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Abstract: We consider the Zakharov equations in 1R.N (for N = 2,7V = 3). We first
establish a viriel identity for such equations and then prove a blow-up result for
solutions with a negative energy.

In this paper, we consider Zakharov equations in R^ (for N = 2,3):

iut = —Δu + nu ,

u(0) = φ0, Λ(0) = no, nt(0) = ii ,

where c0 > 0, A is the Laplacian operator on WLN, u : [0, T) x R^ -> C, n : [0, Γ) x
R^ —> R and ΦQ,ΠQ,ΠI are initial data.

In fact, we consider equation (7c

7

o) in the Hamiltonian case. That is, we assume

that there is a w0 : R^ —• R such that

«ί(0) = «i = -AwQ. (1.1)

Then Vί, there is a w(ί) such that

Π /(ί) = -Aw(t) = - V - ϋ(0 ,

where υ(t) — Vw(t). In this case, (7^) can be written in the form

iut = —/dw + «M ,

nt = - V . ϋ ,

( 7 C 0 ) -y^-V/i-VH2,

M(0) = φO j «(0) = w0, ι (O) = t̂ o
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Local existence in time of solutions of (/Co) (u(t),n(t),v(t)) has been studied in
various papers (see [1,2,4,6,12,13,19]) in spaces H2 = H2 x Hι x Hι for N = 2
and N = 3, where Hι = H^IR!*). Moreover, let m = 1 for N = 2 and m = 2 for
N = 3. We have for all (φo,no,vo) G #2, there is a unique solution (u,n,v)(t) in
//2 on [0, Γ) and

• Γ = +oo
or

• K M , ^ ! ; ) ! ^ ^—+ + O O .

In the paper, (u,n,v)(t) will be a regular solution of (/Co) on [O,to] if (u,n,v)(t) G
C([0,/o],//2). Moreover, conservations of mass and energy yield \ft G [0, T\

J \u(t,x)\2dx = f \φo(x)\2dx

and

H{t) = H(u(t),τi(0, ι>(0) = H(φ0,no, υ0) = Ho ,
where

#(K,/!,!>) = / \VU(X)\2 + ^ ) | ^ ) | 2 + ^ 2 ( ^ ) + ^\v(x)\2dx .

We are interested in this paper on existence of singular solutions of equation
(Ico) Few results are known in this direction.

In the surcritical case (N = 3) there are no results on existence of blow solu-
tions. We can mention numerical simulations which suggest a finite time blow-up
for some initial data (see Landman, Papanicolaou, C. and P.L. Sulem, Wang [9,16]).

In the critical case (N = 2), using a perturbed conformal structure of (ICQ),
Glangetas and Merle in [5] have exhibited a family of blow-up solutions of the form

, , . 2 ,

where ω > ωo, Θ G R , T > 0 and

P(x)=P(\x\), N(x) = N(\x\),

1

(coω):
{r2Nrr + 6rNr + 6N) - AN = ΔP2

with r = | x | , wr = η^, Aw — wrr + \ωr. Nevertheless, there is no result of existence
of a large class of initial data such that blow-up in finite time occurs (even if from
numerical simulations [16] suggest the asymptotic forms of blow-up solutions are
of the form (1.2)~(1.3)).

Let us recall the situation in the case Co = +oo, that is when Zakharov equations
reduce to the cubic nonlinear Schrodinger equation:

(/oo) iut = -Au- \u\2u

u(0) = φo ,

where u : [0, T) x R * -• C (with N = 2 or Â  = 3).
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Equation (/oo) has a unique solution in Hx and there is a T > 0 such that u(t)
is denned on [0, T) and

T = +oo
or

lim |w(/)|7/i = +oo

(see Ginibre and Velo [4], Kato [8]). Moreover, V7,

• E(u(t)) = Eo ,
where

2"
In addition, if φo G Σ = {w|x|w G L2} Π //', then \ft, M(/) G Σ and we have the viriel
identity

^pf\x\2\u(t,x)\2dx = lβE(φo) - C(N)f\u(t,x)\4dx , (1.4)

where C(2) = 0 and C(3) > 0.
From this identity, Zakharov, Sobolev, Synakh [17] and later Glassey [7] derived

the existence of singular solutions of (/oo). Indeed, if

Eo < 0 (1.5)
then

T < -f oo .

(If T = +oo integration of (1.4) yields that / \x\2\u(t,x)\2dx < 0 for t large which
is a contradiction.)

In the case of Equation (/Co), we want to prove the existence of a "large" class
of initial data such that the solution (u(t),n{t),v(t)) blows up. From the results of
[17,7], we ask and answer in a certain sense the following:

Question : If Ho < 0 then the solution (u(t),n(t),υ(t)) blows up .

Unfortunately such identity like (1.4) for the nonlinear Schrόdinger equation which
allows us to conclude does not exist for the Zakharov equation (/Γo). Indeed terms
which cannot be controlled interfere in the time variations of / \x\2\u(t,x)\2dx (see
Sect. II). Nevertheless, we have the following perturbed viriel identity for solutions

Of(/c0).

Let Σ' = {(u,n,υ)/f\x\2\u\2 + \x\(n2 + \υ\2) < +oo}.

Proposition (Viriel Identity). Let (u,n,v)(t) be a regular solution of (ICQ) on [0,ίo]
Assume in addition that (φo,no,Vo) G Σ' and ||x|I/2t/(^,x)|/^ is uniformly bounded
in time on [0,/0] We then have Mt G [0,/0],

i) (u(t)9n{t)Mt))€Σf ,

f-^ f(x - v)n I = Im f (x Vu)ΰ H—x I (x v)n ,
0 C0 / C0

dl ί]-J\AM2 + ίl\(x ' v ) n ) = NHo - W - 2)/|Vt/|2 - \(N - l)J\v\2 ,
4 o c o / co

where u = u(t,x), n = n(t,x), v — v(t,x).
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Remark. There is also a version of this viriel identity with the term

(see Sect. III).

Remark. When CQ — +oo, we find the usual viriel identity for Equation (/oo)
This identity from the fact that J(x υ)n has no sign (and cannot be controlled)

does not yield a blow-up theorem. Nevertheless in the radial situation, we claim the
following blow-up theorem (from a local version of the viriel identity).

Theorem (Blow-up Theorem for radial solution of the Zakharov equation (ICQ)).
Assume that for all time, (u,n,v)(t) are radially symmetric functions. Moreover,
assume that

H(0) = H0 < 0 . (1.6)

Then (u,n,v)(t) blows up. More precisely, we have the following alternative:

i) (u,n,v)(t) blows up in finite time .

ii) (u,n,v)(t) blows up in infinite time in H\ :

(u,n9v)(t) is defined for all t and lim \(u,n,v)(t)\H] — +oo .
t—*+oo

Remark. If (φo, no, VQ) are radially symmetric and in a Cauchy space for the equation
(/Co) then for all time (u,n,v)(t) has the same property.

Remark. We expect that the blows-up is always in finite time but we are not able
to prove it (see Sect. V for partial results in this direction).

In dimension two, we have from the theorem and [6] that (in both cases T =
+oo and T < -f-oo)

lim \(u,n,v)(t)\Hι = H-oo .

From variational arguments [6], we have a concentration phenomenon in L2 of u(t)
(in particular in the case T = +oo). That is there is a x(t) G ΊR2 such that

VΛ > 0, lim / \u(t,x)\2dx ^ \Q\2

L2 ,

<->T \x-x(t)\<R

where Q is the radially symmetric positive solution of

Δz+\z\2z=z in R2 . (1.7)

Remark. (Instability of periodic solutions of equation (/Co)). In dimension two, the
theorem implies that the periodic solutions of (/Co) of the form

(u,n9υ)(t) = (eiω2tωz(ωx\-ω2\z(xω)\2,0

where z is a radially symmetric solution of Eq. (1.7) and ω > 0, are orbitally insta-
ble. We can remark that instability has been proved in [6] under a nondegeneracy
condition on z.
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Indeed, from Pohozaev ((1.7)) we have

H(u(t),n(t%v(t)) = 2E(ωz(ωx)) = 2ω2E(z) = 0 ,

and there is a sequence of initial data

such that

(i) Vε > 0, H(uε(0)M0)M0)) < 0 ,

(ii) («ε(0), «ε(0), vε(0)) —> (M(0), W(0), V{0)) in H2 .

The result follows from the theorem.
In dimension three, an adaptation of arguments of Berestycki and Cazenave [3]

and the proof of the theorem yield the instability of only the ground state periodic
solution (see [3] for more details).

The plan of the paper is the following:

- In Sect. II, we check that the variation in time of J \x\2\u(t,x)\2dx does not
yield a blow-up result.

- In Sect. Ill, we establish the viriel identity.
- In Sect. IV, we prove the blow-up Theorem.
- Section V is devoted to some open problems and comments.

II. Breakdown of the Standard Proof

In this section, we briefly check that -jμ f \x\2\u(t,x)\2dx has no sign under the
constraint H(u,n,v) < 0. Therefore, we cannot apply the same arguments for the
nonlinear Schrodinger equation.

We will prove in Sect. Ill that under regularity conditions, we have:

•^2/ |jc|2|w(i,jc)|2</jc = 4Q(u9n,υ)

= 4 {NJ |Vw|2 + NJ n\u\2 - (N - 2)/|Vw|2 + / (x V|w|2)π} . (2.1)

We now claim the following lemma.

Lemma 2.1. There is a (u9n,v) G Hx x I? x L2 such that

H(u,n,v) < 0 ,

and
Q(u,n,v) > 0 .

Proof. Let us consider n — — α|w|2, v = 0 with

0 < α < 2 - | ,

H(u,n,v) = J \Vu\2 - a J \u\4 + ̂ / \u\4 = J \Vu\2 - a ( l - %) J \u\4 , (2.2)
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and

Q(u9n,υ) = Nj \Vu\2 - aNj\u\4 - (TV - 2)/|Vw|2 - α / x \7\u 2\u\2

We remark that it is sufficient to find u, α such that H(u, n, υ) = 0 and Q(u, n, v) > 0
with the condition H(u,n,v) = J |Vt/|2 — α(l — | ) J \u\4 = 0, scaling arguments to
prove the lemma and using

Therefore the lemma follows from the existence of aw such that

(since α(l — | ) > α(l — ̂ (2 — y)) > 0 and scaling arguments).

III. Viriel Type Identity for Zakharov Equations

For the nonlinear Schrόdinger equation (Eq. (/oo)), we have the well-known viriel
identity. That is for a solution u of (/oo),

^f\x\2\u(t,x)\2dx = \6E(φo) - C(N)J\u\4 , (3.1)

where C(2) = 0 and C(3) > 0.
This result was discovered by Sobolev, Synach, Zakharov [17] and later by

Glassey [7]. This identity yields a blow-up result for the solution of (/oo) in the
case

E(φ0) < 0

by integration in time.
Unfortunately, such an identity does not exist for the Zakharov equation (/Co)

clearly J \x\2\u(t,x)\2dx by itself does not satisfy some simple equation. Neverthe-
less, it satisfies a perturbed identity (with terms involved in the wave equation).

We first establish such an identity. We then write a local version in space of
this identity. Through this section, we assume that (u9n,υ)(t) is a regular solution
of Eq. (ICQ) on [0, ί0] in the sense

for N = 2, (u,n,υ)(t)e<g([O,tolH2), (3.2)

for N = 3, (u,n,υ)(t) G ̂ ([(U 0 ] ,// 2 ) . (3.3)
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In particular Vί,

J\u(t,x)\2dx = J\φ(x)\2dx,

H(t) = Ho , (3.4)

where

H(t) = J\Vu(t,x)\2 + n(t,x)\u(t9x)\2 + \n\ux) + ^\v(t,x)\2dx ,

H(0) = H0. (3.5)

III.A. Global Viriel Identity

We claim the following.

Theorem (Viriel identity). Let (u,n,v)(t) be a regular solution of (ICQ) on [O,to]-
Assume in addition that

(3.6)

and

We then have \/t i

/M

\2\Φo(x)

Ξ[0,ί0],

\u(t,x)\2

0

2dx + J\x\(\no(x)\2

E[o,/b], | ( i + χ | 1 / 2

dx + j\x\(\n(t,x)\2

1 \
-jj (x ϋ)n j = Im
-o /

2

 + /l/(x φ)

+ |ϋ O (x) | 2 )Λ

)|«(ί,χ)| | I O O s

+ |φ,x)|2)rfx

/(x VM)M +

= M/.-(Λr

> -

Ξ ^

< -f-oo ,

co

-2)J\Vu

(3.7)

(3.8)

where u = u(t,x),n = n{t,x),υ = v(t,x).

Remark. Of course for c0 = +<x), t; = 0, (3.8) reduces to (3.1).

Remark. The condition on the L°° norm of «(*,*) is implied for example by the
fact that u(t) is radially symmetric and in H2.

If we assume more regularity on the solution, we have

Proposition 3.1. Let (u,n,v) such that

Vf€[O,ίo], \xu{t,x)\^cλ, (3.9)

J > | 2 (\φ(x)\2 + \no(x)\2 + \υo(x)\2) dx < +00 . (3.10)
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We then have \/t e [0, tQ],

ϋ)

n(t,x)\2 + \υ(t,x)\2)dx < +00,

1 '

= Im/(x Vκ)κ + -j

ϋ o c o
L o 0

(3.11)

= NHo _ (TV - 2)/|Vt/|2 -

where u — u(t,x), n = «(ί,x), v — v(t,x).

Remark. Equation (3.9) is implied by

(3.12)

- (u,n,v)(t) are radially symmetric in space for all / G [0,/0]

Proof of the Theorem. We prove the identities involved in the theorem by a reg-
ularising procedure. We approximate functions |x|2,x by regular and bounded trun-
catures of these, make the calculation for such truncatures (see Sect. Π.B), and then
go the limit to obtain the result. These techniques are classical and we omit them.

Let us show first

Lemma 3.2. (Uniform bound in time for / |x|2|w|2 -j- / \x\(n2 + \v\2)). There is a
c > 0 such that V/ G [O,ίo],

j\x\2\u(t,x)\2dx + f\x\(n2(t,x) + \v(t,x)\2)dx ^ c . (3.13)

Proof. We have on one hand,

jj\x\2\u(t,x)\2dx = 4

S c + f\x\2\u(t,x)\2dx . (3.14)

On the other hand,

= 2/(1 + |x|2)1/2(-«V υ-SJnυ- V|M|2 v)

= -2/(1 + |X| 2) 1 / 2V|M| 2 Ό
X V

-n . (3.15)
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Therefore

441

dtjy

<; 2 (Jv2 + j V + |«(1 + | * | 2 ) 1 / 4 | i O O (/|VM|2 + /(I + |x|2)1 / 2 | . |2))

Since

and (3.16)-(3.17)

(3.16)

(3.17)

|-/(1 + I*!2)1/2 U + ̂ L U c + /(I + |x|2)1/2 |.|2 . (3.18)

The conclusion follows from (3.14), (3.18) and a Gronwall lemma.

Let us prove the identities of the theorem. It follows from

Lemma 3.3.

i) jtf\x\2\u\2=4lmf(χ.\7u)ϋ,

l 2 l w l 2

«|2 + Nfn\u\2 - (N - 2)/ |VM| 2 + J(x V|M| 2 )«}

= 4 \NH0 - (N - 2)/|VM|2 - ^-J\v\2 - \j(x vt)n) .

I ZCQ C0 )

Lemma 3.4.

— J(x v)n = f(x

Before proving Lemmas 3.3-3.4, let us show a useful identity.

Lemma 3.5.

-Re/(* - VΘ)AΘ = - ( i V ~ 2 )
(3.19)

/or regular functions θ with a good decay at' infinity.
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Proof of Lemma 3.5. By integration by part, we have

h = / - Re (x VΘ)ΔΘ = Re / V(x Vθ)VΘ

e Γ δ (χW\ dθ

N N fj2fj Pjfj

F. Merle

INN ^

2 1 = i J = i dx, dxj

N N dθ Â

(N-2)

Proof of Lemma 3.3.

Ϊ/IXI2IWI2 = 2 R e /kl 2 (j-ϋ) = 2
- inu)ΰ

= 2 Re iJ\x\2Auΰ = 4 R e - ifxVuΰ = 4 Im/(x Vw)w .

ii) We have

(3.20)

On the one hand,

Im γΰ = N Re fi-^-ΰ = N Ref(-Δu + nu)ΰ

(3.21)
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On the other hand, by a direct calculation and (3.19),

2 Im f(x Vw)-^ = - 2 Im f(x Vu)-^-J dt J dt

= Re 2/(x Vw)(-idM + WM)

= 2{-Re J(x Vϊ/)zlw + Re /(x Vw)wπ}

= 2 ι (^~2)

443

--(7V-2)/|Vw|2 + /x V|^|2«.

In conclusion,

^/|x|2 |wαx)|2=4{^/|V^|2+7V/«|w|2-(7V-2)/|Vw|2 + /x .

Moreover we have

/(x . V|M|2)/I = - / ( * • V/I)/I - ~/(x υt)n

(3.22)

(3.23)

N

and

= 4 |/V/|V«|2 + Nfn\u\2 + | / « 2 - (TV - 2)/|V«|2 - !

= 4 (τV//o - (TV - 2)/|VW|2 - ^/|f|2 - \f(x vt)n) ,

which concludes the proof of Lemma 3.3.

Proof of Lemma 3.4. We recall that there is a w(t) such that

υ(t) = Vw(O .

Indeed, let w(t) solution

-—wt =

then

and - Aw(0) = n\ ,

and v(t) = Vw(t) .

(3.24)

(3.25)
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We have from (3.19),

—{x υ)n = J{x υt)n + f(x ϋ h = / (* u,)n - J(x v)V - v

= J(x vt)n- J(x Vw)V Vw = J(x ^ > - J(x Vw)zl>

17 Γ \ \ ) Γ \ 2

I = J(x vt)n J\υ\ ,

which concludes the proof of Lemma 3.4 and the theorem. Proposition 3.1 follows
from the theorem and the identity

( - ^ • V . v - V I I i; - V|i ι | 2 *)

and the fact that

d 1

This concludes Sect. III.A.

III.B. Local Viriel Identity

As in the case of nonlinear Schrόdίnger equation (7^), we use local viriel identities
in various problems related to blow-up. That is quantities of the form

(3.26)
0 c 0

where ψ behaves like |x|2 near zero, and like |JC| at infinity (see [10,11,14,15]).
We claim

Proposition 3.6 (Local viriel identity).
a) General case. Under the assumptions of Proposition 3.1 for (u,n,v)(t) and for
φ such that Vx,

\φ{x)\ ^ c{\ +

we have \/t > 0,

i)

\Vφ{x)\ S \Δφ{x)\ + \Δ2φ(x)\ £ c ,

dt 2
v)n) =

Loo
Vu)ύ+ \ υ)n
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ϋ)

= I jΔφ (n\u\2 + ~nA + 2Re/

-2IΣΣWviVj - ^jΔφlv]2 - \j\u\2A2φ 1 . (3.27)
Co j i ZC0 I J

b) The radial case. Assume in addition that all functions u, n, v, φ are radially sym-
metric in x, we have

^ n\u "τ)+2jδ2

rφ\δru\

^ 0

where Δr = d2. -f- ^ ~ dr.

Proof It follows from a similar calculation as in Sect. III.A.

Lemma 3.7.

-Re J(Vφ VΘ)ΔΘ= [RQΣJrfdidjil/Iβdjθ) - ]-jΔφ\VΘ\2 (3.29)
V ' = υ =i / 2

/or regular functions θ with a good decay at infinity. Indeed,

Λ̂  v
- Re /(Vi/f VΘ)AΘ = -Re ]

Λ̂  N

= Re Σ Σ (fdrdjψdβdjθ +
i = l 7 = 1

/ = 1 7 = 1

i=l7=l

R e Σ Σ

Lemma 3.8.

i) ilΨ(x)\u\2 = 2Im / ( W V«)δ , (3.30)
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ϋ) rj>l«l2 = n\u\2 + -
N N

2ReΣΣ,

F. Merle

(3.31)

i) follows from direct calculation,
ii) We have as before

^Jφ\u\2 = 2

= 2 <| 2

On the one hand,

du
-Im jAφΰ— = Re fAφ(-Au + nu)u

= fΔφ\Vu\2 + fΔφn\u

= f Aφ\Vu\2 + f Δφ n\u

(3.32)

(3.33)

On the other hand,

2 Im/Vi//

= -2 Re / VψVΰAu

N N

= 2 ReΣΣJdι8jΨ
i = l 7 = 1

+ /(V^V|«2)/ι

ΊϊϊϋδjU - /zlιA|Vι/|2

and

J(S7φS7\u\2)n = - / ( V ^ Vn)« - — /(ViA vt)n

(3.34)

(3.35)

Therefore (3.32) follows from (3.33)-(3.35).

Lemma 3.9.

d 1 , „ , . 1

= 3/
c

v,)n

z c 0
(3.36)
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Indeed,

-/(ViA v)n = J(Vφ vt)n + f(\7φ v)nt

vt)n-J(Vφ v)

Since v = Vw and (3.29),

-J(Vφ - v)V - v = -

/ 2

1=17=1 Δ

and the conclusion follows.
Parts i) and ii) of Proposition 3.6 are implied by Lemmas 3.8 and 3.9.

b) We can easily check that in the radially symmetric case, we can choose w
radially symmetric such that

Therefore, the conclusion is implied by the following lemma.

Lemma 3.10. Let θ = θ(r) and φ = φ{r),

Indeed,

and

Thus,

D p
i v C

we have

/ jΨ ~

N N
/ \ Λ \ Λ r). Pi. ]ι / / U i U i yJ Z J Z—/ ' J

1=1 7=1

R e /ΣΣ^
ί = l 7 = 1

(>*\ 1
\ r J J

—
ψ I j

δjψδ,θdj6

r ] J

) = Jdrrφlδr

Xi

r

V \ r )

Θ\2

r
drφ

N N / p\ J,\ χ2χ2 N N

Therefore the proof of Proposition 3.6 is concluded.
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IV. Blow-up Results for Zakharov Equations

As we have seen in Sect. II, the variation in time of

f\x\2\u(t,x)\2dx (4.1)

does not allow us to conclude on existence of blow-up solutions for equation (/CQ).
We in fact use in this section identities local in space of the type

{{MM1 + f\f(x φ) = NH0 -(N- 2)J\Vu\2

0 c j2aτ 0 cQ

-\(N-l)f\v\2. (4.2)
c

We assume in this section that
H0<0, (4.3)

and we want to prove that the solution ever blows up in finite time or blows up as
t goes to -foo in H\. That is

- there is a T > 0 such that either T < +oo and

Jn2 + |Vw|2 + |ι?|2(0 —> +oo for Â  = 2 ,

\(U,Π,V)\H2 —> H-oo for TV = 3 ,

or T = +oo and
jn2 + \Vu\2 + |t;|2(0 —^ +oo .

Therefore, assuming that the solution is defined for all time, we want to prove

(n2 + \Vu\2 + \v\\t) —> +oo. (4.4)

Indeed, it is shown in [6] (using techniques of [1,9]) that for N — 2,
if the solution (u,n,v)(t) blows-up in finite time in H2 as t —> T, then
\(u,n,v)\Hι ^ + 0 0 .

We remark that (4.2) yields by integration

t 1
f-ϊfix v)n —> - 0 0 , (4.5)
0 C0 ί-^+00

which is weaker version of (4.4).
To prove (4.4), we in fact use a local version in space of (4.2). In order to

control the perturbation term in this identity, we assume in this section that all
functions are radial (in particular v — v(r)f).

Let us consider as in [10,11] a function h : IRΛ —> IR such that

. h(x) = h(r) where r = |x| ,

• heC3(RN

9ΊBL),
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• h(r) = r, 0 ^ r < 1 ,

. h(r) = r — (r — I ) 4 for r ^ 1 and near 1

• h(r) = - for r ^ 3 ,

- 0 S h'(r) S 1 ,

• ti(r) < 1 for r > 1 .

We can see easily that such h exist (see also [14,15]). Let

φ(x) = φ(r) with φ(0) = 0 and φr = h .

We can easily check from (4.6) that

449

Finally consider,

We then have

(-Aψ+N)2 ^ cι(l - drrψ).

ψm=m2ψ(-) and hm=mh(-λ.

and

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

We claim the following

Proposition 4.1 (Existence of Lyapunov function in time). Let (u, n, v) a solu-
tion of equation (ICQ) defined for all t > 0. We then have for c\ = c\(J \u\2) =
cι(f\(po\2) > 0 and c2 > 0,Vm,Vf,

i) Critical case (N = 2)

at
-J\v\2 - cλ m m

(4.12)

ii) Surcritical case (N = 3)

d_

dt

Remark. c\ is in particular independent of co
As a corollary of Proposition 4.1, we have
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Corollary 4.2 (Blow-up theorem for Zakharov equation). Assume that Eo < 0 and
u, n, v are radially symmetric functions defined for all time. We have

Jn2 + \v\2 + \Vu\2{t) >+oo.

We first show how Proposition 4.1 implies Corollary 4.2 and then prove
Proposition 4.1. This will conclude the proof of the blow-up theorem given in
the introduction.

Proof of Corollary 4.2. We first remark that \ft,

ym(t) = -Im/(Vιfe Vu)ΰ - -^/(Vife υ)n
c

{ ( ) ( / ) ( / ) } (4.14)

Therefore
ym(t) ^ cm (1 + J(\Vu\2 + n2 + i;2)(θ) (4.15)

and to have the conclusion, it is sufficient to prove that for a given m > 0,

(4.16)

Equation (4.16) follows in fact from integration of (4.12)—(4.13) with a suitable
m > 0. Let us consider two cases

Case 1: Surcritical case (N — 3). Since HQ < 0 we have —NH$ > 0 and for m
large enough,

( H 0 . (4.17)

Thus by integration of (4.13), \/t

ym(t) - ym(0) ^ %

0

0 λ λ / ^

which concludes the proof in the case of the space dimension three.

Case 2: Critical case (N = 2). For this case for m large enough, we have

m

and we conclude the proof as before.
This concludes the proof of the corollary.
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Proof of Proposition 4.1. It follows from the local variance identity obtained in
Sect. Ill and in a crucial way control of \u\A by |Vw|2 away from the origin in the
radial case.

From (3.28), we have

— (-Im f(\7ψmX7u)ύ--Ίf(Vφmυ)n
at \ c0

= -jΔ,.φm (n\u\2 + y ) - 2jd2φm\dru

Z 6 0

= -jArψm (n\u v\ή - 2jd2

rφm\8M

M2 + UΔJψJu
λ

J(N - Δrφm) (n\u

From (4.6), we have

- The existence of cι > 0 such that Vm,

~(N - Arφm) -] ^ c2 > 0 .

- The existence of c such that VVw, Vί,

2J

1 , .i
ύ -\Δ2.ψm\LaoJ\u

Since N — Δ,\j/m ̂  0 and (1 — δjφm) ^ 0, the only term to control is

We have

and

J(N-Δrφm)n

J(N - Δrφm)n\u\2 2: J(N - Δrφm) (^-λ-n2 - ^

J(N - Δrφm) ( n\u\

(4.19)

(4.20)

(4.21)

(4.22)

-Arψm)\u\4. (4.23)
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Thus

y'm(t) ^ ~NH0 - — + 4 J>|2 + 2/(1 - %ψm)\dru
m2 c

where

ym(t) = -lmf(Vψm Vw)« - -j

Let us consider two cases: TV = 3 and TV = 2.

//): Surcritical case (TV = 3). In this case, we have

y'Jt) 5; -M/o - 4 + ^ / I "
YYΪ C
4 ^
YYΪ Cr\

1

Since

and

N - Arφm(x) = 0, for |x| ^ m ,

C ^ TV - J r ^ m ^ 0, Vx G R ^ ,

Lemma 4.3 (Strauss [18]). If u is radially symmetric function in Hι,

we have

yM(0^-Afflb-i + 5/M2 + M«| 2 -i

F. Merle

(4.24)

(4.25)

(4.26)

_ c

which concludes the proof in the case ii).

/): Critical (TV = 2). In this case, we have

y'm(t) ^ -NH0 -^- + C-\$

2/(1 - δ2

rψm)\dru\2 - -J(N - (4.27)
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We remark that

453

- J(N-Arφm)\u\ S cf(\ - drrφmf2\u\4 S c J (1 - drrφmγ/2\u

We claim the following lemma (see also [14]).

Lemma 4.4. Let u be an Hι radially symmetric function,

m \m^

(4.28)

. (4.29)

Proof. For |x| §: m,

|(1 - δrrψm(r)γ/2u2(r)\ = J dr ((1 - δrrφmf2u2) dt

/ 2) M

2 | + 2 / ( 1 -

2 0 - ̂
Therefore

which concludes the proof of Proposition 4.1 and the blow-up theorem.

V. Comments and Open Problems

In this section, we briefly give some other extensions of the previous results and
some open problems.

1. We have works in the Hamiltonian situation of Equation (7c'o). We expect
that the results are still true in the nonhamiltonian case, that is (see also [6]) when,
Mt

where v\ does not depend on t.
2. All the results are the radial case. We conjecture that in the nonradial situation,

the blow-up theorem still holds.
3. We suspect strongly that in the alternative of the theorem, we always have

blow-up in finite time. Unfortunately, the estimates we obtained do not yield this
result.
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In this direction, we just have partial results in the supercritical case. Indeed, in
this case we have ((4.13), (4.14), (4.17) with a suitable m) for a c > 0, Vί > 0,

(5.2)

Proposition 5.1 (Partial results of blow-up in finite time). Under the assumptions
of the theorem, for N = 3, if for ε > 0,c > 0,Vί > 0,

//|VM |2(,)^C/(jV(5))1 + ε , (5.3)
0 0

then blow-up in finite time occurs.

Remark. Variational estimates from the conservation of the Hamiltonian give that

which is far from (5.3). Nevertheless in [16], the blow-up solutions numerically
observed (for N = 3) are such that

Vs,J\Vu\2(s)^c(Jn2(s))2 ,

which implies (5.3).

In this sense, Proposition 5.1 is a partial result of blow-up in finite time in the
supercritical case.

Proof It is easy to see that in this case for c > 0 and α > l,Vί > 0,

y(t) Z f(y'(s) - H0)ds,
0

where

which implies blow-up in finite time for y(t) and thus for \u,n9v\Hx(t). This con-
cludes the proof of Proposition 5.1.

Acknowledgement. The author thanks the Courant Institute and Rutgers University where part of
this work was done.
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