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Abstract: We study counting processes introduced by Davies [11] on general state
spaces. The concept of a refinement of a counting process (CP), corresponding to
the possibility of distinguishing particles, for instance according to their energy or
phase, is introduced, and refinements of general CP's are classified. Then CP's with
bounded interaction rate are classified on general state spaces, and sufficient condi-
tions are given in order that the operators characterizing the interaction rate can be
formulated in the Schrodinger picture. For CP's with unbounded interaction rates
it is shown that analogous to the case of bounded interaction rates there is a fam-
ily of operators characterizing the interaction rate. Commutation relations for such
processes are derived. For constructions of CP's with unbounded interaction rate
it is shown that it essentially suffices to solve the semigroup perturbation problem.
Finally refinements of these CP's are characterized by "measures" E —> J(E) on the
set of different particles, where each J(E) in an (unbounded) operator.

1. Introduction

One of the most important problems in quantum optics is the detection of pho-
tons [1,2,24] (see [1] for further references). As the corresponding measurements
are continuous in time, the usual quantum mechanical formalism, using selfadjoint
operators on Fock space, is not applicable and there arises the necessity of a quan-
tum stochastic calculus. Earlier attempts like those of Mandel, Glauber and others
[16,24,25] led to unphysical consequences such as the counting probability becom-
ing negative for large time. For a single mode free field Mollow [28] and Scully
and Lamb [29] derived another formula free of these problems coinciding with the
Mandel formula for small times. But the derivations of this formula are not sat-
isfactory from the point of view of measurement theory as they only consider a
single measurement carried out at time /. For a detailed critique of the conventional
methods see [13]. Davies [10,11] introduced a formalism allowing to treat this
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problem in a mathematically rigorous way. For some coupling models of photon
and detection systems, similar formulae for the fundamental probabilities to those of
Davies are derived by a variety of methods [1,2,22,23], however Davies' theory
is mathematically full developed and model independent. The ingredients for his
theory are a state space ( ^ , J f , τ ) , containing the possible states of the particles,
and a measurable space (X, Σ). Very often Ψ* is the set of trace class operators
on a Hubert space ffl and then τ = 1 G ̂ ( J f ) . If particles can be distinguished
according to some parameter (e.g. energy) X is the set of possible parameter values.
If there is no distinction between particles, X consists only of one single point, and
we then always choose X — {1}. The measurement output of a counting experiment
performed up to time t has the form,

{ ( x u h ) , . . . , ( x n J n ) \ 0 ^ t{ < h < ••• < tn < t,

which means that at time U a particle with parameter value xz has been detected. If
the output is in a set E, this induces a change of the state p —» St{E)ρ depending on
the set E. Each operation St{E) is a positive linear map on y and the probability
for the event E is given by ix(β t(E)p). The set of all possible outcomes is denoted
by Xt and the event that no particles have been detected is denoted by {zt}. The
Markov properties (cf. Sect. 2) imply that St :=<?*({**}) and Tt := St{Xt) form
semigroups. Davies considered in particular the case of a bounded interaction rate
on the state space Ψ" of trace class operators on a Hubert space. He required that
the semigroup St leaves the set of pure states invariant, in which case St is called a
pure semigroup, and that the probability of detecting one or more particles during
the time interval [0,/) gets linearly small in t. The main result was that any counting
process of this type is determined by the generator Y of a contraction semigroup
Bt on the Hubert space ffl such that Stp = BtpB*, and an operator valued measure
A —* J(A) on (X, Σ), where each J(A) is a positive operator on Ψ*. The operators
J(A) describe the instantaneous change of the state induced by the detection of a
particle with parameter value in A. Y and J are related by the equation

tr(J(X)\φ)(φ\) = -2Re(φ,Yφ) (1)

for all φ in the domain D(Y) of 7, which expresses that the probability of detecting
zero or more particles is always one. Moreover J(X) is the (bounded) difference
between the generators Z and W of Tu resp. St. For applications in quantum op-
tics [12,13,18,26,27,30] one usually neglects the possibility of detecting different
kinds of particles, and therefore only considers one operator, for instance Jp = apa*
with the (formal) photon creation and annihilation operators #*, a. But this formula
induces a series of problems. First of all J is unbounded, which is not only a
mathematical complication but is also of physical interest: The main reason for
using an operator J for the construction of physically relevant models is that the
above classification theorem says that there is no other possibility. For unbounded
interaction rates there is no such theorem, moreover there is not even a definition
of the term "unbounded interaction rate." Thus we try to get a definition for such
processes (5.1) from physical arguments (cf. (6) and Sect. 5) and investigate these
objects. The second problem is that the creation and annihilation operators depend
on the representation of the canonical commutation relations (CCR) [4]. More-
over, for macroscopic coherent Laser light a detailed analysis [19-21] of Glauber's
coherence condition [16] shows that for many important applications the relevant
representation of the CCR is not quasi-equivalent to the Fock representation and in
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general has a nontrivial center. In particular the relevant state space is definitely not
the set of trace class operators on a Hubert space. One could restrict the attention to
predual spaces of W* -algebras, but first there is no mathematical advantage in do-
ing this, and second the use of the general theory shows that the algebraic structure
is of no importance for the interpretation and description of counting experiments.
Thus in most of the subsequent considerations we are dealing with general state
spaces in the sense of the convex state space approach.

The paper is organized as follows. In the next section we introduce the ba-
sic concepts and definitions which are all due to Davies. The important class of
counting processes with bounded interaction rates is studied in Sect. 4. In The-
orems 4.2 and 4.4 we give a complete classification of such processes, but the
operators Φ(E) (= J*(E) in the above case) have to be defined in the Heisenberg
picture. By introducing semigroups of type R - which include in particular pure
semigroups on ^ ( J - f ) - we can overcome this difficulty and get a direct gen-
eralization of Davies' result. Obviously Eq. (1) cannot be formulated on general
state spaces. But if W is the generator of the semigroup St = AάBt on ^ ( J f 7 )
(i.e. W\φ)(φ\ = \Yφ)(φ\ + \Ψ)(Yφ\ for φ e D(Y)), then one easily verifies that (1)
is equivalent to τ :=t € D(W*) and W*τ = —J(X)*τ. We always use this form
of (1).

In Sect. 5 the first important result is that for unbounded interaction rates for-
mally the same results as in the bounded case are valid, which is the desired
justification of the usual way of constructing processes. Moreover, J(X) is the
perturbation connecting the two semigroups of the process, and formulae for the
computation of probabilities are derived. This shows that the construction of a CP
always involves the solution of the semigroup theoretic perturbation problem. For
one point processes, i.e. processes where the space X consists only of one point,
Theorem 5.6 shows that it is essentially sufficient to solve this problem in order
to construct a CP. But for instance the derivation of Glauber's coherence condition
[16] is based on the concept of a detection system that consists of different detectors
which are located at different points, so particles can be distinguished according to
the locations where they are detected. Other possibilities for a distinction are mass,
energy, phase or spin of the particles. In Sect. 3 we see that for each CP &t there is
a corresponding one point CP, the coarsegraining of $u and therefore the construc-
tion of a more complicated CP can be done in two successive parts: First construct
a one point CP and then "refine" it. How refinements may be constructed can be
seen in Theorems 3.3 and 5.8. If J is the operator for the one point process, a
refinement is characterized by a "measure" E —> J(E) with J(X) — J, where J(E)
describes the interaction rate of the detection system for particles of type E (see
5.7 and 5.8).

2. The Basic Concepts

In the sequel (ir,X°,τ) is a state space, i.e. (i^, J f ) is a real ordered Banach space,
Jf* = i^+ is a normclosed cone with Ψ~ — Jf — Jf, τ e *V* is a linear functional
satisfying τ\χ = || ||, and for each ω G f we have | |ω| | = inf{||ωi || + 11 ct>211 | ω =
ω\ — a>2, (JOj e Jf'}. This definition can be motivated by the convex state space
approach [15], and is a very general description of a physical system. Clearly the
predual spaces of a W*-algebra or a JBW-algebra are state spaces in this sense
[3,17]. For x G *V* we use the duality symbol (ω,x) :=x(ω). Any ω G Ψ\. is
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called a state (for reasons explained in [11] we do not require the normalization
(ω,τ) = | |ω| | = 1). A direct consequence of this definition is that a state space is
monotone complete, i.e. any monotone bounded sequence of states is converging
in norm. Thus if (X,Σ) is a measurable space and $ : Σ —> ̂ +{i^) is a positive
operator valued set function, then weak and strong σ-additivity of δ are equivalent.
We call such a σ-additive map a positive operator valued measure (POVM) on
(X,Σ). If δn is a sequence of POVM's such that for all E G Σ and ω G i^ the
weak limit lim^oo $n(E)ω =: $(E)ω exists, then the Vitali-Hahn-Saks Theorem
[14] and the above imply that δ again is a POVM. If δ and & are POVM's on the
standard Borel spaces (X,Σ) resp. (Y,Γ), then there is a unique POVM <& :— $ o #"
on (X x 7, Γ <g) Γ), called the composition of δ and #" [10] such that

<&{E xF) = δ(E)^(F) (2)

for all E G 21 and F £ Γ. Now we want to describe a measurement of a physical
system - characterized by a state ω e f - whose values lie in a measurable space
(X,Σ). This has to be done by means of an instrument [10,11], i.e. a POVM δ on
(X,Σ) satisfying δ(X)*τ — τ. For a normalized ω G ̂ + this is connected with the
following interpretation:

(i) (δ(E)ω, τ) is the probability that the result of the measurement is in the set
EeΣ.

(ii) $(E)ω is the state after the measurement conditional upon the results in E.

Then a repeated measurement can be described by the composition of the corre-
sponding instruments (cf. Eq. (2)). Obviously any counting experiment, performed
from time 0 up to time t generates outcomes of the form

((xuh),...,(xn,tn))9 0 S h < h < -" < tn < t,

where the ίz are the times at which particles are detected, and the xz are elements
of a measurable space (X9Σ) describing the type of particle. As we have mentioned
above, X could be the set of possible energy values of a particle or X could
characterize the location of a system. We denote the event that no particle is detected
during this time interval by zt. The collection of all events where exactly n particles
are detected in [0,ί) is denoted by Aι

n, thus

4 :={((*!,ίi),...,(x nJn)) I 0 S h < ••• < tn < t,XieX}9 A'Q := {z,} .

If we do not distinguish between different kinds of particles, i.e. X = {1}, we
identify the tuples ((1,ίj),...,(l,£w)) and (t\,...,tn), and use the abbreviations

Cί :={(*, , . .Λ) I 0 ^ / , < • • • < / „ < / } , ^-{zt}. (3)

Let us define

Xt := U 4 .

and canonically identify U«>o^« w ^ m O } ' ^n principle we could modify the con-
dition in (3) to 0 ^ t\ ύ ' ' ίk tn Ik t, but it turns out that all relevant measures
are absolutely continuous with respect to the Lebesgue measure, so the probability
of simultaneously detecting two or more particles is always zero (as one would ex-
pect for physical situations). We note that Xt and all 4 a r e standard Borel spaces
whenever X is. Now, because of the continuous variability of such an experiment in
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time, it cannot be described by only one instrument on the space Xt (for a fixed t),
but by a family 8t of instruments on the spaces Xt, where each S) describes the
measurement up to the time t. Thus we define

2.1. Definition. Let (X,Σ) be a measurable space, (t",<%\τ) a state space. A
family {<f>t)t>o of instruments on Xt is called a counting process (CP) with mea-
surable space (X,Σ), if

(i) || || — Ura^oStiX^oj — ω for all ω £ f\ and

(11) S)(F)SS(E) = <$ί+s(λ(F x E)) for all measurable ECXS,F C Xh

where λ : Xt x Xs —» Xt+S is defined by

( ( C x i , ί i ) , . . . , ( x , , Λ ) ) 5 i{yus\\...,(ym,sm)))

-> {{y\,s\\...,{ym,sm),{x\,U +s\...,{xιutn + s)) .

ϊn most cases (X,Σ) is understood and we thus will only speak of a CP S) without
explicitly mentioning its measurable space. To be correct we should give λ a pair
of indices t,s, but we hope that in the sequel it is always clear which spaces are
connected by /. Equation 2.1(ii) is similar to the Chapman-Kolmogorov equations
for Markov processes in classical probability theory and it expresses that the process
has no memory and is homogeneous in time. A direct consequence of 2.1(ii) is that
the operations

St:=St({z(}) and Tt := St{Xt)

form semigroups; moreover Tt is a Co-semigroup. We always denote by Z the
generator of Tt and by W that of St (if St is a Co-semigroup). For properties of
semigroups we refer to [3,9]. The above definition allows to calculate the probability
for any physical event. For instance the probability Pt(jι) for detecting exactly n
particles during the time interval [0,/) is given by

Λ(w) = (^«)ω,τ) (4)

for a normalized ω G Ψ\. Thus the average number (N)ι of particles detected in
this period is

(N)l = ΣnP,(n) = ΣniS iA^ω, τ) . (5)

Moreover the average time (ta) at which the first particle is detected is given by

(ta) = f t— ((Γv - Ss)Stω,τ)\s^dt, (6)
Ό d s

if s —> ((Ts — Ss)Stω,τ) is differentiable for all /. One can see this using the
fact that the probability for the first particle being detected in [t,t + At) is given
by {^Δt{XΔt\{zΔt})S(Cθ,τ). We mention this because the differentiability condition
implies for physically interesting states ω that \\(TS — Ss)ίθ\\ ^ Ks for small s\ an
inequality which we will use in the two final sections (cf. Eqs. (10) and (29)). Let
us now present some further developments of Davies' formalism.
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3. Coarsegrainings and Refinements

Physically one may be interested in the connection between the probability distribu-
tion in certain channels - represented by the space (X,Σ) - and the distribution of
the whole system. Mathematically this corresponds to a coarsening procedure that
combines all the points of the space X in a single point, e.g. {1}. We identify the
space {1}/ with U«GN Q a n ( * introduce the "coarsegraining" map

Obviously π is measurable and describes the loss of information about the channels.
One now easily verifies the following statement.

3.1. Proposition. Let (Ψ]Jt]τ) be a state space and δt a CP with measurable
space (X,Σ). Then the definition

for each measurable E C {1}, yields a one point CP.

We call the resulting CP δt the one point coarsegraining of δt. For constructions of
CP's the inverse way is important. Before attacking this problem we have a look
at the operations determining the process. In the sequel we will often have to deal
with sets of the form

A = (E{ x [ α i , δ i ) ) χ . . - x (En x[an,bn))9 (7)

where Eι e Σ and 0 ^ a\ < b\ < a2 < b2 < - < bn < t. Obviously A is a mea-
surable set in Aι

n. We call a finite union of sets of this form a standard set. The
standard sets are closed under the formation of finite intersections and generate the
σ-algebra on Aι

n.

3.2. Lemma. Let δ} ,δ} be CP's with measurable space (X,Σ) fulfilling

(i) S} = Sf =: St and

(ii) «}{E x [0,0) = <$HE x [0,0) for all E G Σ and t > 0,

then S} = $}.

Proof It is sufficient to verify δ}{A) = Sf(A) for A as in Eq. (7). But then we
have

δ}(A) = S,-bnSl_an{En x [OA - an)) • • < _ β l ( £ i x [0,6, - ax))Saι = Sf(A),

by the Markov property of the CP's. D

Now we return to the problem of constructing a "refinement" of a CP. By the
above it is enough to give the process on A\ and A\. For E e Σ and 0 < a < b < t
one necessarily has:

δt{E x [a,b)) = St-b£b-a(E x [0,6 - a))Sa .

The subsequent theorem shows that this condition is essentially sufficient.
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3.3. Theorem. Let St be a one point CP9 (X9Σ) a standard Borel space, and for
each t > 0 let Gt be a POVM on A\ satisfying

(i) Gt(Xx[0,t))=£t([0,t)),and

(ii) Gt(E x [a,b)) = St-bGb^a(E x[0,b- a))Sa

for E G Σ and 0 < a < b < t. Then there is a unique CP $t with measurable
space X such that δt(A) = Gt(A) for measurable A C X x [0,0, and δt{{zt}) =
$t({zt}) = St. Moreover St is the one point coarse graining of St.

Proof. The uniqueness is obvious from Lemma 3.2, and the last statement is a
direct consequence of (i) and (ii). The rest is technically a bit complicated and we
thus first try to sketch the idea. There is a canonical way (cf. Eq. (8) below) of
defining St on standard sets. However it is not clear if this procedure is well defined
and if the map E —» $t(E) may be extended σ-additively. Thus we subdivide the
interval [0,0 in 2n disjoint intervals I£ := [^-t, γ,t) for k = 1,.. .92

n and restrict
our attention to the set

Λl :={x = ((xutι)9...9(xhtι))eAt

ι \xteX9

for each k there is at most one /, G VI} .

We say "x has an entry in /£" iff there is a U with tx € 1%. On the set A]
n the

canonical definition leads to a well defined σ-additive map, and by use of a limiting
procedure we receive a measure satisfying the required conditions. The details are
covered by the following lemma.

3.4. Lemma. We use the above notation. Let St be a positive contractive semi-
group, and Gt a POVM on X x [0,0 that fulfills 3.3(ii). Then for fixed t there
is a sequence (μι

n)ne^ of POVM's on C] such that

(i) μι

n+]{E) = μι

n{E) for measurable E C A\v

(ii) μ^q) = μι

n(Λι

n),

(iii) μι

n+ι(E) ^ μι

n(E) for measurable E C C\.

For E = (E\ x [a\,b\)) x - - x (Ej x [α/,Z?/)) C A\ there is an no £ N such that
for n ^ nθ9

μι

fl(E) = S^tιGίι-Sι(Eιx[0,tι-sι)).-.Gtι-Sι(Eι x[09tx - Sι))SSι . (8)

Proof We say a map φ : {1,...,2Λ} -> {0,1} is in Qι

n9 iff card φ- 1({l}) = /.
For each φ G Qι

n we define Pφ := {ψ G Qι

n+\\ for each k G (^"^{l}) there is
one and only one / G {2k — 1,2k} with ^(/) = 1}. Obviously the Pφ are pair-
wise disjoint. Finally let Cg := {ztίln)9C[ := X x [ 0 , ^ ) , and for each φ £ Q'n let
Λφ := λ(CJ ( 2 I I ) x x λ(Cn

φ{2) x CJ ( 1 ) ) •). Thus m x e Aφ has an entry in Γk iff

φ{k) = 1. If ^ = {1} we use ^^ instead of ^(/? and Aι

n instead of Aι

n. Now the
following statements are easy to verify:

Λι

n= U Λ > Aφ= U AΦ,

Aι

n T 4 , i.e. ̂  C Λi + I and \J Λι

n = A) .



460 B. Muller

The σ-algebra on Aφ is generated by sets of the form E = λ(E^ x x E\) with
measurable sets E[ C C"^y For these sets we define

μφ(E)= Gt/2n(E2»)-'Gt/2n(Eι)9

where Gr(Ej) = Gr(Et) for Eι C C\ and Gr({zr}) = Sr. Then using the fact that

Π / = i Cp(O i s Borel isomorphic to Aφ it follows by (2) that E —> μ (E) can be
extended to a POVM on Aφ. Now it is a technical but straightforward calculation
that for measurable E C Aφ we have:

Thus the definition μι

n(E) := ]P eQiμφ(EΓ)Aφ) for measurable is C ^ generates

a POVM on ^ that satisfies 3.4(i),3.4(ii) and therefore 3.4(iii). Let E = {Ex x
[a\,b\)) x x (is/ x [aι,bι)) be a standard set with 0 ^ «i < b\ < < b\ <
t9 and let r > 0 be the minimum distance between two successive parts of this
inequality, then a direct calculation shows for ^ < ^ that E C Aι

n and that μι

n(E)
fulfills (8). D

Proof of Theorem. By definition of μ̂  and using Theorem 3.3(i) one calculates

μι

n(Aφ)=£t(Bφ), thus

μι

n{A)= Σ μί(Λ)=^ ( U BΛ =st{Aι

n) ^ st{c\).

Monotonicity and boundedness of this sequence imply that for each measurable
E C C\ and ω G f + (and therefore all o j e f )

|| || lim μι

n(E)ω := gι

t(E)ω
n^oo

exists. As a limit of a sequence of POVM's Sι

t is a POVM on A\9 and for each
ω G f we have

ί/(^ 7)ω - lim μι

n{A\)ω = lim ^ ( ^ ) ω = St ( (J Aι

n)ω = £t(C\)ω . (9)

Now we define St{E)ω := ^ ^ ( £ 0 ^ ) 0 ) . Equation (9) implies that the sum is
converging, thus St is a POVM on Xt satisfying

S,{X,)ω = Σ

Therefore it remains to show 2.1(ii). But as it suffices to verify the Markov prop-
erties on standard sets, we can use Eq. (8) and the definition of St in order to get
the desired result. D

We call the CP St constructed here a refinement of the one point process St.
The above theorem shows that there is a one-to-one correspondence between the
refinements of a given one point CP $u and the POVM's Gt satisfying 3.3(ii).
Therefore it allows us to concentrate on one point processes when constructing
CP's (cf. Sect. 5).
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4. Counting Processes with Bounded Interaction Rate

Here we study a special class of CP's introduced by Davies [11]. A CP St is said
to have a bounded interaction rate (IR), if there is a K > 0 such that

\\St(X,\{zl})\\ = \\Tt-St\\ SKt (10)

for all t G IR. Equivalently we could require {(Tt — St)ω,τ) ^ Kt(ω,τ) for all
ω ^ 0. This means that the probability of detecting one or more particles dur-
ing the time interval [0, t) gets small linearly in / and uniformly in ω. Although
this restriction is often too strong for photon counting experiments, it is important in
the fermion case and may also have applications to classical structures. As Davies
has proven for CP's of this kind, St is a Co-semigroup and | |<^(^) | | £Ξ f̂-, i.e.
the counting probability is dominated by a Poisson distribution. In the sequel let St

be a CP with measurable space (X,Σ). For E G Σ we define

The generators of the semigroups St and Tt are W resp. Z. For shortness we write
/I . II

D{W*) =: i^Θ C V. As we want to focus mainly on the unbounded case
we will prove a slightly more general statement in the subsequent lemma than is
necessary for the proof of Theorem 4.2.

4.1. Lemma. Let $t be a CP with measurable space (X,Σ) and St a Co-semigroup.
Let D(JG) = D + ( J Θ ) - D+(JΘ) be a dense subspace of V invariant under St and
Tt such that

\\{Tt-St)Ssω\\ ^K(ω)t (11)

for ω G Z ) ( J Θ ) and s ^ 0. For each ω G D(JΘ) let gω : ]R+ —> IR be a continuous
function with gω(0) = 0 such that

\\Jt(E)Ssω-Jt(E)Ss,ω\\ £ gω(\s-sf\). (12)

Then we have for ω G Z)(7Θ),

t

\imfSt-sJu(E)Ssωds = St{E x [09t))ω (13)
w->0 0

in norm. Moreover for all x G f^Θ and ω G D(JG) the limit \imf->o(Jt(E)ω,x)
exists.

Proof It is an easy consequence of 2.1(ii) that for all E G Σ and t > s,

St-SSU{E x [0,u))Ss = £t+u(E x [0,s + ύ)) - St+U{E x [0,s» . (14)

Thus with a substitution s —* s + u one calculates for all ω G f,

/'St-SSU{E x [0,ι/))^.ω^ = / (f/+I/(i5' x [0,5))ωrf5 - /' St+u{E x [0,j))ωώ . (15)
0 t 0

Dividing this equation by u and taking the limit u —> 0 we get (13). The hereby
required continuity conditions can easily be obtained from (11) and strong continuity
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of St. Now (11) and the Alaoglu and Tychonov Theorems imply that there is a func-
tion ΨEω:WL+-+ -T** and a net tΛ -» 0 such that {Jta(E)Ssω, y)-+ (ΨE ω(s), y) for
all yer*. Using (12) we conclude \{ΨE,ω(s) - ΨE,ω{s'\y)\ ^ \\y\\gω(\s - s'\).
In particular s —> ΨEtω(s) is norm continuous. For shortness let fx(s) := Jtθί(E)Ssω.
Now let ε > 0, ω G ̂ \{0}, x G f Θ \ { 0 } and fix t > 0. Since S,* is a Co-
semigroup on f 0 [6] and gω is continuous, there is a δ > 0 such that for
0 < j < δ: \\S*x-x\\ < and gω(s) < . Choose a fixed n > | . Then

there is an α0 such that for α ^ α0 and k = 0,..., n we have

Thus for α

— ,*}„_£_! X

J (St-sJlχ(E)Ssω,x) ds-J {ΨE,ω(s),S;_sx) ds
0 0

Λ _ l {k+l)t/n

/ J J 1 \./ ^V /

&=O 0

Λ - l ί/«

~ k=0 0

(.
\

(
\

n-1 ί/«

+ ΣJ
λ:=0 0

n-1 ί/«

+ Σ/
k=0 0

π-1 ί/«

+ Σ/
A:=0 0

•s* \ "̂  Γ j
—— / ^ J I

^ = 0 0 ^ '

< ε.

It follows that

vEAs)Xs*)\ds

fJs +

 kl)_ΨEω(s +

 kl)Xn k , 5* Λ
V n J \ n J n

 ι » 1

/α ί SΉ- — ) ~ ψE,ω \ s + — ) ,S*n-k-\(Si SX-X))

\ n J \ n J n * n I

/fJs + *)-fJ*)9s:k Λ
\ \ nj \nj n t 1

If (kt\ Ψ (kt\ V* r\\ / α I 1 YE,ω 1 — I 9&n-k-l X j

\ \ n J \ n J » /

(ψEω ί — λ - ψEω (s+ —λ 55* k j χ\

\ \nJ V n J " ι /

S\_sx-x 2K(ω)4-a (s}\\x\\-\-— A-a (s)\\\x\\ds

ds

(^(^ x [0,0)ω,x) = lim / (St-sJu(E)Ssω,x) ds

= lim / (JtΛ(E)Ssω,SΪ_sx) ds = J (ΨE,ω(s),S;_sx) ds
α 0 0

(16)
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independent of the net /α. Dividing this equation by t and using the continuity

of s —• ΨECO(S) and s —» S*_sx we conclude that lim,_>o \{$t(E x [0,t))ω9x) =

(ΨEA<>)Λ D

4.2. Theorem. Let St be a CP with bounded IR and measurable space {X, Σ). We
have D(W*) = D(Z*) and for ω e f and x G Ψ ̂  the equation \\mt^
= (ω,Φ(E)x) defines a unique measure Φ : Σ —> ̂ (irG,ir*) such that

{δt(E x [0,0)ω,jc) = / (Ssω,Φ(E)S?_sx)ds . (17)
s

The σ-addίtivίty of Φ refers to the σ{i^G ,ψy topology. Moreover we have τ G
D(W*) with W*τ = -Φ{X)τ and on D{W*) we have

(18)

The CP $t is uniquely determined by Φ and St.

Proof We use the above lemma. Taking D(JG) = V and using the bounded IR we
conclude that ||(Γ, - St)Ssω\\ ^ Kt and \\Jt(E)(Ss - Sst)ω\\ g K\\S\s_s,\ω - ω\\ for
all ω G 'V. Thus we can apply Lemma 4.1 and define Φ(E) by \imt-+o{Jt(E)ω,x) =
(ω,Φ(E)x) for ω G f and x e f 0 . We thus can apply the Lebesgue Theorem
in (13) and get (17). By the Vitali-Hahn-Saks Theorem E -> (ω,Φ(E)x) is σ-
additive. Now | |Γ; - Sf\\ ^ Kt implies D(Z*) = D(^f*) (use [3, Th. 3.1.23]), and
as Tt*τ = τ we have Z*τ = 0 and τ G £>(JΓ*). Moreover, j \\St ( U π ^ 2 4 ) II ^ ° f o r

ί -> 0 implies l im^o \\\(Tt - St - St{X x [0,0))ω|| = 0 for all ω G Ψ\ and there-
fore Z* = JF* + Φ(X) on D(^f*). Finally the last statement is an easy consequence
of (17) and Lemma 3.2. D

We call Φ the interaction rate of the process. This name is justified by consid-
eration of the mean number (N)t of particles detected up to the time t (cf. Eq. (5)):
Because of the bounded interaction rate one calculates

= {ω,Φ(X)τ).
t=0

Before giving the converse of the above result, we state the following lemma.

4.3. Lemma. Let St,Tt be Co-semigroups with 0 < St ^ Tt and T*τ = τ, and
denote Au := \{TU — Su). Let Do ζ. Ψ^ be invariant under S* and T*9 (Z)o)+w*-
dense in f^ and containing τ. For each t let Rt be a POVM on [0,ί) such that

(Rt(E)ω,x) = lim ( f St-5AuSsωds,x) (19)
u^o \E I

for x G Do and ω G Ψ\ Then Rt satisfies condition (ii) in Theorem 3.3, and for
each I G N there is a POVM ^\ on C\ with ^%{zt\) = St9 <F\ = Rt and

Σ ^ ί ( C } ) S Tt - St - Rt([09t)) (20)
1=2
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for all k ^ 2. Moreover for measurable sets A C C\ and B C Q 2 we have

^\{A)^{B) = # " ί t m ( ^ x ^)) (21)

/ For general semigroups St9 Tt the following identity is valid:

1 γ t j 0

J St-sAuTsωds = - J St-sTu+sωds J St-sTu+sωds . (22)
0 U t-ιι u -u

By the above condition, if ω = ω\ — ω 2 with cύ\,a)2 € C/C, then ||7/ω|| ^ 117̂ co 11| +
| | r ^ 2 | | = | |ωi| | + | |ω 2 | | , and hence the inίimum of the last term yields | | r ^ | | ^
| |ω| | so that Tt and St are contractive. Thus \\fQSt-sAιtTsωds\\ ^ 2||ω|| and

II II lim fSt-sAuTsωds = Ttω - Stω (23)

«->o 0

for all ΰ ) G f . A careful but straightforward iteration of (23) using (19) implies

({Tt - St)ω,x) = (Rt([0,t))ω9x) + lim lim
k-\

Σ J {St-t^ >AUk_ι+ιStιω,x)dtι dt\
1=2 c\

+ / (5ί-ίAi4ttjt ^ ^ Γ ^ ω ^ ) ^ ! -dtk \ (24)

for x G Do and k ^ 2. It is a direct consequence of (19) that i^ satisfies condition
(ii) in Theorem 3.3 for X = {1}, thus we can apply Lemma 3.4. Let μι

n be the
sequence of POVM's on C\ constructed there, then using (19), (8) and the Lebesgue
Theorem (recall that from the above \\jESt-sAuSsωds\\ rg 2| |ω||), one calculates for
standard sets A C CJ,

(μι

n(A)ω,x) = lim lim / {St-tAu •AUιSt[ω,x)dt] - - dt\

for sufficiently large « and x E Do- Thus if A2 C C^,. . . ,^/ C Q are standard sets,

ω e i^+ and x 6 φ o ) + ? we have

k k

Σ (μl

n(
Aι)ω>x) ^ liminf liminf Σ J (St-tιAu AU Stχω,x)dt\ dt\

1=2 uk-^° u\~^° 1=2 r*

S ([T, - S, - R,([0,t))]ω,x), (25)

where we use (24) and Γ, ^ 5,. But this implies Σ * = 2 ^ ( C J ) ^ Γ, - S, - R,([O,t))

^ Γ,, thus 11/4(̂ 711 g 1 and therefore the limit

|| || lim μ'n{E)ω =: J%'(£)ω (26)
n—>oo

exists for all E because the sequence μι

n(E) is monotone. By the Vitali-Hahn-Saks
Theorem &\ is a POVM. Now Eq. (20) follows from (25), and (21) can easily be
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verified for standard sets (and therefore for general measurable sets) using (8) and
(26). D

4.4. Theorem. Let 0 ^ St ^ Tt be Co-semigroups with generators W resp. Z,

and let (X9Σ) be a standard Borel space. Define f^G := D(W*)11'". Let Φ : Σ ->
^ ( f 0 , ^ ) Z?£ a σ-additive map (in the σ{i^Θ\-V)-topology) such that W*τ =
-Φ(X)τ and (JV* + Φ(X),D(W*)) = (Z*,Z>(Z*)). Moreover for each E G Σ and
ω e i^+ let the formula

(Gt(E x [0, t))ω,x) := / (S>, Φ(E)S;_sx)ds , x G f Θ (27)
o

<ie/zft<? α .ytate Gt(E x [ 0 , 0 ) ω ^ ^+ Then there is a unique CP St with measurable
space X such that St({zt}) = St and St(E x [0,t))ω = Gt(E x [0,t))ω. The IR of
St is bounded.

Proof Define for fixed t > 0, s G [0,0 and F C X x [0,0: ^ := {y\(y9s) e F}.
Then one can verify as in usual measure theory that for x G i^Θ,

{Gt(F)ω,x) := f {Ssω,Φ(Fs)S;_sx)ds
0

is well defined and σ-additive in F: We can assume ω ^ 0, x ^ 0. The set of all
F C J x [0,0, where the integral on the right-hand side is well defined forms a
Dynkin system containing the sets E x [a,b) for E G Σ, 0 ^ α < b ^ ί, thus is the
whole σ-algebra. By the σ-additivity of Φ and the monotone convergence Theorem
it follows that F —* (Gt(F)ω,x) is a measure on X x [0,0- By definition Gt(F)ω is
a linear functional on 1^Θ. We now want to identify it with an element of Ψ\ Thus
fix ω G '5̂ +. Using (27) and the monotone completeness of Ψ* we conclude that the
set of all F C X x [0,0 with Gt(F)ω G ̂  forms the above Dynkin system, and
therefore F -> G,(F) is a POVM on X x [0,0- For x G Z)(^f*) we have

^ ||^*x|! + ||Z*x|| S \\φ(X)x\\+2\\W*x\\

and l im u _ > 0 (^-^^5ω,x) = (Ssω9Φ(X)S*_5x). Defining Rt(E) := Gr(X x £ ) for
measurable £* C [0,0 we can use the Lebesgue Theorem to get (19) for x G D(W*).
Now we can apply the above lemma and define

δtiβ)ω:= Σ &\{B Π C\)ω
1=0

for measurable 5 C { l } / 5 using the POVM's $F\ constructed there. The sum is
converging by (20) and this inequality also implies 0 ^ Ut \=$t({\}t) ^ Tt. St

therefore is a POVM on {\}t. Equation (21) implies that St satisfies 3.3(ii) as it
suffices to verify this equation on standard sets. In particular Ut is a semigroup. We
now want to show that Ut = Tt. As τ G D(W*) we have for ω > 0,

\im-\\(Tt-St-Gt(X x [ 0 , 0 ) ) ω | | = ( ω , Z * τ - W*τ + Φ(X)τ) = 0 ,
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and this is even true for arbitrary ω G Ψ\ Thus ω G D(Z) iff || || l im^o j(Stω -f
G>(X x [0,t))ω — ω) =: ώ exists, in which case we have ώ = Zω. But the above

equation also implies lim^o 7ll<^(U«>2^)ωll = 0 (c^ (20)) a n ^ s o w e n a v e

-(t/,ω - ω) = -(Stω + G,(X x [0,f))ω - ω) + -

which is converging iff ω G D(Z). Now it follows that Ut is a Co-semigroup whose
generator coincides on D(Z) with Z, thus Ut = Tt. By the above St is a one point
CP. We can use (27) to verify that Gt satisfies all the conditions of Theorem 3.3
and thus defines a refinement St of St. In particular we have proved the existence
of $t. Uniqueness again follows by Lemma 3.2. D

A combination of Theorems 4.4 and 4.2 gives a complete classification of CP's
with bounded IR. This result is achieved in spite of the fact that the IR Φ in
general is not w* -continuous. In the latter case all the assumptions about Gt are
automatically satisfied, and the existence of the semigroup Tt is immediate from
perturbation theory. Thus we are interested in conditions that guarantee the existence
of a predual operator Φ*. Recall that the Farvard class F(W) of a contraction
semigroup St with generator W is the set of all ω the orbits {Stω\t ^ 0} of which
are Lipschitz continuous [5]. For ω e D(W) we have:

\\StSsω - Ssω\\ = JSrWSsωdr <, t\\Wω\\

thus D(W)CF(W). It holds always that F{W) C D(W) [9] for reflexive Banach
spaces, so we call St "of type R" iff D(W) = F(W). If J is a bounded operator
and Z = W + / generates a contraction semigroup Tt, then ω G F{Z) implies

\\Stω - ω\\ ^ ||Γ, - St\\ \\ω\\ +

thus ω G F(W) = D(W) = D(Z) and Tt is of type R. IF Vt is a contraction semi-
group with generator U and H^ - Vt\\ ^ Kt, then ω G D(U) implies

| | ^ ω - ω | | ^ ||S, - Vt\\ \\ω\\ + \\Vtω - ω|| S (K\\ω\\ + \\Uω\\)t,

and we conclude ω G F(W) = D(W). Thus P := C/ — ^F is a well defined operator
on £>(£/) with Ĥ H ^ Â  and Kf is a (bounded) perturbation of St, hence of type
R. In the sequel we will prove that using semigroups of this type implies that the
IR is w*-continuous.

4.5. Theorem. Let $t be a one point CP with bounded IR. If St is of type R then
Tt is of type R and there is a unique bounded operator J : Y —> Ψ" such that

£t(E)ω=Σ I St^tnJ. .JSt{ωdtx- .dtn. (28)

In particular the interaction rate operator Φ — J* is w*-continuous.

Proof Defining J = Z - W all except (28) is clear from the above. As both sides
of (28) are σ-additive, it is sufficient to check this equation on standard sets. But
using (17) and the w*-continuity of J* we conclude S't([0,t))ω = JQ St-sJSsωds,
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where the integral converges in norm. Now (28) is obvious for standard sets by
use of some easy substitutions. D

In order to show that there are nontrivial cases of semigroups of type R, we
consider the state space Ψ* of traditional quantum mechanics. We will often use the
following result of Davies [11,8].

4.6. Lemma. Let J*f be a separable Hubert space and (ρn)n<EiN be a sequence of
positive operators in Ψ* = Tsa(Jίf) which converges in the weak operator topology
to ρ e ^ + ( J f ) . If there is a constant K > 0 such that tr(ρπ) ^ K for all n, then
ρ E f andtr(ρ) rg lim infw_>oo tr(ρ Λ ). Moreover \\ρ - ρn\\ -» 0 #f l i m ^ o o tr(ρw) =

tr(ρ).

Davies showed that, as St should leave the set of pure states invariant, one
has to choose St = AdBt, i.e. Stp = BtpB* for physically interesting cases, with
a contraction semigroup Bt on Jf [11]. Now let W be the generator of St and
ρ G F{W). As the unit ball of ^ ( J f ) is compact and metrizable in the weak operator
topology, there is a sequence tn —• 0 such that ωn := -j-(Stnρ — ρ), (ωn)+ and (ωw)_
are converging. Applying Lemma 4.6 and [8, Lemma 5.3.1] it follows ρ e D(W),
hence St is of type R. Now the result of Davies [8, Theorem 5.3.5] can be extended
to semigroups of type R.

4.7. Theorem. Let Jf, 'V be as above, (X, Σ) a measurable space and St a CP
with bounded interaction rate such that St is of type R. Then the IR Φ {cf 4.2)
is w* continuous, i.e. there is a POVM J : Σ -> ^ + ( τ θ , E -+ J{E) with Φ{E) =
J*(E)\fΘ for allEeΣ.

Proof As above we get a sequence tn —> 0 such that for fixed E e Σ and ρ G f +
the limit limn^ooJtn(E)ρ =:J(E,ρ) exists in the weak operator topology. Lemma
4.6 implies that J(E,ρ) G ̂  and by 4.5 for E = X even || | | t r limt^oJt(X)ρ = Jρ
exists. One can show that even || \\tr\imn->ooJtn(E)ρ =J(E,ρ). The proof of this
fact is the same as the corresponding proof for pure CP's [8], we thus omit it.
However, in the unbounded case we formulate explicitly similar arguments to prove
Corollary 5.4. Now Theorem 4.2 shows that for x G D(W*) we have: {J(E,ρ),x) =
(ρ,Φ(E)x), thus the limit J(E,ρ) is independent of the chosen sequence tn —> 0.
Therefore one can define J(E)ρ :=limn^ooJι/n(E)ρ and ρ —• J(E)ρ is bounded
positive operator. Obviously E —> J(E) is a POVM and satisfies J(E)*x = Φ(E)x
f o r x G f * 0 . D

5. CP's with Unbounded Interaction Rate

For physical applications the operator J discussed in the previous section cannot
be expected to be bounded. The usual choice would be Jρ = a(f)ρa*(f) [12,13]
with the creation and annihilation operators «*(/),«(/) for instance on Fock space
[7]. Obviously J is not bounded but well defined on a dense subspace. Thus we
introduce the following definition.

5.1. Definition. A CP $t on Ψ' is said to have an (unbounded) interaction rate,
if there is a dense space D' C y such that for each ω G D' there is a K(ω) > 0
with

||(7; - St)ω\\ S K(ω)t for all t > 0 . (29)
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As St is contractive and strongly continuous on the dense space D', it follows that
St is a Co-semigroup whose generator we denote by W. There are two instructive
conditions implying that the IR is bounded. First if τ G D{ W*) one easily verifies
that || 7; -St\\ <> \\W*τ\\. Second if (29) holds for all ω G f , the uniform bound-
edness principle implies that the IR is bounded. Both are conditions that complicate
the handling with CP's of this type. As "physically relevant" states will satisfy
(29) (cf. (6)) we will require D(Z)UD(W) C D ' . In the bounded case we have
seen that it is reasonable to concentrate on semigroups St (and thus Tt) of type R.
But requiring St and Tt of type R here implies for ω G D(W),

| | 7 > - ω | | S \\(Tt - St)ω\\ + \\S,ω - ω\\ £ K(ώ)t + \\Wω\\t,

thus ω G D{Z) and vice versa. In the sequel we therefore require D(Z) = D(W). We
call an (unbounded) operator J : D C V —> Ψ* positive if D+ = {ω G D \ ω ^ 0}
is dense in f^+ and Jω ^ 0 for ω E D+.

5.2. Proposition. Let St be a CP with D(Z) = D(W). Then the operator (J,D(J))
:= (Z — W,D(W)) is well defined and positive. J, W and Z are relatively bounded
to W and Z and there are constants a,b > 0 such that for all ω G D(W) and
u, s > 0,

-(Tu-Su)Ssωu
S a | |ω| |+έ| |JFω| | . (30)

Proof. As St is positive, D+(W) is dense in ir

+. Thus Jω = l im^o ^(Tu - Su)ω
implies that J is positive. If {(ω, Wω) \ ω e D(W)} =: Gw is the graph of W, then
considering the operator Z(ω, Wω) := Zω and using the closed graph theorem, we
conclude that Z (and therefore J = Z - W) is relatively bounded to W. In the same
way it follows that W is relatively bounded to Z. Finally (30) is a consequence of
the semigroup identity Tuω — ω = /0" TrZωdr for ω G D(Z) and the above. D

We now want to show that in the unbounded case there is also an operator
characterizing the interaction rate. It is necessary to have such a result in order to
justify the usual way of constructing models - by taking an unbounded operator

J - as the only possibility to do this. Recall that VΘ := D(W*) is an ordered
Banach space (St is positive). For shortness let Jt(E) := \St{E x [0, t)) for E G Σ
and D(JΘ) := D+(W) - D+(W). Obviously D(JΘ) is dense in V.

5.3. Theorem. Let St be an CP with D(Z) = D(W). For each EeΣ and
ω G D(JΘ) there is a unique operator JΘ(E) : D(JQ) —> Ψ"Θ* satisfying
limt^o(J{(E)ω,x} = (JΘ(E)ω,x) for all x G r Q . Therefore E -• (JΘ(E)ω,x) is
σ-additive and we have

(£t(E x [0,0)ω,x) = / (JG(E)Ssω,S;_sx) ds (31)
0

for all x G t^Θ, ω G f and EeΣ. Moreover for E = X and for all ω G D(W)
we have

St(X x [0,0)ω = JSt-sJSsωds, (32)
0

where the integral converges in norm. Thus we can identify JΘ(X) with J.
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Proof. For shortness let Au := £(Tu — 5M). Looking at Proposition 5.2 it remains to
show the validity of Eq. (12) in order to apply Lemma 4.1. Now for ω G D(W)
let Wω = (Wω)+ - {Wω)- be a fixed decomposition of Wω in positive parts and
φ := (JFω)+ + (JFω)_. Then for 5, / > 0,

\\Jt(E)Ssω-Jt(E)SM\ = Jt(E)fSuWωdu

Jt(E)JSu(Wω)+du -f Jt(E)f Su(Wω)-du

= (jt(E)fSuφdu,τ) S - ((Tt - St)f Suφdu9τ

< a
s'

JSuφdu
s

+ b W 70

s\

Suφdu

(33)

By Lemma 4.1 we now can define (JΘ(E)ω,x) := limt-^o{Jt(E)ω,x) and the Vitali-
Hahn-Saks Theorem implies that E —> (JΘ(E)ω,x) is σ-additive. Thus (31) is a
direct consequence of Eq. (16), using (ΨE,ω(s),S*_sx) = (JΘ(E)Ssω,S*_sx). For
u9t > 0 and measurable E C [0,0 define Ru

t(E)ω := JESt-sAuSsωds. Using (22)
and 5y ^ Ts we see that | | i^(£) | | ^ 2. By the Alaoglu and Tychonov Theorems
there is a net wα —> 0 and a bounded operator i?/(£) : Ψ* —> f̂ ** such that

for all ω G 'V and x G ̂ * . But Eq. (30) and the Lebesgue Theorem imply that

Rt(E)ω = JSt^sJSsωds (35)
E

for ω G D(W), where the integral converges in norm. Thus the limit in (34) is
independent of the net wα, and E -+ Rt(E) is a POVM on [0,0 satisfying (19)
(with Do = ^ * ) . For the remaining proof of (32) we can assume X = {1}. Then

/ t

St{\0,t))ω= lim JSt-sJu({l}))Ssωds ^ lim JSt-sAuSsωds = Rt([0,t))ω , (36)

where the limit exists in the weak topology. We can apply Lemma 4.3 to Rt, and
get POVM's ^\ on Cj. Then (21) and (36) imply that ^ ( C * ) ^ ^ ( c ί ) τ h u s

we have for ω > 0,

T,ω -
n=0 n=0

ή(Cί)ω ύ T,ω,

where the last inequality follows from (20). Therefore we conclude < (̂
Rt([O,t)). •
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The above theorem shows that there is an operator valued measure characterizing
the interaction rate. The result lacks one fact: the images of the operator JΘ(E)
are in ^" Θ * rather than in Ψ'. We note however that this problem does not arise,
if we focus our attention on one point CP's (cf. Eq. (32)). There is a better result
obtainable for special state spaces.

5.4. Corollary. Let ^ be a separable Hubert space, Ψ" := 3Γsa{j/?\$t a CP on
Ψ* with D(Z) = D(W). Then for each E £ Σ there is a positive operator J(E) :
D(JΘ)-+ r such that

St{E x [0,ί))ω = JS^sJ(E)Ssωds (37)
o

for all ω £ D(JΘ), where the integral converges in norm. Furthermore E —> J(E)ω
is σ-additive and

J(E)ω = || || lim Jt(E)ω . (38)
ί 0

Proof Let ω £ D+{W). As the unit ball of ^ ( J f ) is compact and metrizable in
the weak operator topology, the inequality ||J/(£')ω|| ^ \\Atω\\ ύ <?IMI + & | | ^ ω | |
implies the existence of a sequence tn —• 0 such that Jtn(E)ω —> J(E,ω) £ ^(J-f).
By Lemma 4.6 we have J(E,ω) £ f^+ and Theorem 5.3 implies that for E —X
even || \\\imt^0Jt(X)ω = Jω. Thus for Ec = X\E,

lim Jtn(Ec)ρ= \\m(JttχX)ρ-Jtn(E)ρ)=Jρ-J(E,ρ)=:J(Ec,ρ)
n—>oo n—>oo

exists in the weak operator topology and the limit is in i r . Now applying
Lemma 4.6 to a subsequence Uk — tn/c of tn shows

tr(yρ) = liminf tr(JUk(X)ρ)

^ liminf tr(Ju,(E)ρ) + liminf tr(Ju, (Ec)ρ)
k-^oo k-^oo

^ tr(J(E,ρ)) + tr(J(Ec,ρ)) = tr(Jρ),

and therefore liminf^^oo tr(Jίn (E)ρ) = tr(J(E,ρ)) for any subsequence of tn. We

conclude lim^oo tr(J,n(E)ρ) = tr(J(E,ρ)) and by 4.6 we have

I! II* lim J,n{E)ρ=J(E,ρ).
n—^oo

By Theorem 5.3 we have (JΘ(E)ω,x) = (J(E,ω),x) for x £ iΓ Θ , hence the limit
J(E,ω) is independent of the chosen sequence tn —> 0. Thus we can define the
operator J{E) by (38). Using (33) and an ε/3 argument, we see that s —•> J(E)Ssω
is continuous in norm. Therefore the integral in (37) is well defined, and (37)
follows from (31). D

Now we come to the commutation relations of a process.

5.5. Theorem. Let Standr as in 5.4, Dx := {ω £ D+(W) - D+(W)\Wω £
D+(W) - £>+(^)} Tfcew Di is a core for W. Moreover, for ω £ D\ and E £ Σ
we have $t(E x[0,t))ωeD(W) with

t

WSt{E x [0,ί))ω = StJ(E)ω - J(E)Stω -f / St-sJ(E)SsWωds . (39)
o
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Thus on D\ the CP fulfills the following commutation relations:

All

(40)

Proof The span of all ω, = j'{0Ssωds, where t > 0 and ω G D+(W) is obviously
dense in t"\ contained in D\ and invariant under St, thus D\ is a core for W. For
fυ G Di, Eq. (37) implies

/-fr /•

(5Γ - H)#r(£ x [0,O)ω = / SsJ(E)St+r-sωds - J SsJ(E)St-sωds
J o

-f /SsJ(E)(S,+,—sω - St-Sω)ds .
/•

Dividing this equation by r and taking the limit r
then follows from (37). D

» 0 leads to (39). Equation (40)

These relations are also valid in the bounded case, where the right-hand side
of (40) is always bounded! After having studied the properties of CP's, we want
to constmct them starting out from the generators J and W. We first concentrate
on one point processes. As in semigroup theory there is no general answer to this
perturbation problem, but the subsequent theorem shows that it is enough to solve
the semigroup problems.

5.6. Theorem. Let S, be a positive semigroup with generator (JV,D(W)\ and
(J,D(J)) a positive operator such that W+J is closable on D = D(W)ΠD(J),
and the closure Z is the generator of a positive semigroup Tt satisfying T*τ — τ
for all t. Let D+ be dense in / f , invariant under St and Tu and for ω G D+ let
s —» JTsω and s —> JSSOJ be continuous functions. Then there is a unique one point
CP St with St({zt}) = St and Sι([0,t))oj = j Q St-sJSsωds for ω £ D. Moreover

(

Proof Positivity of Tt and Tt*τ = τ imply ||7;|| ^ 1. Let Au := \χTu - Su). The
function s —> WTsco — (Z — J)Tsω is continuous for OJ £ D+ and therefore bounded
on [0, t]. Thus there is a constant M(ω) > 0 such that for all u > 0 and s £

-{Tu-l)Tsω

-JTrZTsωdr

~(Su-t)Tsω

-$S,WTsωdr ^ M(ω).

Now we can apply the Lebesgue Theorem in Eq. (23) and get

Tfίo — Sfίo = jSt—sJTstods .

o
We conclude Tt ^ St and thus (22) implies \\$ESt-sAuSsωds\\ <. 2\\ω\\ for all

co G '/'". As above (cf. (34) and (35)) we conclude that there is a bounded positive
operator R(E) e ,#+('/") such that for ω e D+ we have R(E)ω = j E St-sJSsωds.
Obviously E —> R(E) is a POVM on [0,0 and we can apply Lemma 4.3. Let 3*}]
be the POVM on On constructed there. We define
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By (20) this is a well defined POVM on {1}, with <?,({1},) =: Ut S Tt. As it
suffices to verify 2.1(ii) for standard sets, the Markov properties follow from (21).
In particular Ut is a semigroup. It remains to show Ut — Tt. Now for ω 6 D+ we
have \imt-->o\έF]([0,t))ω = \imt^o\ JQ St-sJSsωds=Jω and \im.t-,o\(^({zt})w —
ω) = Wω. Therefore we have

lim St I U cn I ω ^ lim\-(Tt-St)ω- -Rt([0,t))ω\ =Jω-Jω =
t->o yn^2 j t-+o { t t J

which implies

lim -(Utω — ω) = Wω -f Jω = Zω .
ί->0 t

In particular we have \\Utω — ω\\ —> 0 for t —> 0, and since \\Ut\\ ^ 1 and D+ is
dense in f^+, Ut is a C0-semigroup whose generator coincides on the core D+ —
D+ with Z, hence Ut — Tt. D

We note that if J is relatively bounded to W with relative bound smaller than
1, most of the conditions of the above theorem are automatically fulfilled. Now we
come to the refinements of such processes. If W and J determine the process &u

then looking at 5.3 and 5.4 suggests that a refinement can be constructed by giving
a "measure" E -* J(E) with J(X) = J.

5.7. Definition. Let (J,D(J)) be a positive operator and (X, Σ) a measurable
space. For each E e Σ let J(E) : D+{J) - D+(J) -* Ψ" be a positive operator and
J(X) = jm If for each ω e D+(J) the map E -> J(E)ω is σ-additive, then E -»
J(E) is called a decomposition of J on (X,Σ).

In most cases a decomposition of J will define a refinement of the corresponding
CP. The subsequent theorem will give sufficient conditions.

5.8. Theorem. Let (J,D(J)) be a positive operator such that for all ω e D+(J) -
D+(J) there are COI,CL>2 G D+(J) with ω — ω\ — <x>2 and

Hi ^ ( H i i + iKH) (4i)

for some λ > 0. Let S't be a one point counting process such that StD+(J) C
D+(J) and δt{[Q,t))ω = J^St-sJSsωds for all ω e D+(J). Let (X9Σ) be a stan-
dard Borel space and E —> J{E) a decomposition of J on (X, Σ) such that for
ω e D+(J) the functions s —> J(E)Ssω are continuous in norm. Then there is a
unique CP St with measurable space (X,Σ) such that for all ω £ D+{J),

St{E x [0,0)ω = fS(^sJ(E)Ssωds . (42)
o

Proof For measurable F C X x [0,0 let Fs := {y £ X \ (y,s) e F}. Then define
for x G f * and ω G D+(J) - D+(J)9

(Gt(F)ω9x) = f(St-sJ(Fs)Ssω,x) ds . (43)
o
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Obviously the left-hand side is well defined and linear in x and ω. Moreover, for
ω = ω\ — <x>2 as in (41) we have

\(Gt(F)ω,x)\ S ί\\St-sJ(Fs)Ss(ω]+ω2)\\\\x\\ds
o

^ f{St.sJ(X)Ss(ωι +ω2),τ)\\x\\ds
o

Thus each Gt(F) can be uniquely extended to a positive bounded operator Ψ* —>
TΓ**. But Gt(F)ω G y for standard sets F and ω G D(J) (and therefore all ω G ^ )
because of the norm continuity of the functions s —> J(E)Ssω. Now use the σ-
additivity of Gt - which is obvious from (43)-and the monotone completeness of
V in order to verify that for fixed ω G V+ the set of all F such that Gt(F)ω G f
forms a Dynkin system, containing the standard sets, hence Gt(F) G ̂ + ( f ^ ) for all
F. Using (43) it is easy to verify that one can apply Theorem 3.3 to get the desired
result. D

We want to make some remarks about the conditions of the above theorem. If
J is relatively bounded to W and D+(J) = D+{W), a similar estimation as in (33)
shows that all the functions s —* J(E)Ssω are continuous for any decomposition of
J. So the main problem in applications of the theorem is to check (41). Consider
a pure CP (i.e. St is a pure operation) on f = ^Fsa(34f). We have St = AάBh

and if Y is the generator of Bu then D := LH{|^>(φ| \ψ,φE D(Y)} Π Fsa(3tf) is
obviously dense in f, invariant under St and a subset of D(W). Moreover it is
a simple application of the spectral theorem for finite dimensional Hubert spaces
that if p G D then also the parts p+ and p_ of the Jordan decomposition of p are
contained in D. Thus D satisfies (41) with λ = 1. A combination of these arguments
together with 5.3 and 5.4 gives the following corollary:

5.9. Corollary. Let ffl be a separable Hubert space, Ψ~ = 3~sa(3f) and St a pure
one point CP with D(W) = D(Z). Let J := Z - W and (X,Σ) a standard Borel
space. Then there is a one-to-one correspondence between the following classes:

(i) Refinements St of St on (X, Σ).

(ii) Decompositions E —* J(E) of J on {X, Σ).

The correspondence is given by (42) for E G Σ and ω G D+(W).

We finally want to give a few comments on how the above results are related to
the work of Davies on unbounded interaction rates. First, we presented a systematic
theory of unbounded IR's on general state spaces, while the models constructed
in [11] and [12] always used the trace class operators on Fock space. Second, the
IR in these models was bounded on the ^-particle subspaces. We emphasize that
Theorem 5.6 allows to take interaction rates that are unbounded on the ^-particle
subspaces even on Fock space. Finally, the general theory makes it possible to deal
with representations of the CCR-algebra that are different from the Fock represen-
tation. There the state space is the predual of the represented W*-algebra and the
IR on the n-particle subspaces (if there are some) can be unbounded.
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