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Abstract: In the last years several contributions have been done around the total
bandwidth of the spectrum for the Harper's operator. In particular an interesting
conjecture has been proposed by Thouless which gives also strong convincing ar-
guments for the proof in special cases. On the other hand, in the study of the Cantor
structure of the spectrum, B. Helffer and J. Sjόstrand have justified an heuristic semi-
classical approach proposed by M. Wilkinson. The aim of this article is to explain
how one can use the first step of this approach to give a rigorous semi-classical
proof of the Thouless formula in some of the simplest cases. We shall also indicate
how one can hope with more effort to prove rigorously recent results of Last and
Wilkinson on the same conjecture.

1. Introduction

The Harper's operator H^^Q is defined on 12(Z) as

(un)nez -+ (#α,;.,0w)/ι = ^ + i + W/ι-i) + λ cos(2πan + Θ)un . (1.1)

Here α and θ are real parameters satisfying:

O ^ α ^ l , 0 ^ 0 ^ 2π. (1.2)

The most interesting spectral properties of this operator appear when α is irrational.
In this case a Cantor structure for the spectrum is expected. As was observed by
D. Hofstadter who get a beautiful butterfly [16], we get a good intuition of the
problem by a careful analysis of the spectrum in the rational case. In this case:

α = p/q

and the spectrum σ(oc9λ,θ) of the Harper's operator depends effectively on θ and
one more interesting spectrum is the closed set:

Σ(a,λ)=ίleJ U σ(a,λ,θ) (1.3)
0e[0,2π]
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which appears to be the union of q bands which are essentially disjoint outside
the case when q is even. In this case the two central bands are touching at 0.
This property was first observed by Hofstadter [16] and rigorous proofs of these
properties were obtained for generic λ in [6] and finally for any λ in [22] (see also
the nice proof by [10]). For an historical presentation of the subject we refer to the
surveys of J. Bellissard [4,5]. A selected collection of zooms inside the butterfly is
presented in [11].

Following heuristic semi-classical ideas of M. Wilkinson [34], B. Helffer and
J. Sjδstrand have developed in [12,13,14] and with P. Kerdelhue [15] a machin-
ery which permits to prove in the case I = 1 and for special sequences of irra-
tionals α whose properties are explicitly described in terms of their expansion in
continuous fraction, the Cantor structure of the spectrum. What is sometimes over-
looked is that the first step in the proof has a very general character and is adapted
to large classes of /z-pseudodifferential operators. By /z-pseudodifferential operators
we mean operators which can be defined on the Schwartz space ^(IR) by the
formula:

(p(x,hDx)u)(x) = (2πhΓι f fexpί((x - y)ξ/h) p((x + y)/29ξ9h)u(y)dydξ ,

where p is a C°°-function on 1R2 which is in our context 2π-periodic in the x and
ξ variable ((x, ξ) € IR2). In this formalism, the set which was introduced in (1.3)
can be identified (for any α) as the spectrum of the /ί-pseudodifferential operator:

Ha,λ = Hλ(x,hDx) = λcos(hDx) + cosx , (1.4)

considered as a selfadjoint bounded operator on I2(1R), with h = 2πα, whose symbol
is the function (x, ξ) —> λ cos ξ + cosx.

As a byproduct of a careful semi-classical analysis and of an infinite sequence
of approximate renormalizations, the authors get the following theorem:

Theorem 1.1. There exists a constant C ^ 1 such that if α is an irrational ad-
mitting a decomposition in continuous fraction:

[ ] dej

with
qj^Q Y / € N , (1.5)

then the spectrum of H^χ=\ is a Cantor set with measure 0.

More recently, by quite different techniques, Y. Last get in [19,20] that, for
0 ^ λ ^ 1, the Lebesgue measure of the spectrum of H^χ is for a.e. oc equal to
2|1 — |A||. The case when λ = 1 appears as a very important case and in this case
Y. Last get (see Corollary 1.1 in [20]) that the spectrum is a zero measure Cantor
set (i.e. closed, nowhere dense set, with no isolated points) for a.e. α. More precisely
the theorem is the following:

Theorem 1.2. Ifoc is an irrational, for which there is a sequence of ratίonals pn/qn

obeying:

lim qz

n
->oo

α —
Pn

qn

(1.6)
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then for every λ, θ e IR:

| (7(M,0) |=2 |1- |A | | , (1.7)

where | | denotes Lebesgue measure.

We now concentrate our study on the case when λ = 1, where the measure of
the spectrum is proved in Theorem 1.2 to be 0. The proof of the theorem in this
case is based on a careful study of the rational case and in this case the basic
lemma is:

Lemma 1.3. If p and q are mutually prime {we then write p f\q — 1)

) | < ^ (1.8)

with e — exp 1.

A similar but weaker estimate of the lower bound was already obtained in [21].
This lemma is strongly related to a conjecture due to Thouless which says:

Conjecture 1.4.

lim q\Σ(plq,\)\ = \6Cca,ln, (1.9)

pΛq=l

where Ccm is the so-called Catalan's constant

which appears also in Statistical Mechanics {see for example [30]) and is approx-
imately equal to:

Ccat « 0.9159... .

This conjecture has been studied numerically and theoretically in [27,29,25,26]
(see also [31]1). Thouless (sometimes with collaborators) gives in particular semi-
classical arguments justifying the conjecture in the case p — 1 and in the case
p = 2; q odd. The proof is based on an analysis of the Green function but it is
not completely clear to us if the proof is totally rigorous in the analysis of the
remainders. Although complex WKB techniques are used in this approach, they are
quite different of the approach we present here and more in the spirit of the recent
approach by V. Buslaev and S. Fedotov [7,8 and 9].

The point of view of Y. Last and M. Wilkinson in [21] is more in the spirit
of earlier works by M. Wilkinson [32] or [34] and uses semiclassical analysis
in a microlocal spirit. We shall see later that all the spectrum is concentrated as
q —• oo near 0. The reason is that outside a fixed interval ] — ε, +ε[ the spectrum
is a union of bands which are exponentially small. This has been proved rigorously

We thank the referee for giving us this reference.
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(following the strategy of Wilkinson [32,34]) by B. Helffer and J. Sjostrand in [12]
who get in particular the following theorem:

Theorem 1.5. Let us assume λ = 1. Let εo > 0; there exists CQ > 0, s.t. if a is in
]0,1[ and admits the following expansion {finite or infinite) in continuous fraction:

1
α =

with qj e Z, \qι\ ^ Co, \qj\ ^ 1 then

Σ{OLΛ)C
N

where the Jj are closed disjoint intervals of length φ 0, with dJj c Sp(//). Jj+\ is
on the right of Jj and the distance dj between these two intervals is approximately:

Jo is of length 2SQ + Θ(\/q\) and centered at 0. The other intervals are of length
exp — Cj \q\\ with C7 ~ 1.

Here a ~ b means that a/b and b/a are majorίzed by a constant which depends
only on εo.

Finally N+ = —Λ̂_ ~ \q\ .

Consequently, for any ε0 > 0, the contribution in the total bandwidth which is
outside ] — εo,+εo[ is exponentially small. Moreover, the proof gives a renormal-
ization procedure. For yφO, the spectrum in each interval is given, after an affine
transformation, sending Jj on essentially [—2,2], by the spectrum of a suitable per-
turbation of the Harper's operator to which the preceding theorem can be again ap-
plied if I#21 = Co. This perturbed Harper's operator is now an /z'-pseudodifferential
operator with

W_ 1

2π "

In the rational case, the procedure stops after a finite number of steps. Note that
if ^ = —, we get h' — 0, and the convention is that a (h! = 0)-pseudodifferential

operator of symbol p is then simply the operator of multiplication by p on L^(IR2),

whose spectrum is simply the set {λ e IR s.t. 3(x,ξ) G R 2 with λ = p(x,ξ)}.
In particular this says that the contribution in the total width is exponentially

small outside ] — εo,εo[ Hence we can not avoid the study of the spectrum of the
Harper's operator near 0 which is much more difficult because 0 is a saddle point
of the symbol of the operator:

(x,ξ) -> cosx + cos£ .

This study was done at a heuristic level (and with some uncertainty) by Azbel [2]
and the mathematical proof was given by B. Helffer and J. Sjostrand in [14]. It
is consequently natural to think that the machinery which was introduced in this
paper can give a rigorous approach for the a priori easier problem consisting in
measuring the total bandwidth. This problem is easier, in the sense that it appears
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as a one step problem and we shall not need the infinite sequence of approximate
renormalizations used in [14] in order to prove the Cantor structure. Our main
goal will be consequently to see what gives this strategy and we shall prove that
it works at least in the two cases where reasonable mathematical arguments were
already given. We consequently rigorously prove:

(1.10)
Theorem

Theorem

1.6.

1.7.

lim (2

lim q \Σ(\/q, 1

T I
1

) l = ( . 6 /

2 Λ
+ D V

«)CC,,,.

(16/π)CCβ,

The second theorem will use also some techniques related to the semi-classical
study near a rational [13].

This article is organized as follows:
Section 2 recalls some results of [12,13 and 14]. Section 3 is devoted to the special
case when α = l/q. In Sect. 4 we shall treat the case when α = ^pr ~ ~~τ
last section is devoted to the discussion of possible extensions or open problems.

2. Semi-classical Analysis for Harper's Equation

We now state what we have to know from the general theory in order to analyze
our particular case and refer to [14]. No proof is recalled, but we collect all the
statements proved in [14], permitting us to start a rigorous proof for the asymptotic
behavior of the total bandwidth. We have already recalled Theorem 1.5 in this
direction which gave us the information that this behavior was essentially obtained
by restricting the study near 0 which corresponds to the saddle point of the symbol
(x,ζ) —> cosx + cos ξ. The main result is the following (and gives a rigorous version
of heuristic arguments due to Azbel [2]):

Theorem 2.1. There exists 8Q > 0, ε\ > 0 and ho such that, in the interval [—εo>£o]
and for 0 < h < ho, μ is in the spectrum of the Harper's operator if and only ifO
is in the spectrum of a vectorvalued h' -pseudodifferential operator Q(x,h'Dx,h,μr)
on Z2(IR;(C2) whose symbol is a 2 x 2 matrix depending on a parameter μf and
given by

Q(x9ξ) = Q0(x9ξ) + tf(exp - εx/h) (2.1)

with
/ b + a exp - iξ b -f a exp ix \

Q0(χ,ξ)=(- u _ A . (2.2)

V b + a exp — ix b -f a exp iξ J

The parameter h! is related to h by the relation

f = A m odZ. (2.3)

The parameter μ! is related to the spectral parameter μ by μ! = f(μ,h), where
f is the realization of a formal real valued symbol^ i-C. admits in [—2βo,2£o] the
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following expansion:

f(μ,h) ΞΞ /o(μ) + hfχ(μ) H , (2.4)

/o(O) = O; / J ( 0 ) = l . (2.5)

The parameters a and b are given by

»-<*>-wr ( ΐ - ' 7 M ' H ί ) + " s + ' s ί τ i ί ] (2£)

where Γ is the standard gamma function, g is a classical analytic symbol of order
^ 0 which can be assumed to be real valued.

Remark 2.2. The operator Q above is unfortunately not selfadjoint and it is quite
useful in order to use perturbation theory to come back to a selfadjoint theory. That
this is possible is of course not strange if we recall that our initial problem was
selfadjoint. The proof given in [14] keeps actually a "memory" of this property by
giving an explicit way of selfadjointization. More precisely, the proof gives also the
existence of a family of operators P\(x,hfDx,θ,h,μf) of the same type of Q such
that:

P?Q = Q*Pι (2.8)

and
Pι(x9ξ,θ) = Plfi(x9ξ,θ) + Θ(exp -εi/A)) (2.9)

with _f

( bf + c! exp — iξ b + a1 exp ix \
(2-10)

b + a' exp — ix b + ά' exp iξ )

with
bf = bexpiθ; a' = aexpiθ. (2.11)

Similarly, it is possible to define another family of operators Pi of the same type
such that:

QPt =PiQ* (2.12)

Let us now establish useful relations. We get for μ' £ 1R the following relations:

arg(δ) - arg(fl) = π/2 , (2.13)

ab = — άb — —i\a\ \b\,

u ( U J U V

| i | = exp + π ^ I e x p π ^ + exp - π ^ J , (2.14)

μ' ( μ' μ'\~ι/2

\a\ =exp-π—- expπ— + e x p - π — , (2.15)
In \ n n J

\a\ \b\ = \j(lcosh (πj)) , l«|2 - \b\2 = -tanh Γπ^) . (2.16)
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The determinant of the matrix QQ has the following form, as a function of a, b
satisfying the conditions (2.6), (2.7):

det Q0(x, ξ) = 2/ [sin(2 argb) + \a\ |Z>|(cos ξ + cosx)]. (2.17)

Similarly, the determinant of the matrix P\$ is given by

detPlt0(jc, ξ, θ) = 2ί [sin(2argb + 2Θ) + |α| |ft|(cos ξ + cosx)]. (2.18)

Let us now discuss more precisely from where the function / comes. It is important
to remark that the above theorem is not only proved for the Harper's equation, but
also for small perturbations of this operator. This point was crucial in the renor-
malization analysis (see [14]) or in the applications to the study of the Schrodinger
operator with magnetic field [12]. This is also important in the extensions which
will be sketched in the last section where we discussed the results of Last and
Wilkinson [21] using the rigorous techniques developed in [13]. The role of / will
be clear if we recall the following theorem (Theorem b.l. in [14]):

Theorem 2.3. Let P(x,hDx,h) be a formal classical analytic pseudodifferential op-
erator, of order 0, formally self adjoint, whose symbol is defined in a neighborhood
of (0,0). Let p be the principal symbol, and assume that p has a nondegenerate
saddle point at (0,0) with critical value 0. Then there is a real-valued analytic
symbol: μ —• f(μ,h) defined for μ in a neighborhood of 0, and a formal unitary
analytic Fourier integral operator, whose associated canonical transformation {in
the classical sense) is defined in a neighborhood of (0,0), and maps this point
onto itself, such that

U*f(P,h)U = X-{xhDx + hDxx). (2.19)

It is not crucial for the reader to understand (at the first reading) for this paper
what is the analytic machinery (which is only used in the proof of the theorems
we are referring to, but permits to work modulo exponentially small terms). It is
impossible to give more details here in this short presentation of some of the results
of [14], but let us just add the point that this last theorem was crucial in the precise
construction of WKB solutions near the saddle point.

More important for further generalizations are the following remarks coming
from the proof:

Remark 2.4. One can concretely find the first term /o of/. The function μ —> fo(μ)
is determined by the condition that the complex period T(μ) of the hamiltonian flow
HPo on the energy level po(x,ζ) = β becomes, by replacing p0 by fo(po) and near
the energy corresponding to the saddle point, independent of the energy and equal
to To = 2ίπ which is the complex period of the hamiltonian flow attached to the
model (x, ξ) —> x ξ. In the case when po(x, ζ) = cosx + cos ξ, we observe that the
Taylor expansion at the order 2 is given. For example the point (0, π) is given by
(-x2 + (ξ — π)2)/2 and this explains why we have condition (2.5) in the case of
the Harper's operator.

More precisely, as was indicated to us by S. Fedotov, we have in this case the
following formula:

/o(μ)= sigμ(μ)S(μ),
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where S(μ) is the tunneling parameter:

2π-a

if μ ^ 0, S(μ) = J cosh~ι(μ - cosx) dx ,
a

with μ = 1 -f cos a, 0 g α ^ π

4π-6

ifμ g 0, S(μ) = S(-μ) = / cosh"'(-μ + cosx)dx ,

with μ = — 1 + cos b, π S b ^ 2π .

The proof is classical (at least in the case of hamiltonian mechanics in the classical
region) and is based on the property (see e.g. [14] Appendix b):

T(μ)
f'oiμ) =

τQ

The asymptotic behavior of the total bandwidth depends actually only on /
through /0'(0)

Remark 2.5. The function g contains a global information on the area of domains
delimited by the energy surfaces near the critical one but this will not appear in
the main term of our asymptotics.

Remark 2.6. The new parameter hf which is in this context given by (2.3) appears
in the construction of two operators on L2(1R) τ and τ* commuting with the Harper's
operator and satisfying the following commutation relations:

τH = Hτ, τ*H = Hx* ,

ττ* = (exp-zA')τ*τ. (2.20)

In this particular case, we have actually:

(τu)(x) = u(x - 2π), (T*W)(JC) = exp 2^u(x), (2.21)

which explains (2.3).

We recall finally some properties (cf. [14] and (2.7), (2.8)) of Q which are easily
and directly verified for QQ\

Q(-ξ,x)=(O

ι

Q(-x,-ξ)=(°ι J ) β ( * > θ ( ? J ) (2-22)

Two particular cases are analyzed in the next sections. If
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then we get the special case
ti = 0

and Theorem 2.1 will reduce our study to the study of a family of 2 x 2-matrices.
This will be analyzed in Sect. 3. The second case corresponds to the assumption:

h l

a~2^~7TI'
which corresponds to:

tiβπ = 1/2 .

A Floquet theory will permit us to reduce again to the study of a family of
4 x 4-matrices. This will be presented in Sect. 4.

3. The Case α = IIq

Let us apply Theorem 2.1. Here h! — 0 and, according to our conventions, the
//-pseudodifferential operators have to be considered as multiplication operators de-
fined on L2{β}χς). So the theorem says in our particular case that there exists ε0 > 0
and ho such that, in the interval [—εo5εo] a n ( * for 0 < /ι < Λo, μ is in the spectrum
of the Harper's operator if and only if there exists (x,ζ) s.t. Q(x,ξ,h,μf) is not
injective. So we get finally the following transposition of Theorem 2.1:

Proposition 3.1. There exists ε0 > 0 and ho such that, in the interval [—εo,ε] and
for 0 < h < ho, μ is in the spectrum of the Harper's operator if and only if

there exists (x9ξ) s.tdetQ(x,ξ,h,μ') = 0 with μ' = f(μ,h) . (3.1)

Moreover we have

άet Q = det Qo + < (̂exp -ελ/h) (3.2)

with

detgo(*,£) = (//cosh(πju7Λ))[2cosh(πμ7Λ)sin(2argfe)4- cosζ + cosx] , (3.3)

and there exists P{(x,ξ,θ) e C°°(R2;M2((C)) s.t. PfQ is self adjoint for all θ and

detPi(jt,£) =(//cosh(π//7A))[2cosh(πiu7Λ)sin(2(argfe + 0))

+ cos ξ + cosx] + 0(exp -&\/h) (3.4)

for some &\ > 0.

Let us denote by dh the image by / of σ^. This is not defined outside [—εo,εo]
but we have seen that [—so,̂ o] is the interesting region where the spectrum is
concentrated as h —• 0. We consider first

|

where c > 0 is fixed sufficiently small such that

f~\[-c,+c]) C ] - εo9εo[, πc ^
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and ε2 > 0 will be chosen later arbitrarily small. We choose now

This implies the existence of Ci(ε2) > 0 such that, for μ! € 1(82, h) = [—c, — 82k] U
[+ε 2λ,+c],

0 . (3.5)

Let us first sketch an heuristic proof. (The correct proof will be given later.)
If we forget the remainder term in (3.1)—(3.2) we get the condition

cosh(πμ7ft)sin(2argZ>) e [-1,4-1] . (3.6)

In the interval 7(ε2,/z) the variation of argZ? is much larger in comparison with the

variation of 1/coshπy. We have indeed (see (5.13) in [14]):

\dμ, argZ>| = h-{ ln(l/(Λ + \μ'\)) + 0(1/Λ) (3.7)

and

(
h

In particular we observe that the quotient satisfies in the interval /,

fy argil μf ( 1/coshπ—

We compute then approximately the length of the spectrum contained in [μ'\h, μ'{K\
by writing that

\σh Π [μ"h,μ!ίH\\ arcsin(l/coshπ^)

for some μ'Q in the interval, and get after summation (using the Riemann approxi-
mation of the integral)

4A if . \
\dh\\εihcλ — — I arcsin(l/coshns)ds

12 >J
 K \ί )

Let us now transform this heuristic proof into a rigorous one. The first step is the
following lemma:
Lemma 3.2. For any ε2 > 0, there exists C2 > 0 such that

{//e/;|cosh(^)sin(2argZ>)| ^ 1 - C 2exp-^} C σh Πl

σΛ(Ί/c{/i /G/;|cosh(^)sin(2arg6)| ^ 1 + C 2 exp-^} . (3.8)

Proof. The second inclusion is an immediate consequence of (3.2) if we choose C2

large enough. Let us prove the first one and this is the point where the mysterious
procedure of selfadjointization appears. We observe that:

- f det(Pf Q) = fcosh(^) sin(2 arg b) + cosx + cos ξ + 0(exp - ffc
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where all the remainder terms in the right-hand side are now real. The term in
the second bracket is strictly positive for h small enough:

cosh ( — ] -fcosx + cosd +Θ ( e x p - ^ Λ Ξ> 2cosh(πε 2 )-2 > 0 . (3.9)
V h ) J V 2hJ

If Cι is chosen sufficiently large, then

det(Pf g)(0,0) > 0 and det(Pf β)(π,π) < 0 .

Hence there exists (x,ξ) such that det(PfQ)(x, ξ) = 0 and using (3.5), we finally
get

that is μ! G σ/,. The lemma is proved.

We can now write more precisely the argument which was sketched above. If
μ'{ and μ!{ satisfy

ε2h ^ μ'/λ < μ"h ^ c ,

then (3.7) and (3.8) imply the following inclusions:

Sh Π \β"h9μ%h] C U W ^ o ) , (3.10)
argfc(/ij)=o[§]

where /m a x(^o) is a n interval centered at μ'o and of length

1 \ / h
|/maχ(μό)| = 2arcsin

\ cosh(π//j)/ \ — m(/z + 1/̂ 21̂ ) ~ ^4,

where C4 is chosen sufficiently large. Similarly, we have:

U ImUμf>)Cσhn[μ'{h9μVh], (3.11)

where /min(μό) ^s a n interval centered at μf

Q and of length

1 \ / h
o)l = 2arcsin-

V cosh(πμ^)/ V ~ l n ( ^ + l^ίi*) + <

where C4 is chosen sufficiently large.
We have also the following estimate for the number v{[μ'{h,μ'iK]) of μ'o such

that arg*04) = 0 [f ] and μ̂  G [μf{h9μHh\:

\μ%\h) - C4) S v([μ\% μϋh]) ,

v([μ'{h,μϊh]) ^ π-\μf{ - μ'{)(- \n{h + \μ'{\h) + C4) . (3.12)

Let us first compute the contribution corresponding to σ^Π[M,c] with TV large.
Using (3.8),(3.11) and (3.12) and a decomposition by intervals [nh,(n-\- l)/z], we
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get the following majoration, for N ^ No with NQ large:

l\σhn[Nh,c]\£ Σ i I (
A

(3.13)

l\σhn[Nh,c]\£ Σ a r c s i n (
A n^π coshπn \(— ln(A(w + 2)) - C4)

x (-lnA(« + 1) + C4)

oo 1

W=N cosh πn

This last quantity tends to 0. We have consequently obtained that for any η > 0
there exists N\ and h\ such that:

-|<xΛ Π [Nxh,c]\ Sη, VA ^ Ai . (3.14)

We now consider the spectrum σ/, in the interval [ε2A,7VA] for fixed N. We
decompose this interval into M(h) intervals Uk(h) (& = 1, . . . ,M(A)) of length

A(ln ^ ) " ι / 2 With this choice of length for the interval £/*, we have (with
fixed):

1 / 2 (3.15)

and we observe that if we only count the number v'(Uk) of the μf

0 such that

o) = 0 [ | ] and /m i n C Uk, then we have:

v(Uk)~2 ^v'(

In particular, independently of k (but depending on TV), we have:

v(Uk)/v'(Uk) -> 1, as h -^ 0 . (3.16)

This last point is actually only useful for the minoration. Let us first consider
the majoration where we can divide simply the interval in equal intervals. We get:

i M(h) j 1

7|σAΠ[ε2A,iVΛ]| ^ £ δ ( Λ ) - a r c s i n — — — — — — A(n,h), (3.17)
h «ΞΓi π c o s h π ( ε 2 H- nδ(h))

where

A = ( ~ ln(A + (ε 2 + nδ(h))h) + C 4 )
( - ln(A + (ε2 + (/i + l)δ(A))A) - C4) '

We now observe that this last term tends to 1 as A tend to 0 uniformly with respect
to n satisfying 0 ^ n ^ M(A). We consequently obtain:

i M(h) 2 1

τ\δhn[ε2h,Nh]\ ύ ΣAτ
\δhn[ε2h,Nh]\ ύ Σ^)arcs in ( l + o ( l ) ) ,

A «=i π cosh π(ε2 + no(h))

and the right-hand side tends to | Jv arcsin(l/coshπ^)<it9 as h —> 0.

Modulo the considerations around (3.16), we proceed on the same way for the
minoration and finally we have proved:

Lemma 3.3.

\hHMΛ ^ 2 J a r c s i n ( i / c o s h π s ) d s . (3.18)
h π J
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Similarly

l < ? * n [ 7 ' - £ 2 / ? ] | - I 7°arcsin(l/coshπs)ώ . (3.19)

It remains now to come back to the μ variable. Using (2.5), we get the existence
of a constant C such that for any £3 s.t. 0 < £3 < c and for any 82 > 0:

|<ϊ*n[e 2A,e 3] |(l-C(λ + e 3)| ^ \Γ\σhn[c2h,ε3])\

\f~\Shn[-B2h,c3h])\ S Cε2h,

and

\f~ι(σhn[ε3,c])\ £ C(ε3)exp-(C(e3)/A),

with C(β3) > 0. Let us also recall that:

/-'(<)) = G{h)

and
μ' = \+(9(h + c) on [-c,

We then get by combining the different estimates:

— >h-+o — J arcsin(l/coshπ.si)ώ'. (3.20)
h π-oo

Let us compute the r.h.s. differently:

4 °
- / arcsin(l/coshπ5')ώ1

π-oc

4 °f4
= — f arcsin(2 exp πs/( 1 + exp 2πs)(π exp πs)~ιd exp πs

4 ]

- - τ/arcsin(2ί/(l +t2))dt/t
π 0π

0

8 !

= — JarctanίJί/ί

π2

We now take h = 2πα = 2π/^ and finally get:

^Ccal , (3.21)

which corresponds to the result of Thouless [29].
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4. The Case α = 2l(2q + 1)

As we have already observed we have to analyze the (π)-pseudodifferential operator
whose symbol is a very small perturbation of the 2 x 2 matrix valued function:

We follow the strategy of ([13]) which was already introduced by other authors
(see the survey of J. Bellissard [5] for references and also [32,24]...). We forget
for the moment the remainder. The study of a π-pseudodifferential operator with
2π periodic symbol in (x,ξ) is reduced to the study of the set described by the
eigenvalues of the 4 x 4 matrix:

bl + a exp —iξj x bl + aK exp ix \

&/ + αAΓ"~ι exp — ix bl -\- άJ exp /£ /
(4.1)

where

/ =
1 0
0 1

J =
1 0
0 - 1

and K =
0 1
1 0

We cannot avoid for the moment the explicit computation of the determinant but
let us first try to look at the problem in a more general context. We observe that
our matrices J and K satisfy the following relations:

J2 = /, K2 = /, JK = ~KJ . (4.2)

As in [13], we can more generally consider the two q x q matrices J and K attached
to - which satisfies the following relations:

J? = /, ^ = /, JK = ωKJ

with ω = exp ^ . We can take for example:

(4.3)

J =

1 0
0 ω 0

0 .

0 7

κ =

(0
1
0

^o

0
0
1

. 0

0 1

1\
0

0

o)

(4.4)

We consider an irreducible rational £ and consider the corresponding family

2q x 2^-matrix QQ£(x,ξ) associated to (J,K) by the following formula (which ex-

tends the formula (4.1)):

βo *(*,£) =
a exp -iξJ~p bl + aK exp ix X

-ι exp -ix bl + άJP exp iξ J
(4.5)

We are expecting that the determinant of this matrix has a very particular structure
as was observed in the case when q = 1. We follow here, in a particular case,
the study of symmetries realized in [14] for the so-called "type 2" operators. We
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first consider the <

following relation:

first consider the commutation of this matrix with f — { ) and observe the

ή / ( 4 6 )
Similarly we get also:

)4(χ,ξ) = Q0z(χ,ξ-^)*. (4.7)

As an immediate consequence (using the property that p and q are mutually prime),
we get that:

is 2π/q periodic with respect to JC and ζ. We note also that this determinant is a
trigonometric polynomial with respect to the two variables x and ξ. We have still
to consider other symmetries. We first observe by considering the transpose that:

which implies:
det βOf|(jc, ξ) = det β 0 £(-* , O (4.8)

As in [13], we introduce the finite Fourier transform Up which is the q x q unitary
matrix

(Up)jk — -—ωp(j~x^k~x\ for j = \,...,q; k = l,...,q ,

with the following properties:
r r * JPTJ if. jΎ*jfΊj T~P

Up J Up — A , Up J\Up — J .

As before for J and K, we extend Up into °U p = ( p ).

Considering tf/^QWp, we deduce also:

detQoz(x,ξ) = ( - l f d e t ρ 0 | ( ξ , x ) . (4.9)

Using the other relation we then get also:

(*,0 . (4.10)

It is also interesting to look a priori for the dependence on a and b. We observe
for example that:

| ( - * , - ξ ; α , 6 ) = (- l ) ? detρ o > | ( Λ , ί ; f l , i ) . (4.11)

We conclude from these arguments that:

det Q0(x, ξ) =iq[P0(a, a, b9 b) -f P\{a,a, b9 b) cos qx

+ Pι(a,a,b,b)cosqξ)]i (4.12)
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where PQ and Pi are homogeneous polynomials of a, b, a and b of degree 2q and
Po is real valued. This is hardly surprising if we come back to the Floquet the-
ory for the initial problem. The basic problem is of course to determine these
two polynomials. We have already computed the case when p = q = 1 and we
found:

It will be quite interesting to have a general formula for these polynomials. Let us
now compute in detail the case when p = 1; q — 2 which is the main object of
this section. A tedious computation gives:

or

det Q0(x9 0/2 = - (1 - tanh2 ( ^r~) ) [cos2x + cos 2ξ]

+ cos(4 arg b) — tanh ί — -

Another way to write the second term of the r.h.s is:

2<K {a4 + b4- 2a2b2) + 2\a\4 ~ 2\b\4 .

We observe now that we are essentially in the same situation as in the preceding
section. Modulo the control of the remainder term, we find:

/ ~ cc , f 1 1 1 / i 2 π μ ; λ Λ πμf

 /Λ ^
a G σu in cos(4argZ?) G — , - 1 — tanh + tanh . (4.13)

L 2 2j V h ) h
As in the preceding section we obtain:

\σh\ +Γ°°Γ / I 1 . 2
—— > J arccos I — - + -tanh π^ + tanh:

ft —oo L \ z z

-arccos ί - - - t a n h 2 ^ + tanh πs ) \ds . (4.14)

We set t = tanh πs and get:

¥ - 4. (4 15)

h π1

with
+ 1

I = J \ arccos | — - — z — - + t } — arccos
-i
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We now use the following formula:

351

arccos -
\l-t2)

+ t ) - arccos I -—-—- + 1

= / — d/du arccos ί u-

\-t2+ 1
= /

- 1

\-1) du

du.

2 1

With t' = t — - we can rewrite the term between the brackets as:

With a{u) = - 1 - i, b{u) = 1 — i , we then obtain:

+ 1

I=JduJ
it!

We now use the following change of variables tfl = fl ^ -f b ~a cos 0 with
θ G [0, π] and get:

+ 1 π dθdu

-1 0 9 | I (a{uγ+b{uγ
2\U\ 2

_ +1 p dgrfii +1 j5
~ J J I ~ J J

- 1 0 ΛI I Λ . l 2 n \ 2 - 1 O Λ

2\u\ [l + j[ - -u cosθj 2 si

dθdu

sin ( sin 0 sin (

sinh cot - I dθ .

M c o s t / \ αc7 Γ i _ , ι/ _ i ι/

i V = J I s l n h t a n Ί + s i n h c o t o

(9

dθ

But

and we get

•i-l θ t θ

sinh cot - = In cot - ,
2 4

/ = Γ In cot - .
n 4

A new change of variables s = tan (j gives finally:

I Λ Ads Λ J. arctan s1 ,
/ = I - Ins r = 4 / rfs .

0 l i~ ά 0 s

(4.17)
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Hence (comparing with (3.20)-(3.21))

\σh\ , ACCa,

for h = 2π - and consequently:

(4.18)

as q —» oo with q f\2 — 1. We have finally proved the theorem (modulo the control
of the effect of the exponentially small remainder term). But this last problem can
be treated as in the preceding section using the selfadjointization procedure.

5. Extensions, Open Problems and Conclusion

Our proof suggests generalizations.

(1) A weaker result than Thouless conjecture will be to prove simply the ex-

istence of the limit without computing it. This seems possible to obtain for the

sequence α = —^-γ. For r — 3, we get the following condition (forgetting exponen-

tially small errors) which seems more difficult to analyze than in the cases r — 2
and r = oo:

μGSp//iffsin(6y)-3|α|4sin(2y + 2π/3)-3 |Z? | 4 s in(27-2π/3)G[-2,2] |^ | 3 ,(5.1)

with γ = argfl + π/3 and μ' = f(μ,h). This formula looks relatively simple but it
seems difficult to do the analog of the computations performed in the preceding
sections.

(2) Following [17] and [18], it is also possible to approach in the same spirit
the case of the hexagonal Harper's equation.

(3) Another point is that Y. Last and M. Wilkinson give in [21] heuristic argu-
ments in order to deduce from the Thouless conjecture a new conjecture concerning
any rational with large denominator. A little more precisely, the statement is the
following vague

Conjecture 5.1. If pn/qn is irreducible and tends (sufficiently rapidly?) to a rational
po/qo with qn —> oo, then

lim qn\Σ(pnlqm\)\ = \6CCat/π .
n-*oo

We note here that all these conjectures have been tested numerically in [25,26 or
21]. Let us for example try to prove the following "theorem" due to [21]:

Theorem 5.2. Let us assume that

^ - = [ ϊ i , ί 2 , . . . , ^ ] = ^ , (5-2)
2π q(s)

then
l im ? ( j) |Σ(A,l) | = (16/π)CC β /. (5.3)

The proof of this "theorem" which is given in [21] is only heuristic. We shall now
explain how this strategy can be made more rigorous (but a complete rigorous proof
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will be probably quite long and has not been completely achieved and this is why
we write "Theorem" instead of Theorem) using [14] and [13]. The starting point is
to proceed using the semi-classical analysis near a rational α ^ which is here:

We recall also that Bezout's Theorem gives the existence of two integers l(p) and
n(p) with l(p) e] - q,0] such that:

p l(p) -h q n(p) = —1 . (5.4)

With this choice we have also

p{s) = sp - n(p), q(s) = sq + l(p) . (5.5)

Let us also introduce

a ^ - " - - (5 6 )

In this case it is proved by Helffer-Sjόstrand in [13], justifying previous mathemat-
ically non-rigorous works of Wilkinson [32,33] and Sokoloff [24], that the study
of the spectrum is reduced to the study of the spectrum of a (5-ρseudodifferential
system whose symbol is given by jMPiq(x9ξ)9 where

MPtq(x, ξ) = (K exp ix + K~x exp - ix + Jp exp iξ + J~p exp - iξ), (5.7)

with p — p{ρo)9 q — q(oo) and where J and K are introduced in (4.3). Let us also
recall that:

det(AfM(jt, ξ)-E) = fM(E) + 2(-\)q(cosqx + cosqξ). (5.8)

The following identity of [21] will be crucial in the proof:

f i = i
vtί \f'P,q(Ev)\ q '

where Ev are the distinct zero's of the polynomial fPiq.
We use now the rigorous reduction of the problem near each band. Everything

is concentrated at the middle of each band, that is near the points Ev. Let t —» Ev(t)
the branch of solution of the equation:

f (F (t}} — (— \ΛqJrXt F (OΛ — F

Then the decoupling procedure introduced in [13] says that we have to study a
(5-pseudodifΐerential operator whose principal symbol is:

(x, ξ) -> -£v(2(cos qx + cos qξ))

with
q = q(oo) .

The study of the operator near the energy corresponding to the saddle point can
probably be reduced to microlocal considerations as in [14] but this point is not
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discussed in [13]. We just sketch here the discussion which explains our "proba-
bly." In order to study microlocally the (5-pseudodifferential operator we perform a
symplectic dilation and arrive at a Λ-pseudodifferential operator with h = q2δ and
with the new principal symbol J[isv(2cosΛ: + 2cos£). For h small enough we can

apply the discussion of [13]. The function t —> f(t,h) introduced in order to get a
fixed period equal to 2π is no more satisfying (2.5) /o(O) = 0; /ό(0) = 1 but

/„(<>) = £,, fΌ(O) = \f'M{Ev)\

and this just changes the measure asymptotically by a fixed factor \f'p<q(.Ev)\~x. Let

us now give the formula for h:

ί ( s ) = 2^ = q 2 { φ ) ~ α ( o o ) ) = ^ + 7 • ( 5 1 0 )

Here we have used the part of the proof which is mentioned in Remark 2.4. The
second point corresponds to Remark 2.6. h! has to be replaced by h which is found
by determination of the two operators 2Γ and ^ * playing in this new context the
role of τ and τ*. These operators 2Γ and ?Γ* are introduced in the same context in
[13] exploiting of course previous ideas of physicists (see for example [23,24,32,33
and 3]) and defined by:

/, (5.11)

where

= u(x - 2π/q)9 (τ* )u{x) = (exp—) u(x) . (5.12)
T V q )

We observe, using (4.3) and (4.6), that these operators commute with Mp,q(x,δDx)
and satisfy the relation (to compare with 2.20)

= exp - ih^F , (5.13)

with

2π qzΰ q

We can then reduce (modulo some technical details that we have not completely
verified) the study of M(x, δDx) (here we come back to a global renormalization
procedure) near the energy Ev to the study of the /z-pseudodifferential operator Q
whose symbol was introduced in Theorem 2.1 with a different g and with a new
/ defined above. But for our particular choice of h we get h = 0 and we are
consequently in the case of Sect. 2.

We note here that the second term — - ^ in the definition of h is specific of the
case of systems. This is also related to the non-triviality of the fiber bundle above
the torus whose fiber is

M ( x , ξ) — Ev(2 cos qx + 2-cos qξ)),
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(see for example [15] for a discussion in the same spirit or [5] (and the bibliography)
for other references in connection with the study of the quantum Hall effect). The
statement we need to give a complete mathematical proof is unfortunately not estab-
lished in [13] (Proposition 5.4.1) which gives only the equivalent of Theorem 1.5
but does not analyze the contribution of the middle. We consequently have to imple-
ment the results of [14] inside the machinery of [13]. According to our three remarks
in Sect. 2 and to what we said above, this seems reasonable but it would be prob-
ably rather long to write down all the mathematical details (mainly the remainder
estimates). If Sv(s) is the total bandwidth for this effective hamiltonian we finally get

lim h(s)Sv(s)=lf, \F

Here we have observed that
lim h(s)/s = 1 .

Using now (5.5) which implies

lim q(s)/s = q(oo) = q ,
s—->oo

we get:

lim q(s)Sv(s) = q l6Ccat . (5.14)
s-*°° \fp,q(

Ev)\ π

Summing the different contributions of each band and using (5.9), we get the
"Theorem" 5.2. Hence the strategy described by Y. Last and M. Wilkinson seems
to us to lead to a correct mathematical proof. As observed by these authors this
gives a direct connection between the proof of the conjecture near 0 and the proof
of the conjecture near a rational number.
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Note added in proof. We recently discover that due to a material error in the edition the paging in

[15] is wrong. The good order for reading this paper is ...28-29-37-36-35-34-33-32-31-30-38-39...
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