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Abstract: Rational and soliton solutions of the KP hierarchy in the subgrassmannian
Gr\ are studied within the context of finite dimensional dual grassmannians. In the
rational case, properties of the tau function, τ, which are equivalent to bispectrality
of the associated wave function, ψ, are identified. In particular, it is shown that
there exists a bound on the degree of all time variables in τ if and only if ψ is a
rank one bispectral wave function. The action of the bispectral involution, β, in the
generic rational case is determined explicitly in terms of dual grassmannian para-
meters. Using the correspondence between rational solutions and particle systems,
it is demonstrated that β is a linearizing map of the Calogero-Moser particle
system and is essentially the map σ introduced by Airault, McKean and Moser in
1977 [2].

1. Introduction

Among the surprises in the history of rational solutions of the KP hierarchy (and
the PDE's which make it up) are the existence of rational initial conditions to a
non-linear evolution equation which remain rational for all time [1, 2], that these so-
lutions are related to completely integrable systems of particles [2, 6, 7], and that a
large class of wave functions which have been found to have the bispectral property
turn out to be associated with potentials that are rational KP solutions [3, 16, 17].
Within the grassmannian which is used to study the KP hierarchy, the rational
solutions, along with the 7V-soliton solutions, reside in the subgrassmannian Gr\
[13]. This paper develops a general framework of finite dimensional grassmannians
for studying the KP solutions in Gr\ and then applies this to the bispectral ratio-
nal solutions. New results include information about the geometry of KP orbits in
Gr\ and identification of properties equivalent to bispectrality. In addition, an
explicit description of the bispectral involution in terms of dual grassmannian
coordinates leads to the conclusion that it is, in fact, essentially the linearizing
map σ [2].
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Outline. A brief review of previous results which will be necessary to understand
the results of this paper follows in Sect. 1.1. For details, please refer to [8, 12] for
a review of the theory of spectral curves, [10] for the algebraic theory of the KP
hierarchy and to [13] for the analytic theory of the grassmannian which will be used
in this paper.

Section 2 develops the technique of dual grassmannians for studying the Gr\
solutions of the KP hierarchy. This construction takes advantage of the fact that
the orbits of subspaces in Gr\ are infinite dimensional subspaces in which each
point has a finite dimensional complement. Consequently, the dual grassmannians
are finite dimensional and simpler to work with. The decomposition of the dual
grassmannians into the disjoint union of generalized jacobians and the representation
of their Plucker coordinates as a τ function are discussed.

In Sect. 3, the technique of the dual grassmannian is utilized to study bispectrality
of the wave function. Using results of Wilson [16] which completely identified
the bispectral wave functions in Gr\, a set of conditions on W or τψ which are
equivalent to bispectrality of ψw are listed (Theorem 3.3). In particular, it is shown
that for W £ Gr\, the wave function ψw is bispectral if and only if τψ is of bounded
degree in all time variables.

The bispectral involution introduced by Wilson [16] is studied in Sect. 4. It is
noted that the composition of the bispectral involution with the KP flows results in a
non-isospectral flow under which the singular points of the spectral curve move as a
Calogero-Moser particle system. The action of the involution is determined explicitly
(Theorem 4.2) in terms of dual grassmannian parameters in the generic case that the
spectral curve of the image has only simple cusps. Using the correspondence between
rational solutions and particle systems, the bispectral involution is determined as
an involution on Calogero-Moser particle systems (Theorem 4.1), and it is shown
(Theorem 4.3) that it acts as a linearizing map. The bispectral involution acting
on particle systems, after simple rescaling, is seen (Theorem 4.4) to restrict to
the linearizing map σ introduced in [2] and thus explains the surprising involutive
nature of σ in terms of bispectrality. The paper concludes with two examples. The
first example demonstrates how the bispectral involution can be used to determine
the τ-function of a rational KP solution. Finally, the second example demonstrates
Theorem 4.2 by determining the condition space of the image under the bispectral
involution of a particular rational solution of the form given by Wilson [16] in
Example 10.3.

1.1. Review

Rational Solutions to the KP Equation. For the purposes of this paper, the term
"rational solution of the KP Equation" will mean a function u(x, y, t) which is
rational in the variable x, satisfies the KP equation

- -(6uux + Uxx

and has the property that lim^^^ u = 0. Although there do exist rational solutions
which do not have the latter property [4, 15], these will only be referred to explicitly
as "non-vanishing rational solutions."
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Along with the ideas of the algebro-geometric construction [8], the correspon-
dence between poles of rational solutions and the Calogero-Moser system [2] is
utilized by Krichever [6, 7] to find rational solutions to the KP equation. The mo-
tion of the poles is shown to be equivalent to the motion of Calogero-Moser particles
where the y-flow corresponds to the second Hamiltonian and the ί-flow corresponds
to the third. Furthermore, this paper completely identified the rational solutions of
the KP equation.

The following results from [7] will be important in the present paper.

Theorem 1.1. (Krichever). A function u(x,y,t) which is rational in x and decreases
for \x\ — >• oo is a solution of the KP equation if and only if

N
u(x,y,t) = Σ

and there exists a function

(B)

such that

= -TT + ~u — + w(*, y, 0 ,

In general, a wave function ψ corresponding to the solution u is any function
of the form

which satisfies L\\l/ = -j-ψ and L-$ — -jjψ for L\, L^ and u as in Theorem 1.1.

Multiplication by any series of the form 1 + c\z~l + C2Z~2 + (with q G C) will
take one wave function for u to another wave function for the same u. Since a series
of this form can be seen to alter ψ but not the associated solution u, they will be
referred to as gauge transformations of the wave function. As will be shown below
by Corollary 3.1, there is a unique wave function of the form (B) corresponding to
each rational solution. This form of the wave function is the bίspectral gauge and
can be identified by the fact that liir^oo exp(—xz — yz2 — tz3)ψ — 1.

A method for generating almost every rational solution of the KP equation is
developed (also in [7]) utilizing another gauge of the wave function, which is
identified by the fact that exp(-xz - yz2 - tz3)ψ\x==Q = 1. In this gauge, denoted
(Kr), there exist N distinct numbers /ί/, such that -j^\j/\z=^ — 0. Consequently, it is
clear that the spectral curve in this case is a rational curve with singularities only
in the form of simple cusps at the points z = λt. In the standard algebro-geometric
construction of solutions to integrable equations with a π<97?-singular spectral curve,
the wave function ψ is chosen to be an Akhίezer function. That is, it is chosen so
as to be the unique wave function which is holomorphic off of a given non-special
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divisor and specified point. The wave function in the gauge (Kr) is the limit of
the Akhiezer functions in the cuspidal case. It is for its relevance to the algebro-
geometric construction that this gauge is introduced here, although it is the bispectral
gauge that will be utilized in the proofs to follow.

The wave function of a rational KP solution can be written in the form

where q is a monic polynomial of degree TV and p is a polynomial of degree at most
N — 1 in z. There is a unique such function in the gauge (Kr) for any choice of the
Λ2 and the coefficients of q and thus these parameters determine a KP solution u.
After specifying λt and q, the problem of finding ψ reduces to a problem of linear
algebra. The matrix, Θ, which arises in this problem leads to a solution to the KP
equation as shown in this theorem.

Theorem 1.2. (Krichever) For almost all solutions of the KP equation, depending
rationally on x and decreasing for x\ — > oo, we have the formula

d2

u(x,y,t) = 2— -logdet<9 ,
ox2

where the matrix elements Θυ are given by2

Since the elements of Θ are all linear in x, y and ί, letting ϋ = det Θ we have
^2

Corollary 1.3. Almost every rational solution can be expressed as 2-j^ log$ where
$ is a polynomial in x, y and t.

Note. Those solutions which can be determined explicitly from Theorem 1.2 are
those for which all of the cusps are simple. Rational solutions whose spectral curves
have higher cusps can be determined as limits of these solutions.

The KP Hierarchy and Sato's Grassmannian. The KP hierarchy is defined in terms
of pseudo-differential operators in the variable x. Given a pseudo-differential operator

L = Σl=-oc ai(x)c\ where d — -| and a\(x) = 1, one may define the flows of the
KP hierarchy as the compatibility of the conditions

(KP) L\l/ = z\l/ ^ψ = (Ll)+ψ
ot,

with (K)+ denoting the projection of K onto ordinary differential operators. Here
and throughout the paper, I will use the notation x — t\, y — h and t = t-$.

The geometry of an infinite dimensional grassmannian, Gr, is utilized to study
the dynamical system of pseudo-differential operators given above. This is a grass-
mannian of the Hubert space H which is spanned by all integer powers of the

2 Whereas the matrix Θ in [7] was indexed from 0 to N — 1, I have altered the notation to be
compatible with the matrix M below. In addition, the substitution t —> — Ms understood when comparing
the present paper to [7].
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variable z. Thus, a point W G Gr is a subspace of H (satisfying certain conditions
which will not be emphasized here). As will be seen below, the action of a certain
multiplicative group on Gr results in the KP flow of the associated operators.

The association between a point W and its corresponding pseudo-differential
operator, Lψ, is described most easily in terms of certain intermediate objects. As-
sociated to a point W G Gr is the stationary wave function ψw(x,z) which is the
unique function of the form

\l/w(x,z) = (1 + αiOφ-1 + α2(*)z-2 - - •) exz

that is contained in W for each fixed value x in its domain. This function can also
be written as Kγ^exz for some monic, zero order, pseudo-differential operator Kψ.
Finally, we have the associated pseudo-differential operator LW — Kψΰ(Kw )~l. Also
frequently associated to W are the time dependent version ψw given by the equations
(KP), the tau function τ^ (a "bosonic" representation of the Plucker coordinates of
W), and the function uw(t\,h, - . .) which solves the original KP equation. Depending
on the context, any of these associated objects could be considered a "solution"
of the KP hierarchy. Again, for the purposes of this paper, a rational solution of
the KP hierarchy is a solution such that the function uψ is a rational solution of
the KP equation in the sense discussed earlier. Although there is a one to one
correspondence between points W £ Gr and the objects τ^, Kψ or ψψ, the map to
LW and uψ is many to one.

The association of a τ-function to a point of the grassmannian comes through the
representation of Gr on IP(C p/J). It is well known that the set of Schur polynomials
form a basis over C of (CpJ. In the representation of Gr, a Schur polynomial is
associated in the standard way to each of the points of Gr where all but one of
the Plucker coordinates are zero. Let W be an arbitrary point of Gr, and let τw be
the infinite series written as a sum of the Schur functions with the corresponding
Plucker coordinates as the coefficients. That is, if πv G C are the Plucker coordinates
of a point W G Gr, then

where Sv is the Schur polynomial associated to πv. The function u(tt) = 2-j^
is then a solution to the KP equation. Since it is exactly those coefficients which
are valid Plucker coordinates that yield solutions, the KP hierarchy can be viewed
as the Plucker relations of the grassmannian.

Two groups of interest to this paper act on Gr via multiplication. The group
Γ+ consists of all real-analytic functions / : S} — > Cx which extend to holomorphic
functions f:D0 -> Cx in the disc D0 = {z G (C : z\ ^ 1} satisfying /(O) = 1. The
other group, Γ_ consists of functions / which extend to non-vanishing holomorphic

functions in D^ = {z G (C U oo : |z ^ 1} satisfying /(oo) =1. If g — e~cz> G Γ+

and W G Gr, then

τgw(t\ , h, . . . ,ti, . . .) = τw(t\ ,t2,...,tl+c,...).

Thus, the KP flows are given by the action of the group Γ+. However, the group
Γ_, since it contains only elements of the form 1 + αjz" 1 +o(2Z~ 2 . . . , is again a
group of gauge transformations which alter the point, W, but not the associated uψ
or Lw.
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The solution uψ corresponding to a point which only has a finite number of
non-zero Plϋcker coordinates is going to be a rational solution since τw (now a
finite sum of Schur polynomials) will be a polynomial. The subset of Gr for which
this is true is called GΓQ, and it corresponds to rational solutions whose spectral
curve is a rational curve with only one cusp, at the point z = 0. It therefore gener-
ates some of Krichever's rational solutions, and all of the rational KdV solutions.
This is contained in a larger subset, Gr\, which is characterized by the fact that if
W G Gri, then there are polynomials p(z) and q(z) such that pfί+ C W C q~}H+.
(Here, H+ denotes the subspace of H spanned by non-negative powers of z.) The
points of Gr\ correspond to rank one solutions with rational spectral curves and the
converse is true if the data are suitably normalized [13 (Proposition 7.1)]. Thus, all
of Krichever's rational solutions can be derived from this sub-grassmannian. How-
ever, not every solution from Gr\ is rational since it also includes the nodal rational
curves which are associated with solitons3. Only solutions in Gr\ will be considered
for the remainder of the paper.

It was shown in [9] that the orbit of a pseudo-differential operator L which is
a solution of the KP hierarchy and can be determined by an isospectral flow of
line bundles is isomorphic to the jacobian variety of the spectral curve. Thus, for
a point W which is determined by a line bundle over a curve, the orbit under Γ+

modulo the action of Γ_ is isomorphic to the jacobian of the curve. In general,
there is no reason to expect that the orbit in Gr will be a jacobian prior to taking
the quotient by Γ_. The next section will study the Γ+ orbits of points in Gr\ and
their relationship to the geometry of the grassmannian.

2. Dual Grassmannians and Rational KP Solutions

2.1. Differential Conditions and Gr\. Every subspace W G Gr\ can be derived from
a line bundle over a singular rational curve [13]. As will be explained below, it
can also be written as the closure in H of the set of polynomials in z satisfying
a finite number of differential conditions at a finite number of points divided by
a polynomial q [16]. By forming the grassmannian of the linear space of such
conditions, one is able to construct finite dimensional grassmannians dual to those
in Gr\.

Definitions. Let d(l,λ) denote the linear functional on the space C[z] which
takes /(z) to /(/)(/l), the Ith derivative evaluated at λ. Then let # be the in-
finite dimensional vector space over C generated by d(l,λ) for all / £ N and
all λ G (C. Let <g(λ) C # for λ G C be the subspace spanned by d(l,λ) for all
/ G N. Stratify these subsets into ^(/, λ) C *$(λ) which is the subspace spanned by
d(a9λ) for 0 rg α ^ /- 1. (For convenience, we define ^(0, /) to be the empty
set.)

Let C be any M dimensional subspace of #. Here I will recall the mapping which
associates a point of Gr\ to C [16]. Let Vc be the vector space of polynomials in
z which satisfy the condition c ( f ) — 0 for each c G C. Finally, picking a monic
polynomial, q(z\ of degree M the Hubert closure of the set q~λ Vc in H is a point
W G Gri.

3 Although the rational solutions are technically soliton solutions as well, within this paper I will refer
only to non-rational solutions as solitons.
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This suggests the following definition. Let Gr(^) be the set of finite dimensional
linear subspaces of <%. Then letting

}* = l ( C , q ) e G r ( < g ) x < C [ z ]
M~\ Λ

dim C = M and q = ZM + £ c,zl i

allows us to associate a point W G Gr\ to each W* = (C,q) G Gr* by the
mapping described above.4 Although this mapping is onto (since every element
of Gr\ can be expressed in this way) it is not injective. Note, for example, that
({J(0,0)},z) and ({d(0,0),d(l,0)},z2) both get sent to the vacuum solution H+ G
Gn.

The following lemma demonstrates that the choice of a polynomial q only al-
ters the gauge of the associated KP solution. Consequently, for most applications
it will be sufficient to consider only the case q = ZM , where M is the dimen-
sion of C. Only later when bispectrality is being considered will gauge become
significant.

Lemma 2.1. Varying the choice of q merely affects the associated solution by a
gauge transformation.

Proof. Let W* = (C,q\) and W% = (C,q2) be two points of Grf with the same
condition space C and let Wi G Gr\ be the image of Wf under the dual mapping. It
is clear from the definition of the mapping that the gauge transformation q\/q2 G Γ_
will take W\ to W2. D

For any point of Gr*, given by the condition space C = {c/} with basis
{ c ι , C 2 , . . . , C Λ / } and q = ZM', it is simple to calculate the corresponding τ. The
definition of τ in [13] is equivalent to τ = άεiJί [16], where M is the M x M
matrix

Jίij = Ci(zJ-γe^tίZ>) 1 g /, j ^ M .

(This determinant can be viewed as the Wronskian of the M one condition solutions
given by the individual c,'s.) Notice that another choice of basis for C only affects
τ by a constant multiple.

2.2. The Finite Grassmannians. Recall that the grassmannian Gr(M,ΛΓ), which is
made up of M dimensional subspaces of an TV dimensional vector space V, is
isomorphic to the grassmannian Gr(N - M,N). This isomorphism follows from
the Principle of Duality [5], since such an isomorphism is given by sending
W G Gr(M,7V) to the TV - M dimensional subspace W* C F* such that w*(w) = 0
for all w G W and w* G W*. Consequently, Gr(N — M,N) is referred to as the
dual grassmannian of Gr(M,7V). This section will demonstrate that the Γ+ orbit
of any point W* is contained in a finite dimensional sub-grassmannian of Gr*.
These finite dimensional grassmannians are actually the dual grassmannians of the
sub-grassmannians of Gr\ which are their image under the dual mapping (thereby

technically, the image of certain points in Gr* are not contained in Gr as formulated by Segal and
Wilson. In particular, if q(ζ) = 0 for some ζ G (C such that ζ = 1, then the corresponding subspace may
not be contained in L2(Sl,z) unless it undergoes a scaling transformation. Without altering the results
of the present paper, one may resolve this problem either by restricting the definition of Gr* to contain
only points whose image is in Gr or by extending the definition of Gr\ to contain subspaces which
would be in Gr after rescaling.
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justifying the terminology). In addition, it will be seen that they decompose into a
disjoint union of Γ+ orbits.

Let μ : C — » N be called a singularity bounding function (or simply bounding
function) if the set (C - μ-1(0) is a finite set of points. This finite set on which
μ is non-zero is called the support of μ (supp μ). Define the dimension of μ by

Given a bounding function, μ, let

.ec

Then y>(μ) is a dimμ dimensional vector space. For any M < dimμ, the set of M
dimensional subspaces of ^(μ) is then a well defined grassmannian: Gr(M,^(μ)). In
order to consider the images under the dual mapping of points in this grassmannian
we must specify a choice of q. We will denote this by Grq(M^(μ)) and assume
that q — ZM when none is specified. The dual mapping from Grq(M9^(μ)) to Gr\
is injective. (In fact, once the choice of M and q is fixed, the dual mapping is
injective.)

Given a point W* = (C,zM) G Gr(M,^(μ)), consider the form of the associ-
ated point W G Gr\. Note first that the polynomial p(n,z) = zn f](z - λ)μ(λ} will be
in Vc for any n G N. Thus, p(0,z)H+ C W C z~MH^ demonstrates that W G Gr}

according to the definition in [13]. Then W will have this form:

in which everything is fixed apart from the choice of ωt. The ω, can be any ba-
sis of the N dimensional space of polynomials of degree less than dimμ which
satisfy c(ωz) = 0 for all c G C. Since M independent conditions will have been
applied to get this set, we know that TV = dimμ — M. Then, the dual mapping is
an isomorphism from Gr(M, ̂ (μ)) to the Gr(dimμ — M, dimμ) which is its image
in Gr\. In particular, the two finite dimensional grassmannians are dual to each
other and W is the space "perpendicular" to W* under the inner-product defined
by application of the condition to the function. The grassmannians corresponding to
different choices of q are trivially isomorphic and all statements above apply to them
as well.

Note. One may coordinatize the image in Gr\ with the Plucker coordinates of a
Gr(M, dimμ) given by the subspace spanned by {ω/} in the vector space spanned
by {z7|0 :g / ^ d i m μ — 1}. It is then possible to choose a set of functions for
which these finite dimensional Plucker coordinates are represented as the coef-
ficients in a series summing to τ. Denote by Sμ the finite set of τ-functions
which correspond to the points in the image with only one non-zero Plucker co-
ordinate. In a method analogous to the infinite dimensional case, the τ-function
of an arbitrary point of Grq(M,^(μ)) can then be written as the finite sum of
these functions with the corresponding Plucker coordinates as coefficients. In par-
ticular, all τ-functions from this grassmannian are contained in the finite dimen-
sional space spanned by Sμ. If we write τ as an arbitrary sum of elements from
Sμ, then the equations of the KP hierarchy will act as Plucker relations for the
coefficients.
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Example. Consider the grassmannian Gr(2^(μ)\ where μ(n) = 3δon + δ\n and
q—z2. The Plϋcker coordinates of the grassmannian will be a set of six coor-
dinates nη with 0 ^ / < j g 3. Denote by τ z / the τ-function corresponding to the
point where only π/y is non-zero. These six τ-functions are as follows:

- 2y (x2 + 2y - 2x

τ02 = -2;c2+4.y + 2-2(l - ;φΣ'<, τ12 = -2x- T23 =

Notice that three of these functions are not the Schur polynomials which arise in
the standard representation. Every τ-function from Gr(2,^(μ)) is contained in the
vector space spanned by the τ/7 , and can be written as

τ = πijτv >

although an arbitrary sum of this form is not necessarily a τ-function. Inserting this
arbitrary sum into the Hirota bilinear form of the KP equation yields

48eΣ''(πo3π12 - π02πι3 + πι 2πι 3) = 0

which, apart from the exponential coefficient, is the Plϋcker relation for the coordi-
nates of Gr(2,4).

Definition 2.2. Define the action of g ( z ) = ecz" e Γ+ on d(l,λ) G
formula

by the

g(d(Q,λ)) = e~c/- d(0,λ)

rf(U) - Σ*/-ίrf(/- U)
/=!

with the k\-ι for 0 rg z ^ / defined recursively as

^"-Σ*/-,

for I ^

l-i
fc/_ι = /—loggf(z)

Extend this linearly to define the action of the group Γ+ 0/7

Since g(c) has the same support and bound as the condition c, Γ+ acts on
the linear space ^(μ). Furthermore, since Γ+ acts linearly and has no kernel, it
takes one M dimensional subspace to another. Consequently, Γ+ acts on the finite
dimensional grassmannian Grq(M^(μ)) under Definition 2.2.

Definition 2.2 was chosen so that for any c £ ^(μ), g £ Γ+ and / £ C flzj,

c(/) = 0 iff /) = 0 .

Therefore, this definition of the action of Γ+ on Gr\ coincides with the multiplicative
action on Gr\ via the dual mapping.

Grassmannians and Generalized Jacobίans. The Γ+ orbit of any point W in Gr
which is "rank one algebro-geometric," modulo the action of Γ_ , will be the gener-
alized jacobian of the spectral curve. In fact, in the case of Gr\, taking the quotient
by Γ_ is unnecessary and we have the following result:
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Proposition 2.3. The Γ+ orbit of a point W £LGr\ is ίsomorphίc to the (generalized)
jacobian of the corresponding spectral curve.

Proposition 2.3 follows immediately from Lemma 2.4.

Lemma 2.4. If ^ Φ l e Γ_ is a non-trivial gauge transformation and W e Gr\,
then #W is not in the Γ+ orbit of W.

Proof. By the formula for τ as the determinant of the Wronskian matrix M> one
can write τψ as

where the PJ are of bounded degree in all the ίz . Then, define ω(τ^,z) to be the
unordered TV-tuple {α,7|0 g 7 ^ TV}, which is well defined despite the projective
ambiguity in τ. Note that the ω(τ^,/) are preserved under Γ+ translation of W.
Now suppose that ^ G Γ_ is a non-trivial gauge transformation. Then, τ f / w =
where

with not all α/ = 0. Let /0 be such that α/ 0 φO and note that ω(τ^,zo)φω(τ>,/0)
since every element has undergone an additive shift of α/0. Therefore, ^W 0
Γ+^F. D

Therefore, the Γ+ orbit of any point W* £ Grq(M^(μ)) will be the (general-
ized) jacobian of a (singular) rational curve. Furthermore, it is clear that these orbits
are disjoint sets. Thus, one may conclude that any Gr(M, dimμ) can be written as
the disjoint union of the jacobians of all rational curves which can be described by
M differential conditions bounded by μ. Since any TV E IN is realizable as dim μ for
many different choices of μ (essentially determined by a partition of TV), one can
actually say:

Proposition 2.5. For any M ^ N G N, the grassmannian Gr(M,TV), can be decom-
posed into the disjoint union of the generalized jacobians of all curves represented
by M conditions bounded by μ for any μ of dimension TV.

The two decompositions of Gr(l,2), corresponding to the two partitions of the
number 2 serve as an enlightening example. Consider first the bounding function
l*a(n) — 1*° an and M — 1. A point of the corresponding grassmannian is determined
by a condition c\f'(ά) + C2f(a) = 0 for (cj,c 2) £ P1^. There are two distinct
Γ+ orbits which form this set. In the case c\ — 0, we have the trivial solution
u = 0 which is fixed by all Γ4 action. Alternatively, if c\ φO, let c = C2/c\ and
the condition can be written simply as f'(a) + cf(a) = 0. One may check that the

subgroup of Γ+ generated by elements of the form ez ~ιa' z is the stabilizer of this
condition (for any value of c). The action of Γ+ can thus be understood by taking
the quotient by this stabilizer, any element of which has a representative of the form
e°2 . Note that this element takes the condition above to /'(#) + (c — Θ)f(a) = 0.
In particular, the entire orbit is isomorphic to C, which is indeed the generalized
jacobian of a rational curve with a simple cusp at a.

Alternatively, consider the grassmannian corresponding to μab(n) — δan + δbn and
M = 1. A point of this grassmannian is specified by a condition c\f(a) + C2/(b) =
0 for (c\,C2) G P1^ as before. Note, however, that the case in which either c{ is
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zero corresponds to the trivial solution, and thus to two distinct Γ+ orbits. We
are then left with the case c\,c2 G Cx = <C - {0}. The condition f(a) + cf(b) = 0
(where c = c2/c\ φO) is stabilized by any element of the form

expz -
b — a

Once again, we may now consider any element of Γ+ to be represented by an
element of the form eθz. (In this case, we have not taken the quotient by the entire
stabilizer since there remains a periodicity in θ.) The action of this element on the
condition gives f(a) + e°(b~a^cf(b) — 0. In particular, we can translate c to any
value in (Cx, which is the generalized jacobian of a rational curve with a node
given by identifying the points a and b.

Note. A clever argument of G. Segal (related to me by E. Previato) demonstrates
that the result of Lemma 2.4 is not necessarily true outside of Gr\ . More precisely, if
any non-trivial gauge transformation takes W outside its Γ+ orbit, then Aw C C[z].
Thus, in general, we should not expect that the KP orbit of the operator Lψ is
isomorphic to the Γ+ orbit of W.

2.3. Rational Solutions. Given a point (C9q) G Gr*, the corresponding solution will
be rational if and only if C is spanned by {cι ,C2, . . . ,CΛ/}, where cl G ̂ (Λ) for
some λi G (C. (That is, each condition must involve only one point. This limits the
spectral curves to rational curves with cusps.) This is proved in [16], but the basic
idea can be understood by studying the matrix Jί which corresponds to the gauge
q = ZM . Note that it is only when C has this property that the ith column is made

up of polynomials multiplied by e^^i . Then, using elementary properties of the
determinant, one can factor out these exponentials and find that τ is the determinant
of a matrix of polynomials multiplied by the exponential of a linear function of x.
Consequently, the general form of such a τ is easily seen to be:

M (

(*) ^ = χt)Π exp
-Λ

where p(t) is a polynomial of degree N in x and a polynomial of degree less than
or equal to N in each of the other time variables, tl9 and λj are the singular points.

This clearly makes u — 2-j^ logτ into a rational function.

2.4. Translating Krichever's Parameters. The function q plays a fundamentally
different role in the two methods discussed for generating rational solutions. In
the dual grassmannian, the choice of q merely determines the gauge. In Krichever's
method, however, the gauge is fixed by the form (Kr) of the wave function. Thus,
once the λl have been fixed, the choice of q is the only way of determining the
solution. The difference arises from the fact that Krichever's condition is applied to
the function ψ, which is an element of q~λVc rather than an element of Vc itself.
Then the "chain rule" gives us the ability to relate the two sets of parameters.

Claim 2.6. If we choose the polynomial q and c/(/(z)) = f'(z) - ^jf(z)\z=λ. as

our conditions in the dual grassmannian, this will lead to the same solution as
choosing q and {//} in Krichever's method.
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Proof.

*^ljdz q(z)

The presence of the factor q(λi) merely affects the determinant by a constant
multiple. Furthermore, in [7], Krichever has removed the exponential part of each $//.
(As we shall see below, this latter difference corresponds to a gauge transformation.)
To complete the proof it is sufficient to see that these differences will not alter the
associated rational solution. D

Note. It is known that the gauge of Krichever's wave function is identified by the
property that 1 G W. This can be determined, for example, from the results of [13].
This statement is also easily observed from Claim 2.6 since q(z) clearly satisfies
the conditions.

3. Bispectrality

Given a wave function ψ(x9z), which is an eigenfunction in a generalized Schrodinger
equation with spectral parameter z:

we say that ψ is bίspectral if it also satisfies an analogous equation with the roles
of x and z reversed:

This property was first discussed in [3] in connection with some questions arising in
medical imaging. Surprisingly, it was found that the wave functions corresponding
to rational KdV solutions were bispectral. Zubelli [17] extended this result to all the
rational KP solutions from GΓQ by explicitly constructing operators in the spectral
parameter which demonstrate the bispectrality of the corresponding wave functions.

Wilson [16] completely classified the bispectral wave functions of the KP hi-
erarchy which correspond to a rank one ring of commuting differential operators.
(That is, [16] determined all bispectral wave functions which can be constructed
from an isospectral flow of line bundles.) He first demonstrated that such wave
functions must correspond to (vanishing or non- vanishing) rational solutions. More-
over, he concluded that a unique point in the Γ_ orbit of each rational solution
of Gr\ corresponds to a bispectral wave function. In particular, it was shown that
given a condition space C = {c/} such that cl is a differential condition at the point
Λ / ; the unique bispectral point corresponding to this condition space is q~lVc for
q(z) — Y[(z — λt). I will refer to the point corresponding to this choice of q as the
bispectral gauge.

Furthermore, it was shown that the stationary wave function corresponding to
the bispectral gauge, ψ(x,z), remains a wave function of Gr in bispectral gauge
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when x and z are interchanged5. It is in this context that the bispectral involution
arises naturally. Consider the involution, β, acting on functions of x and z which
switches the variables (i.e., /?(/(*, z)) = /(z,*)). Then, as a result of [16], β is an
involution on bispectral wave functions corresponding to rational KP solutions.

If we write ψ(x9z) — ψe*z, then ψ = 1 + %\(x)z~l + α2(%)z~2 -f . It is there-

fore clear that limz_>00 ψ — 1. Note also, if ^φ 1 £ Γ_ and lim^-.oo ψ = 1 then

lim pψ = p φ 1 .

From these facts it is simple to deduce the following corollary.

Corollary 3.1. A stationary wave function ψ = ψexz of a rational solution to the
KP hierarchy satisfies

lim ψ = 1
λ'^OO

if and only if ψ is in the bispectral gauge.

3.1. Tau Functions of Bounded Degree

Lemma 3.2. The τ function of a rational solution in the bispectral gauge is of
bounded degree in each time variable. (That is, there is one N such that τ is a
polynomial of degree at most N in each time variable.)

Proof. Recall from Sect. 2 that the τ corresponding to a rational solution in Gr* with
q — ZM is in the form (*). It will be demonstrated that the element of Γ_ which will
take this rational solution to its bispectral gauge results in a τ of bounded degree.

The action of the gauge group Γ_ on the representation τ can be expressed as

follows. Let ^ = ey z ' £ Γ_ and ^ = e~yιt> and denote by ^W the translation of
W G Gr by .̂ Then we have:

T yW = <?τW

It is then simple to see that multiplication by the gauge transformation

corresponds to multiplying τ by e^a>tl.
To move a point with q = ZM to its bispectral gauge, we would multiply by

ZM z 1 -i
FFTi—r^ = Π:—r = Γh—r^T = (ΠX^))

Note that the result of this transformation on a τ in the form (*) is the elimination
of the exponential part, leaving τ = p(t). D

Theorem 3.3. The following are equivalent conditions on W G Gr:

1. There exists an N G N such that τψ is a polynomial of degree at most N in
each of the variables t(.

5It is clear that if ψ(z,x) is also a wave function then ψ(x,z) is bispectral. To see the more powerful
fact that these are the only bispectral wave functions in Gr\, please refer to the proof in [16].
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2. u = 2^2 log^, is a vanishing rational solution and ι/r^(jc,z) = \l/w'(z>x) for
some W with the same properties.

3. W — q~λVc, where Vc is the set of polynomials in z satisfying the conditions
{cι,...,cw}, the condition cl involves only derivatives evaluated at the point λn

and q = Π(z-Λ).
4. τw, is a polynomial in x and the coefficient of the highest degree term of x is

constant.6

Proof (7) implies (2). A τ of bounded degree is necessarily a polynomial in jc,

and thus w:=2|^logτ is a (vanishing) rational solution. Given that [7] finds all
such solutions as resulting from cuspidal rational curves, one may conclude that W
comes from Wilson's construction for rational curves with cusps. Furthermore, it was
shown in Lemma 3.2 that one only gets a τ of bounded degree in this construction
with the bispectral choice of q. Consequently, we also have that W — >• W under the
bispectral involution.

(2) implies (3). That (2) and (3) are equivalent is a major result of [16].
(3) implies (7). This is what I have shown above.
Thus we have that (1), (2) and (3) are equivalent.
That (4) is equivalent to (1-3) is most simply seen by comparing it to (2). Since

iw is a polynomial in x, the corresponding solution is clearly a vanishing rational
solution. Furthermore, the fact that the coefficient of the highest degree term in x is
constant is equivalent to the fact that linr^oo ψ = 1. (If τ is a polynomial in ti and

ΐ ι ,ψ — 1 -\
Ψ

then h is of lower degree than τ in /γ if and only if the coefficient of the highest
power of ti in τ is constant. This can be determined from the formula relating τ
and \l/ [13].) So, (4) is really only a restatement of (2). D

Since every rational solution has a τ of bounded degree, this can be seen as
an extension of Corollary 1.3 to the arbitrary case and all of the time variables.
Furthermore, from the fact that (4) implies (1), we get the following corollary.

Corollary 3.4. If τw is polynomial in x with constant coefficient on the highest
degree term, then τw is polynomial in each t[.

4. The Bispectral Involution

The correspondence between rational KP solutions and Calogero-Moser particle sys-
tems is simple to describe in the case that the solution is in the bispectral gauge.
In that case, the positions of the particles x} are the roots of the polynomial τw in
the variable x and the momenta y} are the instantaneous velocity of the jcy's under
the second time flow. By using this correspondence, it is possible to consider the
bispectral involution as a map on particle systems. It can then be compared to the
well known linearizing map σ [2] which is also an involution on Calogero-Moser
particle systems. The results are summarized by the following theorems and proved
below.

6T. Shiota [14] has recently completed a study of the τ-functions of the KP equation which are monic
polynomials in x and their extension to the KP hierarchy.
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In the case that a KP solution can be represented by conditions of the form
f'(λt) + 7//(Λ) = 0 for distinct Λ,/, the parameters /, and yt will be referred to as
the dual grassmannίan coordinates of the solution. The bispectral involution demon-
strates a symmetry between the dual grassmannian coordinates of a solution and the
corresponding Calogero-Moser particle system. This can be applied to determine the
action of β on Calogero-Moser particle systems in terms of dual grassmannian coor-
dinates or the action on dual grassmannian coordinates in terms of Calogero-Moser
particle systems as shown in the following two theorems:

Theorem 4.1. If the Calogero-Moser particle system (x,y) is determined by the

dual grassmannian parameters (λ, y) (λt =j= λj for i Φy ), then β(x, y) — (ζ, μ) is given
by

and

μ/ = ?/ + Σ

Theorem 4.2. Given a bispectral rational KP solution W* £ Gr\ that corresponds
to a Calogero-Moser particle system (£, y) such that the xf are distinct, the con-
dition space with basis:

c,(f) = f(χt) +y,-E -— /'(*. ) =

and the polynomial q(z) — Y[(z — xt) are the point β(W*) £ Gr\.

Then, by considering the composition of the bispectral involution with the motion
of the particle systems, it is determined that:

Theorem 4.3. β acting on Calogero-Moser particle systems with distinct particle
positions is a linearizing map in the sense that it fixes the positions and linearizes
the momenta under composition with time flows.

Thus, β, which is an involution by construction, has the surprising property
of being a linearizing map. Alternatively, the map σ which is a linearizing map
by construction, is mysteriously an involution. Finally, it is noted that the two
involutions are basically the same.

Theorem 4.4. Given a Calogero-Moser particle system (x(t2\ jfe))?

σ(x(t2\y(t2 )) = (ξ, 2ξt2 + η)

and

for constant ξ, η, ζ and μ. Furthermore, they are related by the fact that ζ — — ξ.
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4.1. Bίspectral Flow. Let C be an N dimensional space of conditions with basis
{ C I , . . . , C N } such that cl 6 <#(h) and let q = ]\(z - A / ) . Denote by W* the point
(C,q) G Grl and its image in Gr\ by W. The spectral curve corresponding to this
KP solution is a rational curve with cusps at the points λt and its stationary wave
function ψψ is in the form (B) with poles in z at the cusps of the spectral curve
and poles in x at the zeroes of the polynomial τ^(jt,0, 0, ...). These values of x are
those for which the corresponding point of the t\ orbit of W leaves the "big cell"
of Gr [13].

The bispectrality of ψψ implies that its image under the bispectral involution,

is the wave function of another bispectral rational solution. Since β(ψψ) exchanges
the roles of x and z, it is clear from the observations in the previous paragraph that
the spectral curve of the KP solution with wave function β(\l/w) nas cusps at those
points z for which τψ(z, 0, 0 . . .) = 0.

Let W(ti) be the time dependence of the point W G Gr\ under the / ΐ h KP flow
and β ( W ( t i ) ) its image under the bispectral involution. Recall that the zeroes of
the polynomial τ^/(j, 0, 0, ...) move as a Calogero-Moser system of particles under
the KP flow. Then the composition of any KP flow with the bispectral involution,
the bispectral flow, is seen to be a non-isospectral flow for which the cusps of the
corresponding spectral curve behave as a Calogero-Moser system. In the case of
the first KP flow given by x — » x + c, the induced bispectral flow would clearly be
given by a linear deformation of the spectral parameter z, which is an example of
a Virasoro flow [11]. As will be demonstrated below, it was essentially a bispectral
flow which was utilized in [2] as a linearized flow of the Calogero-Moser particle
system.

4.2. Calogero-Moser Particle Systems. The phase space of an ^-particle Calogero-
Moser particle system is given by 2n complex numbers, */ and y^ 1 rg i ^ «,
Xi ή=Xj for ί φj, where x = (x\9...9xn) represent the positions of n particles and y —
(y\ -->yn) represent their instantaneous velocity. Here we will be mainly interested
in their motion under the second Hamiltonian: H — Σ y^ — Σ(χι ~x/)~2 Airault,

McKean and Moser [2] introduced the linearizing map σ(x,y) — > ( ζ , η ) in the case
when all the phase space variables are real, where ξt is the asymptotic velocity
of the ith particle and v\i is an asymptotic relative position. It is clear, by physical
consideration, that ξt is a constant of motion and that ηι is a linear function of the
time variable. It was unexpected, however, that the map σ would be an involution.

Yet, it was shown in [2], that σ(ξ, η) = (x, y). It is important to note that the
matrix

Λij = yιδιj + r — 7Xi X]

has {ςz} as its eigenvalues and that the analogous matrix Λσ written in terms of
ξl and ηt has {xt} as its eigenvalues. Therefore, one can view σ as a map which
exchanges spacial and spectral values. This, superficially, indicates a relationship to
the bispectral involution.

Note. Although vector notation is being used, particle systems within this pa-
per are unordered sets of pairs ( x l y y t ) . Thus, two particle systems which dif-
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fer only by a permutation of the index i are considered to be the same particle
system.

4.3. Dual Grassmannίan Coordinates of Krίcheυer's Solutions and the Associated
Particle System. It is clear from Theorem 2.6 that the rational solutions that are
constructed in Theorem 1.2 are also given by the dual grassmannian construction
with a choice of 2n parameters: λt (Λ/ φ/l/ if z φ y ) and y/ for 1 rg i !g «, where the
point W* has a condition space spanned by n differential conditions:

and can be placed in the bispectral gauge by the choice of polynomial q(z) =
Y[(z — λj). In the case that a KP solution can be represented by a condition space
of this form with distinct singular points λl9 the parameters // and y/ will be referred
to as the dual grassmannian coordinates of the solution. The dual grassmannian

coordinates will be written using the same notation as a particle system: ( λ , y ) .
In this section, we will only be concerned with this solution and its motion

under the second time flow. We therefore suppress all time variables other than x
and t2. Then the time dependent wave function of the solution described above can
be written in the form

where p(x,t2,z) is a polynomial of degree less than n each variable and the residues
di and α, are merely determined by a partial fractions expansion in x and z respec-
tively. The stationary wave function φ(x,z} is merely φ(x,Q,z), i.e. the wave function
at t2 = 0.

Notice that the positions of the poles of φ in the variable x, which are given by
the functions xl9 move in time whereas the positions of the poles in z are fixed. As
is often the case in the study of rational solutions to integrable equations, the motion
of the poles in c are equivalent to an integrable Hamiltonian system of n particles.
Let yι = \-jfXi t2=o t>e me "instantaneous velocity" of the particle at position Xj.
Thus we associate the particle system (x,y) to the wave function φ.

Denote by ^Jt^ the subset of the phase space of an n particle Calogero-Moser
particle system for which the positions, x/, are distinct. If the dual grassmannian
parameters λl and yl were chosen such that (£, y) G y>Jl§, let A be the Moser
matrix

1 - δηΛtJ = y^ -

Then the motion of the xt under the t2 flow is a Calogero-Moser particle system,
given by the Hamiltonian H = tr/12.
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4.4. The Particle System of the Bίspectral Dual of the Wave Function. Recall
that in the bispectral gauge, the stationary wave function remains a stationary wave
function of the KP hierarchy if the variables x and z are interchanged [16]. So, in
particular, we may talk about the bispectral dual of the wave function

There are two reasonable ways to consider the time evolution of the stationary wave
function ι/^(;t,z).

• We can maintain the t^ dependence of the functions xί9 α/ and α/ from the time
dependent ψ. This composition of the KP flow with the bispectral involution is
the bispectral flow which was introduced in Sect. 4.

• Alternatively, since ι/^ is a stationary wave function of the KP hierarchy, one
may add dependence on time so as to make it a time dependent wave function.
Under this flow, the functions λl9 at and αz would become time dependent while
the Xi would remain constant.

To avoid confusing these two flows of the wave function or the two time depen-
dencies of the functions aι and α / ? the usual KP flow of the function ψβ will be
indicated by the variables Tn rather than the variables tn. That is, define the function
ψβ(x,t2\T29z) as follows: let the stationary wave function ψ(x,z) follow the second
flow of the KP hierarchy until time /2> exchange the variables x and z in this new
stationary wave function, then let this function follow the second flow of the KP
hierarchy until time TΊ (treating t^ as a constant).

The motion of the poles in x of the function ψP(x,t2\T2,z), under the variable

TΊ gives us another Calogero-Moser particle system: (ζ(Γ2), μ(?2)) In this way, we
may view β as a map on the phase space of Calogero-Moser particle systems given

by β(x,y) = (ζ,μ).
Since the positions of the particles associated to a wave function are given by

the positions of the poles in x9 it is clear that the positions of the particles associated
to ψP are given by the poles in z of ψ. Therefore, we have

By definition, we have μl — ^^-^|r2=o However, the next section will demonstrate

that μ is more easily computed algebraically in terms of the dual grassmannian
coordinates λi and y/.

4.5. β in terms of Dual Grassmannian Coordinates. As demonstrated above, the

first component of (C, μ) = β(x, y) is given by ζ = Λ, where // are the singular points
in the dual grassmannian coordinates of the solution associated to (£, y). As a result
of the two calculations described below, we will similarly be able to determine μ
in terms of the dual grassmannian coordinates.
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Since the function ψ(x,t2,z) is a wave function for a solution to the KP equation,
it satisfies the non- stationary Schrodinger equation

Then for any 1 ^ / g n the function (x — x1 )Lψ = 0, but its residue at the point
x = x} is given by

<*Jι {

 2za> i o i 2 V β;
q q '

where xt = -j^Xi. Setting this equal to zero and solving for xi9 we find that

1 . ( . Πι<7<^-^) , 1 ^ aj(z) \
y* = ϊχi = -\z + — / Λ - + —r\ Σ — - —2 y α/(z) a^^jXt-XjJ

Then, considering ψβ as a function of Γ2, it is clear that

Alternatively, we can determine a similar formula for the dual grassmannian
coordinate y}. Recall that the function φ(x,z) — q(z)ψ(x,z) satisfies the conditions
GΪ which determine the solution. In particular,

for all x in the domain of φ, where differentiation is done with respect to the spectral
parameter z. Consequently,

φ>

Using the form of ψ which has been written in terms of the residues αy in z, it is
determined that

y, = - \χ +

Therefore,

= r, + Σμ
J*ιλi

This provides us with information about the image of β as a map from ^J{§.
In addition, it gives us the ability to determine explicitly the dual grassmannian
coordinates of a point under the bispectral involution on a large class of bispectral
rational solutions. These results are summarized by Theorem 4.1 and Theorem 4.2.

4.6. Linearization of Particle Systems. In this section, we will consider the bi-

spectral flow of (f,/Γ). That is, given a particle system ( x f a ) , y f o ) ) , we study
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(ζ(t2\ μ f o ) ) = β(x(t2\y(t2)). Using Theorem 4.1, this flow can be determined sim-
ply by observing the action of the KP flow on the parameters λ, and γ,.

The action of the KP flows on a condition of the form

is determined simply in terms of Definition 2.2. Since the KP flows are isospectral,
the positions of the singular points, //, are constant. As shown earlier, the posi-
tions of the particles, £/, are given exactly by the coordinates λt. Consequently, the
positions of the particles, £/, are fixed under the bispectral flow. Furthermore, the
result of the nth flow for time t on the parameter y is y — * nλn~lt + y. As shown
earlier, we can determine μ by the formula μ/ = yt + Σ j^y . Since y is a linear

function of all time variables and the λt are constant, it is clear that the μz have
been linearized by β. This proves Theorem 4.3.

The map σ was originally considered only on the subset of ^,M^ for which the
parameters xt and yι are real numbers. Recall7 that tf(x/,>>/) = ( ζ ι , η ι ) was defined
so that ξt = lim^-^oo y, is the asymptotic velocity of the ith particle. The map σ can
then be related to β using the fact that the eigenvalues of the matrix Λ are {—A/}
[7] and, as always, are preserved by the ti flow. Then, since

lim ΛΪJ — lim yiδlf ,
tl— +00 ?2^00

we determine —ξ = λ = ζ.
Similarly, note that η is given as a linear function by the formula 77(^2) =

/'(f )*2 + f/(0) where the Hamiltonian is given by tr f(A) [2] (Amplification 1).
In this case f(Λ) = Λ2, and so we get agreement with the first coefficient of μ
above. That is,

This is sufficient to prove Theorem 4.4. Thus, β restricted to the domain of the map
σ is given simply by — σ -f (0,c), where c is a constant of evolution.

4.7. Examples

Solving the System with the Bispectral Involution. Consider the generic "2 particle"
case given by

c, (/) = /U) + 7//α/) = 0, ' = 1,2,

and q(z) — (z — λ\)(z — λ^). The parameters λt and yl can form a matrix whose
determinant is τ in two ways. First, we can use the matrix Jί which gives τ in the
gauge given by q = z1 and translate it to the bispectral gauge. Then

= detMi,

7I have changed the notation slightly to agree with that used in this paper.
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where
x + ?ι x + 72

MI =

On the other hand, we know that the eigenvalues of the Moser matrix A are sim-
ply —λt. Since, the bispectral involution exchanges λl and j/, we can also determine
the τ-function as

T(JC) = det(jc/ + Λβ) = det ((x + ^)dtj + ^
\ W

= det (x + 7,

where

Note that the matrix M2 is linear in time along the diagonal and constant off of the
diagonal.

The matrices MI and M2, which arise in very different contexts and are con-
structed in ways which do not appear similar, can be made equal with only a few
basic row and column operations.

Determining the Action of the Bispectral Involution. As an application of
Theorem 4.2, the dual grassmannian coordinates of the image under the bispectral
involution of a specific case of the previous example are determined below.

Let ΛI = 71 — 1 and λ2 = 72 = 2. Then one may determine that

7 + 3x-3z-2xz

and

\ 4 /

Then,the wave function of the solution given by the dual parameters λ\ — x\,
λ2 = #2, 7ι = v\ — and 7? = y? — is

L ^ 5 / 1 ^1 X j _ ̂ 2 /^ ^^ ^2— λ-j

7 4- 3z - 3r - 2zr/ | ^ ^^-/ ^Λ X-Z/yV

Acknowledgements. Thanks to my advisor, E. Previato, for introducing me to the subject and the
problems and providing me with the knowledge to work on them. Thanks to E. Previato, D. Fried
and D. Blair for helpful discussions and ideas. I am also grateful to the referee for helpful comments
and suggestions.



448 A. Kasman

References

1. Adler, M., Moser, J.: On a Class of Polynomials Connected with the Korteweg-deVries
Equation. Commun. Math. Phys. 61, 1-30 (1978)

2. Airault, H., McKean, H.P., Moser, J.: Rational and Elliptic Solutions of the Korteweg-DeVries
Equation and a Related Many-Body Problem. Commun. Pure and Applied Math. 30, 95-148
(1977)

3. Duistermaat, J.J., Griinbaum, F.A.: Differential Equations in the Spectral Parameter. Commun.
Math. Phys. 103, 177-240 (1986)

4. Griinbaum, F.A.: The Kadomtsev-Petviashvili Equation: An Alternative Approach to the
'Rank Two' Solutions of Krichever and Novikov. Phy. Lett. A 139, 146-150 (1989)

5. Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry Volume II. Cambridge:
Cambridge University Press, 1952

6. Krichever, I.M.: Rational Solutions of the Kadomtsev-Petviashvili Equation and Integrable
Systems of TV Particles on a Line. Funct. Anal. Appl. 12, 59-61 (1978)

7. Krichever, I.M.: Rational Solutions of the Zakharov-Shabat Equations and Completely Inte-
grable Systems of N Particles on a Line. J. Soviet Math. 21, 335-345 (1983)

8. Krichever, I.M.: Methods of Algebraic Geometry in the Theory of Non-linear Equations.
Russ. Math. Surv. 32:6 185-213 (1977)

9. Mulase, M.: Cohomological Structure in Soliton Equations and Jacobian Varieties. J. Diff.
Geom. 19, 403-430 (1984)

10. Mulase, M.: Algebraic Theory of the KP Equations. In Perspectives in Mathematical Physics.
Hong Kong: International Press, 1994

11. Orlov, A. Yu., Schulman, E.I.: Additional symmetries for 2D integrable systems. Lett. Math.
Phy. 12, 171-179 (1986)

12. Previato, E.: Seventy Years of Spectral Curves: 1923-1993. To appear in Proceedings of
CIME 1993, Springer-Verlag, Lecture Notes in Physics

13. Segal, G., Wilson, G.: Loop Groups and Equations of KdV Type. Publications Mathematiques
No. 61 de Γlnstitut des Hautes Etudes Scientifiques, 5-65 (1985)

14. Shiota, T.: Calogero-Moser hierarchy and KP hierarchy. J. Math. Phys. 35, 5844-5849 (1994)
15. Veselov, A.P.: Rational Solutions of the KP Equation and Hamiltonian Systems. Commun.

Moscow Math. Soc., Russ. Math. Surv. 35:1 239-240 (1980)
16. Wilson, G.: Bispectral Commutative Ordinary Differential Operators. J. reine angew. Math.

442, 177-204 (1993)
17. Zubelli, J.: On the Polynomial Tau Function for the KP Hierarchy and the Bispectral Property.

Lett. Math. Phy. 24, 41-48 (1992)

Communicated by A. Jaffe




