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Abstract: We study a class of subdivision invariant lattice models based on
the gauge group Zp, with particular emphasis on the four dimensional example.
This model is based upon the assignment of field variables to both the 1- and
2-dimensional simplices of the simplicial complex. The property of subdivision
invariance is achieved when the coupling parameter is quantized and the field con-
figurations are restricted to satisfy a type of mod-;? flatness condition. By explicit
computation of the partition function for the manifold RP3 x S1, we establish that
the theory has a quantum Hubert space which differs from the classical one.

1. Introduction

A series of Zp lattice models was introduced in [1] which had the very special
property of being subdivision invariant. This means that the partition function is
insensitive to successively finer triangulations of the underlying simplicial complex.
One should regard this property as the discrete analog of a continuum quantum
field theory being metric independent. The formulation of these models involved
the assignment of field variables to simplices of various dimensions. In three di-
mensions, only link based gauge fields are possible and that theory reduced to the
abelian Dijkgraaf-Witten model [2]. A new four dimensional model was also intro-
duced which involved fields associated to both 1- and 2-dimensional simplices of
the simplicial complex.

A crucial element in securing the property of subdivision invariance was to
restrict the allowed field configurations to those satisfying a certain "flatness" con-
dition; in addition, a quantization of the coupling parameter was also necessary.
Solutions to the flatness conditions correspond to simplicial cohomology classes of
the underlying complex K. The partition function is a sum over these classes of
a Boltzmann weight which captures a certain kind of "intersection" of these field
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configurations. In our four dimensional model, this intersection is between Hl(K,Zp)
and H2(K,ZP\

Our aim here is to develop further the properties of this theory, and specifically
to establish "non-triviality" in four dimensions. By this we mean that we have
a topological field theory whose quantum Hubert space differs from the classical
one; it is simply a statement about the dependence of the theory on the coupling
parameter in the Boltzmann weight. This can be contrasted with the Dijkgraaf-Witten
model with gauge group Zp, where there is no distinction between the classical and
quantum Hubert spaces. Recall that a topological field theory in d -f 1 dimensions
associates a Hubert space to each closed J-manifold. The d + 1 dimensional theory
then governs the topology changing amplitudes between d-manifolds which appear
on the boundary. In [2], such a model was constructed in three dimensions and
there the dimensions of the quantum Hubert spaces for various bounding Riemann
surfaces were related to conformal field theory. The novelty in our models is that
one can study examples in four and higher dimensions as well. These models should
also prove useful in the general classification programme of topological field theory.

After reviewing some general properties, we consider in detail the evaluation
of the partition function on the manifold RP3 x S1 which computes the dimen-
sion of the Hubert space associated to RP3. This can then be compared with the
simple example of S3 x Sl. We relate our pedestrian formulation of these theo-
ries with the Bockstein operator, and finally we present some of the properties
associated to 4-manifolds with boundary, including the behaviour under connected
sum.

2. General Formalism

A lattice model is based on a simplicial complex which combinatorially encodes
the topological structure of some manifold. Let us recall some of the essential
ingredients that are required in such a formulation; we refer the reader to [3,4,5]
for a more complete account.

Let V — {vt} denote a finite set of NQ points which we will refer to as the
vertices of a simplicial complex. An ordered A -simplex is an array of k + 1 distinct
vertices which we denote by,

[ v Q 9 . . . , v k ] . ( 1 )

It will usually be convenient to use simply the indices themselves to label a given
vertex when no confusion will arise, so the above simplex is denoted more eco-
nomically by [0, ...,&]. Pictorially, a ^-simplex should be regarded as a point, line
segment, triangle, or tetrahedron for k equals zero through three respectively. A
simplex which is spanned by any subset of the vertices is called a face of the
original simplex. An orientation of a simplex is a choice of ordering of its ver-
tices, where we identify orderings that differ by an even permutation, but for the
models described here we will require an ordering of all vertices. One then checks
that the invariant we compute is actually independent of the choice made in vertex
ordering.

The boundary operator 8 on the ordered simplex σ = [ι;0,. - , v^] is defined by,
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where the "hat" indicates a vertex which has been omitted. It is easy to show that
the composition of boundary operators is zero; d2 — 0.

We model a closed ^-dimensional manifold as a collection K — {σt} of n-
simplices constructed from the set of vertices F, subject to a few technical condi-
tions. Most importantly, every (n — 1 )-face of any given ^-simplex appears as an
(n - 1 )-face of precisely two different ft-simplices in the collection K. One thinks
of the w-simplices then as glued together along (n — 1 )-faces. In order to ensure that
the simplίcial complex represents a manifold, we require the "link" of each vertex
to be a combinatorial (n — 1 )-dimensional sphere. We refer the reader to [3,5] for
a more complete discussion of this condition.

The dynamical variables in the theories we construct will be objects which
assign an element in the cyclic group Zp = Z/ pZ, which we represent as the set of
integers,

{0,. . . , / > - ! } , (3)

to ordered simplices of some specified dimension. We call these dynamical variables
A -colours with coefficients in Zp, and denote the evaluation of some ^-colour B^
on the ordered ^-simplex [0, , k] by

<£ ( AΛ[0,...,£]}=£ 0...*eZp. (4)

The superscript (k) will usually be omitted when its value is clear from context. It
is important to note that we are assigning a Zp element in a way which depends

on the ordering of vertices in the simplex; we do not have the rule BQl = —B\Q,
for example. Instead, we shall assume that,

B\1

0

} = -B(

0\
} mod p, (5)

and similarly extend this to a /r-colour for odd permutations of the vertices. The
case closest to conventional lattice gauge theory is where a 1 -colour variable is
assigned to every 1 -simplex in the complex.

The coboundary operator δ acts on the dynamical variables as follows. Given
a (k - 1 )-colour, an application of the coboundary operator produces an integer in
Z, when evaluated on an ordered ^-simplex, namely

— B\21...k — BQ2l...k + #013 £ — (6)

We must emphasize that the above sum of integers is not taken with modular p
arithmetic; it is simply an element in Z. In cases where we will need to take
some combination mod-/?, we will put those terms between square brackets, so for
example,

[a + b] =a + b mod p. (7)

There is also a cup product operation on colours which takes a ^-colour
and a /-colour C(/) and gives an integer in Z when evaluated on a (k -f /)-ordered
simplex:

9 [ Q 9 . . . , k + l])=Bo...k Ck...k+ι. (8)

Note once again that this product is in Z and the value is not taken mod- p.
Let us now put these ingredients together and define our theories. First, we

must be given some oriented simplicial complex K which we take to represent a
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manifold of dimension n. One then has some collection of fl-simplices defined up
to orientation. Take the vertex set of this complex and give it an ordering. This is
done arbitrarily and we will have to show that our construction is independent of
this choice, see for example [2,6,7]. Now we can write down an ordered collection
of the ft-simplices; each of the simplices is written in ascending order and a sign
in front of that simplex indicates whether that ordering is positively or negatively
oriented with respect to the orientation of the complex K. Let us denote this ordered
set of ft-simplices by Kn,

K" = Σw > (9)
i

where the index i runs over the ordered «-simplices σ/ and εt is a sign which
indicates the orientation. We will assign a Boltzmann weight W[Kn] to Kn by
taking a product of factors, one for every ^-simplex,

W[Kn] = YlW[σiY>. (10)
i

Each of the individual factors is a nonzero complex number and will be some
function of the colours. The details of which colours we use and how the
function is defined will depend on the particular model. Finally, the partition func-
tion, which we will require to be a combinatorial invariant, is defined to be a
quantity which is proportional to the sum of the Boltzmann weights over all
colourings,

colours

Here |G| is the order of the gauge group and f ( N ) is a function of the num-
ber of simplices of various dimensions. This function will be fixed for any
given theory by scaling considerations. In the four dimensional model to be dis-
cussed next, f(N)=N\, where N\ is the number of 1 -simplices in the simpli-
cial complex. In the three dimensional Dijkgraaf-Witten model (based on a sin-
gle 1 -colour field), as formulated in [1], it is equal to the number of vertices
NQ.

3. State Sum Model in Four Dimensions

Let us now turn our attention to the four dimensional model of interest. This model
is based upon the assignment of field variables to both the 1- and 2- dimensional
simplices of the simplicial complex. The Boltzmann weight of an ordered 4-simplex
[0,1,2,3,4] is defined by:

W[[0, 1, 2, 3, 4]] = Qxp{β(B(2] U δA(l\[Q, 1, 2, 3, 4])}

Λ24)} , (12)

where #(2) and ^4 ( 1 ) are 2- and 1 -colour fields, respectively. Here, β is a complex
number which is as yet unrestricted; we shall also find it convenient to use the scale
factor s — exp[j8]. The first item on the agenda is to demonstrate that the Boltzmann
weight defines a theory which is subdivision invariant. As we shall see, this require-
ment will enforce a quantization of the coupling parameter, and lead to a restriction
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on the allowed colour configurations. In order to establish the property of subdivi-
sion invariance, it is sufficient to show that the Boltzmann weight is invariant under
a set of moves known as the Alexander moves [8]. Equivalently, for the case of
closed manifolds, we can establish invariance by examining the behaviour under a set
of (&, /) moves [9], which we now recall.

The (k, /) Moves:

In the four dimensional case of interest here, we have five (&, /) moves, with
k — 1, ,5, and k -f / = 6. It suffices to consider the first three cases; the (4, 2)
and (5, 1) moves are inverse to the (2,4) and (1,5) moves, respectively.

The (1,5) move:

This is described by adding a new vertex x to the centre of the 4-simplex
[0,1,2,3,4], and linking it to the other 5 vertices. The original 4-simplex is then
replaced by an assembly of five 4-simplices, written symbolically as:

[0, 1, 2, 3, 4] -> [jc, 1, 2, 3, 4] - [jt, 0, 2, 3, 4] + [jc, 0, 1, 3, 4]

-[x, 0, 1,2, 4] + [x, 0, 1,2,3]. (13)

This move is also known as an Alexander move of type 4. Note also that we declare
the new vertex x to be the first in the total ordering of all vertices.

The (2,4) move:

In this case, two 4-simplices which share a common 3-simplex [0,1,2,3] are
replaced by four 4-simplices sharing a common 1 -simplex [x, y]:

[x, 0, 1, 2, 3] - [y, 0, 1, 2, 3] ->

[x, y, 1, 2, 3] - [x, y, 0, 2, 3] + [x, y, 0, 1, 3] - [*, y, 0, 1, 2] . (14)

Again, we place the new vertices x, y at the beginning of the vertex list.
The (3,3) move:

[y, z9 0, 1, 2] - [x, z, 0, 1, 2] + [x, y, 0, 1, 2] ->

[x, j, z, 1, 2] - [x, y, z, 0, 2] + [x, y, z, 0, 1] . (15)

We note that the 2-simplex [0, 1,2] is common to the left-hand side, with [ c, y, z]
being common to the right.

For the case of the (1,5) move, one finds that the Boltzmann weights before
and after subdivision are related by:

0, 1, 2, 3, 4]]s~{δBuδA^^ U2'3'4]) = W[[x, 1, 2, 3, 4]]

W[[x, 0, 2, 3, 4]]-1 W[[x, 0, 1, 3, 4]]W[[x, 0, 1, 2, 4]]~] W[[x, 0, 1, 2, 3]] . (16)

It is immediately evident that the Boltzmann weight is not generally invariant under
this move, due to the presence of the added "insertion" on the left-hand side of
(16). Our task is therefore to trivialize this unwanted insertion factor, and this
can indeed be achieved by imposing a restriction on the sum over colourings and
on the parameter β. Subdivision invariance of this four dimensional theory is now
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guaranteed by imposing quantization of the coupling sp = 1, as well as a restriction
of the colourings to those satisfying the conditions

[δB(2}] = [δA(l}] = 0 . (17)

We shall refer to these restrictions as "flatness" conditions. For example, on the
2-simplex [0, 1,2], we have the restriction on the 1 -colour field

[δA]0ί2=[Aί2-A02+A0ί] = 0. (18)

As a reminder, we note that this particular equation can also be written as

[ Λ o ι + Λ i 2 ] = 4 ) 2 . (19)

On the 3-simplex [0, 1,2,3], the restriction on the 2-colour takes the form:

[δβ]θ!23 = [B\23 ~ #023 + #013 ~ #012] = 0 . (20)

With these restrictions, the product δB U δA is clearly a multiple of p2 and the
above insertion becomes unity. The resulting identity involving the six Boltzmann
weight factors shall be referred to as the 6W identity. It is worth pointing out that
invariance is achieved here without the necessity of summing over the additional
configurations attached to the vertex x.

It requires little extra work to complete the demonstration of subdivision invari-
ance. One first notes that the remaining (k, /) moves also involve six Boltzmann
weight factors, and it is easy to see that the 6W identity is also a statement of
invariance under the (2,4) and (3,3) moves.

The subdivision invariant Boltzmann weight for the 4-simplex [0,1,2,3,4] is
given by:

W[[0, 1, 2, 3, 4]] - e x p - - 5 o i 2 G 4 2 3 +^34 - [^23 + Λ34]) , (21)

with k G {0, !,•••,/?- 1}.
At this point, we can reveal that each of the colour fields enjoys a local gauge

invariance. The gauge transformation of the A field defined on the ordered 1 -simplex
[0, 1] is defined by:

A'm = [A- δω]o} = [AQI - ω\ + ω0] , (22)

where ω is a 0-colour field defined on the vertices of the complex. For the 2-colour
field B defined on the ordered 2-simplex [0, 1,2], we have a gauge transformation
given by:

(23)

where λ is a 1 -colour defined on 1-simplices. Our task now is to show that the
Boltzmann weight for the case of a closed simplicial complex is invariant with
respect to independent gauge transformations of the A and B fields. As we shall
see, invariance of the theory under the above transformations is not manifest, but
requires both the quantization of the coupling parameter, together with the restriction
on the allowed field configurations.

Under the transformation of B, one finds that

B'uδA _ BUδA -δλUδA _ BUδA -δ(λUδA) (24}
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where the first equality uses the fact that δA is an integer multiple of p due to the
flatness constraint, and that s is a p2-root of unity. Hence, the Boltzmann weight is
invariant up to a total boundary term and the product of all these cancels for a closed
oriented complex. To demonstrate invariance under the A field transformation, one
first notes the simple identity

sB\JδA _ s-δB\JAsδ(B\JA)

Invariance then follows immediately by the above argument.
As discussed in the previous section, the Boltzmann weight is initially defined

for a specific ordering of the vertex set. We recall here a simple argument presented
in [10] which can be used to verify that the value of the partition function is
independent of this choice.

Let V = {tfoj j ^ / V o - i } be the vertex set of the complex, / the index set 7 =
{0,... ,Λ/o — 1}, and define a vertex ordering to be a map / : V —> /. Clearly, if f
is a different vertex ordering, then the composition /' o /-1 is a permutation on the
set /. Furthermore, to each permutation there is a corresponding vertex ordering.
Since any permutation of / can be decomposed as a product of transpositions of
consecutive numbers, it suffices to show that the Boltzmann weight is invariant
when two consecutive values of the ordering / are permuted. Our task is therefore
to show that the Boltzmann weights defined with an ordering /, and f — π o /,
coincide. Here, the permutation π is defined by π(y) = j + l,π(y -f 1) = j for some

7, and π(z) = / if ί=t={/J + *}•
If j and j -f 1 label vertices which do not bound a 1-simplex, then the Boltzmann

weight is clearly invariant. This follows because j and j + 1 are simply dummy
variables which can be freely exchanged, without affecting the orientation of any
individual 4-simplex in the complex.

In order to establish invariance when the vertices labelled j and j -f 1 bound a 1 -
simplex, we recall the definition of an Alexander move of type 1. Given an ordered
4-simplex [VQ, v\, V2, #3, #4], we introduce an additional vertex x at the centre of
the 1-simplex [u0, v\], giving rise to the move

[>0, V } , V2, l>3, V4] -> [X, V ] , V2, l>3, IJ4] - [X, VQ, V2, U3, V4] . (26)

Since we have shown that the Boltzmann weight is invariant under the (k, /) moves,
it is equivalently invariant under all Alexander moves. Thus we are free to perform
an Alexander move of type 1 on the 1-simplex with vertices labelled by j and
y + 1 . This has the effect that these vertices no longer bound a 1-simplex, and by
the above argument j and j + 1 can then be interchanged leaving the Boltzmann
weight invariant. In order to recover the original complex with the permuted vertex
ordering, one simply performs the inverse Alexander move of type 1.

We have already shown that the Boltzmann weight is invariant under all the
(£,/) subdivision moves. However, recall that to achieve subdivision invariance,
we are required to restrict the allowed field configurations to those satisfying the
appropriate flatness conditions. This is effected in the state sum through the insertion
of a set of delta functions which implement the required restrictions. It remains to
check the behaviour of these delta functions under the (k, /) moves. As we shall
see, the true subdivision invariant partition function is given by including a certain
scaling factor, as discussed in relation to Eq. (11). This takes into account the
redundancy in the assembly of delta functions which are present under subdivision.
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In order to determine the correct scaling factor, we need to examine the be-
haviour of both the A and B delta functions with respect to the (&, /) moves. If we
denote by ΔNi the increase in the number of /-simplices due to a (kj) move, then
it is straightforward to check that under the (1,5) move we have:

AN} = 5 , AN2 = 10 ,

AN4 = 4 . (27)

The changes under the (2, 4) move are given by

AN3=59 AN4=2, (28)

and of course under the (3,3) move we have ΔNt — 0, for all i.
Let us now consider the behaviour of the B delta functions under subdivision.

We will first collect some formulas and then put the results together to determine the
form of the scaling factor f(N) referred to in Eq. (11). If we denote the additional
ten B fields present after a (1,5) move by:

then one readily finds that summation over these fields yields the result

7τLΣ*([^]*oi2)<5([<^
\G\ i

*uι}δ([δB]xl24)δ([δB]M4)δ([δB]X2i4)

3)W*]θl24M^^ - (30)

Here, the assembly of delta functions on the right- and left-hand sides above repre-
sent the situation before and after subdivision. We specify that the modulo-/; delta
function is defined by

(31)
0 otherwise .

For the case of the (2,4) move, one finds that summation over the additional
four B fields

I — {Bχyΰι Bχy\, Bxy2, Bxyι} , (32)

produces the result:

xy0} )δ([δB]xyί2)δ([δB]xyl3 )

xy23 )δ([δB]xϋl2 )δ([δB]x<m )δ([δB]x02} )δ([δB]xU3)

δ([δB]y(n2)δ([δB]yθn)δ([δB]y02ι)δ([δB]y[2ι)

= δ([δB]xQl2)δ([δB]x0[3)δ([δB]x02,)δ([δB]xl2ί)δ([δB]y0ί2)

(33)



State Sum Models and Simplicial Cohomology 143

Turning now to the delta function insertions for the A field, we proceed in a
similar manner. The additional A fields present after a (1,5) move are:

I = [AM, Axί, Ax2, AX3, Ax4} . (34)

One verifies that the following relation holds:

^Σδ([δA]xOI)δ([δA]x02)δ([δA]x03)δ([δA]x04)δ((δA]xl2)
l^l i

δ([δA]xl3)δ([δA]M)δ([δA]x23)δ([δA]x24)δ([δA]rt4)

δ([δA]0n)δ([δA]0u)δ([δA]0]4)δ((δA]023)δ([δA]024)

= δ([δA]0]2)δ([δA]m)δ([δA]0\4)δ([δA]023)δ([δA]024)

δ([δA]aM)δ([δA]i23)δ([SA]lu)δ([δA]ι34)δ([δA]234) . (35)

Finally, we treat the (2,4) move for the A field. There is a single additional
A field / = {Axγ} which is present after subdivision. Summation over this field
produces the result:

δ([δA]0]3)δ([δA]023)δ([δA]n3)δ([δA]x0])δ([δA]x02)

δ([δA]xm)δ([δA]xn)δ([δA]xl3)δ((δA]x2ι)δ([δA]y0ί)

δ([δA]y02)δ([δA]ym)δ([δA]yl2)δ([δA]ylί)δ([δA]y23)

= δ([δA]0}2)δ([δA]o]3)δ([δA]a23)δ([δA]λ23)δ([δAl!oι)

δ([δA]x02)δ([δA]x0ι)δ([δA]xl2)δ([δA]M)δ([δA]x2ί)

δ([δA]y23). (36)

We can now establish the correctly scaled subdivision invariant partition function
by combining the previous results. Under the (1,5) move, we see that a factor |G|5

must be accounted for in the combined A and B sectors, and a factor of \G\l under
the (2,4) move. But this is precisely how the number of 1-simplices changes under
these moves. If the partition function of (1 1) is chosen to have f(N) = N\, then it
defines a subdivision invariant quantity. Specifically, we have

(37)

where we denote the set of allowed colours satisfying the flatness conditions by
flat. Clearly, at the trivial s — 1 root of unity (k = 0 in Eq. (21)), the value of the
partition function simply counts the number of solutions to the flatness conditions.
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Our main goal is in achieving interesting behaviour at the non-trivial roots of unity
where different phase factors can occur.

4. Evaluation of the Partition Function

The models described in the preceding sections require that a space be pre-
sented as a simplicial complex for their formulation. It is clear that one can
only hope for a non-trivial partition function - one in which the phases (Boltz-
mann weights) are not all unity-when the field configurations we sum over are
sufficiently interesting. This means that we need solutions to the flatness equa-
tions (17) which would not be solutions in the "strong sense" if the mod-/? brack-
ets had been removed. Perhaps the simplest example in four dimensions is the
space &P3 x S1, and we will give here a rather detailed exposition of its simplicial
description.

Let us begin by presenting an economical simplicial complex for the manifold
RP^1. A complex with a minimal number of 11 vertices has been given in [11], and
we label its vertices by elements in the set {0, l,...,9,α}. The complex is fully
determined by specifying the 3-simplices; these are 40 in number and are given
explicitly by,

+ [0,2,9,*] + [0,2,3,9] - [0,2,3,7] - [0,2,7,*] + [0,5,7,*]

- [0,4,5,7] + [0,1,4,5] + [0,1,3,4] - [0,1,3,9] + [0,1,6,9]

-f- [0,1,5,6] - [0,5,6, a] - [0,6,9, a] + [4,6,9, a] + [4,6,7,9]

-[4,5,7,9] + [5,7,8,9]-[5,7,8,Λ] + [l,7,8,fl]-[l,7,8,9]

- [1,6,7,9] + [1,2,6,7] + [1,2,5,6] + [1,2,4,5] - [1,2,4,*]

+ [1,3,4,*]-[1,3,8,*] + [1,3,8,9] + [3,5,8,9] -[2,3,5,9]

+ [2,4,5,9] -f [2,4,9, a] - [3,5,8, a] + [3,5,6, a] - [3,4,6, a]

+ [3,4,6,7]+ [2,3,6,7]+ [2,3,5,6]+ [1,2,7,*]-[0,3,4,7], (38)

where the signs denote the relative orientations of each simplex. Of course, the
lower dimensional simplίces are given by all those which appear as subsimplices in
the above list. This complex contains 51 1-simplices and 80 2-simplices in addition
to the 11 vertices and 40 3-simplices already tabulated. The Euler number is zero
as required for a closed 3-manifold. One also easily checks that the boundary of the
above complex vanishes and that these 3-simplices are glued together along paired
2-simplices.

Constructing the complex for RP3 x Sl is straightforward. We begin by imag-
ining the above complex of 40 3-simplices displayed horizontally. To each of those
we add a new vertex and construct a vertical tower beneath which contains a total
stack of 12 4-simplices; this is the S{ direction which gets glued to the top along
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a common 3-simplex. So, for example, the tower beneath +[0,1,3,4] is given ex-
plicitly by,

+ [0,1,3,4,0']

-[1,3,4,0',!']

-[4,0',1',3',4'j

+ [0', l',3',4',0"]

-Π',3',4',0",!"]

-[Γ, 3", 4", 0,1]

+ [3", 4", 0,1,3]

-[4", 0,1, 3, 4]. (39)

One sees that for each vertex x in the original complex for RP3, two new vertices
x' and x" are required in this presentation of RP3 x S] . The total vertex set now is
then,

{0,...,fl,OV..,fl',0",...,0''} (40)

and contains 33 elements. It is straightforward, though tedious, to enumerate all
simplices in this complex. The number of each simplex type in this simplicial
complex for RP3 x Sl is,

0 - simplices 33

1 — simplices 339

2 — simplices 1026

3 — simplices 1200

4 -simplices 480. (41)

In order to compute the partition function in these theories, we need to first deter-
mine the admissible field configurations. This means finding the gauge inequivalent
solutions to the equations,

[SA]Q12 = [An -^02+^01] = 0,

[<5*]θl23 - [*123 - #023 + ̂ 013 - B012] = 0 , (42)

where gauge transformations are given by,

-4ι = [Λoi - ω\ + ω0] ,

(43)
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We remind the reader that the brackets in these equations denote that the quantity
inside is to be taken mod-/?.

The number of gauge inequivalent solutions to these equations is in correspon-
dence with the first and second cohomology groups of the complex K with co-
efficients in Zp. Beginning with the well known homology groups with integer
coefficients for RP3 and Sl [3,4],

HQ(RP3} = H3(RP3} = H0(Sl } = H}(Sl) = Z ,

H{ (RP3 ) = Z2, H2(RP3 ) = 0 , (44)

the Eilenberg-Zilber theorem,

Hn(X x 7) = £ Hi(X)®Hj(Y)® Σ τoτ(Hp(X),Hq(Y))9 (45)
i+j—n p+q=n—\

computes the homology of the product K — RP3 x S1, and one finds

H0(K) = H3(K) = H4(K) = Z, Hλ(K) = Z®Z29 H2(K) = Z2 . (46)

The universal coefficient theorem for cohomology,

Hn(X, G) = Hom(Hn(X)9 G) Θ E\t(Hn^(X\ G) , (47)

then gives the required cohomology groups which for G — Zp are,

for p odd

for

λ \ j v for /? odd
/ / ( / ί 'Z ' ) ) =\Z2ΘZ2 for p even. (48)

Now, the partition function in this four dimensional model essentially amounts to
a sum over field configurations which represent inequivalent classes in the cohomol-
ogy groups H}(K,Zp) and H2(K,Zp). While the scale factor we have introduced,
1/G^1, defines a subdivision invariant quantity, one could also adopt a different
normalization where the partition function is precisely proportional - in a way in-
dependent of the sίmplicial complex-to a sum over these classes. To relate our
original partition function to the latter, we need to count carefully gauge equiva-
lent copies of all field configurations. Also, knowing the number of allowed gauge
constraints is important for the purposes of explicitly finding all solutions.

For link based fields, the counting of gauge copies is the same as in lattice
gauge theory where a different copy of the gauge group is assigned to each vertex.
The gauge transformation here is,

A' = [A - δω], (49)

and what we seek is the dimension of the image of the map

(5°: C\K)-^Cl(K). (50)
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Here we have explicitly attached a superscript to δ to denote the restriction to C°.
But (5°(C0) is isomorphic to,

C0/Ker((S0) (51)

and the kernel of (5° is 1 dimensional for a connected complex (same as H°(K,ZP)).
One then sees that the image of this map has dimension NQ — 1, and this is the
number of links we can gauge fix.

For the 2-simplex field B, the counting is only slightly more difficult. As a
gauge field, we are assigning an element in the gauge group to each link, and we
seek the dimension of the image of the map,

δl : C](K)-^C2(K), (52)

which will tell us how many of the 2-simplex fields can be gauged away. Let
us restrict the following discussion to the case of p a prime number so Zp is a
field. The kernel of δ\ the 1-cocycles, is then parametrized by the image of δ°
together with Hl(K,Zp). When p is prime, the latter cohomology group is then a
sum of copies of Zp\ let hl denote the number of these copies, i.e. the dimension
of Hl(K,Zp) as a vector space over Zp. Hence the image of δl has dimension,

tfi-ίΛ/b-O-A1, (53)

Putting these numbers for the maximal trees together, we can, for \G\ = p a prime
number, write the partition function (37) as

(54)
I°TM flat'

where flat' indicates the sum is over the gauge inequivalent configurations which
are the cohomology classes.

In the case of the complex for RP3 x S1

9 we have 1026 equations for the A
field and 1200 for B. These are highly redundant due to the Bianchi identities, but
nevertheless, the number is quite large and one needs to make maximal use of the
gauge freedom. For the link based gauge field A, one is allowed to set to zero
(gauge fix) the fields on a maximal tree. A maximal tree is any maximal set of
links which contains no closed loops, and as we saw above, that number is always
one less than the number of veritces. It is trivial to pick such a set by inspection,
and in this case we can gauge fix the A field on 32 1-simplices.

For the 2-colour field B, the situation is somewhat more intricate. In practice, it
is not easy to identify such a set by inspection of the complex. Instead, we solved
this problem by associating a vector of length 339 (one place for each link field λ)
to each of the 1026 2-simplices; this vector then represents a gauge transformation.
By using a program in Mathematica [12], we could find a maximal number of
linearly independent vectors which was found to be 306 for our complex. There
is one additional complication however. The RowReduce routine in Mathematica
gives vectors which are linearly independent over the real numbers, and we seek
a set which is linearly independent over Zp. One indeed finds a single vector in
that set which is not linearly independent for all p. Our gauge choice then amounts
to 305 conditions. This is the number given by (53) for our complex (41) when
p = 2. While it is not a maximal tree in general, it is an allowed choice for all p.

Another check on the gauge choice we have made here is to nominate one
link variable as the independent one for each of the gauge conditions we seek to
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impose. One then shows that the 305 choices found previously can be made with
no duplications.

At this stage, solving the equations subject to a maximal gauge choice is not
difficult, though it is somewhat tedious. Typically, repeated use of the gauge condi-
tions forced most other fields to vanish. For the A field, we found that the nonzero
pieces could be parametrized in terms of two mod-/? variables a and x, where
[2 a] = 0 and x was unconstrained. The same is also true for the B field, where we
parametrize the solution in terms of b and y, with [2 b] = 0 and y unconstrained.

For each of these field configurations, one then computes the Boltzmann weight
which is a product of 480 factors, one for each 4-simplex in the complex. We find
the Boltzmann weight

(55)

One notices immediately that the Boltzmann weight is independent of the jc and y
parameters in the general solution. Since the p odd case has no non-zero solutions
for a and b, there are no non-trivial phases. For p even, the sum over a and b
yields

3+ (-!)* = 2.2<52(*), (56)

and the partition function at s — exp[2π/&/p2] is given by,

for p even (5?)

for p odd .

The symbol δp(k) denotes the mod-/? delta function; its value is 1 if k = 0 mod-/?,
and 0 otherwise. In detail the calculation for p even takes the form,

Z-^ />3<W(3 + (-!)*). (58)

The number 339 comes from the number of 1-simplices in the complex, the factors
with 305 and 32 take into account the gauge equivalent copies of the solutions to
the flatness equations, and the remaining factors come from summing the solutions
over a9x,b, and y.

One can compare this result to that obtained for the 4-sphere S4. In this case, a
complex is easily given as the boundary of a single 5-simplex; one has the following
data,

0 — simplices 6

1 — simplices 15

2 - simplices 20

3 — simplices 15

4 — simplices 6 . (59)

The calculation of the partition function is easily seen to take the form,

7rc4~ι r j l O y,51 ι / £ f \ \
-p\s

though there are no interesting solutions to the flatness equations and hence no pos-
sibility of non-trivial phases in this case. Hence, the value of the partition function
is independent of k.
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One triangulates the space S3 x Sl in the same manner as for the project!ve
space we have already considered. There is no possibility of any phases and a
straightforward calculation gives,

Z[S3 x S l ] = 1 . (61)

It is also straightforward to carry out calculations on the spaces L(p,q) x S1,
where L(p,q} is a lens space [3], though the triangulations [11] get progressively
larger. In this series, RP3 appears as L(2,1). We have also done the analogous
computation of the partition function for L(5,1) x S}. We find that the Boltzmann
weight depends on two variables a and b which must satisfy [5 a] = [5b] = 0, so
there are no non-unit phases when p is not a multiple of 5. When p is a multiple
of 5, the Boltzmann weight takes the form

exp \—Γ5ba\ . (62)
L P J

The partition function becomes,

-7rr/c ι \ o i n ί 5.5ί>5(/:) for z? a multiple of 5 ^^.
Z[L(5,1) x 5 ] = < ^ F (63)

I 1 otherwise.

From these examples, we see that there is generally a dependence of the partition
function on the coupling parameter. Since the partition function on M^ x S] gives
the dimension of the Hubert space [13,14], we see that the quantum Hubert space
associated to M3 differs from the classical one (k = 0).

5. The Bockstein Operator

At first sight, the construction of this general class of models that we are consid-
ering in this paper may seem mathematically unorthodox. The motivation stemmed
from a desire to realize discrete Chern-Simons and BF theories from a concrete
point of view. The intuition was that one should make use of the coboundary op-
erator on simplicial cochains in some fashion, but we did so with a cup product
which differed from the usual one in so far as we did not take the product mod-
p. However, we can, in retrospect, make an observation which brings the whole
construction into orthodoxy, and this is the connection with the Bockstein operator
[15]; the homotopy-type nature of these models is then transparent. We shall re-
strict attention here to the case of closed manifolds, so that the fundamental class
exists.

Let x be an element of the simplicial cohomology group Hq(K,Zp}, and let
x G Cq(K,Z} denote a representative of x as an integral cochain. Since [δx] = 0,
this means δx = pu, for some integral (q -f 1 )-cochain u. The Bockstein operator

β : Hq(K,Zp) -> Hq+{(K,Zp) (64)

is defined by

β(x) = \-δx\ = [ u ] . (65)
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In terms of the Bockstein operator and normal cup product, we can then rewrite
the Boltzmann weight (21) quite simply as,

exp (B U β(A\ σ4) , (66)
L P Ί

where σ^ is a 4-simplex. Of course, the Boltzmann weight for the abelian Dijkgraaf-
Witten [2] theory can also be so written;

exp ί— ( A U β ( A ) , σ3}] , (67)

where the connection with Chern-Simons theory is striking. The key observation
is that the Bockstein operator and not the simple coboundary operator is what is
relevant in the construction of these models with gauge group Zp.

The extension of this theory to 5 and higher dimensions is then transparent, and
one takes the Boltzmann weight,

Γ o '/ "1

exp \—(A U β(A) U - - U β(A), σ2m+l) , (68)

where we have m factors of β(A\ It is worth noting that theories whose partition
functions lead to Gauss sums such as the 3d Dijkgraaf-Witten theory will also
appear in 7d where the link field A in (67) becomes a 3-colour field. In this case,
partition functions will generally be complex valued unlike the class of B U β(A)
theories where (for p prime at least) they are real.

6. Manifolds with Boundary

A general axiomatic framework was presented for topological quantum field theory
(TQFT) in [13]; see also [14,16,17]. As we have seen, the general class of abelian
models considered here can be expressed in terms of standard modulo-/? cohomo-
logical operations, and one expects the axioms of TQFT to be satisfied by these
models.

Let AT be a 4-manifold with boundary dK. The partition function of these models
is well defined, and represents a transition amplitude when we specify the field
configurations on the boundary components. We take the field configurations on the
boundary to the flat, and define the allowed field configuration on K to be all flat
configurations which extend those specified on the boundary. The partition function
remains subdivision invariant as long as we keep the triangulation on the boundary
fixed [17]. It is convenient, however, to rescale the partition function by

Z'[K] = wNl(dK}Z[K], (69)

where w = \f\G~\, and N\(dK) is the number of 1-simplices on the boundary dK.
This scaling gives the following gluing rule,

ί,τ],τ3] Z'[K2,τ3,τ2]. (70)



State Sum Models and Simplicial Cohomology 151

Here K\ is a cobordism between boundary manifolds Σ\ and £3 with fixed flat field
configurations τ\ and 13, and similarly for K^. K represents a composition of K\
and K2 and the above sum is over all intermediate flat field configurations.

Consider now a gauge transformation of the B field, when a boundary δK is
present. From (24), we see that the Boltzmann weights are related by a phase factor
depending only on the boundary values of the fields, namely:

s(BfUδA,K) _ s(BUδA,K)s-(λ\JδA,dK}

When computing the partition function on K, we sum over all allowed field config-
urations with fixed boundary data, and thus we see that the partition function also
transforms with this phase factor. It is equally simple to determine the behaviour
under a gauge transformation of the A field.

For the purposes of illustration let us consider the case of a 4-manifold of the
form M3 x /, where / is the unit interval, and M3 is some bounding 3-manifold. The
value of the partition function then gives a transition amplitude between the two
copies of MS. Given that //*(M3 x I,ZP) = //*(M3,Z/?), we know that the transition
matrix Z', [M3 x 7] must be diagonal. Moreover, because of subdivision invariance,

Z'lf[M3 x /] = £ Z'fj[M3 x /] z;, [M3 x /], (72)
/

which shows that any diagonal element can only be 0 or 1. Since the two copies of
the bounding manifold appear with opposite orientation, the behaviour of the parti-
tion function under changes of cohomology representatives (gauge transformations)
is given by

Z(,f, = exp [ivLi]Z'if exp[-/α/], (73)

where Z/^ denotes the transition amplitude between the initial and final copy of M3.

It is then clear, for example, that the diagonal elements along with the trace of Z^
are gauge invariant quantities. In particular, we have the result

ΣX[M3x/] = Z[Λ/ 3 xS 1 ] , (74)
7

which we can interpret as the dimension of the Hubert space associated to M3. In
taking the above trace, one must take into account the gauge equivalent copies of
the fixed boundary data.

Indeed, the value of the partition function for the manifold M3 x Sλ can be
obtained more easily by first performing the computation on M3 x /, and then taking
the trace. In this way, one sees that a vertical tower (see (39)) of only four 4-
simplices is required.

Up to gauge equivalence, field configurations on any single boundary component
M3 are in one to one correspondence with the set //1(M3,Zp) x //2(M3,Z/?). We
can define a complex vector space F(M3) associated to M3 by taking it to be the
vector space freely generated by this set of field configurations. This we might
call the classical Hubert space of M3 [2]. However, the partition function on the
cylinder represents a transition amplitude, and the map Zzy[M3 x /] may well have

a non-zero kernel. The quantum Hubert space H(M$) is defined to be,

H(M3) = F(M3)/Ker(Z//[M3 x /]), (75)
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and its dimension is given by the above trace (74). Thus, our computations show
that the quantum Hubert space of these models is generically different from the
classical Hubert space. By classical Hubert space one simply refers to the situation
where k — 0 and the kernel of Z1, on the cylinder always vanishes.

It is interesting to go further and identify precisely the zero modes in the
examples we have computed. For the p = 2, k = 1 theory with RP3 boundaries,
the calculation of the partition function on RP3 x S] indicates a Hubert space of
dimension 2, compared to the classical k = 0 result of 4. Hence there must be
two zero modes in the "propagator" on the cylinder. One finds that these zero
modes correspond to the non-trivial Hl(RP3,Z2) configuration which means that
the Hubert space is in correspondence with H2(RP3,Z2). Whether this is a general
phenomenon, or is something peculiar to the lens spaces, is not known.

Let us now examine the behaviour of the partition function with respect to
the connected sum of manifolds. For manifolds M\ and M2, the connected sum
is denoted by M = M\#M2. The manifold M is produced by first excising a 4-
ball from each of the components M\ and M2, which are then identified along
their common S3 boundary. According to the tenets of the axiomatic approach, the
partition function on a closed manifold can be computed by cutting the manifold
along a common boundary, and then taking the pairing between the state vectors in
the dual Hubert spaces.

Now, in order to obtain a relationship between the partition function Z[M] and
that of its components Z[M\] and Z[M2], we recall the value of the partition function
Z[S3 x S l ] = 1. We thus see that the S3 Hubert space is 1-dimensional. It is then
a simple consequence of 1-dimensional linear algebra [18] to see that the following
relationship holds:

Z[M{#M2]Z[S4] = Z[M{]Z[M2]. (76)

Since Z[54] = 1 for the four dimensional model under consideration, the partition
function behaves multiplicatively under connected sum.

7. Concluding Remarks

The four dimensional model we have considered here is part of a generic construc-
tion available in all dimensions [1]. The cornerstone of these state sum models is
a partition function which is a sum over simplicial cohomology classes of a certain
Boltzmann weight. This phase factor arises from the modulo-;? valued intersection
form between those classes. In particular, we have seen that the relevant "kinetic"
operator used to define these actions is provided by the Bockstein coboundary op-
erator. We remark that one can also consider the "non-kinetic" type models [19]
as providing observables for the theories presented here. In three dimensions, it
reduces to the Dijkgraaf-Witten model [2] which is related to group cohomology.
Such a connection is not transparent in general.

We have shown here that the four dimensional model is indeed non-trivial in
the sense that interesting phases can be obtained; without them the model only
counts cohomology classes. In this regard, one sees that the dimensions of the
quantum Hubert spaces are in general different from the classical dimensions. By
construction, these models lead to piecewise linear invariants; however, with the
insight that they can be formulated (in the closed case) in terms of the Bockstein
operator, one sees that the models yield homotopy-type invariants.
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In [7], a four dimensional subdivision invariant model was described in terms
of combinatorial data. Subsequently, it was established in [20,21], that the parti-
tion function was expressible in terms of the Euler and Pontryagin numbers, and
as such encoded classical topological data. On the other hand, this model could
then be viewed as describing classical invariants in terms of a quantum state sum.
The models presented here can similarly be viewed as providing a quantum state
sum formulation of classical modulo-;? cohomological data. Perhaps it is also worth
remarking on how these models differ from the structures presented in [22]. Quite
apart from having to address issues of regularizing the formally divergent path inte-
grals of those models, one is also dealing with cohomology with real coefficients; as
such, the models are insensitive to the presence of any torsion subgroups. However,
as we have seen for the models discussed here, the essence of non-triviality lies in
the presence of torsion in the cohomology groups.
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