Commun. Math. Phys. 175, 229 -258 (1996) Communications in
atical

© Springer-Verlag 1996

On the Pointwise Behavior of Semi-Classical Measures

T. Paul', A. Uribe>*

! CEREMADE et CNRS, Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris
Cedex 16, France
2 Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109, USA

Received: 29 August 1994/in revised form: 24 January 1995

Abstract: In this paper we concern ourselves with the small % asymptotics of the
inner products of the eigenfunctions of a Schrodinger-type operator with a coherent
state. More precisely, let l//jh and E}h denote the eigenfunctions and eigenvalues of
a Schrédinger-type operator Hj with discrete spectrum. Let . ¢) be a coherent
state centered at the point (x, &) in phase space. We estimate as & — 0 the averages
of the squares of the inner products (ll/(f,’ 5),t//jh) over an energy interval of size %
around a fixed energy, E. This follows from asymptotic expansions of the form

E(h)—-E ®
Z‘P (L;L—‘> (VG oy ‘//jh)lz ~ > Ck(a)h—”%”

J k=0

for certain test functions ¢ and Schwartz amplitudes a of the coherent state. We
compute the leading coefficient in the expansion, which depends on whether the
classical trajectory through (x, &) is periodic or not. In the periodic case the iterates
of the trajectory contribute to the leading coefficient. We also discuss the case of
the Laplacian on a compact Riemannian manifold.
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1. Introduction

Let H = —A?A + V(x) be a Schrddinger operator with ¥ smooth, on IR” (in which
case we assume V tends to infinity at infinity and therefore H has discrete spec-
trum) or on a compact Riemannian manifold, M. The trace formula, [14], describes
the small % asymptotics of the average, over a spectral interval of size %, of the
matrix elements of a semi-classical observable, b(x,%D,), between eigenvectors of
H: Let ¢ be a Schwartz function whose Fourier transform is compactly supported
and let Ef and l//jh the eigenvalues and eigenvectors of H. Then, under certain
conditions on the Hamilton flow of the Hamiltonian #(x, &) = %|€|2 + V(x) on

g ={(&x); %Ié]z + V(x) = E}, we have an asymptotic expansion of the form

E,(h)—E
Z ® (i{%—') (lpjh’ b(x9th)lpjh)

J

b(&, x)du* o
~ (@(O)Mff(ﬂ—l)+ +Z ck(é)hk>

@m)—+! k=—n+2

oS/ htayy T

A~ e - - R y ~ i
+Z~/: o(T,) T (=P ({b(X(t),f(t))dt+j;d,((ﬂ)h’ Y]

Here:

e du’ is the Liouville measure on Xp,

7 runs over the periodic trajectories of 1|&[? + V(x) on Xy with periods T, in
the support of ¢ (the Fourier transform of ¢),

T is the primitive period of 7,

S, = fyé dx,

o, is the Maslov index of 7,

P, is the Poincaré mapping of y,

c( - ) are distributions with support in {0},

d’( - ) are distributions with supports in {7,}.

Tauberian theorems allow to pass to the limit where ¢ tends to the characteristic
function of [E — ch, E + ch]. This gives, assuming that the set of periodic points
on Xp has measure zero, that

S W B D) = S [ b, AR o). (@)
|E,—E|< ch Qn)y Sy

From this one gets the following result on ergodicity of eigenfunctions: If the flow
of # on Xy is ergodic, then, except for a subsequence of density 0,

Jy, b6 &) dyt
sz duk

(For a precise statement see [11].) Another way of writing (3) in IR” is by using
the so-called anti-Wick or Toeplitz quantization. Let (Y, ¢)), (x,&) € T*IR”, be the

lim ()b AD W) =
E/” —Ei—0

(3)
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family of coherent states:

ix gy =

Veoy(y) =274 2rh) Fe T el T e I )

The anti-Wick quantization of b(x, &), &' (x,hiD,), is the operator defined by the
formula

B (e, hDy) = [b(x, ) Wixey + YW eydxdE. (5)

It is easy to check that, under very general assumptions on b and V,

W) 0" @ ADOY!) = (U b ADOW!) + O(h) . €

So (3) can be written as

Jy, B,y dpt

7
Ty i (7

[ lim fb(x, é)|('//(x,i)a ‘/’jh)lz dxd¢ =
E,h—0

=

In other words, ergodicity of the classical flow on Xz implies that the measures
(W), l//jh)|2 dxd¢& converge weakly to the normalized Liouville measure of 2.

Numerical computations, for the so-called billiard problem on the stadium [12],
and for the hydrogen atom in a strong magnetic field, [6], show however that some
concentration of eigenfunctions near unstable periodic orbits may occur. This scar
phenomenon seems to disappear in the classical limit, contrary to the case of modes
and quasi-modes associated to stable periodic orbits.

Our purpose in this paper is to show that, on the average, the pointwise limit
of

Wi U1

depends strongly on whether or not (x,¢) belongs to a periodic trajectory, and to
analyze its behavior in each case.

Before we state the results precisely, we would like to present the main ideas.
The contribution of the periodic trajectories in the trace formula disappears in for-
mula (2), since it appears in (1) at a lower order in %. On the other hand, the
coefficient of the contribution of y depends strongly on the support of b(x, ¢), so it
is natural to think that if one takes symbols whose supports concentrate near a part
of a periodic trajectory as % goes to zero, the periodic orbit can make a contribution
to the leading order term. Using such symbols amounts, in effect, to observing the
wave functions at a smaller scale in phase space. Although this type of symbols
does not belong to classical pseudo-differential classes, the anti-Wick quantization
allows to consider such singular symbols. The simplest example is a symbol of the
form

b(xg.0)(%: &) = 0(x — x0,¢ — Co) s (8)

a Dirac mass at (xg, ). Then (5) becomes

bl(qxt)yysfo)(x’hDX) = ('//(Xo»fo), : )‘//(xo,cfo) . 9)
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Such an operator is related to the theory of Hermite Fourier integral operators.
Formally, it can be viewed as a pseudo-differential operator with Weyl symbol,

_ a=xg?HE—¢)?

By, e)(x, &) = (4nh) " e B , (10)

which obviously is not in any standard symbol class. If (3) were still true for »*"”
given by (9), we would get that for almost all eigenfunctions, the limit as E; — E
and i — 0 of |(W, o), wjh)[2 would be the result of applying the normalized Liouville
measure to By, ¢,), Which is

N O
JBunap dit” = |V (xo, o) o (

Our main result shows that, on average, there are extra contributions to |(Y(x¢),
10
7011
It is useful to express our main result for a more general class of coherent states
(see the next section for details).

Preliminary Definition. Let a € S(R"), and (x,&) € R*" or T*M. A generalized
coherent state centered at (x,&) and symbol a is defined locally around x as:

i —wiih icvna Y —X
U () = ply — x)(2mh)~F 21 gl o (%) (12)

Here p is a C§° cutoff function equal to 1 near 0, and in the manifold case the
formula above is in a given coordinate system.

Remarks.

— The formal definition agrees with this one to leading order in 7, but it allows
for higher order terms which are needed to make the definition coordinate-
independent. The Schwartz function « is invariantly a symplectic spinor, which
is the symbol of the generalized coherent state, see Sect. 2.

— Proposition 2.4 below shows that the cutoff p is semiclassically inessential:
modulo O(%°°) the state above is independent of it.

~ In the case where a(y) = (4n)~"4 ¢~/ this is the usual coherent states defi-
nition (up to the inessential cut-off and normalization).

— The normalization in (12) is such that the L? norm of % . is O(h™"?). It is
chosen so that the Wigner function of the coherent state (see below) converges,
as i — 0, to a Dirac mass at (x, &).

Statement of the Main Results. Let Hy = Zf:o h!P)(x,Dy), where P; is a dif-
ferential operator of order / on IR" (or M) of principal symbol PY, sub-principal
symbol P,’1 (defined on manifolds if P; is regarded as acting on half-densities) and
smooth coefficients. Let #(x, &) = Zf:o PY(x,&) and Hup(x, &) = Z?:o P,’l(x, 9]
be the principal and sub-principal symbols of H;. We assume that P; is elliptic,
A is positive, and in case M = IR", that # tends to infinity at infinity. Let Ejh
and l//jh denote the eigenvalues and eigenvectors of Hj. Throughout we will use the
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following normalization of the Fourier transform:
F(&)=@n)73 [ f(x)dx.

Theorem 1.1. Let (x,&) be a point in T*(R") (or T*(M)) not in classical
equilibrium, and let E = #(x,&). Assume that (x,E) is not periodic with respect
to the Hamilton flow of #. Let ¢ € C>°(R) with compactly supported Fourier
transform, and let ;- be defined by (12). Then, as h — 0,

E h |
Z ® <_—Ll——) |(W(vc c):l// )| Zock(a) h_-”+.2-+k 5 (13)
, >
with
co(@) = 22 (2m)=32 (0) [~ o G aln — 1y dnde . (14)
V2r '

Moreover, ¥c > 0,

Y Ween ¥ == 27 @m)
|Ej(h)—E| < ch T
x [P g Gl a(y — t&)dndi + o(h ).
(15)
We will next state the result in the periodic case, in coordinates. If (x, ¢) belongs
p

to a periodic trajectory y of action S, and primitive period T, > 0, let S(¢) be the
matrix solution of

S(t) = JHess(#)(x(t), &(t)) - S(t), S(0) = Identity , (16)
. . 0 -Wd . . .
where J is the matrix 40 ,(x(2),&(t)) is the trajectory of the Hamilton

flow generated by # starting at (x,¢) and Hess(s#) is the Hessian of J# (see
Sect. 3). Invariantly, the mapping defined by S(¢) is the differential of the Hamilton
flow of s, and S(¢) determines, by continuity in ¢, an element of Mp(R") (starting
with the identity element at ¢ = 0). Therefore one can associate to it a unitary
operator, M(S(¢)), on L*(R") through the metaplectic representation. A key role
will be played by the metaplectic quantization of S(7}),

U = M(S(T,).

We will denote
T’/
SUb;v = f Hup(x(1),E(2)) dt .
0

Theorem 1.2. With the above notations, if (x,&) belongs to the periodic trajec-
tory v,

2.0

J

Ej(h)—E |
(-_(—_;—> I(l//(x g)>l//j )|2 ;dk(a)ﬁf”"‘j"'k (17)



234 T. Paul, A. Uribe
with

5 L sub, D .
\/— (27'6)_3n/2 IZZCP(ZT )el( +S b’)fe—-it x/2 ot a(,,])((]la)(;7 _ lé)d]’[dt
S
(18)

(the term [ =0 is precisely the previous coefficient, cg). Moreover if y has an
infinitesimal Poincaré section invariant by the linearized flow, and if the Poincaré
mapping of y is diagonalizable over C and it has at least one hyperbolic summand,
then as i — 0 along the Bohr—Sommerfeld values,

do =

S,

7

h=——, m— oo along integer values,
2nm

one has:

—nt+l € 5y ~3n
I(w(x,i)5l//jh)l2 —A "2 29 /2(27'C) 3n/2
|Ej(W)—E| < ch n

y fe_,ﬁxs/z " a(n) a(n — 1&)dnd

3 B B sin(cIT,) s b,
+ i n+2 - n/2 o 3n/2 1ISu
G )

x [ R G GGy (Ua)(n — t)dndi + o(h "),
where the series above converges absolutely.
Remark. The result is still valid for any sequence of values of % of the form

— S”/ 0
S 2a(m+a)’

lIA

o

lIA

L,

the formula above being the same after adding o to Sub,. Although we won’t prove
it here, in fact we believe that the case of # — 0 continuously follows from simple
modifications of our argument.

We will now give an interpretation of the coefficient cy. Let
Qy:={j;E; € [E—ch,E+chl]}.

Assuming E is a regular value of 5# and that almost all points on the energy shell
H#~YE) := X are not periodic, the differentiated Weyl law of [14] says that the
cardinality of this set is

d L
#Qp = =D ff.;.ﬂ_)’: Fo(h—Dy.

Proposition 1.3. Assume that almost all points on the energy shell Xy are not
periodic. Let W, (x s be the Weyl symbol of the operator u— (u, Y3 -V ) (on
a manifold this is in a given coordinate system), that is the Wigner function of
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l,b&i)(y). Then,
h_% 2 ¢ — .
J Weodut = =— (4m)™"2 [ e a(n)a(n — 1) dndi + OR™) - (19)
g

therefore the first term on the right-hand side of (13) is
([o) h@uh)™" [ WE odu" + O3 . (20)
2E

In particular:

o If (x,¢&) is not periodic,

JEQ fd'uL

o If (x,&) € y and v satisfies the assumptions of Theorem 1.2, Iv € R generically
non-zero such that

We . duk .
S (W e YD = #25 x (M +o(fff)>. 1)

W o L 1 1
ZQ (Yo YOI = Q0 x (f—f(—cl;ﬁf— +VvhT2 + o(h‘7)> (22)
JE€L

for k of the form h =

The next result is an immediate consequence of the preceding and shows a lit-
tle more precisely the role of periodic trajectories on the pointwise behavior of
semiclassical measures.

ZW, as before.

Corollary 1.4. o Assume (x,&) is not periodic. Then Ye > 0 there exists a subse-
quence {E, } C Qy of positive density such that, for b small enough,

| dj
(Y ¥])IP < B2 (ilu—fc)dﬂ +s> ) (23)
ul

o Assume (x,&) € y with y an unstable trajectory, and suppose moreover that

32— sin(elTy)
12) (1)

(this is true in some of the Gaussian examples of Sect. 6). Then Ve > 0 there
exists a subsequence {E, } C Qy of positive density such that, for i small enough
and of Bohr-Sommerfeld type,

o [ T Wt b
B Ay(2 (xc) _
| YOI7 2 B2 ( — +2cfduL el . (24)

Q!1Suby [ o= G Ul )y — 1E)dndt =: b > 0

We will now give a coordinate-free interpretation of the integral appearing in
the /" term in (18), VI € Z.
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Consider the symplectic vector space V = T, ¢(T*M); let Mp(V') denote the
metaplectic group of V, double cover of the group of linear symplectic transforma-
tions of V. Choosing a coordinate system near x, we get naturally-induced coordi-
nates of 7"M and therefore linear coordinates (dx,#7) on V. Given a coherent state
1//(‘;) we claim that, intrinsically, the function a(#) should be thought of as a smooth
vector in the metaplectic representation of Mp(V') (see Sect.2). Let p be the Weyl
representation of the Heisenberg group of V. Explicitly, acting on functions of #,dp
is the representation

dp(ox;)(a)(n) = n;a(n) ’s

dp(n, X)) = —iz=a(n). 2>
Then the integral

J‘ ——112,\’5/2 1nx li -

e " (U'a)(n — t&)dt (26)

is the projection of U’a onto the space of tempered distributions f satisfying
dp(E)f) =0,
where )
E=x9) (27)

is the vector tangent to the trajectory at (x, ). Indeed the operator
oo L2 . .
G:FSRY3b— | n— [ TPy —1é)dt | € S (R")
—oQ

is precisely [ p(texp(Z))dt (the integral should be understood in the weak sense).
With this notation, the integral appearing in the /™ term in (18) is

@ %(U'a)), (28)

where the outer parentheses denote the pairing between #(R”) and %/(R").

The Riemannian case. We finish this introduction by observing that the previous
results apply in particular to the large eigenvalue asymptotics of the eigenfunctions
of the Laplacian on a compact Riemannian manifold. Let M be a Riemannian mani-
fold, 4 the (negative) Laplacian on M and 4,,; the eigenvalues and eigenfunctions
of A. Instead of working with #%2, it is customary in the Riemannian context to
work with the square roots of the eigenvalues

Hy =1/ —js

which can be done with trivial modifications to the proof. Pick (x,¢&) € S*M, the
unit cotangent bundle of M, periodic with respect to geodesic flow. Let (r,s), r =
(r1,...,rm—1) be Fermi coordinates in a neighborhood of x, adapted to the geodesic
y through (x,¢). Thus if (r,5,0,0) are the coordinates induced on 7*M, locally
the geodesic y is the parametrized curve {r =0, 0 =0,s =1t 0 = 1}. Let V' be the
tangent space to 7*M at (x, ). The coordinates (r,s,0,0) induce linear coordinates
(0r,9s,1r,m5) on V, and in these coordinates the vector Z(.¢) is (0,...,1,0,...,0)
(1 in the n'™ entry). Recall the interpretation given above of the coefficient (18).
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We were led to consider the operator ¥ = ffooop(exp(tE ))dt mapping Schwartz
functions of the variable n = (#,,#,) to tempered distributional functions of #, where
o is the Weyl representation of the Heisenberg group of V, (25). Since dp(E) = in,
in the present case, the operator ¢ is basically multiplication by the Dirac delta of
Nss

G(a)(n) = 2md(ns)aln) .
Therefore, our main theorem (in the periodic case) takes on the following form:

Theorem 1.5. Assume the geodesic through (x, &) is periodic, of primitive length L.
Let y be a smooth cut-off function in the Fermi coordinate chart. Then, for every
test function ¢ with Fourier transform in C§°(R), and every Schwartz function
a € F(R"),

S o(, — O | G s)e™a(Ver, Vas)urs)drds|’
J

= 2872275 Q2r) A S G(IL)e ™ [ a(n, 0)(U'a) (. 0)dn,
leZ

+0(1i7) (29)

as T — oo (one has in fact a full asymptotic expansion in powers of /7).

We won’t bother to formally state the formula regarding

> ” \//j(r,s)e’“d(\/%r, \/%S)X(r,s)dm'siz

Jv;“h”'rl sc

in case y is unstable.

Formula (29) simplifies for certain choices of test functions @, as we will now
see. Recall that the operator U is the metaplectic quantization of the differential
of geodesic flow at (x,&), at time L. Such a differential leaves invariant both =
and the radial direction in 7*M. Those two directions span a symplectic subspace
Vi of V. Let V, be the symplectic orthogonal to V). Then the differential of the
flow preserves this decomposition of V; it is the identity on V; and the linearized
Poincaré map on V,. Accordingly, it is natural to consider Schwartz functions a of
the form

a(n) = e Pa(ny) . (30)
On such an a, the operator U has the form
—n3/2

Ua(n) = e " Up(ai Yy ), 3

where Up is the metaplectic quantization of the linearized Poincaré map of y. On
such amplitudes, our formula becomes

ol —olf Ui 9)e Dy (/o yy(r, s)drds
J

= 2215 (2n) A S G(IL)e L
leZ

x [ a(n X Ubay X g, + O 1) (32)
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This can be simplified further. Recall that the Fourier transform ¢ is the metaplectic
quantization of a certain element J of the metaplectic group such that J? = —/. Let

M= gUp g~ ", (33)

This is nothing but the metaplectic quantization of the Poincaré map of y on L?
functions of the variable dr. Since # is unitary, we have:

Corollary 1.6. In the Riemannian context described above, for every Schwartz
function b€ S(R""') and every test function ¢ with Fourier transform in
Ci°(R), we have

S oy — O r.9)e s Pb(ar)y(r,s)drds]?
J

= 18722175 Q2n) S G(ILYe ™ [ B(r )M (b)(r)dr + O(i ") |
IeZ

Although we won’t go into details here, we mention that the operator .# can
be computed in terms of the transverse Jacobi fields of y.

The paper is organized as follows: Sects.2 and 3 deal with propagation of
coherent states, Sect.4 contains the proof of Theorems 1.1 and 1.2 and Sect. 5 the
proof of additional results. In Sect. 6 we treat the case of Gaussian symbols and
show that the elliptic case gives rise to “Poisson formulae.” We conclude in Sect. 7
by a discussion of the results.

2. Coherent States and Hermite Distributions

Let § a Riemannian manifold. In [1] (see also [8]) Boutet de Monvel and Guillemin
associate to any conic isotropic manifold I' in 7*S a family of distributions on S
whose wave-front sets are included in I'. These distributions have symbols that
are symplectic spinors on I'. We will concentrate in this paper in the case where
S =M x R, with M an n-dimensional Riemannian manifold (M might be R") and
I' is one dimensional. We will work on a local system of coordinates, but, by the
theory of Hermite distributions, the main results are independent of any choice of
coordinates.

We begin by briefly recalling the definition of Hermite distributions as it applies
to the present setting. Let a(x,7,17) € C°(M x R x R") compactly supported in
x and rapidly decreasing in # admitting, as t — oo, an asymptotic expansion of the
following form:

a(x, 7, 1) ~ Zot‘f/zaxx,n), (34)
j:

where Vj the function g; is in the class Co#(R” x IR") defined as follows:

Definition 2.1. We’ll denote by CoF(R™ x IR") the set of all smooth functions
a(x,n) that are compactly supported in x and satisfy: VK, M, N non-negative inte-
gers ACxyy > 0 such that

Vixn) € R" x R [n*0dyal < Craaw - (35)

(For the precise meaning of (34) see [1] Sect. 3.)
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For (x,{,a) € T*(M) x R, let I, to be the distribution defined locally by the
oscillatory integral

FEa(n0) = [ @m¥dieOregnyg (y,17> dndz.  (36)
R"XR*

By definition this is a Hermite distribution associated to

I={0,y;t,p); 0=—-a+y-&y=xp=1é}. (37)

In particular:

Proposition 2.2. The wave front of I, , is contained in I

To a,x,¢ we associate as in [14] the following family of functions on M (ac-

tually the inverse Fourier transform in 0 of /¢ . ):
=%

Vo) = @my et (570 J €™ (y,f 7) dn. (38)

Definition 2.3. The family {y(, :}. is called a coherent state or wave packet
centered at (x,&) and of symbol a.

Each yp . is a compactly supported C*> function. As we showed in [14], the
previous proposition implies the following:
Proposition 2.4. The frequency set (or micro-support) of Y, - is {(x,&)}.

Coherent states are localized in space around x to the extent that, to leading
order, the y dependence of the amplitude a can be suppressed. This fact will be very
useful in what follows, and it reconciles the definition above with the preliminary
one introduced in Sect. 1:

Propeosition 2.5. Let a(y,t,n) be a Hermite amplitude satisfying (34). Let p be
any C§° function identically one near the origin in R". Then

Yo = ply — )@y he (570 [ gy oy + 0G0,

IR"
(39)
uniformly on compact sets.

Proof. By the estimates (34), it is easy to see that one has (39) with the right-hand
side replaced by

Hp(y — e (5 79) [ e Mag(y,n/v/T)dn . (40)
]R"

To go from here to (39), we do a Taylor expansion of @ in y near y =x and we
integrate by parts. Specifically, write

ao(y,n) = ao(x, ) + i(yj —x)g, ().
p2
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where the g; are smooth functions. We must estimate, Vj,

L(y,t) = [V ™y, — x;)g,(y,n//T)dn .

Evidently
) .y, O
i=ife X)"%(gj(y,'?/\/%))d’?
J
TR
VT on;
which is clearly O(z""~1/?) uniformly on compacts. O

Observation. If b is the inverse Fourier transform of the Schwartz function # +—
ap(x,7), then in a neighborhood of x the coherent state above equals

U (v) = Qryeip(y — e F ) b(Va(y —x)) mod 0412y (41)

Corollary 2.6.

Wl Fory = @a) " llao(x, < Mjage, + OGRT"H). (42)
Moreover, if (x,&)+(x', &),
('/’(‘;,;’)"/’(LI;’,&’))L2(M) = O(1*), (43)
and for any compact Q containing x
(Wi.ey W&ig))L?(M) - g{mw&i«f)(y)dy = 0(h>). (44)

We will omit the straightforward proof.

3. Semi-Classical Propagation of Coherent States

Let
Woo () = @r)y~E Q@uh) i p(y — x)e PV [ (V) dn  (45)

be a coherent state at (x,¢). The next theorem shows how such a state evolves
under the Schrédinger equation. Let

L L L
Hy = lz;)ﬁlpz(x,Dx), H(x,E) =Y P)(x, &), Hsup(x, &) = [}:Pl_l(x,é) (46)
= 1=0 =0

and S(¢) be as in Sect. 1. S(¢) is the matrix of the differential of the Hamilton flow
in coordinates. The associated linear transformation is symplectic and maps the
tangent vector to the trajectory at (x(0),£(0)) to the one at (x(z),&(¢)). Since S(0)
is the identity, one can naturally lift the S(¢) to the metaplectic group, Mp(IR") in a
continuous way, starting at the identity. We will continue to denote the lift by S(¢).
Let M(S(¢)) be the family of unitary operators image of S(¢) by the metaplectic
representation.
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The following result shows that after evolution a coherent state remains a co-
herent state and gives the leading term of the symbol.

Theorem 3.1. Under the previous assumptions, ¥t € R there exists a symbol a(t)
of the form (34) depending smoothly in t and such that

_ —1 - 7 t o
e 1h tHﬁ(l/J(‘;’é)) — ez(/(t)/h+f0..7fsub(x(s),g(s))ds)‘//(L;((tt))’é(t)) mod (hOO) (47)

uniformly one each compact in (t,x)-space. Here

()= [ <5’é ;xé - %”(x,é)) dt.
0

Moreover, the leading term of a evolves according to
ao(t) = M(S(#))(aoli=0) - (48)

The proof of this theorem will be based on the theorem of propagation of
Hermite distributions by Fourier integral operators, namely Theorem 7.5 in [1]. We
will consider the distribution on M x S' whose Fourier coefficients are precisely
the Lh.s. of Theorem 3.1, with & = 1/(m + ¢). This distribution satisfies a certain
equation, which we analyze. Then we will show that the solution of this equation is
mircolocally equal, in the region of interest, to a Hermite distribution whose Fourier
coeflicients are given by the right-hand side of the theorem. Finally we will identify
the symbol of this Hermite distribution. These ideas have been used in the compact
case in [14], but we give an independent proof.

To Hj we associate the following family of operators on M x S':

L
A= D "Py(x,D,), (49)
=0

where D = Dy + ¢, ¢ € [0,1] a parameter. 4 is a differential operator of order L.
We break the proof in a series of lemmas. The first one is straightforward:

Lemma 3.2. Let

Yi(y) = e (gl o W) (50)
and let
u(t, y,0) = ; YL (v). (51)

Then u(t) is a distribution that satisfies
~D*'Du = Au (52)

with initial condition
—Ja
U|i=0 = Ix’é’% . (53)

Next, we use (52,53) to control the wave-front set of u.
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Lemma 3.3. Let u be a distribution on R x M x S' satisfying (52) and (53). Then
its wave-front set is contained in the set

x?é + £(t), e = —1H(x, f/r)} .

(54)
Proof. Observing that u satisfies the differential equation (D*~'D, 4+ 4)(u) = 0, one
knows that the wave-front set of u is contained in the characteristic variety of the
operator

{(t, v,0;e,m,1),t%0, (y,1n/t) = ¢i(x,&/7), 0 =

Q:=D"'D,+ 4,

which is the set
L
Char (Q) = {(t,y,@; ent); e == rL—IP?(y,n)} . (55)
=0

Observe that

Char (Q) n {T*O} = {(t’ Y, 0’ E,Waf); 8/7 = —}f(ya }’[/‘L')} . (56)

Since the principal symbol gy of O and the function t Poisson commute, it follows
from (56) that the null-bicharacteristic strips of Q in the region {t=40} are the
same as the trajectories of the Hamilton flow of the function F = #(y,n/7) + ¢/t.
We also know that the wave-front set of u is invariant under the Hamilton flow
of the principal symbol of Q on T*(M x S'). In the region {t#0} the Hamilton
flow of F is, up to a rescaling, the Hamilton flow of . From this, using the fact
that the initial condition has wave-front in the set I' of (37) and the calculus of
wave-front sets, one can show that the wave-front set of u is in fact contained in
(54). O

Lemma 3.4. Let
T = {6ty 0;6m,7) € TX(M x S); t40, g/t = —A#(y,n/0)} .

Then there exists a conic neighborhood of S, Q contained in T*(R x M x
SY\{t#0}, and a classical, first-order pseudodifferential operator on M x S',B,

such that Q = D'"'D, — D!='B and Q are microlocally equal on Q. Moreover
[B,Dy] = 0.

Proof. Tt suffices to construct a first order pseudodifferential operator on M x S!
commuting with Dy and such that 4 and D*~!B are microlocally equal in a neigh-
borhood of the set

{(3,0;m,7) € T*(M x S"); T40, #(y,n/1) = E} . O

The following lemma is truly the heart of the proof.

Lemma 3.5. Let u(t) a solution of (52) and (53). Then there exists a Hermite
distribution If, -, ,(t) such that:

(u(t) — If(z),g(t),/(z)(t)) €C™. (57)

Here (x(1),E4(t)) = ¢u(x, &) is the trajectory of (x,&) under the Hamilton flow of
H(x,&) and ((t) is as in Theorem 3.1.
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Proof. On one hand, by the previous lemmas,

g:=0@u)e C™.

Therefore, the distribution u can also be described as the solution of the pseudo-
differential equation

Ow)=g, (58)
Ui =19, e . (59)

On the other hand, one can construct a Fourier integral operator U(¢) solving:

D,U(t) = BU(t)mod C*,
U(0) = identity , (60)

even case M is non-compact, if in the equations above we restrict |¢| to be bounded
and we restrict U(z) to act on functions supported in a compact set (see for example
[17]). In terms of such U,

u(t)=ftU(l‘—S)(f)a’S+ U(r) (1"&&) ; (61)
0 o7

where f is a smooth function satisfying
D"lf=yg. (62)

Such an f indeed exists; observe that therefore the first summand on the right-hand
side of (61) is smooth.

To conclude the proof of the lemma we will use the theorem of propagation of
Hermite distributions through Fourier integral operators.

1% . is a Hermite distribution associated to I' = {(0 = —%, y=x;1, p = 1¢)} C
PR

©2

:Y;. U(t) is a Fourier integral operator associated to the flow generated by the
principal symbol of B, which equals #(x,¢/t) in a neighborhood of I'. An easy
calculation of the Hamilton equations (see [14] for details) shows that this flow
maps I' into I'(¢) = {(0 = —% +/(t),y = x(t);7, p = ©&(1))} By the already cited
theorem of propagation of [1] U(t)(I”V -) 1s an Hermite distribution associated

to I'(¢). Since by (61) u(t) is equal to 1t modulo a smooth function, the proof is
finished. (|

To finish the proof of the first part of the theorem just note that by the previous
lemma the differences

¢ in(),al)
Yo — N e

(with = 1,2,...) are the Fourier coefficients in 0 of a smooth function of M x S';
therefore they are rapidly decreasing in 7 uniformly on x in compacts. This proves
the first part of the lemma for values of % along the values &2 = 1/(m+c¢), m =
1,2,.... It is clear however that the estimates must be uniform in ¢, and therefore
we get the desired conclusion as i — 0 continuously.
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Finally, we sketch the computation of the principal symbol. A straightforward

computation shows that

Hybfe) = Vo (1 +00)
with
d=HxEa+ AV H Dy~ V:H - na

+o! (é(Dn,n)Hess H (. E)Dyom)a + %Ax@)a) :
where
(Dy,n)Hess A (x,C)(Dy,1)

no A PH A
; k:om 31;1,( + m(ﬂank + MeDy, ) + 2711k

0&;éx
is the Weyl quantification of the Hessian of 5#. Moreover,

. (O [§ Haup(x(),E())ds ) g, alt)
T D,e’( 0 Fsub )‘p(x(t),cf(t))

= O+ stuh(xu),é(s))ds)l/,?’zr; oy (1 0G2))
x(1),C

with

a(t) = H(x,Ea— 1_1/2(§.D,1 —xn)a + 7 Nd + Hup(x, E)a) .

Identifying term by term gives:
. i
ap = E(D,,,n)Hess H(x, YDy, n)ao

We want to prove that a solution of this equation is given by
ao(t) = M(S(1))ao(0) -
We can easily compute ditM (S(1)), [13]:
M(S(t + 81)) = M(S(t) + 6tS(t) + O(5t%))
= M((1 + 6tSS™HS) + 0O(5¢%)
= M(1 + 8tSS™HM(S(t)) + O(5%) .

(63)

(64)

(65)

(66)

(67)

Now remark that 1+ 5zSS~! is the flow of Hamiltonian (x, &)\JSS~!(x, ¢) modulo

ot*. This implies that

M(1 + 8t8571) = @SS~ O 4 0(572)

SO
d .
T MES@0) = {Dy,m) JSSTHDy MM (S(1)) -

Identifying once more gives the equation for S.

(68)

(69)
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Remark. Tt is possible to get the same result directly from the symbolic properties of
Hermite distributions. Indeed the family of Hermite distributions constructed before
can be considered, taking ¢ as a variable, as a Hermite distribution on R x M x § !
associated with the flow-out of I" by the principal symbol of the operator (Dg‘lD, -
A). This new Hermite distribution is in the kernel of the operator (Ds”lD, —A)
whose symbol gives rise to a flow tangent to A. The transport equation, see [1],
gives exactly the result above. We leave this proof to another paper where the case
of a general Hermite distribution will be considered.

The Riemannian Case. For the Riemannian case discussed at the end of Sect. 1
one also needs a theorem of propagation of wave packets, which is actually easier
to prove; we will be sketchy. Let M be a compact Riemannian manifold, and 4
the (negative) Laplacian on M. The definition of coherent states in the Riemannian
case is the same as that of Sect. 2. Consider the operator on M x S’

P:=+—-4+D>.
This is of course a standard first-order YDO, and the required theorem of prop-

agation of wave packets is a consequence of the result that the Fourier integral
operator, exp(it P), maps Hermite distributions of Hermite distributions.

4. Proof of Theorems 1.1 and 1.2

Fix (x,&) € T*M, not in classical equilibrium, and a € #(IR"). Denoting #~! by
7, we have:

E(h)—E ! i
29 <%> (Wl = Ef‘f’(—t)(‘//f’x,cf)’e~m(H—E)‘/’?X»<?>)dt

J

1 . <1 i (Cfxgxf —]["(x,cf)+E) ds-+ [t Hrp(x(s ),é(s))ds)
= Ej p(—1)e

X (Ul ey W )dt + O(h™) | (70)

For simplicity we will take a(t) = a(t, y,n) to be the leading term in the expansion
(34) of the symbol of Theorem 3.1, and therefore it evolves according to Eq. (48);
higher order terms are treated identically.

By Corollary 2.5 we know that (¢, -,/ (v}, zy) is O(h%) if (x, &) =+ (x(2), &(1)),
so in (70) it is enough to integrate over intervals around the periods [T, of vy if (x, &)
is periodic and only around zero if it is not. The analysis is therefore localized to a
neighborhood of x, which enables us to work in a fixed local coordinate system. Let
B(t) be a cut-off function around zero, and let f;(¢) = (¢t — IT,)p(—t) (only the
term / = 0 arises in the non-periodic case). Since #(x,{) = E, we must estimate
the integrals

T S5 8 Ao (x(5),E5))ds

Iy = [ filt)ye (T Wi ¥imand - (D
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Lemma 4.1. Let

i(r K G +f6 iél,b(x(s),é(s))ds)
gt = T,) = fi)ye \ " ° Wi, <>,¢Z’§L)c(m
be the integrand in (71). Then, modulo O(z=°°),g,(t) is of the form

n/2(2n)— n tlrS +ilSub, —11féxéds+irx(cf(t)—cf)+if6 stuh(x(s),é(s))dsa[(t \/%t)
with ay(t,u) € Co.#(IR x R) (the class of functions defined in (35)) and such that
0(0,u) = G(ITy) [ a(y)a'™ (y — wi(0))dy . (72)

Proof. By Proposition 2.4 one can get rid of the cutoffs p in (lp;’x, 5)"/’?;0),5(1)))’
since we compute o mod t~°°. This gives, after some manipulations:

w(t,\/1t) = 2rn) "2 B)GUT, + 1)
X [eVIEO=O=nO=N gy G Tt (n)dydy . (73)
So

o(t,u) = 2m) "2 BOGUT, + 1)

g(t) ¢ x(t)—x .
x Jer b T g v (74)

By the stationary phase lemma, since (X, &)=0 one can see that « decreases rapidly
with u. The same argument gives the result for the derivatives of «, and the desired
uniformity as well. d

We have
I[ ~ 2—n/2(2n)—% " eil(rS«,--O—Sub;)fe—ir /6x§ds+i1x(g’(t)—cf)+z /6 }i’sub(x(s),i(s))dsal(t’ \/?t)dt )

This integral will be estimated thanks to the following proposition:
Proposition 4.2. Let o € Co. ¥ (R x R) and & € C*°(R) satisfying:

®(0) =0 = &'(0) (75)
Let »
I(z) := [ Do(t,\/ct)dt . (76)
Then:
I(t) ~ T 23 er 2 (77)
j=0
Moreover,
co= [T a(0,0)dt . (78)

Proof. By the assumptions on @ there exists a ¥ € Cg°(IR) such that

d(1) = *¥(1)
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in the support of ¢ +— a(t,u), Yu € IR. Substituting into /(t) and making a dilation
s = /Tt we get:

I(r) = 1712 [ UV (%,s) ds . (79)
Since « is rapidly decreasing in the second variable, uniformly with respect to the

first, the integrand above is bounded by, say, the integrable function (s> + 1)~!
uniformly in 7. Therefore

. ) - i
lim ¢"27(z) = [ " Do(0,5)ds = cq .
T—00
To obtain the asymptotic expansion observe that in fact the function of o

9(0) = [ V67 o(sq,5) ds (80)

is smooth in a neighborhood of ¢ = 0: since « is Schwartz in the second variable
uniformly with respect to the first every derivative with respect to ¢ of the integrand
in (80) is bounded by an integrable function uniformly in ¢. The expansion (77)
is nothing but the Taylor expansion of g(¢) around ¢ = 0. ]

Remark. 1f 0 is not a critical point of @, then one can easily show that /(1) above
is O(t™°).
We now return to /;. Thanks to Lemma 4.1, I, can be rewritten as:

S-
, " il —;+S b;)
[[ — 2~/1/2(2n)—§2—,cne ( AU
% j‘eird)(t)el I§ //_\.,,h(.\'(s),Lf(s))dsa[(t, \/ft)a’t +0(1™™) (81)
with
[ .
D(1) = — [x(s) « &(s)ds +x - (&) =€) (82)
0
We obviously have @'(1) = (x — x(t)) - EIf (x,¢) is not a periodic point, then as
mentioned we only need to consider the term / = 0, and therefore the asymptotic

expansion of Theorem 1, follows from Proposition 4.2.
If (x,¢) is periodic,

VieZ ®(T.)=0=d(T.),

and .
Q'(IT.)=—x-¢.

This means that each integral /;(t) has, by Proposition 4.2, an asymptotic expansion
of the form:

; 1/(2+Sub~) s
L~27P2r)y Te \T Tyl (83)
=0
with 7
co = [e T 0)(0,1)dt . (84)

Plugging (72) in (84) and summing over / gives the existence of (17) and the
leading term (18).
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Tauberian Arguments. To prove (15) and (19) we will use the following Tauberian
lemma proved in [2] (see also [3]). Consider an expression of the following form:

Ej(h) - E)

Teale) = 2wi(h)e ( 5 (85)
J

It will be useful to introduce the following

Notation. We will denote by Z# the set of all Schwartz functions on the line with
compactly supported Fourier transform.
The Tauberian lemma in question is:

Theorem 4.3. (See [2].) Suppose w;(h), Ej(h),E and T}’ itself satisfy all of the
following:

1. There exists a positive function w(h), defined on an interval (0,h), and a
Sfunctional Fy on R, such that for all ¢ € X,

Tga(e) = Zo(@)o(h) + o(a(h)), A —0 (86)

(both #y and ® depending on E, in general).
2. If f € R is non-negative, identically one near the origin and of mass one,
and if one defines Yu > 0,

fulr) = f(r/w)

(so that {f,} is an approximate identity i.e. each f, is positive, of mass one, and
Ju(r) — 0(r) as u — 0), then ¥Yc > 0 the limit

g(c) = }111)1})9—0(/{# * X[—c,c])

exists. Here yj_. . is the characteristic function of the interval [—c,c]. Moreover,
& is continuous on an interval of the form (0,¢).

3. There exists a k € Z such that B* = O(w(h)), h — 0.

4. There exists an € > 0 such that for every ¢ there is a constant C, such
that for all E' € [E — €,E + €]

| T (@) = Cpax(R) (87)
(rough uniformity in E).
5. The wi(k) are non-negative and bounded: there exists a constant C = 0
such that for all j and all h, 0 < A < hg:
0=wih) =C. (88)

6. The eigenvalues E;(h) satisfy the following rough estimate: for each C,
there exist constants C,, Ny such that Vk

#{j 1 Eh) £ C) +kh} £ (™K . (89)
Define the weighted counting function by

Nl?:c(h) = Z Wj(h) > (90)
lx,(R)| =c
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where "
Eh)—-E
xj(h) = %——— . On
Then the conclusion is: V¢ > 0,
Ny (h) = Z(c)o(h) + o(w(h)), h—0. (92)

In the present context, we wish to take
;= VAW )P (93)
With the shown normalization, property (88) is ensured. The function w is
w(h) =", (%94)

so that hypothesis 3 is automatically satisfied, while the functional %, is given by
Theorems 1.1 and 1.2 so that property (86) is true. The rough estimate on the
eigenvalues (89) is certainly true in this case, see e.g. [2]. We need to verify the
remaining assumptions 2 and 4 of the Tauberian lemma above.

Assumption 2:

— if (x, &) is not periodic, then

+oo Qe e .
Fole)= [ o(t)dt[e™" "™ a(n)a(n — t&)dndt , (95)

that is %, is proportional to Lebesgue measure on IR. Thus assumption 2 is trivially
satisfied, with #(c) = 2c.

— if (x, &) is periodic, let us only consider values of % of the form % = 2%'; Then
we must prove that the functional

Fo(p) = ;WT,)fe—"zf‘-”e"'"*&‘@(v’a>(n — t)dndt (96)

has the required property, and the limit function #(c) is continuous. This is true
under a hypothesis of instability; this is an easy consequence of the following:

Lemma 4.4. Let us suppose that the differential d(¢r)y,e) of the classical flow
at time T, and at (x,&) is diagonalizable over C, and has r elliptic directions
of angles 0;,j =1,...,r and n— 1 —r hyperbolic directions of Liapunov angles
e, k=1,...,n—1—r, withr < n—1. Let u:= sup,piy. Then

|[e™ Py (U a)(n — tE)dndt] < Ce V. 97)

Before we prove the lemma let us mention that it easily implies the required
continuity property of the functional .

Proof. Recall the interpretation of the right-hand side of (97) as a matrix coeflicient
of U = M(S(T. «,))' in the metaplectic representation. Let (e, /) € R", we define the
Weyl operators as:

Z(e, fa(n) = e Fela(n — ). (98)
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Then we have to estimate:
| [(a, U'Z(t5,té)a)dt]| .

Under the stated assumptions one can find a linear symplectic transformation R such
that

1 0 0 o 0 0
0 Diag(cos(0,)) 0 0 Diag(—sin(0,)) 0
1 10 0 Diag(e #) 0 0 0
RTES(TOR =1 0 0 1 0 0
0 Diag(sin(0,)) 0 0  Diag(cos(0;)) 0
0 0 0 0 0 Diag(et)
(99)

with « € R. Tt is therefore sufficient to prove the estimate for the metaplectic quan-
tization of the above matrix. More precisely, let G := R™'S(T,)R and b = b(n,,
Ns--->MNn—1), We have:

| (@, M(SUT)Z(tx,1)a) | = | (b, M(GHZ((1,0,...,00)b)| . (100)
By (99) one sees that M(G')Z((1,0,...,0)) = UpUy, ---Uy,_,» where the Uy, are

unitary operators acting on the variable #,. By the Cauchy—Schwartz inequality one
easily deduces that

| (b, M(GHZ(1,0,....,0)b)| < Ce % fu(ne n)dn, . (101)

where 1= p, = sup{p} and

u(nj,e”"n;) =/ [1b(n) [*dn

X \/f|b(no,m,...,e“’/‘nj,...)[2 dno...dn—1dnr ... dn,— .

(102)
With the notation
I
¥ = Ce_%fu(nj,e_l“nj)dnj , (103)
let us first suppose / positive. Then
In
Jlim e?r = C[u(n;,0)dn, , (104)
sor =’ e_% for / large enough. If / is negative then note that
ol
rp=Ce? [u(eZn;,n,)dn, (105)

and apply the same argument. |
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Finally, we need to establish the rough uniformity in £. To do that we must
ask the patient reader to go over again the proof of the asymptotic expansions of
Theorems 1.1 and 1.2. By (70) and Lemma 4.1, instead of the integral of Proposition
4.2 we must estimate integrals of the form

Iy(t) = [ ™™gt \/at)dt (106)

where 4 = E’ — E ranges in a neighborhood of zero and @ is the same phase as
before. We have to show that

Iy(x) = O(x'%) (107)

uniformly in 4. Proceeding exactly as in the proof of Proposition 4.2 we are led to
the expression

Ix(7) = t‘”zfe’sz VIV SV g (5/\/T, 8)ds

The integral is clearly bounded in 7 uniformly in 4, again by the rapid decrease of
o in the second variable. We note that if 40 the integral is O(t~).

5. Proof of the Other Results

The Weyl symbol of the operator ({, :y, * W(, ¢ Is:

Wha (@.p)= [e Ul o~y o0+ y2)dy.  (108)
Lemma 5.1.
—x p-¢
Whe (g, p) = (2nh) " (4m) "W} <q i A ) . 109
(@ p) = @rb) T (S E (109)

The proof is immediate.
Let us define #, := W!. We want next to compute

[Wia (q.p)du (g, p) (110)
(<)

with dut(q, p) = %}74" the Liouville measure (d4, , denotes the surface measure
on the energy shell X = #~!(E) induced by the Euclidean metric in the p,q

coordinates). Let us define the symplectic Fourier transform ”f/fa of ¥, through the
formula

Wi(q, p) = (27r)”"f%(u,v)e"(“q“”p) dudv . (111)
Then, with t = 1/A.

W (@.pMia.p) = (5-) @0

X f%(u, v)e_i(“ﬁ(q—x)—l’\/?(p—é)) dAg,p dudv .

VA
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This integral is easily evaluated by the stationary phase formula; the phase is sta-
tionary for

g=x, p=2¢& (uv)= M~V HV,H)=IEx) (112)

with A real. This gives:
1 L 18 19N
JWie (@ p)ut(g, p) = 2 @n)~" [ WL J)di+ 0™ (113)

It is well known (see e.g. [7]) that the symplectic Fourier transform of a Wigner
function of the type (108) satisfies

Walu,v) = (a,Z(u,v)a), (114)
where
Z(v,w)a(y) = e ™2 a(y —u). (115)

This gives immediately (as a direct computation also shows) that

B3 —nf2 [ iP5 i : -
JWhe (@ p)ut = S (4m) ™" [ 5 ™ alia(n — tE)dndt + OG™ ).

The rest of the proposition is clearly obtained from Theorem 1.2.

The proof of Corollary 1.4 is immediate by contradiction. The proof of Theorem
1.5 is obtained by taking Sy = %iv/—4; the action of y by homogeneity of the
Hamiltonian reduces to the period (if £ = 1).

6. The Gaussian Case and Related Poisson Formulas

In this section we will show that the leading coefficient of the asymptotic expansion
of

>0

J

E(h)—E
(255 o P

given by Theorem 1.3 can be explicitly computed for certain Gaussian symbols a.
We first need the lemma:

Lemma 6.1. If y has an infinitesimal Poincaré section invariant by the linearized
flow and if the Poincaré mapping of y has r elliptic directions of angles 0; and
n— 1 —r hyperbolic ones of Liapunov exponent w, then one can find a symplectic
mapping R such that R='S(T,)R is the matrix

0 0 u 0 0
0 Diag(cos(d,)) 0 0 Diag(—sin(0;)) 0
0 0 Diag(e ) 0 0 0
0 0 0 1 0 0 (116)
0 Diag(sin(6;)) 0 0  Diag(cos(6;)) 0
0 0 0 0 0 Diag(e' )
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Let us define the Schwartz function af := M(R)ao, where ao(n) = (41)~"*e=""/2.

Lemma 6.2. a® is a Gaussian. More precisely, let us write R = (A B ) Then:

Cc D
1 ", 1
R _ — 5 (D—1C)A+iB) '
a = e 2 . 117
() (4m)="/4\/det(A + iB) (117)
Proof. See [13] p. 247, in particular for the definition of the square root. (|

Proposition 6.3. Under the same hypothesis as in Theorem 1.2,

Eh)—-E >
o (L5 ) 0 ~ it )
j =
with
1
Ry (4n)~ 2 zI(T+Sub +0; _721——1 j> .
O e |2 -

VI cosh(l)

(119)
where g, is the Maslov index of y. In particular if (x, &) is periodic with a Poincaré
mapping fully elliptic of angles 0;, j=1...n— 1.

Ej(h) - E
Z(P <—> |(lp(xc)a¢h)|2
]
1
(4nh)"2 1 S, 1=l 1
= — {k2n— ==+ Sub, + 0, + = >0, +O(hz).
TGO\ T potSuby ot g 20 )
(120)
Proof. This is a straightforward computation using, e.g., [13] p.249. In particular

the presence of the Maslov index ¢, comes from the square root already mentioned,
as explained in [13] p. 239. O

Remark. One can easily check that if we take a symbol aﬁ = M(R)a,,, where

am(n) = Hyu(n)e™" % with H,, m € N"~', a Hermite polynomial, one gets in the
elliptic case the following result:

Ei(h
Z(P (“'S—‘)‘—) |(lﬁ(r”é)s l//h)lz
J
_ (475}7’)_% ST In—l
= WTMZI;(,D <<k2n 3 + Sub, + a, + > m;0; + Ej; 9}) /T>
+O(h?).
(121)

From this the computation for an arbitrary symbol a follows, by expanding the
symbol on the Hermite basis.
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7. Discussion of the Results

Our main theorems describe the weak asymptotics for small # of the weighted
spectral measure

E h - E am
plAi) =30 (%— - z) Wy (122)
J

on the class # of Schwartz functions with compactly supported Fourier transform.
Observe that the construction of p is covariant as (x, &) moves along the trajectory,
7, of the Hamilton flow of s, in the sense that there is a symbol a(¢) such that

Prinn(2) = PLe(A).
where ao(t) is the image of ap by the metaplectic quantization of the differential

of the flow d(¢;)r¢). Accordingly, the main properties of Plre) are related to the
mechanical properties of . We wish here to explore this relationship, mainly through
the Poisson-type formulae of the previous section.

In order to simplify the formulae a little we will suppose in this section that
H sy = 0 (which is the case for example for a classical Schrodinger operator, Hy =
—h2A4 4 V). The formulae in the case #,;,+0 can be easily recovered.?

The fully elliptic case. We will see that in the fully elliptic case the weighted
spectral measure is asymptotic to an analogous measure constructed from the quasi-
modes associated with y. Recall (see [8,4, 18, 15]) that one can construct quasimodes
associated to any elliptic closed trajectory, to first order. The construction can be
summarized as follows. Let y be an elliptic trajectory of energy £ and let (x, &) € y.
To (x,¢) and a symbol a we associate the vector

p T ll(z)—Et a(t)
P, = Cof R (RUETCLE (123)
where a(t) = M(S(¢))(a). By Theorem 3.1 we have that for some o’

i il(t)—E: I(t)—Et ’

hOe ™ T W) = Ha = EXE™ T Y0 c0) + Ve OB . (124)
From this we get that

T I(t)—Et
(Hy — E)®° = i { N G w(‘;g;,é([))) + O(#?)

. ,i a(T, a
= if <e P - w(x,5)> +O(H"?). (125)
Therefore (Hy — E)®¢ = O(h*?) provided that:

i) M(S(T,))ao = e*ay, and
i) A= % + 2nk for some integer k.

Here ay is the leading term of a and §, the action of y. A solution to this problem is
precisely given by a = af, m € Z", defined in the preceding section. Moreover such

3 We will also assume for simplicity that ¢ =0 in (116)
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an aj gives A =g, + Y.m;0; + 13°0;, so (ii) is nothing but the Bohr-Sommerfeld
condition (see [18]):

S, = (an + > m;0; + o, + %Zﬁj) h. (126)

The computation of the constant C shows that if @7 is normalized one has:

o—

WL (4nh)”

AR Eag \ 12 , 1
(W g &) = ——T/|V%(x’é)|5mm +O(h?). (127)

Let us suppose now that y is non-degenerate on 2z, so it belongs to a family {y;}
of elliptic trajectories indexed by their action, s, where s ranges in a neighborhood
of S,. Let E(s) and T(s) denote the energy and the period of y,. Then the energies
of the quasi-modes associated with this family are

&hm =E<<2nk+2(m,~+%> 0,+ox,> h) . (128)

Moreover it is well-known that
dE(s) 1
ds — T(s)’

(129)
Therefore, there is a smooth function v(s) such that

gm _f = Tl((an + e = 8)) + (27t + )b — S, W27k + cu)hi — S,)
7
(130)
where ¢, := Y (m; + 1)0; + 6,. Let us define the numbers E&'Z by the equation

EEm)—E 1 1 S
o h_:i<2nk+2mj0j+ay+520j~?_z->. (131)

Then (130) shows that, Ve > 0, as i — 0 and for k’s such that [2nkA — S,| < ch,
one has

& = Egy + O(h?). (132)
In other words, in a neighborhood of y one can find quasi-modes ¥}’ and energies
E&'Z belonging to an interval of size # around E satisfying

HyW} = Egy Wy + O(h?) (133)

for large k(|2nkh — S,| < ch). On the other hand, the right-hand side of (131) is
precisely the argument of ¢ in the right-hand side of (121). Taking into account
(127) we can summarize as follows:

Proposition 7.1. Let y be elliptic and let Egﬁ’"l(h) defined by (131). Then, as
Sfunctionals on the class # defined in Sect. 4,

R . Ek’ml(h) - F R m m
)= 0 | o A) R, o )P+ T, (134)
k,m! ’
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k,m

where T is O(h%) in the weak topology. Moreover, the EQM(h) are asymptotic to
the energies of the quasi-modes ®°® in the sense of (132).

Remark. One also has a similar result for the weighted spectral measure for an
arbitrary symbol a, by decomposing a on the Hermite basis, in which case the
summation over m’ would be non-trivial.

The unstable case. Let us turn now to the case where y is unstable.

Proposition 7.2. If y is fully hyperbolic then on the class R the weighted spectral
measure p)‘iRc (where a® is the Gaussian (117)) is, modulo h3 (also in the weak
topology), Lebesgue-continuous of the form g(1)dA, where

NG < P A N »
g(A) = E|V%(x,éf)[§f <T (an 5 -l—a,) A) (135)
with o
h()) = — [ ¢ dt. (136)

V2 T cosh(uen)

Proof. By the results of Sect. 6 in this case the coefficient dy has the form:

(4m)"2 1

= |3
VACO\T T coshtine)

By the Poisson summation formula, and using the fact that the Fourier transform
of a product is a convolution, one gets the result. d

oUT) | . (137)

Remark. The formula above is, for small Liapunov exponents, a kind of “smeared-
out Poisson formula.” As shown by (136), A(4) — (1) as all the Liapunov ex-
ponents yy; tend to 0. This shows that g(/) has peaks around the lattice %(27‘51{ —

S; + o,) if y is not too unstable. _
We would like to finish with two informal remarks:

1. No construction of quasi-modes is available in the unstable case; nevertheless
numerical computations (see [12,6,9]) show that some phenomenon of localiza-
tion of eigenfunctions near unstable periodic orbits are visible. Among the main
properties of this controversial “scarring” phenomenon we point out:

— The apparent localization doesn’t occur more strongly as % goes to 0.
— This localization is more visible if the Liapunov exponents of y are small.

Our results show that the average over a band of energy of the Husimi functions
(namely ](W&é), tﬁjh)|2) share some of those properties. Corollary 1.4 shows that there
is a nonzero density of eigenfunctions whose Husimi functions are actually pointwise
sensitive to the presence of periodic trajectories. The contributions to the formulas
of Theorems 1.2 and 1.4 are in accordance with the properties of scars mentioned
before:

— The fact that (x, ) belongs or not to a periodic trajectory doesn’t affect the order
of the expansion, but rather changes the numerical leading coefficient.

— This coefficient becomes greater as u (the highest Liapunov exponent) tends to
0.
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2. We finish by discussing the dependence of the leading coefficient dy with

respect to the symbol a. The extra contribution of a hyperbolic y to the leading

E (h)—E .
term of Z]-(P(—}(—h)—)l(‘//(i,g)a l//jh)iz 18

bla) = S GUT)e T [ St (Ula)n — té)dnd . (138)
I1+0

Let us take (x,{) € y and let us suppose n =2 (the case n > 2 can be treated

analogously). Let ay = (4n)~2e=1/2, We wish to estimate (aq, U'Z(t%,t€)ag). First
remark that
l(a,a")* = [Walu,v)Wo(u,v)dudv, (139)

where ¥, is the Wigner function of a. Moreover it is well known that
Wans)zte.)a(t, ) = Wo(S™ (u —e,v — f)).

Wa, has an effective support of size 1 near the origin, since

%0 — e—(u2+v2) )

Consider now (e, ) = bs + b, with b, and b, tangent vectors belonging to the stable
and unstable directions at (x,¢). Then #7Ze, ryao will have an effective support near
bs + by. It is easy to see that the effective support of #{,15, /),  Won’t intersect the
one of W7z rya, as soon as:

1+ e
1Bs] > 1 —e#
or
14e™#
bul > T
If one remarks finally that
VhfE
Z(e, a _ VAL
lﬁ(x,(cje)f)a(J’) =Yioy — \/Ee)e R,

ie. (f(f)f % is microlocalized around the point (x + Ve, & + VA f), one may con-

clude as follows:
If the “effective support” of a is roughly of size 1 and contains the origin, then
Zj<p(E’—(hh)—_—E)|(lﬁ(‘;’é),w]h)[2 is sensitive to the presence of vy in a tubular neighbor-

hood of y of size \/ﬁe’:fl in the stable direction and V/h e_“ﬂ in the unstable
Y 1 1—e—F
one.
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