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Abstract: Between the rank 3 quotients of cubic Hecke algebras there is essentially
one of maximal dimension. We prove it has a unique Markov trace having values in
a torsion module. Therefore the description of a Markov trace on the cubic Hecke
algebra corresponding to x3 -j- 1 and having the parameters (1,1) is derived. Thus
we obtain a numerical link invariant of finite degree, and define a whole sequence
of 3 r d order Vassiliev invariants.
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1. Introduction

The aim of this paper is to begin a systematic study of cubic Hecke algebras
by analogy with the analysis carried out by Vaughan Jones (see [Jon87]) in the
classical case of Hecke algebras. The motivation is to derive link invariants and
Markov traces on the group algebra of the braid group.

We recall that Artin's braid group Bn in n strings is presented usually as

Bn = {bub1> .">bn-\\bιbj = bjbι, \i - j\ > 1, i,j = l,n - 1;

£ , + i * A + i = b t b ι + \ b l 9 ί = l , w - 2 ) .

* Most of this work was done when the author prepared his PhD thesis at University of Paris-Sud
and was partially supported by a BGF grant.
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and we have a sequence of natural inclusions

B2 C B3 C B4 C C Bn C Bn+X C .

On the other hand Bn is the group of isotopy classes of n strings lying in R2 x [0,1]
having nowhere horizontal tangent vectors, and fixed endpoints. Assume that the
braid x G Bn lies in a box [0,1] x [0,1] x [0,1] and we choose n large, disjoint
(and unknotted) circles outside the box which connect the pairs of upper and bottom
endpoints. Artin's closure of x is the link obtained this way, naturally oriented by
choosing the up-down orientation for the strings in the box. Then every oriented
link is Artin's closure x of some braid x. Moreover two links x and y (where
x,y G \JnBn) are isotopic if and only if they are equivalent under a sequence of
Markov moves consisting in:

1. Replacing z G Bn by a conjugate czc~ι G Bn.

2. Replacing z G Bn by zbε

n G Bn+\, ε G {—1,1}, or conversely.

Recall that a Markov trace on the group algebra of the braid group is a functional
t satisfying

2. t(xbn) = zt(x\ t(xb~ι) = zt(x) if x G Bn, with z, z e C*, called parameters.

Therefore the Markov traces, properly normalized, induce link invariants (see
Sect. 4).

The usual Hecke algebras H(q,n) are quotients

H(q,n) = C[Bn]/(b* - (q - l)bt - q, i = 1, n - 1), q G C* .

The structure of these algebras is well-known (see [Bou82] and H(q,n) are finite-
dimensional C[g]-modules of dimension n\. The existence and the uniqueness of
the Markov traces on the Hecke algebras lead to the famous Jones polynomial.

Definition 1.1. The generalized Hecke algebras are defined as the quotients

H(Q,n) = C[Bn]/(Q(bj)'9 j = l,n - 1),

for some polynomial Q, having ζ?(0) + 0. If the degree of Q equals 3 we call them
cubic Hecke algebras.

A natural question is to investigate the structure of these algebras and the
Markov traces they support. In the general case we notice that some new features
arise. In particular:

d i m c # ( β , « ) = oo if deg(β) > 6, and n ^ 3 .

Also even in the case of a cubic polynomial we have:

dimeH(Q,n) = oo if n > 6, deg(β) = 3 .

We shall be concerned in this paper with the (tower of) cubic Hecke algebras
obtained for a cubic polynomial Q, having g(O)φO.

The cubic Hecke algebra H(Q,n) surjects onto the ordinary quadratic algebras
H(P,n), (for every quadratic polynomial P dividing Q) and also onto the Birman-
Wenzl ([BW89]) algebra. Hence we can lift the Markov traces on the last ones
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to get generically four families of Markov traces on H(Q, *) . Their parameters
should satisfy some algebraic equations. The first question which arises naturally is
whenever some other Markov traces exists. We shall give a partial positive answer
to this question by constructing one such, for a fixed polynomial Q, and special
values of parameters. We call a Markov trace multiplicative if the associated link
invariant behaves multiplicatively with respect to the connected sum of links. Set
Q7 — X3 — y. Our main result can be stated as (see 4.1,4.3):

Main Theorem 1.2. There exists a multiplicative Markov trace with parameters
(1,1) on //(β_i,*), whose associated link invariant F is algorithmically com-
putable, takes only the values —1 and 1 and is not a Vassiliev invariant of finite
type.

We remark that this Markov trace cannot be a lift of the Jones-Ocneanu trace on
the (quadratic) Hecke algebras since the parameters would be (1,-1 + 2exp(y))
or (1,-1 — 2exp(y)). From 2.11 it cannot be a lift of the Birman-Wenzl trace
either.

We shall outline below the strategy of our proof.
We introduce the quotient Kn(y) — H(Qy,n)/In, where the two-sided ideal In is

generated by

bι+ιtfbι+\ -f bibMbι -f b2

ιbι+\bι -f bibιΛ.\b] -f bjb2

+ι

Then Kn(γ) are finite dimensional modules and we are able to describe all Markov
traces they support (see 3.4 for a more precise statement):

Theorem on the Quotient Trace 1.3. There exists an unique Markov trace on
K*{—\) whose parameters must satisfy z3 = 1, z = z2 and takes values in Z/6Z.

Dually we computed the link group (see 3.1) associated to K^y) and the two
parameters (z,£). It is (3.4), a cyclic torsion group of order 6 or it vanishes. Roughly
speaking the link group of a quotient is the group generated by the isotopy classes
of oriented links modulo the skein relations dictated by the generators of the ideals
/„. So it turns out that these various link groups are not always torsion free.

Idea of Proof It is simple to check that the parameters have to be these ones and
the Markov trace on K*(— 1), if either exists, is uniquely defined. For the existence
part we restrict first by checking that the functional / satisfying only the recursive
conditions

(which we call admissible functional), is well-defined.
The method of proof is greatly inspired from [Ber78] and is given in Sect. 5.

We define a huge graph whose vertices are the elements of the abelian semi-group
associated to the free group in n — 1 letters (in the first instance) and whose edges
correspond to elements which differ by exactly one relation (from the set of relations
defining Kn(y)).

If we used our relations in only one direction (i.e. we may replace a by b but
not b by a) we would arrive at orienting the edges of this graph, and we may ask
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whenever the minimal elements of each connected component of the graph exist
and are unique. This will provide a basis for Kn(γ) if sufficiently many relations
are added in order to obtain the uniqueness. For the existence of minimal elements
the usual procedure is to use the lexicographic order on the free group on n — 1
letters and to replace always a word by smaller ones. We have carried out this
algorithm for H(Q,3) in Appendix A and we can see the technical difficulties
which may be encountered. So having yet in mind a certain reduction process, we
define the oriented edges as follows: exactly one monomial may be changed using
one of the rules

(C0)Q) AlήB->AB9

Abj+ιbjbj+ιB-+AbjbJ+xbjB,

Abj+λb
2bj+xB - ASjB ,

Abj+ιb
2b2

j+ιB - Abjtή+ιbjB ,

(C21)G) Ab2

j+xb
2bj+λB -+ Abjbj+ιbJB .

Also some unoriented edges must be added. They correspond to a change in a
monomial of type

{Ptj)AbibjB —» AbjbtB whenever \i - j \ > 1 .

We remark that we were forced to add some relations (knowing that they hold
already in H(Q,n)) which make the reduction process ambiguous. The reason is
to assure the existence of descending paths to some minimal points even if closed
oriented loops may be found in the graph. And we shall check the existence and
uniqueness of minimal elements up to unoriented paths in this semi-oriented graph
by means of the so-called Pentagon Lemma 5.3. When this approach is not suc-
cessful we shall widen our graph to a tower of graphs modeling not Kn(y) but the
functionals on Kn(y) satisfying a recurrent condition which permits to reduce further
the minimal elements. Here the Colored Pentagon Lemma 5.6 (in fact a variant of
5.3) can be applied and the problem is reduced to some algebraic computations.
This shows that the main obstructions lie in K4(y) not in K$(y)9 as it could be
expected from the study of quadratic Hecke algebras. When we wish to check if
the commutativity condition for the functional is actually a Markov trace another
obstruction appears in K4(y). This explains why torsion arises in the link group and
ends the proof of Theorem 1.3.

We come back to the cubic Hecke algebras considered above. In the fourth
section we prove that the Markov trace we constructed on A^o(y), and taking values
in Z/6Z, has a lift (as the multiplicative Markov trace) to //(β_i,oo) which is
integer valued. A link invariant F, which is not a Vassiliev invariant of finite
degree, is derived in this manner.

We define further a whole sequence of 3 r d order Vassiliev invariants, which in
degree 0 correspond to F, and are algorithmically computable, using the method of
Baez [Bae92]. Whenever some of them are really new (so they are not limits of
classical Vassiliev invariants) we don't know at this moment.

The existence of a deformation of the homogeneous quotient K*(γ) (see 2.13)
enables us to believe that our main result can be established in more generality for
an arbitrary cubic polynomial Q (for some precise values of the parameters), using
the same method of computing the obstructions. However the explicit computations
are rather cumbersome.
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2. The Quotients of H(Q, 3)

The generalized Hecke algebras were introduced by analogy with the classical case
as the quotients

H(Q,n) = C[Bn]/(Q(bj); j = \,n - 1)

of the group algebra of the braid group by the ideal generated by Q(bj), where Q
is a polynomial having Q(0) φθ . We wish first to consider the quotients P(3) of
H(Q,3). We need therefore to know dimc(β,3).

Proposition 2.1. For all cubic polynomials Q with β(O)φO, we have

dim c//(&3) = 24 .

Proof Since 2(0) φO we may restrict to the case when the exponents of the έ, 's
are 0,1 or 2. Set wntk = bnbn-\ ...bk+λb

2

kbk+λ ...bn e H(Q,n + 1) and Q = X3 -

ax2 - βx - y.

Lemma 2.2. Set rnj = bjbj+\ ...bn-\. The following commutation rules hold in
H(Q,n+\):

biWnj — wnjbι if iΦj — 1 and i < n ,

bnwnJ = Gcwnj + βwn-ιjbn + yrnJv* ~~]

Wnjbn = otwnj + βbnwn-.\j + yr~Jλ

Proof of Lemma. If / < y — 1 we obtain the first relation since the Z?̂ 's involved
in w;7;7 have \k — i\ ^ 2. Now

bn-\wnj = {bn-\bnbn-\)...bj ...bn-\bn

= bnbn-\bn ...bj ...bn-\bn

= bnbn-χbn-2 -"bj ...bn-2(bnbn-\bn)

— bnbn-\bn-2 ---bj ...bn-2bn-\bnbn-\

= wnJbn-ι ,

proving the first relation for / = n — 1. Similarly for all i ^ j we have

biWnj = brbnbn-χ ... b ι + 2 b i + \ 6 , fe, _ i . . . b j . . . b n

— bnbn-\ .. .bi+2bι+\bibi+\bi-\ ...bj ...bi^\bιbι+\ ...bn

— bnbn^.\ ...bi+2bι+\bibi-\ ...bj ...bi-\(bi+\bibi+\)...

= bnbn-X ...bj ...bι-ibιbι+]bι...bn

So the first commutation relations are proved.
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S u b l e m m a 2 . 3 . w»tJbn = b~\bnwn-ιjbn-\bnbn-ι for j = l,w - 1.

Set first j < n — 1. We shall use bn-\bn — bnbn-\bnb~^x in what follows:

WnjK = bnbn_\ ...b2j ...bn-\b2

n = bnbn-\ ...b2 .. .bn-2bnbn-\bnb~lxbn

= (bnbn-\bn)bn-2 -"b2 .. .bn-2bn-\bnb~lλbn

= bn-χbnbn-ιbn-2 -b2j ...bn-2bn-ιbn(γ~lb2

n_ι - ay~λbn-X - βy~ι)bn

-2(bn-\bnbn-\)bn^\bn

bn-\bn^2 > >b2 ...bn-2bn-\bnbn-\bn

— βy~ bn-\(bnbn-\bn-2 - bj ...bn-2bn-\bn)bn .

Using also the previous commutation rules for / = n — 1 we obtain

Wnjbn = y~Xbn-\bnbn-\bn-2 ...b2 ...bn-2bnbn-\(bnbn-\bn)

y~

y~

= b~_λbnwn-\jbn-\bnbn-\ .

For j = n — 1 we may write in the same manner:

bj+\bjbj+ι = bj+ιbj{bJ+\bjbJ+ιbJι)bj+ι = bjbj+\b2bj+\b~λbj+\

= y~xb2bJ+ιb
3

Jbj+\bJ - uy^bjbj+itfbj+φj - βy~ιbJ+ι

x b2bJ+xbjbj+x = (y-χbj - ay-χbj - βγ-ι)bJ+ι

x bjbj+φj = bjλbj+\b3jbj+\bj ,

which ends the proof of the sublemma. D
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We are able now to prove our lemma. From above we have:

WnjK = b~\bn(wn-ιjbn-ι)bnbn-ι

= b~_! bnb~_2bn-1 (wn-2,jbn-2 )bn- \ bn-2bnbn-X

= ' ' = rήj+\ \Pnbn-\ bj+i(wj+\jbj+\ )bj+2 . bn]rnj+\ .

We denote bn ...bJ+2 = s and bj+2 - bn — t for simplicity. Thus

Wnjbn = r-J+]s(bJιbj+ιb3jbj+ιbj)trnfJ+ι = ar~J+ιs(b~ιbj+xb
2bj+xbj)tτnJ+x

+ βrnJ+Ab^bj+ibjbj+xb^tΐn^+i + yr~)^χs(bjλb2

+ιbj)txnj+x

= ocr-]sbj+ιb2jbj+ιtcnj + βy + y^jw/ij+iV/ ,

where we met

y = r«TJ(^« bj+\bjbj+\ - - bn)rnj = ^ j ( * Λ b,bj+{bj ... ftΛ)rΛ>y

= r^y *y(*/i bj+2bj+\bj+2 bn)bjrnj = = r~J(bjbJ+\ ... δ n _ 2

x (bnbn-ιbn)bn-2' bj)rnJ = M>Λ_i,/ ?

and this proves that

βbnwn-\fJ r~

But r,hJ-w,h/ = wnjrnj according to the first commutation rule, so we are done. •

For n = 2 the relations of the lemma read:

b2b
2b2b\ = b\b2b\b2 ,

Z>^£2 = fcli2fe2 + α ( i 2 i 2 i 2 _ bxb\bx) + β{b]b2 -bxb\),

b2b
2b2

2 = b\b\bι + ot(b2b
2b2 - 6 ^ ^ ! ) + β{b2b\ - b\bx).

Lemma 2.4. ,4wy wort/ w in b\ and b2 is equivalent (as an element of H(Q,3))
to a sum of words having the degree in b2 at most 2.

Proof In fact if the degree in Z?2 is at least 3 then the word contains one of the
monomials ba

2b\bc

2 with a + c ^ 3 or b2b
b

lb2b
c

lb2. We prove that in both situations
the degree may be reduced.

In the first case if b — 1 then we replace Z>2 î̂ 2 by b\b2b\. If b = 2 then a or
c equals 2 so we can apply one of the above written relations.

In the second case if b or c equals 1 again we may replace Z?2 î̂ 2 by b\b2b\.
If b = c = 2 then

b2b
2b2b

2b2 = bxb2b
2bxb2 = b2b2b

2b2 ,

so the third relation may be used to reduce the degree of w, thus proving our
claim. D
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It follows that the following elements generate the vector space H(Q,3):

ex = 1, e2 = bu e3 = b\9 e4 = b2, e5 = b\9 e6 = bxb2, eΊ = b2bu β8 = b]b2,

e9 = Z?2^i, βio = *i*2» e π = *2*i» e i2 = *i*2» e i3 = b\b\, eX4 = b\b2bu

e\5 = b\b2bu e\β = b\b2b\9 eXΊ = bxb\b\, β 1 8 = b\b2b\, e{9 = b]b2

2bu

e20 = b\b\bu e2X = b\b\b\, e22 = b2b]b2, e23 = b2b\b2b\ = b\b2b]b2,

e24 = b2b\b2b\ — b\b2b\b2b\ — b\b2b\b2 .

We remark that for α = β = 0, y = 1, so Qλ = X 3 - 1, the algebra H(QU3) is
the group algebra of a group of order 24. In fact {e\9e2,...,e24} becomes a group
in which the multiplication law is induced by the following identities:

b\b\b2 = bxb\b\\ b2b\b\ = A?^Z>i; Z>2*i*2*i = ^i^2^i^2 .

It follows that H(Q\,3) is a semi-simple algebra, hence for Q generic and suffi-
ciently close to Q\ the algebra H(Q,3) will be also a semi-simple algebra of the
same dimension. This ends the proof of the proposition for generic Q close to Q\.
The complete proof for all Q is given in Appendix A. D

Remember that the Markov trace on the quadratic Hecke algebras (which is
unique [Jon87]) has the following multiplicative property:

tr(xbn) = tr(jc)tr(bn), when x e H{Q,n),

which implies that:

tr(xy) = tr(x)tr(jθ, when x 6 H(Q9n% ye (1 A A + i , . A+*>

However we cannot expect that this property will extend to higher level algebras
and the Markov traces they support.

Definition 2.5. We say that a Markov trace t is quasi-multiplicative if

t(xbk

n) = t{x)t{bk

n)

holds, when x G H(Q,n), k G Z, and multiplicative if the stronger condition

tr(*y) = tr(x)trO0 when xeH(Q,n),y £ {\9bn,bn+\9...9bn+k)

is verified.

Lemma 2.6. In the case of cubic Hecke algebras the Markov traces are quasi-
multiplicative.

In fact we have b\ — otbn + β + yb~ι. We derive then the multiplicativity for
k — 2, since for k G {-1,0,1} is already contained in the definition of the Markov
traces. This will imply the quasi-multiplicative property for all A:. D

Notice that a general Markov trace on the cubic Hecke algebra need not be a
multiplicative one.
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Set then B for the base of //(£?, 3) considered above. A general relation yielding
a rank 3 quotient takes therefore the form:

R(μ) : £ μxx = 0, where (μx)xeB e C 2 4 .
xeB

Γ0 1 0
Set ω = (μb2b2b2,μb]blb2b2,μb2b2b2b2) G C 3 and MQ = 0 0 1

L7 j? α

Let λj, i = 1,3 be the eigenvalues of Mρ and £ρ = {(\,λl9λj), ί = 1,3} be the
eigenvectors of MQ. Observe that A/φO since yφO.

Consider now a proper quotient of P(3) = H(Q,3)/Iτ,. We can define therefore
a whole tower of quotients P(n) = H(Q,n)/In by defining In as the two-sided ideal
of H(Q,n) generated by 73. We call the tower P(*) the quotient determined by

Proposition 2.7. Suppose that for some relation R(μ) holding in P(3) the following
(generic) condition:

(*) (the degree 2 polynomial having the vector of coefficients ω has no common
roots with Q) is fulfilled. Then for fixed (z,t) e C*2 there exists at most one
Markov trace on P(*) with parameters (z, /).

Proof Define recursively the modules Ln by

L2=H(Q,2),

L, = C(b\ti2b\ i,j,ke {0,1,2}),

Ln+ι =C(abε

nb; ε e { l , 2 } ) θ i « .

Lemma 2.8. Under the natural projection π on P(n), Ln surjects onto P(n).

Proof For n — 2 it is trivial. For n = 3 we remark that

Σωxx e π(Z,3),
xEB'

where we met B' = {b2b^b2,b\b2b2

ιb2,b
2

]b2b2

]b2}. But L3 is b\-invariant, so also

Σ (MQω)xx = Σ b\x e π(L3) .
x<EBf xeB'

The hypothesis implies b2b
2b2 G π(L3), and we are done.

Consider now w G P(n -f 1) represented by a word in the όz's having only pos-
itive exponents. We assume the degree of the word in the variable bn is minimal
among all words (with positive exponents) representing w.

If the degree is less or equal to 1 there is nothing to prove.
If the degree is 2, then w = ub2

nv,u,v £ P(n), so using the induction hypothesis
we are done, or else w = ubnzbnv, and u,z,v 6 P(n). So z = xbε

n_{y with x,y £
,P(/7 - 1) by the induction and ε e {0,1,2}. If ε = 0 then w may be reduced to
uzb2

nv. If ε = 1 then w = ubnxbn-\ybnv = uxbn-\bnbn-\yv, hence the degree of w
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may be reduced by 1, contradiction. If ε = 2 then w = uxbnb
2

n_{bnyv. But (from
the definition of P(n -f 1)) we have

bnbl^bn e C(bι

n_xVnb
k

n_x; ij9k = 0,2) ,

hence we reduced w to a word of type u'b2

nυ'.
If the degree of w is at least 3 we shall contradict the minimality. In fact

w contains a sub-word w' — ba

nubh

n, u G P{n) and a + b ^ 3, or else a sub-word
w" = bnubnvbn, u,v e P(n).

In the first case using the induction we can write u — xbr

n_xy,x,y £ P(n — 2).
If ε = 0, then

W = ba+bxy = <ώa+b-χxy + βba

n

+b~2xy + yba+b~3xy ,

hence its degree reduces by 1.
If ε = 1, then

W = ba

n-
χxbnbn-xbnybb

n-
χ = ba-lxbn-\bnbn^ybb

n-
x ,

again its degree is reduced by 1.

If ε = 2, then a ox b equals 2. Say a = 2. We can write

w' - xbψn^bnybb

n-
χ = xbφ\b]ybb-] + *{b2b]b2 - bφ\bx )ybb

n-
{

+ β{b\b2-bxb\)ybb~x ,

still contradicting the minimality of the degree of w.
In the second case we write also u = xbε

n_xy,v = rb^_{s with x,y,r,s£
P(n-l).

If ε or ^ equals 1 then, after some obvious commutation, the word w" contains
a factor 62&162 which, when replaced by b\bib\ reduces the degree by 1.

If ε = δ = 2, then
w" = xbnb

2

n_xbnyrb2

n_xbns .

We use the homogeneity to replace bnb
2

n_xbn by a sum of elements of type

bι

n_xb
)

nb
k

n_x. Each term of the expression of wff which comes from a factor having
j < 2 has the degree less than it had before. The remaining terms are

so they contain a sub-word b\ubn whose degree we already know may be reduced
as above. This proves our claim. D

Now the Markov traces t on H(Q, 00) are quasi-multiplicative from Lemma 2.6,
hence

t(xbε

ny) = t(bε

n)t(yx),

and yx £ P(n). Therefore the extension of t, by recursion, from P(ή) to P(n + 1 ) ,
if it ever exists, is unique. This ends the proof of our proposition. D

Remark 2.9. We know that on H(Q, 00) there are at least 3 families of Markov
traces whose parameters satisfy some linear conditions, coming from the Markov
traces on quadratic Hecke algebras. In fact we have natural projections H(Q, 00) —>
H(Qi, 00), if Qi is a degree 2 factor of Q.



Quotients of Cubic Hecke Algebras 523

We shall begin therefore to investigate the case when dimcP(3) is maximal.
According to 2.8 we have dimcP(3) ^ 2 1 for a generic quotient. We remark
that we may always suppose γ = 1 because we have an isomorphism of algebras
H{Q,n) = H(y~ιQ,n). We shall assume that the hypothesis of Proposition 2.7 is
fulfilled in what follows. We may state therefore:

Proposition 2.10. For a = β = 0 there is only one quotient {satisfying (*)) of
dimension 21, say K^, which is determined by the relation

b2b]b2 + bλb\bx + b\b2bλ + bχb2b\ + b\b\ + b\b\ + b{ + b2 = 0 .

The proof is rather calculatory and we give it in Appendix B.
We wish to study now the Markov traces on the quotient Kn which begins with

K3, namely

Kn = (l,bu...,bn-ι I bi+ibibj+i = bιbι+χbι for / = 1 ,«- 1; bxbj = bjbj;

for \i-j\ > 1; b] = 1 for all i;bι+ιbfbι+} = -bφ2^ - b\bi+xbt

- *i6,+iftf - bfbf+ι - 6?+ii? - bj - bt+\) .

We remark first that Kn has an obvious deformation over C* given by

Kn{y) = (l,Z?i,...,^_i I bi+xhbt+x = bfa+xbi for z = 1,« - 1; btbj = fey^ ;

for |/ - y | > 1; fef = 7 for all i;bi+]b^bi+] = -btf+ιb, - b^bi+ιb,

Remark 2.11. There is in fact exactly one solution for the system (S) for general
α and β which is polynomial in this parameter. This was pointed out to me by
P. Vogel. The reason is that H(Q,3) is a semi-simple algebra which decomposes
as

C3 θ M2

Θ 3 θ M3 ,

where Mn is the algebra of n by n matrices. The morphism into C3 is obtained via
the abelianization map, and that into M2 is part of the projection onto the quadratic
Hecke algebra defined by a divisor of Q (which is C2 0M2). Therefore there is
only one possibility to get a 21-dimensional quotient, by killing the factor C3. The
Birman-Wenzl algebra (also called Brauer algebra in this setting) corresponds to
the factor C2 0 M2 ΘM3. A generator for the ideal of the quotient may be chosen
as the element

ω = b\b2b\b2{bxb2 + b2bχ - ocbχ - ocb2 + α2 + β) + b\b2b\ + b\b\b\

- vb\b2bx - vb\b2b\ + (α2 + β)bχb2bχ + bχb2 + b2bχ + b~x + b~x + jff .

The corresponding relation reduces to

^2^1 ̂ 2 + (i^2 - OL)b\blb\ 4- (α2 - ocβ - β)(b\b\bχ + όi^ό?) - α(β2 - *)b\b2b\

+ (1 - α3 + α^ + a2β2\b]b2bχ + M2&?) + ((1 + αj8)2 - (X3)bχb2

2b{

β3)(b]bl + ^Z?2) - α(2 + (1 + αβ)2 - a?)bλb2bx



524 L. Funar

+ (ocβ3 -la- la2β){b\b2 + b2b\) 4- (aβ3 + β2 - la2β - la){bxb\ + b\bx)

4- x(2u2β + 3α - αβ3 - J82)(*i*2 4- M i ) + (β 4 - 2)5 - 3αjβ2 + °?)(b\ + 62)

+ ( 1 + 3α^ 4- 3α2j82 - αβ4 - a3)b2 + (1 4- 4αβ + 3α2^2 - α3 - αβ4 - ^ 3 ) ^ !

+ 3β2 - β5 -la- 3a2β 4- 4αjβ3 = 0 .

3. Markov Traces on K^y)

Let us now work with the algebra Z\Boo] instead of C[i?oo]. Let P* be a quotient
of Z^oo]. Consider A(z,z) be the smallest sub-ring of C containing z,z £ C*.

Definition 3.1. i) Let R be a A(z,z)-module. The module AF(P*,R)(z,z) of admis-
sible functionals on P* taking values in R is the set of those

t G HomΛ(z,£)CPoo,i?) satisfying

t(xbny) = zt(xy) for x,y e Pn ,

t{xb~xy) = zt{xy) for x,yePn.

ii) The module of Markov traces with values in R is

MT(P,,R)(z,z) = AF(Pf,R)(z,z),

where Pf> = Pk/[Pk,Pk] with the induced inductive system structure. Observe that

Pf are only modules not algebras.
iii) We define the link module of P* with parameters (z,z) as

£ n - zx9 xb~λ - zx x G Pn)) ,

where (()) stands for the module spanned by the considered elements.

If P* is defined by homogeneous relations in each rank, then Z(P*)(z,£), as an
abelian group, is isomorphic to L(P*) via the map

e(x)

where e(x) is the exponent sum for words. Observe also that the Markov traces
descends to L(P*)(z,z) and we have

MT(P*9R)(z9z) = Hom > 4(Z f f )(I(P*)(z,f),Λ),

so the knowledge of Markov traces is enlightening when computing L(P*). We
have natural morphisms

Vfrz)-> L(P*)(z,z)

and their duals
MT(P*,R)(z,ϊ) -v MT{Z[Boo]}(z,£).
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Let 5£ be the set of isotopy classes of oriented links and Z ((<&)) be the free
abelian group generated by S£.

Lemma 3.2. The mapping Z((if)) —» L(Z[#oo]) defined by

L -> class of x in L(Z[£oo]),

where x is some braid word representing L, is an isomorphism.

The proof follows from Markov's theorem in a straightforward manner. D

Example 33. If P* = H(q,*) is the usual quadratic Hecke algebra then from
Proposition 2.4. we derive

0 elsewhere

We can state the main result of this section:

Theorem 3.4. We have

A(z,z)/6zΊA(z,z) if z3 + y = 0, z = —z2/y

0 elsewhere

Proof In order to get the result we need the description of Markov traces on K*(y).
First we wish to deal with the module of admissible functionals. We shall use the
following type of presentation of a module:

M = A(x\,x2,... ,Xp\r\,r2,...,r^||wi, w2,... ,ws) ,

which has to be read as follows: x\,...,xp generates the ,4-algebra A whose defining

relations are r\,...,rq. Therefore M is the quotient of A by the submodule spanned

by the images of w\,..., ws in A.
Consider now the following sets of words in the Z?,'s:

W , = { 1 } ,

Wn+X = WnU WnbnZn U Wnb\Zn ,

First of all

Lemma 3.5. We have a surjection of (Kn,Kn)-bimodules

given by

xθy®z($u®v-+x-\- ybnz -f ub\v .

The proof follows from that of Proposition 2.6. D
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As a corollary we derive that AF(Kn,R)(z,z) is R ®A{Z^) M9 where M has the module
presentation

( I b] = y | | abtb = zab \

bub2,...,bn^ I bibj = bjbh\i-j\ > 1 ||αZ?26 = ta6 / '
I bι+\b2bι+\ = Si \\ a9b £ Wj,i = 1,« — 1

where ί = yz,

and the algebra A = A(z,z). We shall use this presentation for proving first

Proposition 3.6. The module of admissible functionals is

AF(K*(l)9R)(z9z) = R/Ho 9

where Ho is the ideal {llzt2 + 8z2 - 4/, 12z2/ + $t2 - 4z, 10z3 + lθt3 - 2zt - 2)R,
and t = 1/z.

We defer the rather long proof of this proposition to Sect. 5.
We are ready now to prove our Theorem 3.4. In fact it suffices to describe

the module of Markov traces taking values in R for fixed parameters (z,z). There
is essentially only one admissible functional on K^y) from above. It suffices to
check the commutativity condition

t(ab) = t(bά) for all x,y .

At the first stage Ki(y) we derive

t(b2bjb2) = t(b\b\\ t{bxb2b
2b2) = t{b2bxb2b

2) = yt{bφ2).

But Ms a functional on H(Q,3)/Iτ,, hence

t(R0) = t(R\) = 0 .

because 1$ is spanned by RQ,R\,R2 (see Appendix B). These conditions imply z3 4-
7 = 0 and t = -z 2 . So we conclude

L(K*(y)){z9z) — 0 if z, / does not satisfy the previously stated conditions.

Suppose now that the parameters satisfy these conditions from now on. Therefore
we see that Ho = 6yz2R.

We shall prove the commutativity by induction on n. If suffices now to check the
commutativity conditions for b G {b\,...,bn} and a lying in a system of generators
of Kn+\(γ), say Wn+\. For b = bχ9 i < n it is obvious. It remains to check whenever

t(abn) = t(bna) .

We have three cases:

i) a e Kn(y),

ii) a =xbny, x9y G Kn(y),

iii) a = xb2

ny, x9y β Kn(γ) ,
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which will be discussed in combination with any of the six sub-cases:

1) x G A:Λ-i(y), and y G Kn_x{y\

2) x G Kn-\{y\ and y = ubn^xυ,u,v G Kn-\(y),

3) x eKn-\(γ), and y = ub2

n__xv,u,υ G Kn-\(γ),

4) x = rbn-\s, r,s G Kn-\(y),y = ubn-\υ, u,υ G Kn-\{y\

5)x = rbn-\s, r,s £Kn-ι(γXy = ub2

n_{υ, u,υ e Kn-\(γ),

6)x = rb2

n_λs, r,s €Kn-ι(y\y = ub\_xv, u,υ e Kn-{(y).

Now (*,i), ( l , ϋ ) and ( l , i i i ) are trivial.

(2,ii) t(bnxb2

nubn-\v) = tzt(xuv) = t(xbnubn-\vbn).

(2,iii) t(bnxb2

nubn-\v) = yt(xubn-\υ) = yzt(xuυ) ,

t(xb2

nubn_xυbn) = t{xub2

nbn-\bnυ)

bn-\bnb
2

n__xv) = yzt(xuv) .

(3,ii) t(bnxbnub2

n_xv) = t2t(xuv)

t(xbnub2

n_xυbn) = t{xubnb
2

n_xbnv)

= t(bnb
2

n__xbn)t(xuv) = t2t(xuv).

(3,iii) t(bnxb2

nub2

n_xv) = yt(xub2

n_xv) = ytt(xuv)

t(xb2

nub2

n_xvbn) = t(xuυbn-\b2

nb
2

n_xv) = ytt(xuv) .

(4,ii) t(bnrbn-\sbnubn-λυ) = zt{rb\_xsubn-\vi),

t{rbn-\sbnubn_\υbn) = zt{rbn_xsub2

n_xv) .

Let s w = pbί'n_2w with /?,w G AΓn_2(y). If ε = 0, it is trivial. If ε = 1 then both
terms equal yzt(rpwv) and if ε = 2 again both terms equal γtt(rpwv) so we are
done.

(4,iii) t{bnrbn-.λsb2

nubn-Xυ) = t{rb2

n_xbnbn_xsubn-Xv)

— yzt(rsubn-\v) — yz2t{rsuv),

and it is easy to check that also t(rbn-\sb2ubn-\υbn) = yz2t(rsuv).

(5,Hi) t{bnrbn-\sb2

nub2

n_xυ) = yzt(rsub2

n_xυ) = yztt(rsuυ),

t(rbn^xsb2

nub2

n_ιvbn) = t(rbn-Xsubn-Xb
2

nb
2

n_xv) = yztt{rsuυ) .
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(6,ii) t(bnrb2

n_xsbnsbnub2

n_xυ) = 3tt(rb2

n_xsub2

n__xv)

- 3yzt(rsub2

n_xv) - yt(rbn-Xsub2

n_xυ) ,

and

t{rb2

n__xsbnub2

n_xvbn) = -3tt(rb2

n_xsub2

n_xυ) - 3yzt(rb2

n_xsuv) - yt(rb2

n_xsubn^xv) ,

and as in (4,ϋ) we conclude that the two terms are equal.

(6,Hi) t(bnrb2

n_xsb2

nub2

n_xv) = t(rb2

n_xb
2

nbn^sub2

n_xυ) = yt2t{rsuυ) ,

t(rb2

n__xsb2

nub2

n_xvbn) = t(rb2

n_xsubn-Xb
2

nb
2

n^xv) = yt2t(rsuv) .

(5,ii) The last case!

t(bnrbn-\sbnub2

n_xυ) = zt(rb2

n_xsub2

n_xv)

t(rbn-Xsbnub2

n_xvbn) = -3tt(rbn-{sub2

n_xv) - 3yzt{rbn-Xsuv)

Let consider again su = pbι

n_2q with p,q e Kn-2(y) If ε = 0, it is clear.
If ε = 1, then both terms are equal to

-Ί>yz2t(rpbn-2qυ) - yzt{rpb2

n_2qv) - 3yztt(rpqv) .

If ε = 2, then the first term equals

The second one turns out to be

y2t(rpbn-2qv) + 6y2zt(rpqv) - 6yz2t(rpb2

n_2qv) .

But r and v are arbitrary in Kn-\{y). We derive that

When we pass to the dual we recover the result as stated in Theorem 3.4 which
further implies the statement as stated in Theorem 1.3. D

4. Link Groups and Invariants

In the last section we obtained a Markov trace

t : *oo(y)(z,£) -» Λ(z,z)/6zl4(z,£) .

The natural way to get an invariant is to consider the function

1 7 - 1 e(x)
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Since y = —z3,z = 1/zwe find that t(x) is an homogeneous polynomial in z, hence
f(x) G Z and does not depend upon γ and the choice of z. Now the class of f(x)
modulo 6 is well defined and represents a Markov trace on K^—l) with values in
Z/6Z. By composition with the natural projection H(Q-\,oo) —> AΌO(—1), where
Q-x =X3 + 1, we get an element / G MΓ(//(ρ_ 1 ?*),Z/6Z)(l, 1).

Proposition 4.1, There exists a lift F as a multiplicative Markov trace of f in
MT(H(Q-u*),Z)(h 1) determined by

F( 1) = 1 W F(b\b2b\b2) = - 1 .

Observe that / is necessary as a multiplicative Markov trace on Λ^o(y), as
in the quadratic case.

We need first

Lemma 4.2. If Tors (̂ 4) denotes the torsion subgroup of the abelian group A then

Proof Since b] = — 1, all the relations defining the module /,(//(ζλ_i,*))(l, 1) have
the following form: w\ = εw', ε G { — 1,1}, where w and wf are words in the b/s.
The only possibility that torsion appears will be that w = —w holds, hence the
torsion elements have order 2. D

Assume now that / is normalized by /(1) = 1. Due to the form of the relations
Ro,R\,R2 we obtain f(x) = ε (modulo 6), ε G { — 1,1} if x is a word. Then the
previous lemma enables us to get a lift.

whose reduction modulo 6 is / . Remark that / is a Markov trace so its values
on e\9e29...,e23 are uniquely determined from / ( l ) = l , z = l , ί = —1. The only
freedom degree in the definition of F (on H(Q-\, 3)) is the choice of

We remark now that / , restricted to words, takes only the values 1 and —1
(modulo 6). Therefore the application F : Bn —> Z defined as

= r 1 if f{x) = 1 (modulo 6)

\ —1 otherwise

extends naturally to a Markov trace on 7/(ζλ_i,*) taking integer values, so we
can choose k = 1 above. We denote by the same letter the link invariant which is
associated to F.

We think that a Markov trace on H(Q, *) exists for any choice of k, but it is
hard to believe that it is algorithmically computable.

Hopefully we may compute algorithmically F(x) since its reduction modulo 6
(which is F(x) itself!) is / so we can use the algorithm described in the previous
section. This ends the proof of the proposition. •

Proposition 4.3. The invariant F is not a Vassiliev invariant of finite degree.

Proof We shall consider K the classical torus knot of type (1, \2k) and set K^2k)

for the singular knot having all crossings identified. We remark that F(b() = σ(y),
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where σ has period 6 and σ(0) = σ(\) = σ(5) = l,σ(2) = σ(3) = σ(4) = - 1 . So
σ 0 ) — σ(—j)- Let F denote also the extension of F to singular knots. According
to [BXS93] we may write

\2k \2k

p=0 p=0

where Ck

n states for the number of subsets of k elements of a cardinal n set. Let
ζ = exp (^ψ) and

12A:

*/= Σ (-IFCf^, 7 G {0,1,2}.

Then

so from some elementary combinatorics we derive

= ^27 ,

which proves our claim. D

This ends the proof of our Main Theorem 1.2. D

We don't know however if F is not the limit of a sequence of Vassiliev invari-
ants. On the other hand F generates a whole sequence of Vassiliev type invariants,
as follows. Let SBn be the monoid of singular braids (see [BXS93, Bir93]) with
generators gi,g~\si, 1 ^ i < n and relations

[0i,0y] = [Sh9j] = [sl9Sj] = 0 if \i-j\ > 1, [0!,^] = 0 ,

Gi+\QiQi+\ = 9i9i+\9ι>

Let ZSβfl be the monoid algebra of the singular braid monoid. The (3-order)
Vassiliev algebra Wn is defined as the quotient of 7jSBn 0 Z[β] by the ideal gener-
ated by the following elements:

If Z(ε) denotes the algebra of Laurent polynomials in ε, then it is clear that the
natural map / : Zj[Bn] —» Wn produces an isomorphism

Z[Bn] <8) Z(ε) -^ Wn (8)Z[e] Z(ε) .

Now any link invariant / will extend to singular links admitting transverse dou-
ble points by means of the following resolution rule for the singularities:

eI(Lx) = I(L++) + / ( ! _ ) ,

where LX,L++,L- denotes the link diagrams with an intersection, two left-handed
crossings and one right-handed crossing respectively, all the rest of the diagrams
being the same (see picture 20). A link invariant is of degree d if it vanishes on all
singular links with d + 1 or more self intersections. A Markov trace on WΌo taking
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values in the A(z,£)[β]-module E is a map t G H.omA(z,£)[ε](W<x»E) satisfying

t(xy) = t(yx) for all x,y,

t(xgn) = zt(x), t{xg~x) = zt(x) if x £ Wn .

We say that a Markov trace on W^ is homogeneous of degree d if for every
x e Z[BOQ\ t{i(x)) is a homogeneous polynomial in ε of degree d.

Proposition 4.4. There is a one-to-one correspondence between the Markov traces

A(z,z)[ε]whose associated invariant I is of degree d and Markov traces τ
that are homogeneous of degree d, given by

τ(i(x)) = εdt(x).

Proof Suppose that / is of degree d. The formula from above defines a Markov
trace on W^ with values in A(z,z)(ε). Let x G Wn which is a product of / elements
of the form Sj and arbitrarily many of the form gj. Then

e{x)
J i n—\ /Z\ ~~T

τ(x) = εd-'(zz)— (-J I(x),

where f denotes the closure of the singular braid x. Remark that x has exactly /
self-intersections. So if / > d,I(x) vanishes hence τ takes values in ̂ 4(z,£)[ε].

Conversely assume τ is given and satisfies the hypothesis. Then Ms a Markov
trace. Let L be a link with / self-intersections. Then L is isotopic to some x, where
x e SBn may be written

x = w]shw2si2w3...

with wι words in the #z's. Set

Λ/ = wi(0? + g~ι)w2(gl + ft"1 )w

Therefore

Assume that I > d. Since τ(x/) G C[ε] and t(x) G C, we derive that t(x) = 0, hence
I(L) = 0. D

We can obtain therefore a necessary and sufficient condition that an invariant
be the limit of (3 r d order) Vassiliev invariants of finite degree.

Fig. 1. The resolution of a self-intersection singularity.
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Proposition 4.5. The invariant I associated to the Markov trace t is the limit of
a Vassίliev invariant of finite degree iff there exists a Markov trace

τ : Woo-^A(z9z)[έ\9

which makes the following diagram commutative:

Wn Λ A(z,z)[ε]

ΐ I

Z[£oo] ^ A(z,z)

where the morphism A(z,z)[ε] —-> A{z,z) is given by ε —> 1.

Proof If t = Σdtd, where td are of degree d then take τ = ^2dε
dtd, where t is the

natural extension of td to W^ and conversely. The rest of the proof is similar to
that of the previous proposition. D

Now we observe that in the quadratic Hecke algebra the following relation:

holds. This implies that the Markov trace with parameter z, say tqa fulfills the
following condition:

tq,z(wχ{g2

lχ + g-χ)w2(g2

l2 + g~ι ) w 3 . . . w , ( ^ + g~ι )wM) = (q - ζ)ιc,

where ζ3 = — 1 and c £ C.

Corollary 4.6. If H(q,z)(*) is the Homfly polynomial then

oo

//(ζexp(?),z)(Z)= ΣW l(Z,zV,
7 = 1

where w,(*,z) are Vassίliev invariants of degree i.

The proof follows from the previous proposition, when we take ε = q - ζ. D

In particular nontrivial Vassiliev invariants of every degree exist. In the same
manner we can prove that all quantum invariants of Turaev are obtained as the limit
of 3 r d order Vassiliev invariants.

We remark that all constructions we made could actually be performed by replac-
ing x2 +x~ι by any polynomial Q. If Q is quadratic then only classical Vassiliev
invariants are obtained. Consider Q — x + 1 and call the induced invariants 1st order
Vassiliev invariants. The previous results may be restated word-by-word also for this
case. Let V(ιf denote the space of Vassiliev invariants of order i (coming from
some polynomial Q of degree /) and degree d and V(i)°° the space of invariants
which are limits of finite degree invariants. We remark that the quantum invariants
are already contained in F(l)°°. Consider the case of the Homfly polynomial. We
make first a change of variable in the Homfly polynomial by setting h = -. Theni_ynvjJLijLiαi uy ov^LLing, n ~

in the quadratic Hecke algebra H(q, oo) we have

6/ + 1 = A ( A - 1 Γ 1 ( 6 ? + 1).

Therefore the Homfly polynomial H(h9z)(k)9 when developing in a series the factor
z~x which normalizes the trace, has the coefficients 1st order Vassiliev invariants. It
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is simple to check that
V(2)d Γ\ K(3)/ C V(])d+f ,

which implies that
K(2)°°n ^(3)°° = V{\)°° .

Whenever these three spaces are distinct we don't know. However the space of 1st

order invariants seems to be more treatable from the algebraic viewpoint.

5. Graphical Reduction of Obstructions

This section will be concerned with the proof of Proposition 3.6. Firstly from
Lemma 3.5 we derive that an admissible functional, if one ever exists, is unique
up to the choice of t(l) G R. Look now at the algebra Kn(y). We wish to use the
following transforms on the words:

bί^\bjb!+\ —> bιbιjt\bι ,

b) - y ,

bi+ib^t + i —> S{ ,

and only in this direction, in order to reduce the degree of bn-\ as much as possible.
According to Lemma 3.5 every word is equivalent to a sum of words of type
Σ / ^ ' ^ / Ϊ ' - I ^' Unfortunately we are forced to use the relations

b,bj <^ bfb{ for |z — j \ > 1 ,

in both directions. Assume this is the process we shall cany out. So we obtain
finally a sum Σ^ib1^^, with x,,yι £ Kn-\(y). Of course this "normal form" for
the word we started with is not unique since we may perform again permutations
of its letters in each term. But if any two such normal forms would be equilvalent
under eventual permutations of its letters (of bιb] with \i — j \ > 1 always!) we
should have an almost canonical description of the basis of Kn{y). Indeed the last
assumption is equivalent to say that the surjection of Lemma 3.5 is actually an
isomorphism. However this is not the case. We can at least obtain the obstructions
to the uniqueness of this almost canonical form. We return now to the module of
admissible functionals. The last group of relations enables us to make a further
reduction, namely

abn-\b —> zab ,

abn-\b —> /ab .

This way we may reduce finally a word to a sum of words lying in Kn-2(y)
Assume that we are using a recurrence on n. Then each element of Kn-2(y) m a γ be
uniquely reduced to an element of R (the value of the functional on the element).
So it suffices to check the obstructions directly on the values in order to obtain that
the functional is well-defined. That is what we shall formalize now.

Definition 5.1. A semi-oriented graph is a graph having two types of edges: ori-
ented edges and unoriented ones. A path v\V2...vn is a semi-oriented path if for
all j or Vj —> Vj±\ or else VjVJ+\ is unoriented. If all edges are unoriented we say
that its endpoints are unoriented equivalents.
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The Pentagon Condition 5.2. The pentagon condition for semi-oriented graphs can
be stated as follows:

(PC) If V2 —> v\, V2V3.. .υn-\ is an unorίentedpath, vn-\ —» vn then there exists
semi-oriented paths v\X\X2 *m£ and vny\y2 ... ype having the same endpoint {see
Fig. 2).

We say now that x ^ y if there exists an semi-oriented path from y to x in Γ.
Of course rg is not always a partial order relation. It is necessary and sufficient that
no closed semi-oriented loops exist in Γ. However we can say that x is minimal if
y S x implies that y is unoriented equivalent to x.

Pentagon Lemma 5.3. Suppose that the (PC) holds. If a connected component
C of the graph Γ has a minimal element mc then it is unique up to unoriented
equivalence.

Proof of lemma. Consider two minimal elements x and y which lie in C. Then
there exists some path xxox\ ...xny joining them. Since x is minimal the closest
oriented edge (if one ever exists) is in-going, and the same is true for y. If this
path is not unoriented and again from minimality there are at least two oriented
edges. Therefore open pentagon configurations (i.e. those configurations where (PC)
applies) exist. We apply then (PC) iteratively whenever such configurations exist
or have appeared. When this process stops we find two semi-oriented xz\Z2.. .zpe
and yu\U2.. .use having the same endpoint e. So e ^ x and x ^ y. Again from
minimality these paths must be unoriented so JC and y are unoriented equivalent
(see Fig. 3). D

Fig. 2. The Pentagon Condition.

Fig. 3. Proof of Pentagon Lemma.
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We remark that a priori we can say nothing about the existence of such minimal
elements. If g would be a partial order with descending chain condition then the
existence of minimal elements is standard. However in the case which we shall
work out even if ^ is not a partial order the existence of minimal elements can
be established.

Suppose now we have a more complicated structure: a sequence of disjoint
graphs Γn. In every Γn there exists a distinguished subset of vertices V® which
are minimal elements in their connected components. Suppose that each connected
component admits at least one minimal element. Each such vertex from V® has
exactly one outgoing edge going to a vertex of Γπ_i. We color these new edges
in red. Set Γ* for the union of all ΓJ9 j ^ n and with the red edges added in each
rank j .

Definition 5.4. We say that Γ* is coherent if any connected component of Γn has
an unique minimal element {with respect to Γ*) in Γo up to unoriented equivalence.

We shall state now the colored version of the Pentagon Lemma for this type of
graph. We introduce:

Colored Pentagon Condition 5.5. (CPC) If vxv2 ...vn is an open pentagon config-
uration in Γn, then there exists bicolored semi-oriented paths {in Γ*) from v\ and
V2 having the same endpoint.

In addition if xy is an unoriented edge in Γn with x,y e V® then there exist
semi-oriented paths in Γ* starting with red edges and having the same endpoint
(see Fig. 4).

Colored Pentagon Lemma 5.6. Suppose that Γ*_j is coherent and the (CPC)
condition is fulfilled. Then Γ* is coherent.

The proof is similar to that of the Pentagon Lemma. D

We are ready to define now our graph Γn. Its vertices are the elements of
the group algebra of the free monoid Fn in (n — 1) letters {&i,Z>2> Ά - i } Two
vertices v = ]Γ. αz*/ and w = Σt βiyi9 αz ,/}z G A{z,z) are related by an oriented edge
if exactly one monomial of v is changed following one of the rules:

(CO)(j) Ab)B->AB ,
( C l ) ϋ ) A b b b B A b b b B

V 2 V 3 V 4

Fig. 4. The colored pentagon condition.



536 L. Funar

AbJ+xb
2bj+λB - ASjB ,

Abj+φ2b2

+xB - Ab)b2

j+xbjB ,

Ab2

+]b
2bJ+ιB -* Abjb2

+]b
2B .

Also an unoriented edge between i; and w correspond to a change in a monomial
of i; of type

{Pιj)AbιbjB -> i46yM whenever |i - y | > 1 .

We remark that the use of (C12) and (C21) is somewhat ambiguous since we may
always use (C2) for a sub-word. Their role is to break in some sense the closed
oriented loops in Γn. In fact consider V® to be the set of vertices corresponding to
elements of the free abelian A = ,4(z,z)-module generated by Wn.

Lemma 5.7. Each connected component of Γn has a minimal element in V®, not
necessarily unique.

Proof of lemma. We prove our claim by induction on n. For n—\ it is trivial.
Say now w is a word in the Z?z's having only positive exponents. If its degree in
bn-\ is zero or one we apply the induction hypothesis and we are done. If the
degree is 2 and only one b\_x we are already in a position to apply the induction
hypothesis. Also we may suppose that no exponents greater than 2 occur by using
(CO) several times. If the degree is 2 then w = xbn-\ybn-\z with x,y,z eFn-\.
The induction applied to y implies that w ^ xbn-\abε

n_2bz with a,b £ Fw_2. Then
several transforms of type (Pn-\j) and (Cε) will do the job. Consider now that the
degree is strictly greater than 2. So we have a sub-word of type

K_xxbβ

n_x with 3 ^ α + β ^ 4

or else one of the type bn-\xbn-\ybn-\. The second case reduces to the first one as
above. Next assume that x ^ abε

n_2b. a,b £ Fn-2- Several applications of (Pn-\j)

leads us to consider the word b^_lb
e

n_2b^_l. If ε = 1 we apply two times (Cl) and
we are done. Otherwise we shall apply (Cα/J) if αφjS or both (C12) and (C21) if
α = β = 2. This proves that every vertex descends to V®. But these vertices have
not outgoing edges in Γn as can be easily seen. When we use the unoriented edges
some new vertices have to be added, which are not in V®. But it is easy to see that
these also do not have outgoing edges. Since any vertex has a semi-oriented path
ending in Fn° we are done. D

We remark that the moves (C12) and (C21) are really necessary for the con-
clusion of the above lemma to remain valid. In fact from b2b\b\ only (C2) may
be applied. We obtain a factor b\b\b2. If we continue, at each stage we shall find
one of these two monomials. When all reductions are used at the second stage
we recover b2b\b\ so we have a closed oriented loop in the graph. Its connected
component should have a minimal element without the use of (C12) or (C21).

We are able now to define the bicolored graph Γ*(z,t). The red edges are
added as follows: Each minimal vertex v = ΣjOitXibn1 yl9 is related tow = ^α/Z/X/j^
which this time is a vertex of Γπ_i, where we met ZQ = 1, z\ — z, Z2 = t. Since
&j = y we have t — yz and we prefer working with (z,t) instead with the couple
of parameters (z,z). Finally we define Γ0(H) as the graph having the vertices
corresponding to the module R. Two vertices are connected by an unoriented edge
iff the corresponding elements lie in the same coset of R/H, H being a certain
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submodule of R. Let also Ho = {llzt2 + 8z2 - Λt, \2z2t + 8ί2 - 4z, 10z3 + 10ί3 -
2z£ — 2)R be a fixed submodule of i?. We specify the choice of H in the tower
bicolored graph by denoting it Γ*(H), even if only the first stage depends upon H.
With these notations we can state:

Proposition 5.8. The bicolored graph Γ^H) is coherent if and only if HQ C H.

Before we proceed we remark that this result has as an immediate corollary
Proposition 3.6. Indeed for H = HQ we know how to associate to each element of
Kn(y) an element of R. The only problem which we can encounter is that moving
on different descending paths we should obtain different elements. But the previous
proposition states the uniqueness of the endpoint viewed as an element of R/Ho. So
our claims follows.

Proof We shall prove the coherence of each Γ*(H) by recurrence on n. For n = 1,2
this may be easily established without any condition on H. We wish to make use
the Colored Pentagon Lemma. For instance we shall look only at the Pentagon
Condition in Γn. For those configurations that we cannot prove the (PC) directly
we shall check that the (CPC) (which is weaker since it regards all of Γ*(H)) is
still verified. Of course this implies that we apply the Colored Pentagon Lemma.

Definition 5.9. An open pentagon configuration (abbreυ. o.p. c.) is a sequence of
vertices [WQ,W\,...,wn] such that w\ —>• WQ, w\,...,wn-\ are unorίented equivalent
and wn-\ —» wn. We say that this o.p.c. is irreducible if none of the vertices
w\, W2,..., wn-1 has an outgoing edge.

Reduction Lemma 5.10. i) In order to verify (PC) it suffices to restrict to irre-
ducible configurations.

ii) It suffices to verify (PC) only for monomials from Fn.
m) Suppose wfj = AwjB, for j = 0,n (so A,B are not touched by any

transform), in the o.p.c. If (PC) holds for [WQ, W\ ,..., wn] it also holds for
[M^,W/

1,...,M/].

iv) Suppose that (PC) holds for [wo,wi,...,wΛ] and for [y^y\,..^ym\ Then
for all A,B,C the (PC) is valid also for

[AwoBy\C,Aw\By\C,... ,Awn

In fact when we fix the endpoints of the o.p.c. we can mix the unoriented
edges of each subjacent o.p.c. in any order we want. Let (ikjk) £ {0,l,...,w} x
{0, l,...,m}, k = \,p such that k = 0 < i\ ^ h S ^ ip>jp — m > jp-ι ^
• ^ 0 , and ik+\ — /# -f yΆ +i — jk — 1 for all k. Then the o.p.c.

[AwhByj0C,AwlιByJιC9...MwipByipC]
fulfills the (PC).

Proof i) We may always decompose a configuration into irreducible ones and
iterate the construction.

ii) The reduction transforms on different monomials commute with each other,
so we are done.

iii) Obvious.
iv) The reductions of xn-\ and y\ commute again with each other. D

Thus the top line of an o.p.c. corresponds to a word w\ and a sequence of permu-
tations of its letters giving in order w2, w3?.. .9wn-\. We may suppose that w = w\
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has no proper sub-words w[ which fulfill the following two conditions:

i) Say w — Aw'B. Then each of the considered permutations acts on the letters
of A, of B or w'. So there is an equivalent of w1 say w".

ii) The reduction transforms performed at w\ and w2 acts actually on wf and w".

In other words only those letters may be not permuted which enter in a block
which is reduced. Also it follows that of n = 2, so the top line is trivial and exactly
two outgoing edges are incident in w\ or else the corners w\ and wn-\ have each
exactly one outgoing edge, except for the case when a move (Cij) may be applied.
When such an edge (Cij) exists then of course also (C2) exists so there are two
outgoing edges. We shall choose always the edge (Cij) if one ever exists and we
shall say that the corresponding word has unique reduction. If ever in our o.p.c.
the outgoing edge from w is an (C2), even if a (Cij) may be performed, then we
know that a semi-oriented loop exists permitting to come back in w. So the (PC)
is trivially satisfied.

Now the top line is determined by the sequence of transpositions of the letters of
w. Let / be the length of w. Otherwise this is the same as giving a permutation σ G
Si with a prescribed decomposition into transpositions. Set Γ/ for the transposition
which interchanges the letters on the positions / and / + 1. Notice that for a fixed
w not all σ are suitable. In fact only a subset of the group of permutations, which
we call permitted may work. Say P(w) is the set of permitted permutations. If
ew : {1,2,...,/} —> {1,2,..., n — 1} is the evaluation map

ew(j) — index of the letter lying in position j on w,

then TjG is permitted (where σ G P(w)) iff

kσ(vv)O') - eσ{w)(j + 1)| > 1

Say that two permitted permutations σ and σ' are equivalent if for the o.p.c. corre-
sponding to σ and σ' the (PC) is valid or not for both at the same time.

Lemma 5.11. i) Suppose that o\TjTiO2 G P(w), \i — j \ > 1. Then σ\TιTJσ2 G P(w)
and these two permutations are equivalent.

ii) Suppose that σ\Ti+{TiTi+\σ2 £ P(w). Then σ\TiTι+\Tισ2 & P(w) and these
two permutations are equivalent. The converse is still true.

iii) If G\Tfσ2 £ P(w) then ϋ\θ2 is permitted and equivalent to previous one.

Proof. The existence in the first case is equivalent to

kσ2(w)C0 ~ eσ2(w)U + 1)1 > 1

and

eσ(W)(i) - eσ{w)(i + 1)| > 1 ,

so is symmetric. In the second case also it is equivalent to

\eσ2{w){j + εi) - eσ2{w)(J + ε 2)| > 1 for all cj G {0,1,2} .

so it is again symmetric. The equivalence is trivial. D

We shall use a graphical representation for the decomposition of σ into transpo-
sitions similar to the braid pictures (see Picture 5), where we specify on the top and
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Fig. 5. The complete diagram associated to an o.p.c.

i i i

(ftr,
ί i i \ i

i i

p
Fig.6. The essential trajectories for (CO)(i)-(C0)(i).

bottom lines of the diagram the values of the evaluation maps. This picture encodes
all information about the o.p.c. because the two words w and σ(w) have unique
reduction. Firstly we are interested only in drawing the trajectories of the six (to
ten) elements which enter in the two blocks which reduces. Suppose for instance
that the two reduction moves are two (CO). So w = xiiiy and σ(w) — x'jjjy'. Say
that i — j . The trajectories of the /'s may be disjointed since the transposition acting
on the couple ii is trivial in fact. So the possible trajectories fit into 4 cases which
may be seen in Picture 6.a,b, c, d.

Suppose now we have two trajectories of i and jφi which intersect. First of all
we derive that \i - j \ > 1. Orient all the arcs from the top to the bottom.

Lemma 5.12. i) Suppose that the arcs labeled ί and j have algebraic intersection
number 0. Then we can replace the diagram by an equivalent one where the arcs
are disjoint.

ii) Suppose that the arcs labeled i and j have algebraic intersection number 1.
Then we can replace the diagram by an equivalent one where the arcs have exactly
one intersection point.
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Fig. 7. Disjointing trajectories.

Fig. 8. Non-minimal biangle's procedure.

k i

Fig. 9. The regions R and L.

Proof. We consider the diagram is that from Fig. 7.
We can assume that the biangle in the middle is minimal, hence it does not

contain any other biangle. In fact we can apply repeatedly the disjointedness pro-
cedure only for minimal biangles. Such a biangle has two walls: one coming from
/ and the other from j . From minimality no other arc crosses twice the small wall
(see Picture 8).

Let consider the region L and R such that: the set of arcs labeled by something
not commuting with j is contained in L, and those labeled by some k not commuting
with i are contained in R. Then the situation is that from Picture 9.

Thus all arcs which cross the biangle are labeled by some k which commutes
with both i and j . The same commutation transforms may be performed whenever
we make the arcs i and j disjoint. D

A similar reasoning permits to say that the diagrams from Picture 10 are equiv-
alent. When the triangle in the middle is not touched by any arc then it is a simple



Quotients of Cubic Hecke Algebras 541

consequence of Lemma 3.12 ii). If it is minimal, any arc which crosses it is labeled
by something which commutes with j .

We remark now the similitude of Pictures 7 and 10 with the Reidemester's
moves on link diagrams. So we can actually isotopy our arcs leaving the endpoints
fixed and keeping the tangent (in a C1-approximation of arcs) away from the hor-
izontal.

Now we can continue our discussion on the trajectories of z's and / s. If \i - j \ =
1 the trajectories are disjoint so there are as in Picture 11.

If i and j commutes there are essentially sixteen diagrams (up to an isotopy)
which can be seen in Picture 12.

In order to represent graphically the possible diagrams for the (C1),(C2),(C12),
(C21) moves we shall picture the trajectories of a couple of neighbor points having
the same label as a single thicker trajectory. This may be done since every arc
crossing the dashed region (see Fig. 13) between the trajectories of the two Γs has
a label commuting with /. In addition the trajectories of / and / -f 1 are disjoint.

Suppose we are in the case (Cl)(i)-(C0)(j). For y=M — 1,/,/+1, /-f-2 the
sixteen diagrams from above appear appropriately labeled. For j — i — 1, /, / -f 2
some diagrams are not realized because the arcs labeled by / — 1 and i do not
intersect, so several cases have to be left. For j = ί -f 1 another diagram has to be
considered, that from Fig. 14.

The same situation we encounter when we describe the possible trajectories for
the couple of reduction transforms (C2)-(C0),(C12)-(C0),(C21)-(C0). A simple
analysis shows that in the remaining cases the only new diagrams are those from
Fig. 15.

i j i j

k j i k j

Fig. 10. Equivalent diagrams.

i i i

j J

Fig. 11. The diagram for (C0)(i)-(C0)(j) when \i - j \ > 1
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i i
I I

ί ί j

ίvΛ 1 \
j J j

i
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I
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i ί ί

i i i

J 1 1
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i i i

ί ί i

j

J

j

A
i i

i i i

11 I

%

/itj j j

j i i

i

j

ί

V(
i

i i i
| \ \

\ J /
\ I (
j j j

j j

/ I

H\ I
i j

Fig. 12. The 16 diagrams for (C0)(i)-(C0)(j) in the commuting case.

The other ones are obtained from the previous twelve using suitable labeling,
and taking into account the constraints of disjointedness imposed by the labels. We
say now that a diagram is interactive if there is some marked arc relating the top
and bottom blocks where the reduction transforms act. Our task will be to eliminate
the non-interactive diagrams where the (PC) trivially holds.

Lemma 5.13. The usual (PC) is valid in Γn for non-interactive diagrams.
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Fig. 13. The graphical representation of the dashed region.

i+1 i i+1 I i i+1

HE
Fig. 14. The new diagram for (Cl)(i)-(C0)(i + 1).

if
i+1 i

i+1i i+1

J M 1

1 1 (

i+1 i+1
I 1

ΰ άi+1 i

i+1i i+1

fM I

Ψ
i+1

i i+1

i)
i+1 i i+1

\

ϋ
Fig. 15. The new diagrams for (Cx)(i)-(Cy)(i) x,

Fig. 16. The whole picture of a non-interactive diagram without crossings.

Proof. We consider first the case where no crossings of the essential arcs exist.
The typical case is that from Picture 10. We draw now all trajectories as in Fig. 16.
We have the dashed regions U and V which are bounded by the z's arcs and
respectively y's arcs.

Everything crossing the regions U and V commutes with / and j respectively.
We claim first that U and V are tangent to the end lines from left and right
respectively. If not there exists some arc labeled λ lying to the left of U. Assume
that this arc is the first from the left having this property. In particular λ commutes
with every label α which stands to the left of λ. Thus we may perform these
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commutation transforms at any moment, to get λ on the first position. Since λ
does not cross U we may leave it on the first position replacing the o.p.c. by an
equivalent one. Thus the new configuration corresponds to a word which is not
minimal with respect to the reduction procedure (see the reduction lemma and the
subsequent comments).

Let now Σι be the convex hull of the three points labeled i coming from essential
arcs and lying on the bottom line. Similarly set Σj for the convex hull of the y's
on the top line. Every arc which arrive on Σι must cross U, hence is labeled by
some k commuting with /. We can move these endpoints using the commutation
rules from the left or the right according to the following principle: if the start-
point of the arc labeled k is in the left of the block of /'s on the top line, then
we move to the left. Otherwise we move to the right. The only problem which we
can have is in the following case: the start-point of some k is in the left of the arc
labeled /, both arrive on Σl9 but this time the endpoint of / is in the left of k. A
topological argument shows that these two arcs cross each other. Therefore k and
/ are commuting and we can perform our transforms as it was said (see Fig. 17).

Finally we shall recover a diagram which this time has crossings but is equiv-
alent to the standard one of Picture 18.

Suppose now that the reduction transforms AiiiB —> AB and CjjjD —> CD are
also performed. We may use the simplification transforms (commutations which are

k i

Fig. 17. The simplification of a non-interactive diagram without crossings of essential arcs.

j j j

j j J

Fig. 18. The standard non-interactive diagram.
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still valid even if the i or the j are collapsed) above for each word: to AB in the
part of y's and to CD in the part of f s. Due to the particular form of the standard
diagram we shall get (see Picture 16) the words UjjjV and U'iiiV1 respectively,
with UV = U'V. So again the use of a reduction transform will get the same word.
Thus the (PC) is satisfied for these configurations. It is almost the same reasoning
for the other non-interactive diagrams without crossings.

It remains the case when crossings of essential arcs appear. But the commutation
transforms may also be performed in such a way that the starting points of y's on
the top line will be all on the same part with respect to the in block. In other
words we make Σj and the block Hi disjoints. The same is true for the bottom line.
The worst case is again when Hi is in the left of Σj on the top line and down
the situation is reversed. But again i and j commute with everything which starts
or arrives on the convex hulls of in U Σj and jjj U Σj. So we can rearrange them
to obtain the same order in the top and bottom lines. This ends the proof of the
lemma. D

So it remains to look at the interactive configuration. The same reasoning as in
the above permits us to restrict to the normal forms drawn in Fig. 19.a—f. Some of
the trajectories may be thick trajectories.

The cases a, b, c, d, f are trivially verified because only the consistency of rela-
tions defining K3(y) is involved.

Let us do a sub-case of d, corresponding to (Cε)-C(O): The monomial has

the form ω — bι+\b]bi+\xb2

ιΛ_x which is unoriented equivalent to w' = &I+iZ>zεZ>f+1.

Here x commutes with bj+\, so we may suppose it lies in Ft. Therefore x —»

^o^!_i^2 • bJι-pi w i m χo £ Ft-\. So again we can restrict to the case x0 = 1. Now

w is reduced to SbJ

i

ι_ιb
j

i

2_2...b
J

ι

p_pb
2

+ι. This is equivalent to Sb^+ιb
j

ι

ι_ιb
j

ι

2_2...b
j

i

p_p.

Since Sbf+ι and b^φ^ may be related by a semi-oriented path to a common end-
point (here we use the induction hypothesis for n = 2) we are done. All other cases
are similar.

i i

i

η
i i i } i + 1 j

i i i

I
\

\ s
i
m

i+1 i |i+1i+1i+1

i+1 i i+1

i+1 i+1

Fig. 19. The normal forms of interactive configurations.
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In the case e the situation is different. Using the commutation rules, as above

we must preserve the term 6^_j. So we must check the configurations

where x G Fi-\ and a,β,γ equal 1 if ε = <5 = 1. It is here where we cannot prove
that the (PC) holds. In fact it does not hold since the surjection of Proposition 3.5
has a nontrivial kernel in rank n = 3. Fortunately we may prove that the (CPC)
condition is still verified.

Lemma 5.14. For the above family ofo.p.c. the (CPC) is satisfied in Γ*(H)9 n g; 3
iffHoCH.

Proof We claim first that it suffices to restrict to x — 1, p — 1. We observe that
any admissible functional t on K^y) satisfies

t(xuv) = t(u)t(xυ) for x,v G H(Q,m) and u G (1, bm, bm+u...,bm+k) .

If k — 0 this is nothing but the multiplicative property for Markov traces. If k > 0
then in the process which computes the value of the functional we replace u by
ocbε

m, where t(u) = (xt(bε

m). Another one step of the reduction and we found t(xuv) —
dt{bε

m)t{xv).
But the (CPC) is equivalent to the existence of the admissible functional. This
proves our claim which says that in fact we can consider i = 2. Consider first
α = β = γ = 1. We have to check the o.p.c. corresponding to

In order to shorten the computations we observe that for symmetric words the (CPC)
is satisfied. For a word w = wi,...,w/ its symmetric is w* = w/w/_i,...,wi. This
has a simple proof by induction. In fact we perform in both situations the same
reduction transforms (the words have unique reduction) which leads us to two sums
of minimal elements Σiχι a n d Σ Λ * Now we apply the induction hypothesis and
we are done. Roughly speaking

for any admissible functional t. So it suffices to check the case when

ε = 1 and δ = 2.

1) Say μ = 1. Then

w = b'ib2b^b\b\b'i —• 62636^26163 °° 626^636261 —> zb2b\b\b\ —• z6^6^6^ —> ytz2

W

f = 636261636263 —> -636261626362 - 636261626362 — 636261626362

-6362616263 - 6362616362 - 763626163 — 763626162 .

Now

636261626362 —* 636162616362 ~ 616362636162

—• 616263626162 -> zb\b\b\b2 —» 7 ^ 2 ,

6362616^6362 -^ b3b
2

ιb2bιb3b2 -• b\b2b3b2bλb2 -^ zb\b\bxb2 -* zb\b2b\
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b3b2bxb2b3b\ —> b3bxb2bxb3b\ ~^ bxb2b3b2bxb\ —» zbxb\bxb\

-» zb\b2b\b2 -> -6yz2ί - y2z ,

b3b2bxb\b\ -> b3b\b2bxb\ -» b\b3b2b\bx -> b\b\b3b2bx ~> y2z,

b3b2bxb\b\ -> b3b2b\bxb\ -* b\b3b2bxb\ -> yί2z,

b3b2bxb2 —> zbxb2bx —> ytz .

We conclude

W = b3b2bxb3b\b3 -> yz2t thus the (CPC) is verified.
2) Consider now μ = 2. We shall write all details up to the use of red edges

where we arrive at ΓJ and the computation becomes canonical:

w = b3b2b3b\b\b3 ~W = b3b2b\b3b\b3,

w -> - b2b
2b2b\b2bx - b2b\b\b3b2bx - b2b\b2b3b\bx - b2b\b\b\bx - b2b\b\b\bx

— yb2bxb2bx — yb2bχb3bx —> —bxb2bxb3b2bx — bxb2bxb3bx — b2bxb2>b2bx

— yb2b\b3bx -f bxb\bxb\b2bx -f b2b2bxb\b2bx + bxb2b\b\b2bx + b\b\b\b2bx

+ b\b\b2

3b2bx +yb2b
2

3b2bx +ybxbjb2bx + bxb\bxb3b\bx + b]b2bxb3b\bx

+ bxb2b\b3b\bx + b\b\b3b\bx + b\b2b3b\bx + yb2b3b\bx +ybxb3b
2

2bx

— yb2b\b2bx —> —4y2ί — 3y/2z .

On the other hand

w —> —b^bibibibibi — b^bibib^b^bi — b^bibλ bibτ,bo — b^bib^b^bi

- b3b2b\b\b\ - yb3b2b]b3 - yb3b2b\b2.

The last four terms are easy to compute:

hb2
b]b2-

b3b2bxb3 -

b2b\

b2b]

blbl-

b2bl-

-» - ι

->Λ

(3y/2

7

bιb2

blbl

'z-

b]

b2

+ 4γ2

bi^

r 2 ί .

For the other ones the computation becomes more complicated. We shall write
it this time as an array where the reduction of each term is specified.
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-b,bλb\bx

ϊ
-bxb\b\b2b

1
-yfiz

bjb2

-bφ\b\b\b2

I
-b2b2b2b]

1
-yt2z

so we obtain

Also

b2

υ3

-byb]b2bλb\b2

I
—b2b\b3b2bxb2

1
- y 2 z 2

—yb3bxb\b2

I
-y 2 Z>,Z>2

1
- r 2

z

2

2 2

—bτ,b\b2

i
-bibfa

I

-ybib

I

1
-y2

2

62ft2^2

z2

2 2

2 2

γz

-b}b2b2b2b2

ϊ
-b\b\b2b\

1
-yt2z

b3b2b
2b2

2b3b2 -> b2

{b3blb3bιb2

- b\b\b\bxb2 - b\b2

3b\bχb2 - yb\b3bxb2 - yb\b2bxb2

The last term is given by

-b3b2b
2b2b3b

2 ->

+bφ2b2bxbφ2

2

1
b2b2b3b2bxb

2

1

+b3b
2

2b
2b3b\

1

and
b3bxb2bxb3b2 —>

-blb2b
2

}b2b]b
2

2

I
6γt2z + γ2t

-b\b2b2bxb
2

ϊ
6yzt2 + γ2t

1
y 2 z 2

1

-γt2z

ybxb2bxb
2

y2z2

+b3bx b2b
2b3b

2 +b3b
2b2b3b

2

2

1 1
bxb2b3b2b

2b2

2 -(6yt2z + y2

1

+yb3bxb3b\

-yt2z

ybφ3bφ2

2

I
-γt2z

-bxb\b\b\b\

I
βyzt2 + y2t
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hence
b3bιb

2

2b]b3b
2

2 -+ \5yt2z + 3y2t - y2z2 .

We introduce in the previous expression and obtain for the last term

b3b2b
2b2b3b

2

2 -> y2t + 2γt2z - 4yV ,

so the final result is

w -> 9yt2z + 8y2z2.

This way we get the first obstruction \2zt2 -f 8z2 - At = 0 (modulo Ho). The other
configurations we must check are with α, β, y greater than 1. A computer search
was used to verify that the hand computations in the remaining cases are correct
and give the other two obstructions. Thus the (CPC) holds for the considered o.p.c.
We remark that the second part of the (CPC) is trivially satisfied when using an
induction. This ends the proof of Lemma 3.15. D

It follows now we may apply the Colored Pentagon Lemma to get the coherence
of Γ*(//o) so the proof of Proposition 3.10 which we observed implies the result
of Proposition 3.6. D

A. Appendix: The Module H(Q,3)

This part of the paper is joint work with Barbu Berceanu.
We shall get in this section the complete proof of Proposition 2.1 for all cubic
polynomials Q = x3 — ooc1 — βx — y with y φθ. The method of the proof is due
to Bergmann [Ber78] and, even if simple, it is powerful (see [Ber93] for many
interesting examples coming basically from rational homotopy theory).

Briefly, instead of having a semi-oriented graph as in Sect. 3 we shall work
with an oriented graph and the relation 5jj will be a total order, namely the lexico-
graphic one. So we try to solve inductively all the ambiguities eventually adding new
relations. We remark that this way all ambiguities are interactive ones so they could
be listed. It remains to find the patience of checking all of them.

We proceed with 3 relations:

(1) b2bxb2 = b\b2b\ ,

(2) b] = ab2 + βbλ + y ,

(3) b\ = otb2 + βb2 + y,

and the system of generators S containing all words in b\ and b2 without sub words
appearing in the left hand of some relation, i.e. without containing a b2b\b2,b\,b\.
Now we shall develop each ambiguity word (i.e. which has two resolutions) by
underlining the sub word replaced in each case. Away from the starting point the
computations, even messy, became canonical, so the words have unique reduction,
and we shall write only the final result. Also if an ambiguity is solvable, so that
no new relation appears we mark by a D in the final space.

The interactions (2-2), (3-3), (1-2), (1-3) give only identities. Further
(1-1) b2b\b2b\b2 = b2b

2b2b\ and b2b\b2bχb2 = b\b2b\b2 so we obtain a new
relation,

(4) b2b\b2bχ =bxb2b\b2 .
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Next we have an interaction

(1-4) b2b\b2bxb2 = bχb2b\b\ and

bbb\ + yb\b\*2*2*2*i*2 = (xabχb2b\b2 + βbχb2b\ + yb\b\

and a new relation is obtained

(5) 61*2*1*2 = oίb{b2b
2

{b2 + β*i*2*
2 + 7*2*1

(4-2) b2b\b2bxb\ = <ώ\b2b\b2 + βbχb2b\b2 + 7*2*1*2

b2b\b2b] = u.b\b2b\b2 + βbχb2b\b2 + 7*2*1*2 - •

(1-4) *2*1*2*1*2*1 = Kb\b2b\b2 + β*^*2*2 + 7*1*2^1

*2*i*2*i*2*_i = <ώ\b2b\b2 + β*i*2*i + 7*1*2*1 •

(3-4) b\b\b2bx = (a2 + β)bxb2b
2b2 + (αj8 + y)b\b2bχ + αy*i*2

b\b2b\b2bχ = (α2 + β)bχb2b\b2 + (αj8 + 7)*2*2*i + α7*i*2 . D

(2-5) b[b2b\b\ = oc2b2b2b
2b2 + u.βb\b2b\ + ayb{b

2

2b{ + uβbxb2b
2b2

+ β2bχb2b\ + β7*?,*i + 7*2*1*2

*2 = a2b\b2b\b2 + aβb\b2b\ + ayb2b\b2 + φχb2b\b2

Since we supposed yφO we derive a new relation:

(6) *2*^*^ = * 2*^*! + α ( * 2 * 2 * 2 - *l*?,*l ) + j5(*2*2 - *?.*l ) .

Now the left hand of (6) is included in the left hand of (5) and

(5-6) bχb2b\b\ = abχb2b\b2 + β*!*2*2 + y*2,*! . D

So relation (5) is cancelled out when introducing (6).

(3-6) * 2 * | * | * 2 - α*2*^*^ + OL2{b2b]b2 - bχb\bx)

+ α/?(*2*
2 - *?,*i) + ^*2*?*2 + 7*2*1

* 2 * , * | = α*2*?*^ + α2(*2*i*2 - *i*2*i) + α^S(*2*
2 - *^*i)

4- i5*2*2*2 + 7^2*1 •

(6-1) *2*i*2*l*2 = *i*2*l*2 - α*i*^*^*2 - jβ*2*i*2 + 0Cj3*2*i*2

+ β2bχb2bχ + βy*?, + α2*i*2*i*2 + aβbχb2b\ + αy*?,*i

*2*i*2*2*i*2 = α*^*2*2*2 + φ\b2b\ + j82*l*2*l + ^7*1*2 + 7*2^
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So another relation must be added:

(7) b\b\b\b2 = φ\b2b]b2 + bλb\b\b2) + jff&^fo - oί2bxb2b\b2

- φ2b\b2 - φ\b\ + jSy(M2 - 62)>

(1-6) b2bxb2b\b\ = a2bxb2b\b2 + φ\b2bx + 07M2 + φ\b2b\

+ β2b\b2bx + /fyM2 + αy*2*i + /ty*2*i + y2*i ,

b2bλb2b\b\ = 0L2bφ2b\b2 + φ\b2b\ + αyfei^ + φχb2b\

-f β2bλb2bλ + j8yfeii)2 + αyfeffei + j8y626i + y^i •

(3-6) 6 | δ ^ - y6?62 + α2 f c2 f t26 2 + ^ 2 f t 2 6 ]

+ )82(*2*i - *2*0 + α*?626i + 0L2{bxb2b\b2 - bxb\b\)

- oi2b2b2b
2 - a2βb\b\ - φbλ + α2j862*? + αj8y62,

b2

2b2b\b\ = yb\b\ + α 2 & ^ 6 2 + j86?6|*i + <*β(b2b]b2 - bxb\bx)

+ β 2 ( M i - 6261) + αδ?^6? + (x2(bxb2b
2b2 - bλb\b\)

- o?b\b2b\ - a2βb2

2bx - φbx + α 2 ^ ? + αjδy^ •

(2-6) b\b\b\b2 = ab\b\b\b2 + βbxb\b\b2 -f y6^?6 2 ,

bxb\b\b2b2 = (xb\b\b\b2 + βbxb\b\b2 + 761^6? + ay{b2b\b2 - bxb\bx)

+ βy(b2b2 - bxb
2),

hence we get the last relation we used in Sect. 2, namely

(8) b\b\b2 = bxb
2

2b] + (χ(b2b]bx - bxb
2

2bx) +β(b\b2 - bχb\).

Now using these eight relations the system of generators S reduces to the 24
elements ex,e2,.. .,£24- So it remains to check that all ambiguities are solvable.

Before proceeding we remark that the left hand of (8) is included in that of (7)
and

(7-8) b2b\b\b2 = <ώ\b2b\b2 + 0Lb\b\b\ + βbxb\b\ + φ\b\ - &b\b\bx

- aβbxb\bx - φ\bx + (a2β + β2)b\b2 + (oiβ2 + βy)bxb2

4- αj8)*2 - Φ\b\ - β2bλb\ - βyb2 ,

so (7) is cancelled out.

(1-8) b2bxb2b2b\b2 = φ\b2b\ + β2bxb2bx + βy£26i ,

b2bχb\b2b2 = φ\b2bx + ^2/>iZ?2Z?i + jSyZ>2*i •
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(3-8) bjbϊfo = abxb\b\ + a2(b2b
2b2 - bxb\bx) + aβ(b2b2 - bxb\),

b2b
2

2b
2

]b2 = abxb\b2 + a2(b2b
2b2 - bxb\bx) 4- aβ{b\b2 - bxb\). D

(6-8), b2b2b2b2 = b\b\b\ + φxb2b
2b2 - b2b2b

2) + a\b2b\b2 - bxb\bx)

+ aβ(b]b2 + b2b\ - b%bι -bxb
2

2) + βγ(b2 - bx),

b2b2b}b2

2 = b\b\b\ + a(bxb2b
2

xb2 - b]b2b\) + £{b2b\b2 - bxb\bx)

+ aβ(b2

xb2 + b2b\ - b\bx - bxb\) + βy(b2 - Z>,). D

(6-8)2 b2b\b2b
2b2

2 = 2a2b\b2b]b2 + aβb\b2b\ - a3bιb2b
2b2

+ a.y{b\b\ + b\b\ + bxb\bx) + β2b2b
2b2

+ βy(b\b2 + b2b\) - z2y(bxb\ + b\bx)

+ (aβ2 + βγ)bxb2bx + y2b\ - aβγbj - ay2bx

- β2ybi - βy2

b2b\b\b\b2 = 2a2b\b2b\b2 + aβb\b2b\ - aibxb2b\b2

+ *y(b\b2

2 + b\b\ + bxb\bx) + β2b2b\b2

+ βy{b\b2 + b2b\) - a2y(bxbj + b\bx)

+ (αjβ2 + βy)bxb2bx + y2b] - aβyb\ - ay2bx

- β2yb2 -βy2. •

( 4 ^ ) b2b]b2bxbxb2bx = a2b2b2b\b2 + aβbxb2b\b2 + a.βb]b2b] + ybxb\b\

+ β2b]b2bx + ayb2b
2b2 + βyb]b2,

b2b
2b2b

2b2bx = ^b\b2b\b2 + aβbxb2b
2

xb2 + aβb\b2b\ + ybxb\b\

+ β2b]b2bx + φ2b\b2 + βyb\b2 . •

(4-6) b2b\b2bxbxb
22 = (α2 + β)b2b2b

2b2 + {aβ + y)b\bτb\ + aybxb\bx ,

b2b\b2b\b\ = (α2 + β)b\b2b\b2 + (aβ + y)b\b2b\ + <xybxb
2

2bx . D

b2b\b2b2b]b2bx = o?b2b2b
2b2 + a2βb2

xb2b
2 + (2a2β + β2)bxb2b\b2

+ ay(b2

xb\bx + bxb\b\) - v}ybxb\bx

+ (aβ2 + βy)b2b2bx + (βy + aβ2)bxb2b
2

+ 2u2yb2b\b2 + aβy(b\b2 + b2b\)

+ ay2b\ + βy2b2 + y3 ,
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b2b
2

xb2b2b]b2bx = α3 b\b2b\b2 + a2βb\b2b\ + (2oc2β + β2)bxb2b]b2

ay(b\b\bx + bxb\b\) - a2ybxb\bx

+ (aβ2 + βy)b2b2bx + (βy + aβ2)bxb2b
2

+ 2<x2yb2b
2

xb2 + aβy(b]b2 + b2b])

+ ay2b2

2 + βy2b2 + y3 . D

(6-6) b2b
2b\b2

xb\ = (2α3 + aβ)b2b2b
2b2 + (2α2 β + ay)b2

xb2b]

β2 lJ2 iJl 7 4 r L τJl r i Ί2 Ί 2

~\~ P DχϋyUx — Oί O\ϋ2θγυ2 Λ~ GCyD\U2θ\

+ (aβ2 + βy)b\b2b\ + (α2y + βy)b\b\

- (α 3 ^ + a2y)bxb2b\ + (α2y - aβ2)bxb\bx

+ (αβ2 + α2y + βy)b2b\b2 + (2αi8y + y 2 ) φ 2

• β3b2b
2 — (α3/y -f β3)blb\ + αy2Z72

- ( α 2 ^ + ^ 2 y)Z?| - α2γ2Z?i

^(θiβ2y^βy2)b2-oiβy2 .

b2b]b2b2b\b2

2 = (2α3 + (xβ)b]b2b]b2 + (2α2^ + αy)6262£
2

+ j8 2 ^^*i - aAbxb2b]b2 + α y M 2 ^ 2

+ (α^2 + βy)b\b2bx + (α 2

7 + ^y)^^ 2

+ (aβ2 + α2y + βy)b2b\b2 + (2φ + y2)b\b2

- (α3y + φ)bxb\ + βib2b] - (α3y + β3)b\bλ + ay2b]

- (a2βy + aγ2)bφ2 - (a2βy + β2y)b\ - a2γ2b]

+ (aβ2γ + βy2)b2-aβy2. D

y2
(8-1) b\b\b2bχb2 = aybφl + βybφ2 + y2bλ ,

b\b\b2b\b2 = (xybφl + βyb\b2 + y2bx . D

(8-3) b2

2b\b2b
2

2 = ab\b\b\ + a2(bφ2b
2 - b]b2b])

+ (α3 + aβ)(b2b]b2 - bxb
2

2bx) + a2β(b2b\ - b\bx

+ (a2β + β2)(b2b2-bxb
2

2)

+ βbxb\b\ + aβy(b2 - bx),
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b\b\b\ = ab\b\b\ + a2(bxb2b\ - b\b2b\)

+ (α3 + aβ)(b2b\b2 - bιb
2

2bι) + a2β(b2b
2 - b\bx)

+ (oί2β + β2)(b2b2-bφ2

2)

+ βbφlb2 + φ ( b 2 - b{). a

(8^4), b\b2b2bx = abxb2b
2b2 + βb\b2bx + yb\b\ ,

b2b2b\b2bx = abxb2b\b2 + βb\b2bx + ybxb\ . D

(8-4)2 b\b\b2b\b2bλ = (α3 + 0Lβ)b\b2b\b2 + (ot2β + ay)b]b2b]]

(a2β + β2)bxb2b\b2 + φxb\b\

(α2τ + βy)b2b]b2 + (oiβ2 + βy)b\b2bx

(φ + y2)b2b2,

\b + (a2β + ay)b]b2b]

(a2β + β2)bxb2b]b2 + φxb\b\

(α2y + βy)b2b
2b2 + (aβ2 + βy)b2b2bx

y2)b2b2. Ό

b\b\b2b\b2bx = (α3 + aβ)b\b2b\b2 + (a2β + ay)b]b2b]

(8-6) b\b2b2b\b\ = (α3 + 2a.β + y)b]b2b]b2 + (a2β + αy + β2)b]b2b
2

b\b\b2b\b\ = (α3 + 2aβ + y)b\b2b\b2 + (a2β + ay + β2)b\b2b]

+ (α2r + βy)bxb\bx . D

(8-8) b\b\b2b2b\b2 = (2α3 + aβ)b\b2b\b2 + (2α2β + ay)b\b2b\

+ ayb2b\bx + β2b{b\b\ - aAbxb2b\b2

- (o?β + <x2y)b]b2bx + {aβ2 + βy)bxb2b]

+ (α2y - aβ2)bxb
2

2bx + (aβ2 + βy + a2y)b2b]b2

+ (a2γ + βy)b\b\ + j?36262 - (α3y + β3)bxb
2

2

+ (2φ + y2)b2b\ - (φ + a3y)b2

2bx + ay2b]

- (a2βy + ay2)b2bx - (a2βy + β2y)b\

-a2y2bx-(aβ2y + βy2)b2-aβy2,
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b\b\b\b\b2 = (2α3 + aβ)b2b2b
2b2 + (2α2β + ocy)b2b2b

2

+ 0Lyb\b\bλ + β2bxb\b\ - a4bxb2b\b2

- (α3β -I- ot2y)b2b2bι + (αβ2 + βy)b\b2b\

+ (α2y - 0Lβ2)bxb\bx + (αβ2 + βy + ot2y)b2b
2b2

+ (2φ +

- (a2βy + αy2)i2*i ~ («2)8y + ̂ 2y)Z>2

- α2y2Z?! - (ocβ2y + j?y2)62 - α)5y2 . D

This ends the proof of Proposition 2.1.

B. Appendix: The Quotient K3

We get below the complete proof of Proposition 2.10.
Since the dimension of P(3) = H(Q,3)/R(μ) is 21 the following relations will

become identities in P(3):

M 2 Φ 2 = b2b\b2bχ , (1)

b2R(μ) = 0 . (2)

These equations are written in implicit form. We must express all factors in terms
of the basis elements from B — Bf of the 21 dimensional module. We have seen
that R(μ) may be reduced to a simpler relation

b2b\b2 = Σkjb\b2yx + μιjb\b2tiλ + ΣVitix.
ij i

Lemma B.I. Equation (1) has the following solutions:

μtj = μfι and λιj = λβ for all ij ,

Moo = μi2 - fc; 2̂2 = μo\ + αμO2; μn = (α/J + l)μO2 + ^01 - αμ I 2 ,

^00 = λ\2 - βλ02; λ22 = λoι + otλO2; λn = (ocβ -f- 1)^02 + ^ 0 1 - ocλ]2 .

Proof. We have

= 7̂ 02*2 + (Λ-oo 4- βhi)b\b2 -f yλ2\b2bλ + (̂ 01 + βhi)b\b2b\

+ (/02 + βhi)b\b2b\ + (/01 + odo2)&i*2

λ)b]b2b + (λ + <xλ)b\b2b\

yμ2\b\b\ - (/iOi

yλ22b2b\ + (/In + (χλ\2)b]b2b\ + (λ12 + <xλ22)b\b2b\
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b2b2(μ0 2 + βμ2i)bxb\b\ + (μOi + ocμ02)b2b2

2

l] + (μn + aμ{2)b2b2

2b{ + (μi2 + (xμ22)b\b2

2b\

+ βv2)b{ + (vi \

and a similar expression (the symmetric one) may be written for b2b
2b2b\. By

comparison of these expressions and using the hypothesis (that the basis of L3

descends to one of P(3)) we find the relations stated above. D

In the same manner we can write the system of equations derived from (2).
After we used the reductions from Lemma 2.9 we obtain the following quadratic
system (S): Set c{ = Λ02 + αμo2; C2 = hi + ocμ\2; c3 = λ22 + αμ22,

0 = v0 + C3A01 + (C2 + αc3 - βc\ -f ocβ)λO2 + (c\ - a)λn

+ Oίβμoι+β(a2-β)μo2 + 2βμu, (3)

0 = (ci - α + βc3)λo\ + (αj8 + l)c3λ02 + (c2 + 1)A12 , (4)

0 = V! + (d - α + j8c3)Aoi + (αj8 + l )c 3 l 0 2 + c2Ai2

+ β{aβ + 2)μ0i + Oiβ(aβ + l)μ 0 2 + ]β2μ12 , (5)

0 = (1 - aβ -h jSci 4- c2 + i82C3 M01 + (otβ + 1 )(ci + j8c3 - α)20 2

+ (iS + a 2 - a c 1 + i 6 c 2 - a i 8 c 3 ) A i 2 , (6)

0 = (β + (β2 + αjS + I)c3)λoi + (αj8 + 1 + c2 + (α + J8)(αj8 + I)c3)λo2

+ (ci + J5c2 - α^c3 - α)λ12 , (7)

0 = (c2 4- αc3)/loi + (ci + αc2 + α2c3 - α)A02 + c3λ\2 + μu - β , (8)

0 = v2 + ((c2 -I- Oίc3)λo\ + (ci + αc2 + α2c3 — α)^02 + c3λ\2

+ j5(α2 + j8)μo! + (ocβ(a2 + )8) + 2β)μO2 + α^μ12 , (9)

0 = (j8c2 + (αjί + I)c3)λoi + ((α)8 + l)c 2 + α(α^ + 1 - oc)c3)λO2

+ (C! + (α2 + yβ)c3 - α)A12 + μOi + βμ{2 , (10)

0 = (ci + αc2 + (α2 + β)c3 - α^μ 0 1

+ (αci + α2c2 + (α(α2 + j8) + l))c 3 - ot(ocβ + l))A02

+ (c2 + αc3 + α 2 μ 1 2 + (αjβ + l)μO2 + βμo\ , (11)

0 = Ai2 — βλ02 + (c3 - j8)μOi + (C2 - jSci + αc3 - αj8)μO2 + cxμX2 , (12)

j8 = (ci + fe - 2α)μ0i + ((αj8 + l)c 3 - α2)μ02 + 2̂/̂ 12 , (13)

0 = λoi + (ci + fe - j32)μOi + (α]8 + l)(c 3 - β)μ0 2 + c 2 μ i 2 , (14)
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μ02

(15)

1 = (βc2 + (ocβ + l)c3 - α2)μ0i + ((α)8 + l)c 2 + α(αβ + l)c 3 - α3)μ02

+ (d +)Sc3 -2α)ju 1 2 , (16)

0 = (c2 + αc3 + l)μoi + (ci + αc2 + α2c3)μ02 4- ̂ 3̂ 12 , (17)

0 = λ\2 + (c2 + 0CC3 - ocβ)μo\ + (ci + occ2 + α2c3 - oc2β)μo2

+ (C3-β)μl2, (18)

0 = (βc2 + (ocβ + 1 )c3 + j8)μOi + (ocβ + 1 )(c2 + αc3 + 1 )μO2

+ ( c i + ( P - α ) c 3 ) μ i 2 , (19)

0 = (ci + αc2 + (α2 + jS)c3)μOi + α(ci + αc2 + (α2 + β)c3)μ02

+ (c2 + αc3 + l ) μ 1 2 , (20)

0 = c3v0 + (c2 + αc3 + 1 )vi + (cλ + (xc2 + (α2 + β)c3 - α)v2 + μO2 , (21)

0 = c2v0 + (ci -f /?c3 - α)v! + (βc2 + (α)8 + I)c3)v2 4- μoi , (22)

0 = (a - α)v0 -I- c3Vi + (c2 + αc3)v2 -f μ\2 - βμo2 = 0 . (23)

We are able now to prove the first part of the proposition. Remark that for
α = β = 0, we obtain a unique solution for (S) namely:

μ§ 2 = - l ;

What it remains to show is that this solution gives indeed a quotient of dimension
21. So let Q be X3 - 1 from now on. Let / be the ideal generated by the relation

#0 = b2b\b2 + bxb\bλ + b\b2bx + ^ M ΐ + ^ 2 + ^ 1 + *i + b2 .

Set also

R\ =b\b2b\b2 + b\b2b\ + b\b\b\ + b\b\b\ +Bxb2+b2bλ + b] + bj ,

R2 = b\b2b\b2 + i?^Z>? + b\b2 + 6 2 ^i + ^1^2 + h\h\ + ^ ^ 2 ^ 1 + 1 = 0 ,

and denote by R C H(Q,3) the span of R0,R\,R2.

Lemma B.2. We have an isomorphism of vector spaces I = R.

Proof We remark that

R\i b\R\ := R\b\ == R2\ b\R2 = R2b\ == RQ .
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Since bj = 1, we derive b\b\b\ — b\b\b2. This implies also

b2R0 = Rob2 = R\', M i = R\b2 = Ril b2R2 = Rib2 = Ro .

From these relations we find xRoy £ R for all x,y e H(Q,3)9 hence I C R. The
other inclusion is trivial. D

Finally Kι = H(Q, 3)// will have dimension 21, as wanted, since άim^R = 3.
This ends the proof the proposition. D
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