 1-μ3

r 0 η+ - μzτ^+ 0 r + x+ μzr 0 τy+ - η+ 0 r - -—
I + L6 1 +μ τ 'τ 1+μ

1-μ3

 7 1-μ3

' - - t I T (\?\ <YΛ T\ (\?\ T- >ίo μ / w //o il'i yy I ~:1 + μ 3 ' 3 / 3 j + ̂
r 0 η3 — μ2η3 0 r + >ί3 μ2r 0 η3 — η3 0 r — x3

9 1 — μ3

 9 1 — μ3

r 0 η_ — μ η_ 0 r + κ_ μ r 0 η_ — η_ 0 r x_

corresponding to values —μ2 and —1/μ2 respectively.
It is interesting to observe that there exists an indefinite tu-invariant scalar product

on Γinυ, such that σ is unitary, relative to the induced product in Γ^2. Such a product
is given by

(l-μ3)2(l+μ2)
(T'T) (1+M)2 (6.43)
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while η±,η3,τ are assumed to be mutually orthogonal. The unitarity of σ easily
follows from the tu-invariance of the introduced scalar product, and the identity

(tf o α, η) = (tf, η o κ;2(α)*). (6.44)

The product is uniquely determined by the above conditions, up to a scalar multiple.
There exists a natural splitting ker(e) = <&& Θ =2ί, where J^ is the lineal spanned by
elements {7, 7*, α — 1, α* — 1}. This splitting enables us to introduce the embedded
differential map δ. A direct calculation gives

-(1 + μ2)δ(r )=τ®τ + μ2η3 0 r?3 - μ(l + μ2)(r?+ 0 r/_ + μ2τy_ 0 r?+)

-(1 + μ2)<5(r/ζ) =r O ηζ + ryζ 0 r + xc, ζ G {+, 3, -}.

The map δ is coassociative, by construction.
According to (6.35)-(6.36) the curvature has the form

2μAω(η+)Aω(η,)

It is worth noticing that essentially the same expressions for singlet and triplet
components of δ and Fω can be obtained in the framework of the previous example.

Gauge Theories

Classical principal bundles provide a natural mathematical framework for the study
of gauge theories [4]. It is therefore interesting to see what will be the counterparts
of these theories, in the context of quantum principal bundles [6].

In analogy with the classical case, the simplest possibility is to consider la-
grangians of the form

L(ώ) = Γ(F"(tf), F*(0)) , (6.45)

where elements $ form an orthonormal system in Γinυ with respect to an ad-invariant
scalar product, and ( )M is the scalar product in β(M), induced by a metric on M
(here M plays the role of space-time).

Properties of such "quantum gauge" theories essentially depend, besides on the
"symmetry group" G, on the following two prespecifications.

First, it is necessary to fix a bicovariant *-calculus Γ. This determines kinematical
degrees of freedom, as well as "infinitezimal gauge transformations."

Secondly, we have to choose a map 6. This influences dynamical properties of
the theory, because δ implicitly figures in the self-interacting part of (6.45). In the
classical case the curvature is ^-independent.

For instance, in the context of the previous example, we find a four-component
gauge field consisting of mutually interacting singlet and triplet fields. However if we
change δ and define

3
(1 - μ)(l - μ3)
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then (6.45) will describe non-interacting fields. On the other hand, in the context of
the second example, we find a self-interacting infinite-component gauge field with all
integer spin multiplets in the game.

Closely related with this line of thinking is a question of "gauge transformations."
The most direct way of introducing gauge transformations as vertical automoφhisms
of P gives nothing new. Every such automoφhism of P preserves the classical part
Pcl, and moreover it is completely determined by the corresponding "restriction,"
which is a classical gauge transformation of Pcl. In such a way we obtain an isomor-
phism between gauge groups for P and Pcl. However, a proper quantum generalization
of gauge transformations can be introduced via the concepts of quantum (infinites-
imal) gauge bundles. These are the bundles associated to P, relative to the adjoint
actions {ad, w} respectively. It turns out that operators hω, Dω and Rω are covariant
with respect to natural actions of these bundles on P. Moreover, the lagrangian (6.45)
is gauge-invariant, in the appropriate sense.

A. Classical Points

Let G be a compact matrix quantum group. We have denoted by Gcl the set of
* -characters of ̂ . The elements of Gcl are inteφretable as classical points of G.

The quantum group structure on G induces a classical group structure on Gcl, in
a natural manner. The product and the inverse are given by

9f = (9®f)Φ, (A.I)

9-l=gκ (A.2)

The counit e: <s& — > C is the neutral element of Gcl.

Lemma A.I. (z) The formula
Lu(9\j = #(%•)

defines a monomorphism LU : Gcl — > GL(n).

(ii) The image ίu(Gcl) is compact.

Proof. Without a lack of generality we can assume [8] that u is a unitary matrix. In
this case matrices LU(Q) belong to U(ri). We have

fc=l fc=l

Hence ιu is a group homomoφhism. This map is injective, because ̂  is generated,
as a * -algebra, by the matrix elements i^ ..

Because of the compactness of U(n)9 it is sufficient to prove that the image
of LU is closed. Let us suppose that a sequence of matrices iu(gk) converges to
T G U(n). This means that the sequence of numbers gk(ui ) converges to Ti for
each i,j G { 1 , . . . , n}. It follows that a sequence gk(ά) is convergent, for each α G ̂ .
Now the formula

g(ά) = timgk(d) (A.3)
K

consistently defines a ^-character g: ^/& — > C with the property ιu(g) -T. D
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The monomorphism ιu enables us to inteφret Gcl as a compact group of matrices.
In particular, Gcl is a Lie group in a natural manner. Furthermore the space Gcl is an
algebraic submanifold of U(n). The Hopf *-algebra ^/&cl of polynomial functions on
Gcl is generated by elements uf (g) = g(u^). Let \cl : *A> — > Λ>cl be the restriction
homomoφhism. Let ϋt(Gcl) be the (complex) Lie algebra of Gcl, understood as the
tangent space to Gcl, in the point e.

The formula

X(a) = d(\cl(a)\(X) (A.4)

enables us to inteφret elements X G ίie(GcZ) as certain linear functionals on ̂ .

Lemma A.2. (i) We have

X(ab) = e(ά)X(b) + e(b)X(a) (A.5)

for each α, b G ?̂. Conversely, if X: ^ —* C is a hermitian linear functional such
that (A. 5) holds then X is interpretable via (A.4) as a real element oflit(Gcl).

(ii) In terms of the above identification, the Lie brackets are given by

[X, Y](a) = X(α(1))y(α(2)) - y(α(1))X(α(2)). (A.6)

Proof. It is clear that functionals X given by (A.4) satisfy (A.5). If X is a hermitian
functional satisfying (A.5) then the formula

oo ..

g\ά) = t[Σ -π ((id «) X)φ)k(a)tk] (A.7)
fc=0 '

determines a 1 -parameter subgroup of Gcl. The corresponding generator coincides
with X, in the sense of (A.4). Finally, (A. 6) directly follows from (A.4), and the
definition of Lie brackets. Π

In terms of the identification (A.4) the conjugation in lie(Gd) is given by

Let F G Mn(C) be the canonical intertwiner [8] between u and its second con-
tragradient ucc. Then

Lemma A.3. We have

for each g £ Gcl.

Proof. According to definitions of F and ucc, we have

Acting by g G Gcl on this equality, and remembering that gκ2 - g, we conclude that
F and ιu(g) commute. G
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In a generic case when all eigenvalues of F are mutually different, the group
Gcl will be very small, because every element U G iu(Gcl) is a function of F. In
particular Gcl will be Abelian.

Furthermore, a rough information about the minimal size of Gcl is cointained in
F. According to the results of [8] we have Fli G ίu(Gcl), for each t G SR. Hence,
the closure of this 1-parameter subgroup is contained in iu(Gcl). This closure is
isomorphic to a torus the dimension of which is equal to the number of rationally
linearly independent elements of the spectrum of log(F).

In the rest of this appendix classical parts of some concrete quantum groups will
be computed.

The Classical Case

Let us assume that *Λ? is commutative. Then so is A and according to [8], G is an
ordinary compact matrix group consisting of characters of A. Since every compact
matrix group is an algebraic manifold in the corresponding matrix space, the restriction
map g t-» g\^L is an isomorphism between G and Gcl.

Quantum SU(2) groups

By definition [7], the C* -algebra representing continuous functions on the group
G = S U(2) is generated by elements α and 7, and relations

αα* + μ277* = 1 α*α + 7*7 = 1
* * * * (A.8)

aj = μ^Oί cr/ = μ7 α 77 = 7 7

while

Let us consider the case μ G (— 1, 1) \ {0}. Relations (A.8) imply that every g G Gcl

satisfies

|0(α)| = l 0(7) = 0(7*) = 0.

Consequently g is completely determined by the number g(ά) G 17(1). Moreover, the
correspondence Gcl 3 g H-> g(ά) G C/(l) is a group isomorphism.

If μ = —1 relations (A.8) give the following constraints

|0(α)| = l 0(7) = 0(7*) = 0, or

|0(7)| = 1 0(α) = 0(α*) = 0.

In this case

in a natural manner.
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Quantum SU(n) groups

Let us assume that μ G (—1, 1)\{0}. By definition [10] the <7*-algebra A representing
continuous functions on G - SμU(n) groups is generated by elements u^, where

i,j G {1, . . . , n}, and relations

(A.9)

/ -J ± iljl ' ' ' injn jl Jn ~ 1\ . 1n

The last summation is performed over indexes j, and

where I(ϊ) is the number of inversions in the sequence i = ( ί l , . . . , in)9 if the sequence
is a permutation. Other components of E vanish, by definition.

The fundamental representation of G is irreducible. Let us compute the canonical
intertwiner F. The conjugate representation uc can be naturally realized as a subrep-
resentation of the (n — l)th tensor power of u. The carrier space H is spanned by
vectors

xk = Ekι i e, <8> <8> e . .
K / j^ KJ\...Jn-l Jl Jn-1

Here ei are absolute basis vectors in Cn, and the summation is performed over indexes
j. We have

F = cj*j,

where c > 0 and j: C — > H is the canonical antilinear map defined by j(ek) = xk.
Now, a direct computation gives

for each k G {1, . . . ,n}.
According to Lemma A.3, matrices ^(g) are diagonal. Relations (A.9) imply that

corresponding diagonal elements iiτ(g) are complex units, and that

The same relations imply that conversely for any sequence of numbers zl , . . . zn G
U(l) satisfying [̂  zi = 1 there exists the unique g G Gcl such that uττ(g) = zτ. In
summary, Gcl is isomorphic to the (n — l)-dimensional torus.

Abelian Quantum Groups

If G is Abelian then every subgroup of G is Abelian, too. In particular Gcl is an
Abelian compact matrix group, and as such it is isomorphic to a product of a torus
with a finite Abelian group.

According to [8] there exist a discrete finitely generated group Γ, Hubert space
H and a unitary representation U: Γ —+ U(H) (the square of which is contained in



Quantum Principal Bundles 509

its multiple) such that Λ> is isomorphic to the *-algebra generated by the image of
U. Furthermore

for each 7 G -Γ. Since operators t/(7) are mutually linearly independent [8], every
character g G Gc/ can be viewed as a character on Γ, via

and vice versa. In other words Gcl is isomorphic to the group of characters of Γ.

Universal Unitary Quantum Matrix Groups

Let us consider a positive matrix F G Mn(C) such that

Let AF be a C* -algebra generated by elements i^ ., where z, j G {1, . . . ,n}, and
relations

Σ wΛ = ̂  Σ uj*Mj* = ^fc
' ''

where WF = FuF~l.
The pair GF = ( AF , w) is a compact matrix quantum group. We are going to

describe the category of unitary representations of GF. Let ̂  be a concrete monoidal
W* -category [10] generated by elements u and uc, with carrier Hubert spaces Hu =
Cn and Hrf = H^. It will be assumed that Hu is endowed with the standard scalar
product, while the product in if* is specified by (x, y) = (x, Fy). The objects of ̂
are just the words of u and uc (including the unit object). By definition, morphisms
between objects of £7* are generated by "elementary moφhisms" t : C — > Hu (8) H"*
and f : H* 0 fίu — > C, which are given by

where j : Jϊw — >• H^ is the complex conjugation map. By construction u and uc are
mutually conjugate objects.

Then Gp = (AF,u) is the universal J^-admissible pair (u is a distinguished
object). In other words GF is a compact matrix quantum group corresponding to £Γ ,
in the framework of the Tannaka-Krein duality [10]. The antipode acts as follows

The map F = j ^ j is just the canonical intertwiner between u and ιfc. According
to Lemma A.3 and relations (A. 11), the elements of ίu(Gc

F] are precisely unitary
matrices commuting with F. Hence,

G% = U(n{) x - x U(nk)

where ni are multiplicities of eigenvalues of F.
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B. Universal Differential Envelopes

Let ,y& be a complex unital associative algebra and Γ a first-order calculus [9] over
e .̂ Let Γ® be the corresponding "tensor bundle" algebra, and let £Λ be the ideal in
jf® generated by elements of the form

Q = dal <g) ̂  db^ where Γ aidbi = ° Φ 1)

Ey definition, 5Λ is a graded ideal in Γ® and its first (generally) nontrivial component
coincides with the set of elements Q of the form (B.I).

Let ΓΛ = Γ<8>/5Λ be the corresponding factor-algebra.

Proposition B.I. There exists the unique linear map d: ΓΛ — > ΓΛ extending the
derivation d\ ^/& —* Γ such that

for each $, r? E ΓΛ.

Proof. The formula

Γ<KA (B.2)

consistently defines a linear map d : Γ — > FΛ . We have

dd(ά) = 0, (B.3)

d(αtf) = (dά)ΰ + ad(ΰ), (B.4)

ι?(dα) (B.5)

for each α G ̂  and i? G Γ. Equalities (B.4)-(B.5) imply that maps d admit the
unique extension d: Γ® — > ,ΓΛ satisfying

d(w ®Λ u) = d(w)Π(u) + (-l)dwΠ(w)d(u), (B.6)

where 77: ΓΘ — > ΓΛ is the projection map. Equations (B.3) and (B.6) imply that
5Λ C ker(d). Consequently, there exists the unique map d: -ΓΛ — > ΓA defined as a
factorization of the previous d through Π. This map possesses all desired properties.

D

The differential algebra ΓΛ possesses the following universality property.

Proposition B.2. Let Ω be a differential algebra with a differential dΩ: Ω — -> Ω.

(i) Let φ: ̂  -* Ω be a homomorphism admitting the extension % : Γ — + Ω,
given by

$φ(ad(b)} = φ(a)dΩψ(b).

Then there exists the unique differential algebra homomorphism φ^: Γ^ — * Ω ex-
tending both φ and (J .

(ii) Similarly, if φ : Λ> -* Ω is an antimultiplicative linear map and if there exists
ti : Γ -» Ω satisfying
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I (ad(b))=dΩφ(b)φ(a),

then φ and $φ admit the unique extension φ^ : jΓΛ —-> Ω satisfying

for each $, η E 7^Λ.

Proof. We shall check the statement (/). The maps φ and j( admit the unique common

multiplicative extension φ®: Γ® —> β. It is easy to see that φ®(Q) = 0, for each
Q given by (B.I). In other words, 5Λ C ker((^®) and hence (/?Λ can be factorized
through 77. In such a way we obtain the desired map φΛ. The uniqueness follows
from the fact that 7^Λ is generated by ̂ , as a differential algebra. G

A similar statement can be formulated for antilinear maps φ. As a simple corollary
we obtain

Proposition B.3. Let us assume that ^/ί is a *-algebra and that Γ is a ^-calculus.
There exists the unique antilinear involution *: ΓA —* ΓA extending ^-involutions on
^ and Γ and satisfying

for each ϋ,η G ΓΛ.D

Let us consider some examples of universal envelopes, interesting from the point of
view of quantum principal bundles.

Proposition B.4. (/) Let M be a compact manifold. Then

(ii) If P is a quantum principal bundle over M and Γ an arbitrary admissible
calculus over G then

In other words Ω(M) and Ω(P, Γ) are understandable as universal envelopes.

Proof. We shall prove the statement (ί). The proof of (ii) is based on (/) and the
universality of IlΛ.

The space Ωl(M)®MΩl(M) is naturally isomorphic to a 6'(M)-module of covari-
ant 2-tensors. To prove (/) it is sufficient to check that 5Λ2 coincides with the space
Σ of symmetric 2-tensors. According to universality of Ωl(M)Λ we have ^A2 C Σ.
Conversely, elements of the form q = df 0M df, where / G S(M), generate the mod-
ule Σ. Every such element belongs to $A2, because of the identity fdf — d(f2)/2 = 0.
Hence, Σ C 5Λ2. D
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The algebra ΓΛ can be alternatively constructed by applying a method of extended
bimodules [1, 7, 9].

Let Γ^{X} be the graded differential algebra generated by ΓΛ, a first-order
element X, and the following relations

X2 = 0 d(X) = 0
ΓB 8")

On the other hand, let Γ be the extended bimodule

f = ̂ X Θ Γ

with a right ^-module structure specified by

Xa = aX + d(α). (B.9)

Proposition B.5. There exists the unique homomorphism 77*: Γ® —> Γ^{X} satis-

fying 77* (X) = X and extending the factorization map 77. The kernel of Π* coincides

with the ideal in ΓΘ generated by X 0 ^ Xn

In other words, ΓΛ can be viewed as a differential subalgebra of Γ®/ker(/7*)
generated by ̂ .

Let us turn to the quantum group context, and assume that *Λ> represents polyno-
mial functions on a compact matrix quantum group G. The following statement is a
direct corollary of Proposition B.2.

Proposition B.6. (/) Let Γ be a left-covariant calculus over G, with the corresponding
left action tr : Γ -* ̂  0 Γ. Then there exists the unique map l£ : ΓΛ -» J^ 0 ΓΛ

which is multiplicative, extends φ and such that

This map also extends lr and satisfies

(e0idX£ = id, (B.ll)

(φ 0 iά)l$ = (id 0 l$)l*. (B.12)

If Γ is also a *-calculus then i^ is hermitian, in a natural manner.

(ii) Similarly, if Γ is right-covariant then there exists the unique homomorphism
Pr : ΓΛ — > ΓΛ 0 ̂  extending φ and satisfying

p£d = (d0id)p£. (B.13)

This homomorphism also extends the right action map pr : Γ —» Γ (8) ̂  and satisfies

^ m addition, the calculus Γ is *-covarίant then p^, preserves corresponding *-
irwciwr^.s'.

(m) 7/T1 w bicovariant then so is Γ^, that is
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There exists a natural grade-preserving coaction map c: ΓΛ 0 ̂  —> i^Λ, given
by

c($ 0 α) = ft(α^)τ?α^2\ (B.17)

The same formula determines the coaction of G on Γ1®. We have

c(?? 0 1) = 7? c(c($ 0 α) 0 6) = c($ 0 (α&)). (B.18)

If Γ is *-covariant then

c(tf 0 α)* = c(tf* 0 «(α)*) (B.19)

for each i? G ΓΛ and α G ̂ .

Lemma B.7. Lei ws assume that Γ is right-covariant. Then the following identity holds

ppc(ι) 0 α) = ]P φ^ 0 α(2)) 0 Λ(α(1))cjfeα
(3), (B.20)

/e

h 0 c, =

Proof. We compute

p£c(tf 0 α) =
k

= Σ c($k ® β(2)) ® «(α(1))cA.α(3).G
fc

Definition B.I. A first-order calculus Γ over G is called κ-covarίant iff there exists
a linear map jjκ : Γ — > Γ such that

(B-22)

for each α 6 ,A and 7? G Γ.

The map jjκ is uniquely determined by the above conditions. Furthermore it is
bijective and

Iκ(ι?o) = κ(α)ttκ(t?). (B.23)

According to Proposition B.2 the map fj^ can be extended to a ^-preserving graded-
antiautomoφhism ^Λ : ,ΓΛ — > r"A. If Γ is *-co variant then

ttΛ(«Λ(tf*)*) = 7? (B.24)

for each ^ G ΓΛ.

Proposition B.8. T/* ίΛ^ calculus Γ is left-covariant then n-covariance is equivalent to
bicovariance. D
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From this moment we assume that Γ is left-covariant. Let us denote by Γ*nυ the

space of left-invariant elements of Γ*, for * G {<8>, Λ}. The space Γ^v is naturally
identificable with the tensor algebra over Γlnυ. Proposition B.6 (i) implies that Γ^υ

is a graded-differential subalgebra of Γ^ . This algebra is generated by Γinυ .

Let If : Γ® -> Λ, ® Γ® be the left action of G on Γ®. The ideal SΛ is ί f -

invariant and £p coincides with the factorized if, through Π. The ideal 5Λ is decom-
posable as

It is easy to see that Π(Γ®V) = Γ^v. In other words

Γ"1® / CΛ _ τ-ιΛ
inv I inv ~~ inv '

The spaces Γ*nv are c-invariant, and hence the formula

$ o α = c(ϋ ® α) (B.25)

determines a right ^4-module structure on them. The following identities hold

l o α = e(α)l, (B.26)

(ϋή) o a = (u o α(1))(r/ o α(2)). (B.27)

If Γ1 is *-covariant then the spaces Γ*nv are *-invariant and we can write

(t?oα)*=ι?*o«(α)*. (B.28)

Let π : ̂  -̂  Γίrw be a linear map given by

ττ(α) = /^(α(1))t/(α(2)). (B.29)

The map π is surjective, and π(l) = 0.

Lemma B.9. The following identities hold

π(α) o b = π (ab - e(α)b) , (B.30)

d(a) = α(1)

dτr(α) = -π(α(1))π(α(2)). (B.32)

Proof. All these equalities follow by straightforward transformations, applying the
definition of π. D

We can write

where J^? = ker(e)Πker(π) is the right ̂ -ideal which, in the sense of [9], canonically
determines the structure of Γ. According to [9], the calculus is *-covariant iff κ(&8)* =
J%. In this case

π(α)* = -π(«(α)*) (B.33)

for each α G ̂ .
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Lemma B.10. The space S^v C Γinv®Γinv consists precisely of elements of the form

q = π(α(1)) 0 π(α(2)), (B.34)

where a G *%.

Proof. The space Ŝ , consists of left-invariant projections of elements Q given by
(B.I). In terms of the identification Γ® <-> ̂  0 Γ®υ we have

and hence

(e

The first summand on the right-hand side of the above equality vanishes, because of

Σ a.db = V^ aJfV 0 π(^2)) = 0. On the other hand, the elements of the formi τ τ ί—*i l l l

r = ^(ai)bi cover the whole space ker(π) = Cl Θ *%. D

Actually the space 5̂  generates the whole ideal S^ in Γ^v. In other words,
ΓfrιV is a quadratic algebra.

Proposition B.ll. The following conditions are equivalent
(i) The calculus Γ is bicovariant.

(ii) The coproduct map φ is (necessarily uniquely) extendible to the homomorphism
φ: ΓΛ -> ΓΛ § ΓΛ of differential algebras.

Proof. Let us suppose that (/) holds. Let φ: Γ — » ΓΛ 0 ΓΛ be a map given by

φ(ΰ) = tr(ϋ) Θ pr (&). (B.35)

Proposition B.3 implies that this map, together with </>, can be further extended to a
differential homomorphism φ: Γ^ —* Γ^®ΓΛ. Conversely, if (ii) holds then formula
(B.35) defines the left and the right actions of G on Γ. In other words the calculus
is bicovariant. D

Let us assume that Γ" is bicovariant. This is equivalent [9] to ad(J%) C J
The spaces Γ*nυ are invariant under the right action of G.

Let w* : Γ*nυ — > Γ*nυ ® *,/& be the corresponding restriction maps. The following
identity holds

w*(ϋ o a) = ̂  ΰk o α(2) 0 κ(a(l))cka
(3\ (B.36)

k

where V^ ΰk 0 cfc = tu*(tf).
rC

Explicitly, the map tu : Γinυ — > Γinv 0 ̂  is given by

zuπ = (π 0 id)ad. (B.37)

The map φ possesses the property
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(id (8) φ)φ = (0 ® id)φ (B.38)

as follows from the coassociativity of φ. Let eΛ : I^A — >• C be a homomorphism acting
as e on ̂ , and vanishing on higher-order components. Then

(eΛ 0 id)0 = (id ® eΛ)0 = id. (B.39)

If in addition Γ admits a * -structure then φ is a hermitian map. Let us denote by mΛ

the multiplication map in ΓΛ.

Proposition B.12. The following identity holds

raΛ(κΛ(g)id)0 = raΛ(id(g)ftΛ)0 = leΛ. (B.40)

Proof. It follows from the definition of ftΛ, eΛ and φ. D

Let σ: Γ ®^ Γ — » Γ <8>^ Γ be the canonical braid operator [9]. This map
intertwines the corresponding left and right actions. In particular it is reduced in the
space Γfr£. Its left-invariant restriction is explicitly given by

Lemma B.13. We have

σ(η <g) tf) = ]Γ tffc ® (77 o ck) (B.41)
k

for each i?, η G Γinυ, where $k®ck= w(ff).

Proof. Using the definition [9] of σ and performing direct transformations we obtain

σ(η ® tf) = Σ σ(η ®^ (ΰkκ(c(»))cf) = £ ΰkκ(c<£>) ®,Λ ηcf
k k

= Σ( V(4Vfe

2)) ®.Λ (η o c(

fc

3)) = ̂  ^fc ® (77 o Cfc).D
fc k

Let Γv be the braided exterior algebra [9] built over Γ. In view of the universality
of ΓΛ there exists the unique homomorphism 0 : ΓΛ — > Γv of graded differential
algebras reducing to the identity on Γ and ̂ . In particular

SΛ2 C ker(I - σ). (B.42)

This also follows from (B.30), (B.41) and Lemma B.10. The map 0 is surjective, but
generally not injective. Moreover, the algebra Γ"v is generally not quadratic.

C. The Minimal Admissible Calculus

Let J% be the set of elements α G ker(e) satisfying

(X 0 id)ad(α) = 0 (C.I)

for each X e Iie(GcZ).
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Lemma C.I. The space ,^ is a right , t-ideal and

ad(.>8) C.^f®.^, (C.2)

tt(.>g)*=,>ίΓ (C.3)

Proof. Let us assume that α 6 ,'ίfi and 6 G ker(e). A direct computation gives

(X 0 id)ad(α6) = X(α(2)6(2V(α(1)6(1 V3)^(3)

(1 V3)&(2) + e(α)X(6(2))/<6(1))6(3) - 0.

Hence ,>£ is a right ideal in ,.,-̂ . Properties (C.2)-(C.3) follow from the definition of

<J/l, applying elementary properties of maps figuring in the game. D

Let Γ be the left-covariant calculus which canonically, in the sense of [9], corre-

sponds to *:!%. Then property (C.2) implies that Γ is bicovariant, while (C.3) shows
that Γ admits a ^-structure. According to Proposition 3.14 the calculus Γ is admissi-
ble. By construction, it is the minimal admissible left-covariant calculus.

Let ,92* be the dual space of lie(Gc/). It turns out that Γinv can be naturally
embedded in &* 0 » .̂ First, let us observe that the formula

= X(a) (C.4)

consistently defines a surjective linear map v\ Γιnv —* ^5* . Now, according to the

definition of <>£, a linear map p: Γιnv -^ •&* & « v? given by

p = (v 0 Ίά)w (C.5)

is injective.

Lemma C.2. The following identities hold

(id 0 φ)p = (p® id)cc7, (C.6)

κ(a(l})cka
(2\ (C.7)

where

Proof. Property (C.6) is a direct consequence of the definition of p, and the comodule
structure property of w. Equality (C.7) follows from Lemma B.7 and the following
equation

(C.8)

which easily follows from (A.5), (B.30) and (C.4). ϋ

In the following, cyί* will be endowed with the natural * -structure, induced from
[ie(Gcj). Then maps z/ and p are hermitian.

Let ( ) c l be a scalar product in .#'*, with respect to which the ^-operation is
antiunitary. Let h: « r> — > C be the Haar measure [8] of G. The formula

<φ 0 α, ̂  0 b> = (φ, ψ)clh(a*b) (C.9)

defines a scalar product in ,(/ί* 0 , - .̂ This enables us to introduce a scalar product
in Γmυ, by requiring that p is isometrical.
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Lemma C.3. The introduced scalar product is w-invarίant. D

The above statement follows from the invariance of h. Let x : Γinv — > Γinv be a
linear map defined by

Consistency of this formula is a consequence of the bicovariance of Γ. The following
identities hold

(*«?), η) 0? W) = (x"1 W, 0).

The scalar product on Γinϋ can be naturally extended to a scalar product on Γ^V9

by tensoring and taking the direct sum. Let us assume that the maps x and * are ex-
tended from Γinv to ΓJ^j by requiring multiplicativity and graded-antimultiplicativity
respectively. Such extended maps, together with the adjoint action w® satisfy the
same relations as initial maps.

Let us assume that the ideal S^v can be orthocomplemented in Γfaυ, relative
to the constructed scalar product. Then the space Γ^υ is naturally realizable as the
orthocomplement of Sί^. In particular, we can introduce an embedded differential
maP δ' Γinv -» Γinv ® Γinv τhe sPace ΓL = SL is invariant under w, * and x.

Let cτ : Γinv —> Γinv <8> Γinv be the "transposed Lie commutator" map [9]. This
map can be defined by

cτ = (id®π)ίu. (C.ll)

Maps 6 and cτ are both co variant with respect to the adjoint action of G. In other
words

Lemma C.4. The following identities hold

(δ 0 id)ti7 = w®2δ (cτ 0 id)tu = w®2cΎ . (C.12)

Proof. Applying (C.ll) and (B.37) we obtain

where ^P ^fc 0 cfe = ίu(τ?). The second equality follows from the covariance of the

: Γ - > Γ . D

Lemma C.5. (/) For each ϋ G Γinυ there exists a G ker(e) such that

ΰ = π(α),

π(α(2)).

(//) The following identity holds

cτ =σδ- δ.
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Proof. Let us choose c G ker(e) such that π(c) = ΰ. According to Lemma B.9 we

have dϋ = — τr(c(1))π(c(2)). According to Lemma B.10 there exists 6 G J? such that

δ(ΰ) = -π(c(1)) 0 π(c(2)) - π(6(1)) (g) π(6(2)).

Now α = b + c satisfies (C.I 3).

To prove (C.14) let us choose, for a given $ G -Γίnυ, an element α G ker(e) as
above. Applying (B.37), (B.30) and (C.ll) we obtain

-σδ(ϋ) = σ(π(α(1)) 0 π(α(2)))

= π(α(3)) ® ττ(α(1)) o (κ(α

- τr(α(3)) Θ ττ[(α(1) - e(α(

= τr(α(1)) <g> π(α(2)) - π(α(2))

Lemma C.6. We have

(yx (8) id)δ(ι?) - (id Θ ι/x)δ(t?) = (id 0 Jί Mtf) (C.I 5)

/or ^αc/z 7? G Γιrκυ and X G ίie(GcZ). D

The following lemma gives a rough information about the "size" of the space Γmυ.
For each g G Gcl let tu5 : ̂ * — * S?* be the induced adjoint action, given by

Lemma C.7. (/) We have

for each g G Gc/.

(z7) Lei α G ker(e) be an arbitrary ad-invariant element. Then

α(ker(e)) CM. (C.I 7)

Proof. The statement (z) directly follows from the definition of p. Let us prove (z'z).
For arbitrary 6 G ker(e) and ad-invariant α G ker(e) we have

(X 0 id)ad(α6) = X(ab(2))κ(b(l))b(3) = X(a)c(b)l + c(a)(X 0 id)ad(6) = 0.

This shows that ab G M, and hence (C.I 7) holds. D
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