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Abstract: Operators of representations corresponding to symmetric elements of
the ^-deformed algebras Uq(s\x\ίι),Uq(sθ2i\)9Uq(so^\),Uq(son) and representable by
Jacobi matrices are studied. Closures of unbounded symmetric operators of repre-
sentations of the algebras Uq(s\i\,\) and Uq(sθ2,\) are not selfadjoint operators. For
representations of the discrete series their deficiency indices are (1,1). Bounded
symmetric operators of these representations are trace class operators or have con-
tinuous simple spectra. Eigenvectors of some operators of representations are eval-
uated explicitly. Coefficients of transition to eigenvectors (overlap coefficients) are
given in terms of ^-orthogonal polynomials. It is shown how results on eigenvec-
tors and overlap coefficients can be used for obtaining new results in representation
theory of ^-deformed algebras.

1. Introduction

There is a connection between representations of a semisimple Lie group and rep-
resentations of its Lie algebra [1]. To noncompact generators / there correspond
unbounded operators in infinite dimensional irreducible representations Γ of a
semisimple Lie algebra g. To every such representation T of g there corresponds
an irreducible representation T of the Lie group G with the Lie algebra g. Opera-
tors of a representation T of G are bounded. If a representation T of G is unitary,
then to noncompact generators / from g, multipled by i = Λ/~L there correspond
symmetric operators on a Hubert space. Unitarity of a representation T of G means
that closures of these symmetric operators are selfadjoint operators. Properties of
self-adjointness for operators corresponding to symmetric elements of the universal
enveloping algebra U(g) of g are also well known (see, [1], Chapter 11).

The corresponding theory is absent for infinite dimensional representations of
quantum algebras. Moreover, simple examples show that the situation for quantum
algebras is unlike that which we have in the classical case.

Quantum algebras are g-deformed universal enveloping algebras Uq(g) corre-
sponding to simple Lie algebras (we do not consider here quantum algebras corre-
sponding to affine Lie algebras). Such ^-deformations are constructed for all
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complex simple Lie algebras [2,3]. Real forms A of these quantum algebras are
constructred with the help of involutions, which are antilinear antiautomorphisms
(that is, if α E C and a,b G A, then (αα)* = άα* and (ab)* = £*«*). The real form
A is called noncompact if it corresponds to a noncompact Lie group. In the other
case the real form is called compact. A representation T of a real form A will be
called infmitesimalΓy unitary if operators T(a) are symmetric for elements a G A
such that α* = a. For q — 1 (that is, for Lie algebras) these representations corre-
spond to unitary representations of Lie groups. Dealing with infinitesimally unitary
representations we shall omit the word "infinitesimally."

In Sect. 3 we consider operators of the representations Tf of the discrete series
of the quantum algebra Uq(βM\t\) and show that closures of unbounded operators
(for example, of the operator Tj*~(E+ — £_)) are not selfadjoint operators, as is
the case for the Lie algebra suy. Deficiency indices of these closures are equal
to (1,1), that is, deficiency subspaces are one-dimensional and these closures have
selfadjoint extensions (there exist infinitely many extensions). Coordinates of basis
vectors of these subspaces are expressed in terms of ^-orthogonal polynomials.

A distinction of the case of the quantum algebra ί/^suy) is that the op-
erators T^ίh) of the representations Tf of the ^-deformed algebra L^(sθ2,i)
(which are analogues of the operators Tf(E+ — E-) for L^(sui,i)) have bounded
closures. At q —> 1, their spectra are expanding and these closures tend to unbounded
operators.

It is very important to have a general theory of representation operators for non-
compact quantum algebras analogous to the corresponding theory for classical Lie
algebras. However, it is a difficult problem to construct this theory. Especially, if
we take into account that infinite dimensional irreducible representations of quantum
algebras are not satisfactorily studied. Irreducible infinite dimensional representa-
tions are constructed only for some special types of ^-deformed algebras. In this
connection, it is of a great importance to construct the spectral theory of represen-
tation operators for simplest ^-deformed algebras and for simplest representations
of complicated quantum algebras, especially if they are interesting for physics.

In this paper we study those representation operators which are given by
Jacobi matrices with respect to some bases. The theory of Jacobi matrices reduces
the spectral theory of such operators to studying three-term recurrence relations, the
corresponding orthogonal polynomials and orthogonality relations for them. Solu-
tions of these relations in our cases are ^-orthogonal polynomials. Actually, values
of these polynomials are coefficients of the transition from a certain orthonormal
basis to another one (for infinite dimensional representations the second basis can
be continual, that is, of the type of the basis {eihc} of the Hubert space Z2(R)).
Sometimes these transition coefficients can be evaluated explicitly. They allow us
to find spectra and spectral measures for the corresponding operators. The transi-
tion coefficients under considerations are also called overlap coefficients or overlap
functions for the corresponding bases of the carrier space.

Overlap coefficients for two bases of carrier spaces of irreducible representa-
tions of Lie groups and Lie algebras are of great importance for physics. If we
interpret infinitesimal operators as physical observables, then overlap coefficients
are connected with probabilities of observable values. Overlap coefficients for rep-
resentations of quantum algebras can be also used in physics.

Overlap coefficients for operators of representations of quantum algebras can
also be applied for studying ^-special functions. Various applications of overlap
coefficients for the case of Lie groups can be found in [4].
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In this paper we are not interested in a structure of a Hopf algebra (a comul-
tiplication, a counit, an antipode) for quantum algebras because we do not need
this structure for our investigation. Quantum algebras and ^-deformed algebras are
considered here as associative algebras generated by a finite number of elements.
Everywhere below we suppose that 0 < q < 1.

In Sect. 2 we give some information on difference operators of the second order
which is used below. Section 3 is devoted to studying representation operators for
the quantum algebra Uq($\x\,\). Consideration here is more detailed than in the next
sections. In Sects. 4 and 5 we study representation operators for the ^-deformed
algebras Uq{$θ2,\) and Uq(sθ3,\). In Sect. 6 we deal with representation operators of
the compact ^-deformed algebra Uq(son). The aim of Sect. 7 is to show how results
on eigenvectors and overlap coefficients can be used for obtaining new results in
representation theory of ^-deformed algebras. In this section we construct infinite
dimensional representations of the algebra Uq(sor,2). Most of these representations
are irreducible.

2. Difference Operators of the Second Order

We denote by V the Hubert space with the orthonormal basis \n), n = 0, 1, 2,....
Let I be a linear operator on V acting upon basis elements as

L\n)=an\n+\)+bn\n)+cn\n-\)9 (1)
and let

oo
Φ) (2)

rt=0

be an eigenvector of L with an eigenvalue z : L\z) = z\z). Then

W) = Σ(Pn(z)an\n + 1) + pn{z)bn\n) + pn(z)cn\n - 1)) = zf^pn(z)\n) .
«=0 Λ=0

Equating coefficients at the vector \n) we have the recurrence relation for the coef-
ficients from (2):

cn+ιpn+ι(z) + bnpn(z) + an-\pn-\{z) = zpn(z) . (3)

Since p~\{z) = 0 then setting po(z) = 1, we see that this relation completely de-
termines the coefficients ρn(

z) Moreover, pn(z) are polynomials in z of degree n.
Sometimes, vectors v =Y^Lovn\n) of V are written down as numerical sequences

(vo9v\,...). In this case formula (1) can be represented as

(Ly)n = an-\vn-i + bnvn -f cn+χvn+ι .

Because of this, such operators L are called second order difference operators.
Now let I be a symmetric operator. Then formula (1) is written as

L\n) = an\n + 1) + bn\n) + an-ι\n - 1) (4)

and Eq. (3), determining eigenvectors, is reduced to the recurrence relation

anpn+ι(z) 4- bnpn(z) + an-\pn-\{z) = zpn{z) . (5)

One says that the operator L is representable by a Jacobi matrix. If the coefficients
an and bn in (5) are real, then all coefficients of the polynomials pn(z) are real.
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We suppose that an and bn are real and an > 0. If the operator L is unbounded,
then we denote the closure of L by L. The operator L may be not selfadjoint. In this
case L has nonzero deficiency indices (m,k) which determine dimensions of defi-
ciency subspaces. (The definitions of deficiency indices and deficiency subspaces,
as well as their properties, can be found in [5].) To every complex number z, Im
zφO, there corresponds its deficiency subspace Nz. The following statements are
valid [6]:

(A) Deficiency indices of the operator L are coinciding. Moreover, these indices
are (0,0) or (1,1). In the first case the operator L is selfadjoint. In the second case

L is not selfadjoint, however it has selfadjoint extensions.

(B) Deficiency indices of L are (0,0) if and only if the series Y^LQ\PΠ(Z)\
diverges for all complex z, Im zφO, where pn(z) are polynomials from (5).
If deficiency indices are (1,1), then this series converges for all complex z,
Im zΦO.

(C) If deficiency indices are (1,1), then deficiency subspaces are one-
dimensional. The deficiency subspace Nz corresponding to a complex number z
is spanned by the vector Y^L$pn(z)\n)i where pn(z) are taken from formula (5).

Hamburger's moment problem is related to the operator L given by formula
(4) [7]. Moreover, if deficiency indices of L are (0,0), then it corresponds to a
determined moment problem. If deficiency indices of L are (1,1), then we deal with
an undetermined moment problem.

To find whether or not the operator L is selfadjoint, one may use the following
statements [6]:

(a) If the coefficients an and bn from (4) are bounded, then the operator L is
bounded and, therefore, selfadjoint. Therefore, the corresponding moment problem
is determined.

(b) If bn are any real numbers and an are such that

T - = o o
n=0 an

then the operator L is selfadjoint (Carleman's criterion). In this case the moment
problem is determined.

(c) Let \bn\ S C, n = 0, 1, 2, . . . , and for some positive integer j we have
an-\an+\ ^ a\, n ^ j . If

oo 1

Σ - < oo , (6)

then the operator L is not selfadjoint and an undetermined moment problem corre-
sponds to it.

If L is not a selfadjoint operator, then it has selfadjoint extensions. There are
infinitely many selfadjoint extensions of L. We refer the reader to the books [5,6]
for a more detailed discussion of selfadjoint extensions.

Using the terminology of [6], we can say the following about the operator L.
Let B be either the operator L if it is selfadjoint or its selfadjoint extension if
it is not selfadjoint. Let E(A) be the decomposition of unity of the operator B.
Then

= JP(λ)dp(λ),



Spectra, Eigenvectors and Overlap Functions for ^-Deformed Algebras 93

where P(λ) are operators of generalized projections acting from the space /2([0, oo),
dn) into the space /2([0,oo), d~ι). Here dn ^ 0 and such that Y^l^d^1 < oo.

Note that /2([0, oo), dn) is the space of sequences (α0? «i, «2? •) such that v^°° ' ~ | 2

dn < oo. The operators P(A) are matrix operators with positive definite matrices
(Φjk(λ))°°k=0 satisfying the condition [6]

Σ \φjk(λ)\2(djdky
ι s i .

j , k=o

Moreover, we have
Φjk(λ) = pj(λ)pk(λ)ΦOo(λl j,k = 0,1,2,.. . ,

where pn are the polynomials from (5). Let dσ(λ) — Φoo(λ)dp(λ). It is shown in
[6] that

oo

/ Pj(λ)pk(λ)dσ(λ) = δJk, j,k = 0,1,2,... . (7)
— oo

If the operator L is bounded and selfadjoint then we can set dn — 1,
n = 0,1,2,..., and polynomials Pj(λ) from (7) are overlap coefficients for the cor-
responding bases. In this case dσ{λ) is the spectral measure of L and (7) is the
orthogonality relation for polynomials pn.

Remark that if the operator L is selfadjoint (that is, the corresponding mo-
ment problem is determined), then there exists a unique orthogonality relation
for the polynomials pn which are solutions of recurrence relation (5). If the
operator L is not selfadjoint (and we have an undetermined moment problem),
then there exist infinitely many selfadjoint extensions of L and to every exten-
sion there corresponds an orthogonality relation for the polynomials pn. Thus,
in the last case there exist infinitely many orthogonality relations for pn,n =
0,1,2,....

In the general case, it is difficult to explicitly evaluate the polynomials pn(z).
There are different methods of their evaluation: by using the corresponding gen-
erating function, by using the recurrence relation, and so on. For many repre-
sentation operators of type (4) corresponding to infinite dimensional representa-
tions of simplest Lie groups (for the groups £L(2,R), SOQ{?>,\)) and to infi-
nite dimensional class 1 representations of high dimension Lie groups they are
evaluated by means of matrix elements of representations (see [4] and refer-
ences therein). In this paper we evaluate them for certain operators of repre-
sentations of g-deformed algebras. They are expressed in terms of g-orthogonal
polynomials.

3. Representation Operators of the Quantum Algebra Uq(suιfι)

The quantum algebra L^(sl2) is the associative algebra generated by the elements
E+, E-, H that satisfy the commutation relations

t * * ] * " - * " " s i n h h H
L + ' J qV2-q-V2 sinh(A/2) '

Introducing into 6^(sl2) the involution defined by the relations is± = —E^ H* =
//, we obtain the real quantum algebra I
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The representations Tf of the discrete series of the algebra L^(sui?i) are given
by a positive number / and act on the Hubert spaces F/ with the orthonormal bases
\m), m = / + l , / + 2,.... The operators T^(E±) and T^(H) act upon basis elements
\m) by the formulas

T+(H)\m) = m\m)9 T+(E+)\m) = ([-/ + m][l + m + l])1 / 2 |m + 1) , (8)

T+(E-)\m) = - ( [ - / + m - 1][/ + m ] ) 1 ^ - 1) , (9)

where [a] is a ^-number defined as

[a] = (f2 - q-tW2 112

Simplest elements of L^(sui i), symmetric with respect to the involution, are
of the form H,E+ — E-,i(E+ + £_) . It is seen from formula (8) that the oper-
ator Tf(H) is unbounded. Since it is diagonal with respect to the basis {|m)}5

then its closure is a selfadjoint operator. It follows from formulas (8) and (9) that
the operators I! — Tf(iE+ + LE-) and L = Tf(E+ — £_) are also unbounded. It
is easy to show that when passing from the basis |/w), m — I + 1, / + 2,..., to the
basis \m)' — im |m), /w = / -h 1, / + 2,..., i = Λ/—T, we go over from the matrix of
the operator L' to the matrix of the operator L. Because of this fact, the closures L
and L' of the operators L and V are simultaneously selfadjoint or not selfadjoint
and their deficiency indices are coinciding. For this reason, we shall deal only with
the operator L.

We shall study symmetric operators of the representations Tf representable with
respect to the basis {\m}} by a Jacobi matrix. Such natural operators are

£ _ )qPH) + c<fH

9 p,c,reR.

Let us first consider the operators

Bp = T+{q"Hl\E+ - £_ )qPH'A\ p e R .

It follows from formulas (8) and (9) that

Bp\m)=bpm\m+l)+bp,m-\\m-l), (10)

bpm =

where k = m — I — 1. We remark that flipping q to q ι corresponds to flipping p
to —p for the operator Bp.

Proposition 1. If p ^ 1 then the operator Bp is bounded and has a unique selfad-
joint extension coinciding with its closure Bp. If p < 1 then the deficiency indices
of the operator Bp are (1,1) and the operator Bp has infinitely many selfadjoint
extensions.

Proof For the numbers bpm from formula (10) we have

bp,m+ι/bpm -> q{P-χ)l1 when m -^ +oo . (11)
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Since 0 < q < 1, then the operator Bp is bounded for p ^ 1. This proves the first
part of our proposition. It follows from (11) that the operator Bp is unbounded if
p < 1. To prove the second part of the proposition we note that the inequality

( l - ^ X l - ^ * 1 ) ^{\-qnf (12)

is valid. In fact, removing the parentheses we obtain q + q~ι ^ 2. This inequality
is correct for all real q and the equality is achieved at q = 1. It follows from (12)
that

bp,m-ibp,m+ι ^ bι

pm for all m > I.

Besides, in this case we have X^^L/+1 b~^ < oo since

bpm/bp,m+ι -> q-ίP-^l1 < 1 if m -> + o o .

Therefore, according to criterion (c) from Sect. 2 the deficiency indices of the op-
erator Bp, p < 1, are (1,1). This proves our proposition.

Let us investigate the spectrum of the operator Bp for different values of p. If
p < 1 then the operator Bp has deficiency indices (1,1). In this case any selfadjoint
extension B^ of Bp, constructed without coming from the carrier Hubert space F/,
has a purely discrete simple spectrum [6]. Moreover, there exists a function f(z)
from the space U such that the spectrum of the operator B^1 coincides with the set
of zeros λj (j = 1,2,3,...) of f(z) and jumps

y = 1,2,3

of the spectral function σ(u) of Bp

xt are such that the following conditions are
fulfilled:

(see [7], chapter 4), where f'{z) — ̂ f(z). Here U is the space of entire real
functions on C such that the following conditions are fulfilled: (a) all zeros λj of
/ are real; (b) the absolute convergent expansion

/(z) yt

has a place; (c) all series Σ/Ξi λ™lf'(λj\ m = 0,1,2,..., are convergent.

It follows from these assertions that the discrete spectrum of the operator ΊΓp

has the infinite point as the only point of accumulation.
If p > 1 then Bp is an operator of trace class. In fact, in this case all matrix

elements of Bp with respect to the basis {\m}} are nonnegative, and due to formula
(11) we have

m=l+\

bpm < oo .

Since Bp is a trace class operator, it has a purely discrete spectrum with zero as
the only point of accumulation. It follows from the results of papers [8,9] (see also
[10]) that the spectrum is symmetric with respect to the point x = 0 which also
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belongs to the spectrum. It follows from Theorem 3 in [9] that the transcendental
meromorphic function G(z) exists with the expansion

where — ΣnAn<x,~2 < oo, A ^ 0 and An < 0,w = 1,2,..., such that the spectrum
of Bp coincides with the set of points x = 0 and JC = ±l/α w , « = 1,2,.... Clearly,
the points x = d=l/αΛ, « =J_,2,.. . , are poles of the function G(l/z). Jumps of the
spectral measure σ(x) of ^ at these poles are equal to residues of the function
z~ιG(l/z) at these points. They coincide with

σ(x + 0) - σ(x - 0) = -Ana~2 (for the poles ± a~ι)

and σ(+0) — σ(—0) = —A Of course, the function G{z) is determined by the co-
efficients bpm from (10). However, the expression for G(z) in terms of bpm is very
complicated (see formula (2.7) in [9]).

We considered spectra of the operators Bp for p > 1 and /? < 1. Now we have
to consider the spectrum of the operator

We have

Bx\m) = bm\m+ 1) +ft m -i |w - 1), 6m = ([* + 1][* + 2/ + 2])1 V ' 2 ? " 4 ,

where k — m — I — 1. The operator #1 is bounded. Therefore, its closure is a
bounded selfadjoint operator. A generalized vector

k=0

is an eigenvector of B\ corresponding to an eigenvalue y if Pk(y)9 k = 0,1,2,...,
satisfy the recurrence relation

and the initial conditions P-ι(y) = 0, Po(y) = 1. The substitution

where (d\q\ = (1 — ̂ )(1 — dq) - \\ — dqk~ι), reduces this relation to the form

Replacing q~ι/2(l - ^ ) j by 2x and Pr

k(2x(q-1'2 - qι/2)~ι)by P%(x), we obtain the
relation

Pif

+ι(x) + (1 - 9*X1 - / + 2 / + 1 )^_i(x) - 2xP?(*). (14)
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To solve this recurrence relation we consider the orthogonal polynomials [11]

pn(cos(θ + φ);a9c\q) = a~n' e~in* (ace2i* q)n{a2:; q)n(ac; q)n

-», qn~ιa2c2, \ ae

x 4 φ 3
q,q I , (15)

ace2iφ,a2,ac

where 4φ3 is the basic hypergeometric function (see [12] for the definition and
properties of this function). The recurrence relation for these polynomials is of the
form [11]

2xpn(x)=Anpn+i(x) + Bnpn(x) + Cnpn-.x(x), (16)

where x = cos(# + φ) and

An = (1 - a2c2qn-λ){\ - a2c2q2n-χγ\\ - a2c2q2nyx ,

_
- a2c2q2")

-qn)(l -acqn-χ){\ - a -c2q"-ι)(l - 2acqn~x cos2φ + a2c2q2n~2)

(1 - a2c2q2n-ι)(\ +acqn~ι) '

If a and c are real and \a\ < l, |c | < 1, then the orthogonality relation for these
polynomials is

1 π

— / pn(cos(θ + φ); a,c\q)pm(cos(θ + φ); a,c\q)w(θ)dθ = ^mn/zn , (17)

where

(the explicit expression for the constants hn see in [11]). A direct evaluation
shows that relation (14) coincides with recurrence relation (16) for φ = π/2, c — 0,
a — qι+ι,x = cos(θ -f | ) = — sin 0. Therefore,

/>?(*) = p* (cos (θ + I ) ;g/ + 1,0|?) = {iqι+xrk{q2l+2;q)

q-k,e-wqM,-e>θq'+i

Passing on the polynomials Pk(y), normalized by the condition Po(y) = 1, we
obtain that in formula (13) we have

;<?,<? (18)

q2!+2,0
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where

y

2

0-1/2 _
cos ί θ H —

) i e~iθ

A.U.

- e i θ

-qχl2
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(19)

We derive from formula (17) that the orthogonality relation for these polyno-
mials is of the form

where Z? - 2/(q'^2 - 01/2) and

•7-1/2 _ Λ l / 2

This relation means that the spectrum of the operator B\ is simple and covers
exactly the interval (—2/(q~1^2 — qι^2\ 2/(q~1^2 — q1^2)). The spectral measure of
this operator coincides with the measure dσ(y) = w(y)dy. When q —» 1 then the
spectrum turns into the real line and polynomials Pn(y) tend to the correspond-
ing Meixner-Pollaczek polynomials. This agrees with results for the classical Lie
group 577(1,1) (see [4], Chapter 7, and [13]). Now we can formulate the following
theorem:

Theorem 2. If p > 1 then the operator Bp has a discrete simple spectrum with
zero as the only point of accumulation. If p < 1 then all selfadjoint extensions of
the operator Bp (without coming from the Hilbert space Vf) have discrete simple
spectra with infinity as the only point of accumulation. The operator B\ has a
continuous simple spectrum which covers the interval (—b9b)9b = 2/(q~1^2 — x^2

Let us remark that overlap Junctions (18) depend in a complicated way on
eigenvalues y of the operator B\. And utilization of the theory of g-orthogonal
polynomials make it possible to find the overlap coefficients explicitly. It is inter-
esting to note that the results of this theory, used in our paper, were discovered quite
recently. In fact, they were discovered almost simultaneously with the discovery of
quantum groups.

The operator B\ can be represented in the form

Bx\k) = ak\k + I) + ak-ι\k - I) ,

where the basis vectors are labelled by k instead of m = k+ I + 1. Clearly, #i
depends on /. Taking the limit / —> +00 we obtain the operator Q = lim/_+oo B\
such that

(<Γ 1 / 2 - qXI2)Q\k) = (1 - qk+X )lβ\k + 1) + (1 - qkΫ/2\k - 1) .

So, we see that the operator Q, up to a constant, coincides with the operator of
the canonical coordinate in the ^-oscillator algebra introduced by Macfarlane [14].
The spectrum, the spectral measure and the corresponding overlap polynomials pn

for the operator Q are found in [15]. The polynomials pn are expressed in terms
of the continuous g-Hermite polynomials from [16]. Thus, the polynomials pn are
obtained at the limit / —» oo from polynomials (18).
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Let us consider the operators

Apbr = bq rH

99

(20)

Such an operator is given by formula (10) (with the same coefficients bpm) in
which the summand bqrm\m) is added. Using the criteria of selfadjointness or non-
selfadjointness of symmetric operators from Sect. 2 and the previous results on
operators Bp we can formulate the following proposition:

Proposition 3. The operator Apbr is self adjoint for all values of p, p ^ 1. If p < 1
then the operator Apbr has the deficiency indices (1,1) if b EK and r ^ 0. In the
first case Apbr is a trace class operator if p > 1 and r > 0, and therefore has a
discrete simple spectrum with zero as the only point of accumulation. In the second
case all self adjoint extensions of Ap\>r (without coming from the Hilbert space V\)
have discrete simple spectra with infinity as the only point of accumulation.

Proposition 3 describes spectra of operators Aφr for p > 1 and p < 1. We
have to consider the operators Aφr at p = 1. We do not study all such operators
but the operators

b =

with b depending on φ. The recurrence relation corresponds to this operator,

akPk+ι(z) + flt_,Pt_i(z) = {(q-1'1 - qχl2)z - bqι+k+1}Pk(z) ,

(21)

Making the substitution

Pk(z) = {{q;q)k{q2l+2;q)k}-λl2P'k{z) ,

we transform it into relation (16) with

a = qM, c = 0, z = 2x(q~ι/2 - qι/2) .

As a result, we obtain that

Pk(z) = {(q;q)k(q2l+2;q)k}-ι/2

 Pk(cos(θ + φ);qι+\0\q)

_ ( q ; q ) k ( k +i 2iφ+iθ /+1 -iθ 21+2 Q

where z = 2cos(0 + φ)/(q~υ2 - q1/2). It follows from (17) that

Pm(z)Pn(z)W(z)dz = δmn ,
-d

where d = (q~1'2 - qι/2)/4πcos(θ + φ) and

W(z) = q2l+2(q;q)oa(q2l+2;<lU
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This formula shows that the spectra of all operators (21) coincide with the interval
(—d,d), d = 2/(g~1/2 — qλ/1). The spectral measure dσ of the operator A(φ) is
dσ = W(z)dz.

We found explicit expressions for overlap polynomials Pn(z) and the corre-
sponding orthogonality relations for the operators (21). Unfortunately, we could not
find an explicit expression for these polynomials in the case of the operator Apbr for
arbitrary p,b,r. But it is possible to find polynomials Pn(z) for different particular
values of these parameters. For example, if p = — l9b = 0, then for the polynomials
Pn{z) corresponding to the operator A-\^r we obtain the recurrence relation which,
after the appropriate substitution, reduces to the following one:

(1 - qn+l)P'n+xiz) + Φ - qn+2M)Pf

n-λ{z) = zdqnP'n(z) , (22)

where d — qι+ιqι^4(q~1^2 — q1^2). This recurrence relation can be solved by the
method of a generating function used in the theory of ^-orthogonal polynomials
(see, for example, [16]). Namely, we set

(23)
n=0

So, /(r,z) is a generating function for the polynomials Pf

n{z). Multiplying both
sides of (22) by rn+x and summing over n we obtain

f(r,z) - f(rq,z) + r2qf(r,z) - r2qq2l+2f{rq9z) = zdrf(rq,z) .

Therefore,

' + t f " ) . (24,
Setting zd = —2qι+2>l2 cosh t and iterating (24) one has

where r ; = rqχl2. Taking the limit n —> ex) we obtain the explicit expression for the
generating function f(r,z):

Applying here the ^-binomial theorem

(see, for example, [17], Theorem 2.1) and comparing the obtained expression with
formula (23), we obtain the expression for P'm(z),

It is a polynomial in β̂  + e~*. However, we could not separate eι + e~ι in this
expression. This expression can be represented in terms of basic hypergeometric
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functions. In fact, taking into account the relation

we derive

^ { Z ) C { l q * >

= c2φi(-iqMet,q-m;-iq-m-let;q,iq-'e') ,

where c — (-iqι/2)m(iql+1e~';q)m/(q;q)m. By making use of the transformation for-
mula for basic hypergeometric functions (see Apendix III in [12]) we can represent
P'm(z) in the different form,

P'm(z) = c'e-

= c'e-m<m(q-"",-iqι+ιe',iqι+ie-'; q2l+2; q,qm) ,

where c' — (g 2 / + 2; q)mq~^lJrl^m/(q; q)m. Here an explicit dependence on e* -f e~ι is
also absent. These polynomials of z have many orthogonality relations. It is difficult
to find them explicitly.

In a similar way one can find polynomials Pn(z) for the operators A-^^Q and
^ _ I ^ _ I , Z ? G R . They have similar expressions in terms of basic hypergeometric
functions.

We remark that we can also find the corresponding polynomials for some partic-
ular cases of the operators of the type (20) if p > 1. For example, for the operator

T+(q3H'4(E+ - £_ )q3H'4) + ([H-l- l ] ^ 2 + [H + I + l]q^2)q^2 (25)

the overlap polynomials Pk(z) are

,ra^q)ίγ\ (q\q) )

where z = qy/{\ — q~ι) and pu are the little #-Jacobi polynomials (see [12] for the
definition of these polynomials). Due to the orthogonality relation for the polyno-
mials pk [12] we obtain

oo

Σ Pm(qy/(l ~ q-l))Pn(qy/(l - q~')W(y) = ̂  ,

where W(y) = q^21+2')y(q2l+2;q)oo(q;q)~ι. Therefore, the spectrum of the operator
(25) consists of the negative numbers

qnl(\-q-χ\ /i = 0, l ,2, . . . .

Note that the little g-Jacobi polynomials pk(x;a,b\q) at b = 0 turn (after chang-
ing variables and renormalization) into the Wall polynomials Wk{x\ a, q) and into
the generalized Stieltjes-Wigert polynomials Sk(x\p,q) which are ^-analogues of
Laguerre polynomials [12]. This result agrees with the results of [13] for the case
q=L
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Spectral properties of operators of representations of the negative discrete series
of the quantum algebra L^(sui5i) can be considered completely in the same way. The
quantum algebra Uq(su\t\) has other series of unitary representations (the principal
unitary series, the supplementary series, the strange series; see, for example, [18]).
The operators

Lp = T{qPH'\E+ - E- )q?H'4), pGR,

in these representations are given by formula (10), where coefficients bp^m have
other expressions (they can be easily derived from the results of_[18]) and m
changes from —oo to +oo. It is easy to verify that the operator Lp is symmet-
ric and unbounded for all these unitary representations^Jt is well known (see, for
example, [19]) that deficiency indices of the operator Lp can be found in the fol-
lowing way. We divide the operator Lp into two operators LPt\ and Lp^2: one acting
upon basis vectors \m), where m > 0, and the second acting upon \m) with m < 0.
The deficiency indices of Lp are equal to the sum of the corresponding deficiency
indices of LPy\ and Z , A 2 AS in the case of operators of the representations Γz

+, it is
shown that the deficiency indices of the operators LPt\9 p ^ 1, and LPi2, p ^ — 1,
are (0,0). The deficiency indices of the operators LPJ\, p < 1, and Lp,2, p > — 1,
are (1,1). Therefore, the deficiency indices of the operator Lp in any unitary irre-
ducible representation with m changing from —oo to -foo are (1,1) if p ^ —1 or
if P ^ 1 and (2,2) if — 1 < p < 1. Thus, this operatorjias selfadjoint extensions.
The detailed studying of diagonalization of the operator Lp is awkward and will be
given in a separate paper.

4. Representation Operators for the Discrete Series of the ^-Deformed
Algebra

The ^-deformed algebra C/^(so(3,C)) is the associative algebra generated by the
elements I\, I2, h which satisfy the commutation relations [20]

The first relation shows that L^(so(3,C)) is generated by two elements I\ and I2.
These elements satisfy relations of Serre's type:

l\h ~ (qlβ + q~Xβ)hhh + hί[ = -h ,

hll - (qι/2 + q~XI2)hhh + Ilh = ~h

The ^-deformed algebra t/^(sθ2,i) is obtained from ί/^(so(3,C)) by introducing the
involution which is uniquely determined by the formulas /* = —I\, I2 = h>

Remark that the Lie groups SU(l91) and SOQ(2, 1) are locally isomorphic and
their Lie algebras are isomorphic. The ^-deformed algebras Uq(su\t\) and Uq(sθ2i\)
are not isomorphic. Moreover, they have non-coinciding sets of unitary irreducible
representations [20].

Representations Γ;

+ of the discrete series of the algebra Uq(so2,\) are given
by a positive number / and act on the Hubert space V\ with the orthonormal ba-
sis |/w), m — I -f-1, / + 2, .... The operators Tf{I\) and T+(I2) act upon the basis
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elements \m) as follows [20]

Tf(Iι)\m) = i[m]\m), Tf(I2)\m) = am\m + 1) + a
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where, as before, [a] denotes a ^-number.
The closure of iTf(I\) is an unbounded selfadjoint operator. Since

then the operator Tf(I2) is bounded. Therefore, its closure is a selfadjoint operator.
Remark that boundedness of the operator T^(I2) is the property of the ^-deformed
algebra Uq(sθ2i\), #4=1. When q —» 1 then (#~^ 2 — #1 / / 2)~1 —» oo and the operator
Tf(I2) becomes unbounded.

We study symmetric operators of the representations Γz

+ representable with
respect to the basis {\m}} by Jacobi matrices. Such natural operators are

Apbr = Tfidh VWh Y + b{Ux Y), p,b,reR.

Let us consider the operators

B p = T + ( i I ι y i 2 ( i I ι ) p ) , P t R

It follows from (27) that

Bp\m) =

_
p'm

l - qm){\ - qm+X){\ - - q
l+m+X

-q2m)(l -q2m+2)

1/2

In the same way as in the case of operators of the representations Tf oϊ

we prove that at p > 0 the operator Bp is unbounded and has the deficiency indices

(1,1). If p < 0 then Bp is a trace class operator. So, at p > 0 we can say that the

operator Bp has the same properties as in the case of the algebra ί/9(sui?i). We

have to research the case p — 0. Let us find eigenvectors

k=0
(28)

of the operator Z?o = T^fa) and its spectrum. The arguments of Sect. 2 show that
Pk(y) must be orthogonal polynomials in y satisfying the recurrence relation

+ ak-\(y) =

Jfc+l][/
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where k = 0,1,2,.... Making the substitution

we obtain the relation

Π _ 2̂/+2Λ:+3Λn _ g2l+2k+2\Γk+\\y) * Π _

= (q~1/2 - qll2)yP'k{y) . (29)

Setting φ = π/2, a2 = qι+\ c2 = q1+2, 2x = (q~^2 - qχl2)y into (16) we obtain
relation (29). This means that the polynomials Pn(y) from (28) are of the form

x pn{cos{Θ + π/2); qW,qW\q) , (30)

where pn{x) are ^-orthogonal polynomials from (15) and

y = 2 cos (θ-\— ) {q~ ̂ 2 — q1^2 ) ~ ι .
V 2 /

In the same way as in the case of polynomials (18), we find that the orthogo-
nality relation for polynomials (30) is of the form

J Pn{y)Pk{y)w{y)dy = δfa , (31)
-b

where b = 2(g~1/2 — qιl2)~x and

4π cos θ

JOO

P2[0]nι+ι n2Λ (P2\θΠl+2. Π2\e q >q jooV^ a itf )o

Formula (31) means that the operator Tfίh) has a simple spectrum and this
spectrum covers exactly the interval (—b,b), b = 2(q~1^2 — qι^2)~ι. The spectral
measure of the operator T^(h) is w{y)dy. Now we can formulate the following
theorem:

Theorem 4. If p > 0 then the operator Bp has the deficiency indices (1,1) and all
its selfadjoint extensions {without coming from the Hilbert space V\) have discrete
simple spectra with infinity as the only point of accumulation. If p < 0 then Bp

is a trace class operator and has a discrete simple spectrum with zero as the only
point of accumulation. The operator B$ has the continuous simple spectrum which
covers the interval (-*,*) , b = 2/{q~]/2 - q1/2).

Using assertions of Sect. 2 we can formulate for the operators Apbr the statement
similar to Proposition 3. As in the case of the algebra ^ ( s u ^ i ) , it is possible to find
explicit form of polynomials Pn{z) corresponding to the operators Apbr for many
particular values of p, b and r.
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5. Representation Operators for the ^-Deformed Lorentz Algebra Uq(sθ3f\)

There exist several definitions of the quantum algebra Uq(so(n,C)). We use the
definition which allows the reduction from Uq(so(n,C)) to Uq(so(n - 1,C)) (see
[21]) and does not coincide with the algebra Uq(so(n, C)) defined by Drinfeld [2]
and Jimbo [3]. Namely, we use the ^-deformed algebra Uq(so(n, C)) which is the
associative algebra generated by the elements I2\, h2,--Jn,n-\ satisfying the rela-
tions

i-j\ > 1,

where [ , ] is the usual commutator. The elements //>z _i are ^-analogues of the
standard elements kj-x of the Lie algebra so(rc,C).

We introduce into Uq(so(n, C)) the involution defined uniquely by the relations
7*/_1 = —Ii,i-\, i — 2,3,...,n, and obtain the compact g-deformed algebra Uq(son).
The formulas /*z_i = —//jZ _i, z+r-f 1, I*+ι r = Ir+\tr determine the ^-deformed
algebra Uq(sonn-r). This algebra contains the subalgebras Uq(sor) and Uq(son-r).
In particular, in this way we obtain the ^-deformed algebras L^(soW; i). We remark
that the algebra Uq(so(n, C)), defined here, can be embedded into Uq(g\(n, C)) and
is important for construction of a ^-analogue of the symmetric Riemannian space
U(n)/SO(n) [22].

As in the case of the algebra Uq(so(3, C)), we can define three additional ele-
ments of the algebra L^(so(4,C)):

The elements 7^, 1 ^ r < k ^ 4, satisfy the relations of the type

[hu hύq Ξ qX/%ιh2 - q-l/%2hι = hi .

The involution in Uq(so(4,C)), defined uniquely by the formulas

2̂1 = ~hι, 732 = —732, 743 = 743 ,

determines the ^-deformed Lorentz algebra t/^(so3?i). Irreducible representations
[20] of L^(sθ35i) are given in a similar way as in the case of the Lorentz group
SOo(3, 1). These representations Tσs are defined by a complex number σ and by an
integral or half-integral number s. In order to give these representations it is suf-
ficient to have the operators Tσs(I2\), Tσs(l32), Tσs(I43). Without loss of generality
we may assume [20] that s ^ 0. The representation Tσs acts on the Hubert space
Vs with the orthonormal basis

\l,m), I = s,s+ 1, s + 2 , . . . , m = - / , - / + \,...,l.

On the subspace V\s spanned by the basis elements | /, m) with fixed / the irreducible
representation 7} of the subalgebra L/^(so3) acts. These representations of
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are described in [20]. The operator Tσs{I^) is given by the formula [20]

Tσs(hi)\l, m) = - i r n r 7 ι 1Ί\l9 m) + a/|Z + 1, m) + α / - i | / - 1, m) ,

1/2

(32)

There exist equivalence relations in the class of representations Tσs. The following
representations Tσs are unitary [20]:

(a) the representations Tσs, σ — ip, p > 0 (the principal unitary series);
(b) the representations Tσs, s = 0, 0<σ<l (the supplementary series);
(c) the representations Tσs, lm σ = π/h, Re σ > 0, where g = exp h (the

strange series).

For all representations Tσs, the set of matrix elements of the operator Tσs(U?,)
from (32) is bounded when / runs over values from s to oo. Therefore, this opera-
tor is bounded for all these representations. For unitary representations the closure
L = Tσs(I^) of Tσs(I^) is a selfadjoint operator.

Let us sketch how generalized eigenvectors

), s^m, (33)
l=s

of the operator L — Tσs{I^) corresponding to an eigenvalue x are evaluated. We
remark that the condition s ^ m does not restrict a generality. In fact, it is seen
from formula (32) that the matrix elements of the operator ΓOT(/43) are symmetric
with respect to permutation of s and m. If s < m then we would consider the
representation Tσs and permute s and m in (32).

The polynomials P/_5(z) from (33) satisfy the recurrence relation which is de-
rived from formula (32). After the replacement

and some computation we obtain the recurrence relation for P'n(x) (we do not give
it here). Comparing it with the recurrence relation (1.24) of the paper [11] for the
Askey-Wilson polynomials, we derive that

1/2

V yq\ q)n\q~ -> q)n\q •> q)n\A ~q )

where x = 2(q~^2 - q1'1)'1 cosθ and a = - i
Using the orthogonality relation for Askey-Wilson polynomials (Theorem 2.2

in [11]) we derive that for polynomials (34):

JPn(x)Pk(x)w(x)dx = δnk , (35)
-b
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where b — 2(q~1^2 — qχl2)~x. The weight function w(x) is given by the formula

1 q-1'2 - q1'2 h(x; \)h(x;-\)h{x;qV2)h(x; -q1'2)
W(pC) 4π ήnθ h(x; a)h(x; b)h(x; c)h(x; d)

x (q;q)2s+i(qσ+s+1 q)oo(q"σ+s+U,<?)oo

where x = 2(q'1'2 - qx/2)~l cosfl and

a _ _j«(<τ+m+ί+l)/2 £ _ • (a-m+s+\)β Q _ • (m-σ+s+\)/2 j _ _ (s-σ-m+\)/2

oooo

h{χ a) = {ae^ q^iae-'^ q)^ = \\(\ - aqk{q'λl1 - qι/2)x + a2qlk) .
k=0

The space Vs of the representation Tσs can be decomposed into the orthogonal
sum

oo

m——oo

where F5W is spanned by the basis vectors |/,m), / = \m\, \m\ + 1, \m\ + 2 , . . . . It
follows from formula (35) that the operator Tσs{I^) has a simple spectrum on each
subspace Vsm and this spectrum covers exactly the interval (—b,b), b — 2/(q~1/2 —
qχl2). The spectral measure of Γσ5(/43) on Vsm is determined by the measure w(x)dx
from (35). The spectrum of the operator Tσs{I^) on the space Vs is the same,
however now spectral points are of infinite multiplicity.

6. Representation Operators for the Algebra ί7^(son)

We consider irreducible finite dimensional representations of the ^-deformed algebra
Uq(son) which are of class 1 with respect to Uq(son-\). As in the case of the Lie
group SO(n), these representations T\ of L^(soM) are given by a positive integer /
and act on the same spaces V\ with the same orthonormal bases as the representa-
tions T\ of the Lie group SO(n) (see Sect. 9 in [4]). The basis elements are labelled
by

| / , m , y Λ . . . , r ) , l ^ m ^ j ^ k ^ ' " ^ \ r \ 9 (36)

where j,m,k,... ,r are integers. The operator Γ/(/Πjn_i) acts upon these basis vectors
as [20]

Tι(In,n-ι)\mJ,...9r) = bm\m + lj,...,r) + 6 w _ i | m - lj,...,r)9 (37)

_ . / [/ + m + n - 2][m +j + n- 3][m - j 1 / 2

m ~ l

As in the classical case, the operators Γ/(/z?z_i), / < «, act by the same formula
upon the corresponding parts of the pattern \m,j,...,r).

The space V\ can be decomposed into the orthogonal sum

M
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The operator Γ/(/WjΛ_i) leaves the subspaces VM invariant. The operator
Li = 77/(—i/ΠϊW_i) is selfadjoint. We shall evaluate the spectrum and eigenvectors

\xJ9...9r) = Σ V WkΛ.../) (38)
m=j

of the operator Z,/ on the subspace F^. We suppose that

The vector (38) is an eigenvector for the operator L\ with the eigenvalue [x] if
the polynomials P/_y(x) satisfy the recurrence relation

, (39)

where 1 -j = N, m-j = k, n + 2/ - 1 = «'. We multiply both sides of (39) by
-̂ f"̂ 2 and set

[t + ̂ - 3 ] l [ 2 t + »^-2] \ ' / 2 ,

) i h

After some transformations we obtain the relation

-q {q -q )\x\fk[x) - J ^2k

q i _ q2k+n>-2 ^-lW

Comparing this relation with the recurrence relation (7.2.1) in [12] for the g-Racah
polynomials

/q-y,qy-ιyδ,q-n,qn+ιaβ \
Rn(μ(y); a, β, y, δ\q) = 4φ3 q, q\

\ aq,βδq,yq )

where μ(y) — q~y + qy+ιyδ and one of the numbers aq, βδq, yq in the function
4φ3 is equal to q~N\ N G Z + , we see that

P/

k(x)=Rk(μ(y);*9β9γ9δ\q)9

where

[x] = qNl\qχl2 - q-l/2ylμ(yl μ(y) = q~y + yδyy+X = q~y - qy~N

Thus, the solution of recurrence relation (39) normalized by the condition Po(x) = 1
is of the form

[«'-2]!t*]![iV-Jt]![iV+ * + »'-2]! /

N ( ' W > ( 4 0 )
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where x = N — 2 y. It follows from the orthogonality relation for g-Racah polyno-
mials (formula (7.2.18) in [12]) that y runs over the values 0,1,2,...,7V. Therefore,
the spectrum of the operator L\ on the subspace VM consists of the points

The corresponding eigenvectors are determined by formulas (38) and (40). The
orthogonality relation for the polynomials Pn(x) are of the form

= δmn, (41)

1 [N]\[ri - 2]l\[2N - 2y + ri - 3]\\[2y + ri - 3]l\[4y - 2N]
W ~ 2 [N + ri - 2]\[ri - 3]\\[2N - 2y]!![2y]!![2y - N] '

where [s]U = [s][s - 2][5 - 4]. [1] (or [0]).
Joining spectra of the operator L/ on all subspaces VM, we obtain the spectrum

of L/ on the carrier space V\ of the representation Γ/.

7. Representations of the Algebra Uq(sor,2)

The aim of this section is to show how results on eigenvectors and overlap coeffi-
cients can be used for obtaining new results in representation theory of ^-deformed
algebras.

In the previous section we constructed the new orthonormal basis {|x,y,...,r)}
of the carrier space Vι of the representation T\ of the algebra Uq(son). Clearly, the
vectors ι

m=j

where P^_7(x) = Wι^2(x)Pm-j(x), are orthogonal. These vectors differ from vectors
(38) by the multiplier Wι^2(x) determined by formula (41). We derived in the
previous section that the operator Γ/(/w>w_i) acts upon the basis {|x,y,...,r)} as

Tι(Intn-ι)\xJ9...9r)=i[x]\xJ9...,r).

The operators Γ/(//;/_i), i = n — 2,n — 3,...,2, act upon this basis by the same
formulas as upon the basis {\m,j,...,r)}. Thus, to determine the representation T\
in the basis {|x,y,...,r)} we have to find how the operator Γ/(/w_i>w_2) acts upon
this basis. Due to formulas (37) and (42),

+ ΣC;W*Hk7-l ^ , (43)
m=j

where b' are coefficients bm from formula (37) taken for the subalgebra Ug(son-\).
Now it is necessary to go from the basis elements {\mj ± l,...,r)} to basis ele-
ments (42). To fulfill this transition we apply to the basic hypergeometric function

4φ3 contained in the expression for Pf^_j(x) the recurrence formula (7.2.13) from
[12]. As a result, we express Pf^_j{x) as the linear combination of P^_J_ι(x-{- 1)
and P/

t{1_j_ι(x — 1). We substitute this expression for P^_ ;(x) into the first sum
on the right-hand side of (43). It turns out that in this sum we can separate two
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sums (42) in which j is replaced by j + 1 and x is replaced respectively by x -f 1
and x — 1. Thus, the first sum on the right-hand side of (43) is a linear combination
of the vectors \x± \9j' + l, . . . ,r) with certain coefficients. These coefficients are
evaluated under fulfillment of the procedure just described. Now we fulfill the same
procedure with the second sum of the right-hand side of (43) using formula (7.3.12)
(instead of formula (7.3.13)) from [12]. As a result, this sum is expressed as a linear
combination of the vectors \x ± \9j

: — l,. . .,r) with certain coefficients. This leads
to the following formula for the operator Γ/(/rt_i?λ2_2):

where

\[2x][2x + 2]

Thus, we obtain formulas of actions of operators of the representations Γ/
upon the basis {\xj\k,...,r)}. This basis differs from the GeΓfand-Tsetlin basis
{\m,j\k,.. .,r)} and corresponds to the reduction from Uq(son) onto the subalgebra
Uq(so2 + sow_2) = C/(so2) x Uq(son-.2).

As in the case of representations of compact and noncompact real Lie groups,
by making use of an analytical continuation in the parameter giving representa-
tions we can obtain infinite dimensional representations of the ^-deformed algebra
Uq(son-2,2) from the representations 7/ of Uq(son). In this way, we obtain the rep-
resentations TσjS,σ e C, ε e {0,1}, of Uq(son-2,2) which act on the Hubert spaces
Hε with the orthonormal basis

\xj9k,...,r)9 j : + ; = e(mod2), j ^ k ^ ^ \r\, (45)

where x runs over integers and j runs over nonnegative integers. The opera-
tors 7V>e(/«,n-i) and Γσ>e(/ί>z _i),z = 2,3,...,« — 2 (these operators correspond to
elements from the sub-algebra L^(so2 + sow_2)), act upon basis vectors (45) by
the same formulas as in the case of the representations Γ/, and for the operator
Tσtε(Ii,i-\) we have

= KjLx([σ +y + x][-σ +j + x + n- 2])1/2|x + \J + 1,*,...,r)

^Ktσ +y - x\[-σ+j -x + n- 2])ι/2\x - I J + 1,k9...,r)

(46)
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where Kj and Lx are given by formulas (44). Substituting these expressions for the
operators J ^ / ^ -j) into the defining relations for the algebra Uq(so(n,C)) from
Sect. 5 we make sure that they really determine a representation of Uq(son-2,2)-
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