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Abstract: Consider a smooth Hamiltonian system in IR2yv, x = JH'(x\ the energy
surface Σ = {x/H(x) = //(O)} being compact, and 0 being a hyperbolic equilibrium.
We assume, moreover, that £\{0} is of restricted contact type. These conditions
are symplectically invariant. By a variational method, we prove the existence of an
orbit homoclinic, i.e. non-constant and doubly asymptotic, to 0.

I. Introduction

The goal of this work is to give a partial answer to a conjecture of Helmut Hofer,
about homoclinic orbits in Hamiltonian systems (personal communication). Suppose
that Σ is the zero energy surface of an autonomous Hamiltonian H in IR2Λ/ having
XQ G Σ as a hyperbolic equilibrium and no other equilibrium on Σ, and that Z\{XG}
is of contact type. These conditions are symplectically invariant. The conjecture is
that the Hamiltonian system

x=XH, XH=JH'(x), J=(®ι J

has at least one solution x(t) homoclinic to XQ, i.e. such that x φ-Xo, and
= XQ. It may be seen as an analogue for homoclinic orbits of the Weinstein con-
jecture in R2N, which was solved by Viterbo in 1987 (see [W,V,H-Z]). In the
present paper, we replace the contact condition by a restricted contact condition,
less general but also symplectically invariant. We find a homoclinic orbit, as the
critical point of the action functional associated to a suitably chosen Hamiltonian.

More precisely, we consider the following set of hypotheses on Σ:

(JfΊ): Σ is a compact set. It may be defined as Σ = {x/H(x) — 0}, where H
is a smooth Hamiltonian defined on IR2Λ/, whose differential H' does not vanish
on Σ, except at one point XQ that we identify with 0 after translation. Moreover,
A = //"(O) is non-degenerate.

(Jf 2): JA is hyperbolic, i.e. sp(JA) Π /IR = 0.
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(Jf3): There is a C1-field of vectors (ηX9 x G IR2Λ/), transverse to I"\{0}, and
such that <ynω = ω everywhere in IR2Λ^. Here, co(X, Y} = (JJf, F) is the usual sym-
plectic form in IR2jV.

Remark 1. If Σ is fixed, the conditions (-)f 2, 3) do not depend on the choice of
H satisfying (JfT). The existence of a solution of ( 1 . 1 ) homoclinic to XQ is also
independent of this choice. Moreover, (J^Ί, 2, 3) and the existence of a homoclinic
orbit are invariant by symplectic diffeomorphism.

Remark 2. Denoting Ωx = iηω = ω(η, - ), condition (Jf3) implies that ΏΛ — ̂ (</r, •}

is closed (i.e. exact, in IR2Λ/), and that β x (A7/)Φθ for any jc G AW

Remark 3. (Jf 3) is the restricted contact condition. "Restricted contact" means that
η is defined on the whole space IR2Λ/. In the real "contact" condition, η would just
be defined in a neighborhood of Σ. When H\Σ) = 0, there is no difference between
"contact" and "restricted contact."

Our main result will be the following:

Theorem 1.1. Assume that (Jf 1, 2, 3) are true. Then the system (1 .1) has at least
one solution homoclinic, i.e. doubly asymptotic, to 0.

Our method of proof will be variational.
To our knowledge, the first result on homoclinic orbits obtained variationally

is due to Bolotin [B]. It concerns Lagrangian systems in Riemannian manifolds,
having an unstable equilibrium. In the last few years, this type of system has been
extensively studied (see [K, B-G, R, R-T, A-B] and the references in these papers).

In the case of autonomous Lagrangian systems in IR^, q + V(q) = 0, the exis-
tence of a homoclinic orbit was proved by two different methods in [A-B, R-T], un-
der very natural assumptions on the potential V : 0 is a point of non-degenerate local
maximum for V\ with F(0) = 0, and the set { q / V ( q } ^ 0} is compact, its frontier
being a regular hypersurface on which V' never vanishes. Independently of these
two works, Scholze [Sc] proved the existence of a homoclinic orbit for a Hamilto-
nian system in R2 y V, assuming that (JfΊ, 2) are true, and that dpH(p,q) p > 0

for any (p,q) near Σ with /?ΦO. It is clear that, if H = -̂ + V(q), with V as in
[A-B, R-T], then the assumptions of [Sc] are satisfied.

In the field of variational methods for homoclinic orbits, another direction of
research is the study of Hamiltonians in IR2yV which have the form H(x, t) =
^(x,Ax) + R(x, t), with JA hyperbolic, R smooth, one-periodic in time, and super-

quadratic1 in x (see [CZ-E-S, H-W,T, Sel, Se2]).
In [CZ-E-S], under the additional assumption that R is strictly convex in x,

the existence of a homoclinic orbit was proved thanks to a dual action principle
(a multiplicity result for non-autonomous systems was also given). This existence
result was improved by [H-W] and [T], who relaxed the convexity assumption by
two different methods.

The following proposition shows that the results in [A-B, R-T, Sc] can easily be
obtained as a consequence of Theorem 1.1:

Proposition 1.2. Assume that Σ satisfies (JfT, 2), and suppose that dpH(p, q} -
p > 0 for any (p, q) in a neighborhood }ll of Σ with

1 I.e., such that for some c\, c'2 > 0 and α > 2, and any (x, t) e IR2A/ + l , 6 ' i \x\7 ^ R(x) ^ Q x y

and '̂(.T, /) x ^ α/?(,r, /).
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Then Σ also satisfies

Proof. Geometrically, the assumption "dpH(p, q) p > 0 for any (/?, q) G # with
/?ΦO" implies that Γ is starshaped with respect to the Lagrangian plane L\ =
{(q, 0), q G IR^}. So a natural idea is to take η(q, p) = (0, p). We find that j^;/ω =
ω, and 77 is transverse to Σ\L\, but vanishes on /,]. To avoid this problem, we
remark that the Lagrangian plane L2 = {(0, p\ p G IR^} is contained in the tangent
space to Σ at (</, 0) for any non-zero (#,0) G Σ Γ\L\. This comes from the inequality
dpH(p, q} p ^ 0, true in a neighborhood of (#, 0). As a consequence, the set
^ = |gφO/(g, 0) G £} is a regular hypersurface of IRΛ. Let Z Q be a smooth vector
field in IR^, null in a neighborhood of 0, and transverse to ff, pointing outward.
We choose η<,.(q, p} = (0, p) + t:v(q, p), where ε > 0 and Jv(q, p) is the gradient of
the real-valued function f(q,p) = (p, ^O(<?))IRΛ'

The form /Γω is exact, so from Remark 2, $£]}ι.ω = ω. We easily check that for
£ small enough, (H'(x\ ηί:) is positive on Σ\{0} (Jf 3) is thus satisfied. D

Similarly, in the autonomous case (i.e. when R does not depend on /), the
existence results of [CZ-E-S, H-W and T] can be deduced from Theorem 1 . 1 :

Proposition 1.3. Assume that Σ is the zero energy surface of a Hamiltonian
H(x)= ±(x,Ax)+R(x), with JA hyperbolic, R smooth, c\ \x y ^ R(x) ^ c2 x\y~

and (Rf(x),x) ^ %R(x) for some c \ , c^ > 0, α > 2, and any x G IR2A/. 772^/7 Σ
satisfies the assumptions ( #\, 2, 3) of Theorem 1 .1.

Proof. By assumption, (J»f2) is satisfied. Since c\ x\y~ ^ R(x), Σ is compact. We
choose η = |. Clearly, <£nω = ω. Moreover,

(H'(x), η) = -((x, Ax) -f (^'(jc), x)) ^ H(x) -\ R(x).
2 2

So for any x G £\{0}, (H'(x), η) is positive (geometrically, this implies that Σ is
regular outside 0 and starshaped with respect to 0). So (Jf ;l, 3) are satisfied, and
Theorem 1.1 can be applied to Σ. D

In the proof of Theorem 1.1, we shall write H(x) = ^(x, Ax) + R(x), with JA
hyperbolic, R smooth, R(0) = 0, R'(Q) = 0, ^/7(0) = 0, as in [CZ-E-S, H-W, T]. In
our situation, R is not necessarily superquadratic, moreover it may be negative on
some parts of Σ. Our functional will be similar to the one in [H-W],

= -f(Jx, x) - $H(x\ x G H] 2(IR, 1R2 A /). (1.2)
^R IR

Hofer and Wysocki [H-W] used the theory of first order elliptic systems of the
type dsu + Jctu -f H'(u) = 0, to find a Palais-Smale sequence for /. In the present
work, we won't use this "elliptic" approach.

Our assumptions being much weaker than those of [H-W, T], we will have to
solve new problems:

• Since the superquadraticity of R is relaxed, it is more difficult to prove that the
Palais-Smale sequences are bounded in 12(IR, IR2A/). Assumption (Jf3) will be
crucial here.
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• Since the sign of R near Σ is unknown, it is more difficult to find a topological
argument for the existence of a Palais-Smale sequence. This second problem is the
most important one.

II. Main Notations and Sketch of the Proof of Theorem 1.1

Throughout this paper, we shall use the standard notations IR+ = [0, +00), R^ =
IR+\{0}, N - TL Π R+, and N* = N\{0}.

If TV = 1, then the Hamiltonian system is integrable, and Theorem 1.1 is trivial.
So we only have to treat the case N ^ 2. Consider Σ satisfying (^Λ to 3). We
can replace Σ by the connected component of 0 in Σ, (JtfΊ to 3) remaining true,
and the homoclinic problem being unchanged. So, using the freedom in the choice
of //, η, we may impose the following additional condition, without restriction of
generality:

(Jf 4): N ^ 2, Σ is connected, and, outside some bounded neighborhood of Σ:

= i(x, Ax) + a x\2 with a >

λ = -j(Jx, }, with Ω = iηω as in Remark 2.

JA being hyperbolic, we have signature (A) = signature(z'J) — (N, N). So, for
N ^ 2, C* = {;cφO/(;c, Ax) = 0} is connected, and, if Σ is connected, then Σ\0 is
also connected. We will use this in Lemma 3.1.

If (J"Π to 4) are satisfied, then the functional / given by formula (1.2) is
well-defined and smooth on the Hubert space E = //1/2(R, R2Λ^).

Indeed, these conditions imply that

R = 0(\x3), Rf = 0(W 2 ) , R" = 0 ( \ x \ ) for x near 0, (2.1)

R = 0(\x2\ R' = 0(\x ), R" = O(\) for x\ large, (2.2)

and that the higher derivatives R^Ί\ n ^ 3, are bounded and compactly supported.
Now, denote

D:E^E' = //~1/2(IR, R2 Λ /)

dt

L = D-[. (2.3)

In the Fourier representation, we have Dx(ξ) = D ( ξ ) x ( ξ ) , where

D(ξ) = -Uξ-A (2.4)

is a hermitian matrix, always non-degenerate because JA is hyperbolic.

We denote

\D(ξ)\ = /D2(c), D±(ξ) = l-(\D(c)\ ± D ( ξ ) ) . (2.5)

We have D(ξ) = D+(ξ) - 0_(ς), \D(ζ)\ = D+(ξ) + 0_(ς).
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Let us define
π±(ξ) = \ D ( ξ ) \ ~ l D ± ( ξ ) . (2.6)

We have π+ + π_ = l€2yv, π+ o π_ = π_ o π+ = 0, and π+(£), π_(ί) are two or-
thogonal projectors on (C2Λ/ for each of the hermitian products (X, Γ}<r2Λ/ and

(X, \D(ξ)\Y}f2N.
Now, if we consider the bilinear form on E

(x, y}E = f d ξ ( x ( ξ ) , \D(ξ)\y(ξ)) , (2.7)
IR

( , )E is a scalar product whose associated norm || \\E is equivalent to the clas-
sical //1/2-norm. Moreover, denoting

P^x(ξ) = π±(c)i(ς), P±E = E±, (2.8)

we see that E = E+(&E_, the sum being orthogonal for the classical L2 scalar
product and for ( , )E. Thus, for any x G E,

\\X \\ u ~~~ I I - * -$-X \\ F ~τ~ I I - * X \\ F ? \ ^? ^>Fy(E* — M^~1~*^~J J / * " J J ̂  "̂  /^

So we may write

/(*) = ^(l lP+jclH - HP-xIl!) - /Λ(λ). (2.9)
Z IR

The differential of / at x G E is

and denoting

|ί|i(0= \ D ( ξ ) \ ~ l x ( ξ ) , (2.11)

we can define the gradient of / for the scalar product ( , - )£,

V/(;c) - P+Λ - P-X - \L\R'(x) G £". (2.12)

In Sect. Ill, we will prove the following compactness result.

Theorem 2.1. Suppose that (;^\) to (Jf4) are true. Let (xn)n^o he a
Cerami sequence for /, i.e. a sequence in E such that I ( x n ) —» c G IR, and
(1 + IM^H/'UOIU' -+0asn-+ +00.

77?^/7 there is a finite integer p ^ 0, αwrf homoclinic orbits Zλ,...,Zp such
that, after extraction, we have

—> 0 as n ̂  +00 ,

^ G IR, */, - ί^l -̂  +00 as n -> +00, // iή=j.
Moreover, for any /, /(Z7) > 0. ^Λ1 ί/ consequence, c — ̂ ^^(Z'), β^ί/1|;*;/7||£ -̂

E / = i l l z f I U - S1^ c ^ °' and ifc = 0, ί/z^ l l ^ n l U -> 0 αy Λ '̂ +00 (α/^ /? = 0).

This type of compactness result is well-known for functionals invariant un-
der the action of a non-compact group (see [St,L]). A general method of proof,
based on the Concentration-Compactness principle of P.L. Lions, is described in



298 E. Sere

[L]. To apply this method, it is necessary to have an cςa priori" estimate on
the norm in E of the critical sequence (xn). To obtain this bound, we use the
assumption (I + \\xn\\)I'(xn) ^ Q, I ( x n ) —* c), introduced by Cerami for general
variational problems, (see [C, E]), instead of the more classical Palais-Smale
assumption ( I ' ( x n ) — » 0, I ( x n ) — > c\ which seems too weak here (see the proof of
Lemma 3.3).

The second step in the variational proof of Theorem 1.1 is to find a topological
reason for the existence of a critical sequence. In [H-W, T], a linking argument is
used, based on the fact that for some e G E+, I is negative on £ τ_\{0} and outside
a bounded subset of M_ = E- Θ IR+β. Unfortunately, we cannot use this standard
approach: since our conditions (JfT) to (Jf4) do not imply that Σ C {x/(x, Ax) <;
0}, the sign of R may be negative near some parts of Σ. So it is not always true
that /(£_) ^ 0.

Our solution will be to replace E_ by the unstable manifold it r - for the flow
(φτ, τ G IR) of — V/, issuing from 0 (it is obvious that / is negative on it '_\{0}).
We will have to choose e G E+ very carefully, and to introduce an auxiliary func-

tional / ^ /, with (I'(x) = 0 <=$ I (x) = 0). Then we will prove that / is negative
outside a bounded part of it/" - Θ IR+e. We will conclude by arguments inspired of
[H-W] (see Lemma 4.4).

To start this program, we define

B(ε) - {x G E/\\x\\E ^ c}, S(ε) = {* G E/\\X\\E = ε} ,

B±(ε) = B(ε) Π E±, S±(ε) = S±(ε) Π E± . (2.13)

The flow ((/)r, τ G IR) is defined by

φQ(x) = x, Vx e E,
Ψ J (2.14)
dτφτ(x) = -VIoφτ(χ), V ( T , J C ) G IR xE.

It is easy to see that the formula

Φ(x)= lim φτ(e~τx\ x^E^ (2.15)
τ— > + oc

defines a smooth mapping Φ : £_ — > Y/ '_. From (2.12) we find, by the method of
variation of the constant, that

Φ(x)=x+\L\k(x), (2.16)

where k is solution of

k(x) = Je(p~~p+]τR'(e'τx + \L\k(e~τx))dτ . (2.17)
o

The following consequence of Theorem 2.1 will be very useful:

Corollary 2.2. Suppose that (W\) to (3^4} are true. Consider the June t ion

l ( σ ) = sup / o Φ(S-(σ)) . (2.18)

We have limσ_^+ o c/(σ) = — oc.

Proof. From the relation Φ(eτx} = φτ o Φ(,τ), it is clear that / is strictly decreasing.
Let /oc < 0 be its limit as σ goes to infinity. Assume by contradiction that /^
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is finite. Then there is a sequence (Xn)n^Q in Φ(B(Q, 1)) such that / o φ2n(Xn) —>
/oo, I O φ2,Hι(Xn) —> /oo.

2//+1
Since /2// ||/' o φs(Xn)\\2

E, dτ = I o φ2n(Xn) - 1 o φ2,1+\(Xn) = o(l), there is a

sequence (τ / 2 )//^o, 2" ^ τ/7 ^ 2/7+1, such that

-Vf 1- I

But we also have J0 ||/' o φτ(Xn)\\j.,dτ rg —/oc, thus

where M = sup{||0(j)||£/;c e 5(0, 1)}.

As a consequence, (1 + \\φτn(Xn}\\EW ° Φτn(Xn)\\E' = o ( l ) .
Moreover, /^ ^ / o φΐn(Xn) ^ / o φ2»(Xn) = /oo + o(l).
So φτn(Xn) is a Cerami sequence at the negative level 7^. But from Theorem 2.1,

this is impossible, and Corollary 2.2 is proved by contradiction. D

Given σ > 0, e £ E+, we denote

,//_(σ,e) = Φ(£_(σ)) + [0,σ>, (2.19)

a//_(σ, β) = (Φ(5_(σ)) + [0, σ]β) U (Φ(5_(σ)) + {0, σ}e) . (2.20)

Finally, / is called /-admissible if

(x) = I(x)-fR(x),

with R ^ 0, R smooth, R = 0 in a neighborhood of Σ , (2.21)

R = a x\2, a ^ 0, outside another neighborhood of Σ .

Let ((/>τ,τ e IR) be the flow of -V/, defined by

UoW = ,, V * e £ ,
\ aτφτ(j) - -V7 o φτ(jc), V(τ,x) e IR x ̂  .

In Sect. IV, we will prove the following result:

Theorem 2.3. Suppose that (Jtf'l) to (J^4) are true. Then there are σ,p> > 0,e £
j?+ and I J -admissible, with:

(i) /(a///_(σ,e)) < 0 ,
(i i) inf/(5+(p)) > 0,

(iii) For any τ ^ 0, φτ(<J?-(σ,e))Γ\S+(~p) is non-empty.

Theorem 2.3 has the following consequence:

Corollary 2.4. Suppose that (3tf\) to (J^4) are true. Then there is a Cerami
sequence for I at the positive level

c = inf sup / o φ (J//_(σ,e)) > 0 .
τ ^ O

The proof of Corollary 2.4 is standard (see [C]).
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Clearly, Σ and H = H + R satisfy the conditions (JT1) to (Jf 4) of Theorem 2,
and H = H in a neighborhood of Σ1. So Theorem 1.1 is an immediate consequence
of Theorem 2.1 and Corollary 2.4.

III. Proof of Theorem 2.1

We consider a smooth function θ : R —>• [0,1] such that

θ ΞΞ 0 on (-oo,-- ,

Πϋ = I on -,-|-OG

θ(t) + θ(-t)= 1, Vί G R .

We define
0R(0 = 1 ,

Θrβ+c«)(0 :::::: 0(^ ~~ β) '
/r^ / ^ \ n/z. <*\ (3 ^)

In what follows, the "action of x on the interval of time ,/" is the integral

(3.3)

5^ is well-defined on E, and .5̂  = /, as we will see in Lemma 3.2. Moreover, if
a + 1 ̂  ft ̂  c - 1 , then S ,̂ r] = 5lfl> ̂  + % f ] .

Our arguments are organized as follows:
First of all, by the restricted contact assumption, the orbits of ( 1 . 1 ) on Σ must

have a positive action on R, and the ones having a finite action on R are homo-
clinic to 0. We make this precise in Lemma 3.1 (and later in Lemma 3.6, for the
consequence on Cerami sequences).

Lemma 3.3 tells us that Cerami sequences must stay "near" Σ. The proof
of Lemma 3.3 is the step where we need "(1 + H^H)/7^,,) — > 0" instead of
"/'(*„ )^0."

Thanks to Lemma 3.3, we prove that (xn) is bounded in Z^oc-norm (see
Lemma 4), and that, for a given sequence (tn)n^o of translations in time, we have,

after extraction, xn(t — tn) — > *oc(0 m ^ιoc norm, where x^ is an orbit of (1.1) on
Σ (see the proof of Lemma 3.6). Lemma 3.5 means that, if xn is small in local norm
on a bounded or unbounded interval of time / , then the action and L2-norm of xn

on / are small. It is closely related to the "concentration-compactness lemma" in
the "vanishing case" (see [L]).

Proposition 3.7 is a key step in the proof of Theorem 2.1. It gives a global L2

estimate on Cerami sequences. To obtain it, we cut the time domain R into a family
of intervals (./'/)/G/ί" On some of them, xn is small in local norm. On the others,
the action of xn is greater than some y > 0. Moreover, any interval of the first type
is adjacent to at least one interval of the second type. This decomposition is based
on Lemma 3.6, and gives the estimate of Proposition 3.7, because Card(Λ") and

\\L2 are bounded independently of n ^ 0, / G Λn .
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To end the proof of Theorem 2.1, one can either apply the general concentration-
compactness theory [L], or use once again the partition («/")/G/4".

To start our program, we prove

Lemma 3.1. Assume, for N ^ 2, that (Jfl) to (Jf3) are true, that Σ is connected,
and that H is positive outside some bounded set. Then ΩQ = 0, and for any x G
Z\{0}, we have Ωλ(XH) > 0. Moreover, there is y > 0 such that, for any ζ > 0,
exists a positive integer T(ζ), with the following property:

For any orbit x ( t ) lying on Σ, if \S^\](x)\ + J0 x\2 ^ ζ2, then

^[-r(ϋτ(θ]W = M-r(θT(ϋ] ' Ω*(*//) > y - (3-4)

So a solution x ( t ) of ( \ . \ ) is homo clinic to 0 iff it lies on Σ\{0} and has a finite
action on IR, and we then have I(x) = fRΩλ(x) = fRΩx(XH) > y.

Proof. Since N ^ 2, Σ\{0} is connected, so the sign of Ωx(Xπ) is constant
on £\W As a first consequence, the sign of ΩQ(JAx) is constant on C* =
{Λ ΦO/{JC, Ax) = 0}. So Ω0 = 0.

Σ is the frontier of the bounded volume f = {x/H(x) g 0}. For x G A{0}, we
have ΩX(XH) = ω(η, XH) = (η,Hf(x)). So ΩX(XH) > 0 iff η points outward.

Denoting ψt the flow of η, if the volume of ψt("/7") is an increasing function of t,
then fy points outward. We write

Λ / ω"dt J

So the first part of Lemma 3.1 is proved.
Now, the flow φ of XH is hyperbolic at 0, and its restriction to a small neigh-

borhood of 0 is C°-conjugate to the flow of the linearized vector field JAx. So there
is β > 0 such that, if x(t] is an orbit of (1.1) on Σ satisfying |jc(0)| ^ p > 0, then
either \x(<T(p))\ ^ β, or \x(-,T(p))\ ^ β, for some ,T(p) G N*, independent of

We choose 7 = inf {^[-ijj^VXO) G Γ, χθ)| ^ β, y = XH(y)} Given ς > 0,
we take p(ζ) > 0 such that, if an orbit x of (1.1) on Σ satisfies |jc(0)| < p ( ζ ) , then

|5 lo,i]W|+/ 0 'k 2 <ζ 2 .
We choose Γ(ς) = ^~(p(ζ)) + 1, and the second part of Lemma 3.1 is easily

checked. D

The following lemma concerns the action ̂  defined by formula (3.3):

Lemma 3.2. Suppose ( J f l ) to (J f4) are ίrwέ?. Then, for any interval / of size
greater than 1, the functional ϊ/j is well-defined and continuous on E, and for
any x G E,

/Ωι(jc) = -J'(Jx,x), hence ^R(x) = I(x) . (3.5)
IR 2R

Moreover, for some K > 0 independent ofx,/, we have

g κ-||x||| . (3.6)
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Proof. From (J«f4), £v and the differential Q'x are uniformly bounded on IR2Λ/.

Now, given x G //1/2(1R, R2 Λ /) = £, there is x G //'(IR2, IR2 / V) such that the
trace of x on IR x {0} is c, and that ||3c||^ι ^ ^|W|| for AT > 0 independent of jr.

The following estimates prove that x — » Ώγ is well-defined as a function from £

l|Ω.r||£ - 0(\\Ω,\\H, ) =

In a similar way, and with the help of Lebesgue's convergence theorem, we
find that x — » Ωγ is continuous from E to E. D

We now consider a smooth function ό : IR — » [0, 1] whose support is a subset
of [— 1, 1], and such that JRb = 1. We denote

(3.7)

We have the following result:

Lemma 3.3. Assume (^l to 4) ar
in E satisfying

(i + IM£)||/'(*,,)llE'

Then, for any ε > 0 fixed, we have

lim
/7 —^ + 00

suppose there is a sequenee (xn)n>o

0 as n —> +OG .

L ~ ( R ) = 0 . (3.8)

Proof. For a fixed ε, and a given x G E, smooth and compactly supported, we have

fH(x(τ))bκ(t - τ)dτ
IR

(integrating by parts)

= ί(H'(x(τ)) x(τ))Bκ(t-τ)dτ
R

(remarking that c = JH'(x) + Jl'(x))

= f(H'(x(τ)) - J I ' ( x ) ( τ ) ) B κ ( t - τ)dτ
R

= {H'(x(τ))B,(t - τ);JI'(X}(τ)}ExE,

Z C Ϊ \ \ H ' ( x ) \ \ E \ \ ΐ ( X ) \ \ E >

g C, : | | jr |U| |/'(;t)| |£/, from (2.1), (2.2).

Here, C,. > 0 is a constant independent of t,x. By density, the final inequality is
true for any x e E. Taking x = x,,, we obtain (3.8). D
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As a consequence of Lemma 3.3, we now prove

Lemma 3.4. Assume (:^\ to 4) are true, and that (xn)n^o satisfies

(\ + \\Xn\\E)\\ΪM\\E> ~> 0.
n^ + oc

Then there is a constant C > 0 such that, for any n ^ 0,

L2 ^ c (3 9)

Proof. Otherwise, by extraction and translation, we get a sequence yn = x φ ( n ) ( t — tn)
such that ||y,?/[oj]||L2 -> +00.

Writing zn — η — ̂ — π — , we have L zl > 1 , henceto n vwrn n L ? ' .'0 H — '

Now, recall that /?(.x) = a|x 2 with α > ^^ for ^j large enough. So, for
" / Γ O . l l l l / 2 ι ι\- L large enough, we get

Consider the finite bound m = —minλ.6lR2iv//(^), and fix 0 < ε < ^.
There is «o > 0 such that, if n ^ «o» then for any τ £ [—ε, ε],

1+τ~H i / \\A\\\
f R(yn(t))dt ^ -\\ynχ[θΛ]\\2

L2 ( a - ̂  ) - 2m
τ-r. 2 V 2 /

^ 10, for instance.

So we will have

f(H(yn)*bL)(t)dt=f(hbκ(-τ) f Ή(yn)(u)du ^ 10 .
— /: —f, τ — L

But remembering that (yn) comes from (jc/7), we see that Lemma 3.3 is contradicted.
Lemma 3.4 is thus proved. D

The following result deals with the "vanishing" situations:

Lemma 3.5. Suppose (Jf 1 to 4) are true. There are a constant Co > 0 and
a function v : IR^ —* IR^, such that, given M > 0, x £ E and m\ < m^ £ TL U
{-oo,+oc},

// sup{| |x/[ / 0 . / 0 + i] | |L2,/o G 1R} w smaller than M,

/ Γ
/" |jc ,m\ ^ k ^ rri2 — I,
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is smaller than £o> then:

1) In the ease m\ — — oo, m^ — +00, we have

Nil ^ v(Co)(C 2 + ||/'WII|') . (3.10)

2) In any ease, we have

ζ2Ln ί + ||/%v)|||Λ . (3.11)

Proof. We only treat the case m\,πi2 G 2ζ, which contains the essential
difficulties.

To simplify the notations, we write Θ p instead of 6>[m ι + /, 5 / W 2_ / 7 j . We have

Θ^JC - ΘpLR'(x} + ΘpLΐ(x)

,,^!) + (9μ/7(x) . (3.12)

We recall that Z, = (—Jj-t — A)~l is an isometry between E' and E. Moreover,

ΘPL is continuous from E' to £, and for some K(0} independent of /?,

L may in fact be defined as a convolution product, Lx = ^*x, where J^(/) is
the matrix £J/ί/(χiR+(/)Γ[5 — ZR_(θΠι/) Here, ]j[s, and fjw are the matrices of pro-

jection on the stable and unstable spaces of the flow etJA. We see that
for some K(l\μ > 0,|^;(0| + \^(t)\ ^ K(l)e~^ for ίφO. As a consequence,

The same argument gives

sup

(3.13)

^ K(3]ζ . (3.14)

Now, since |^'(;c)| ^ ̂ (4) min(|;c|, |;c|3/2) we get

\R'(x)\2 ^^5) (|ζx|3 + | ( l -ζ)x | 2 )

for any 0 ^ ζ ^ 1, A^(5) being independent of ζ. So we have

/ |6y|3+ / 1(1 -ΘP)X

2

[m i + p, ni2 — p] \ [m \ + /;, m2 — p]

2c 2 + Σ /
k=m\+p k
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But we may write

A + l

/ \ΘpX
k

k+\

by the Cauchy-Schwartz inequality. So

[m\+p,m2 —

' k+\

/ I -
v k

m2-p-\ ( k+\

ζ Σ JΊ
k=m\+p \ k

305

by a classical Sobolev inequality. Hence

Combining (3.12), (3.13), (3.14), (3.15), we get

\\xΘp\\E ^ K{7}(ζ + ζ l ί 2 \ \ x Θ p \ } E )

So, if ζ < ζo = (2K(D)2> then

\\xθp\\2

E g , X 1

Writing

m2

f \ x \ 2 ^ \.9'lmι+p+l.m2-p-

+ Σ

(3.15)

(3.16)

and using the inequality (3.6) of Lemma 3.2, we get

We also have the rough estimate

m\

So there are two possibilities:

1st case: '"2

 2'
n] - 1 ̂  \Ln ( i ) .

Then, from (3.18), ^ [ m i ) I M 2 ](jc)| + J"2 x\2 ^ (fa(ί) + 1)C2

(3.17)

(3.18)
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Then we choose p G [^Ln(\)~

E. Sere

i)], and from (3.16), (3.17), we get

2 2M)2(C )C2

+M)2(ζ2 +e2"ζ2

So, in both cases,

^ v(M) (3.19)

and Lemma 3.5 is proved. Q

The following result deals with "non-vanishing" situations:

Lemma 3.6. Assume that (JfT to 4) hold and (1 + \\xn\\E)I'(xn) — » 0 as n — »
oo. Take ζ > 0. Γλere w N(ζ) > 0 such that: given ί0 ^

 R αwrf Λ ^ Λ^(C),

'/l^[/o,ίo+i]Wl + ί+1 X|2 = ί2 ' ̂ w ^[/o-ΠCMo+ΠOlί^) > )' ancl<S,(xn) > 0
for any interval ./ ^MC/Z that [/0,/o + 1] C ./ C [ί0 - T(ζ),tQ + Γ(ς)]

//βr^, ίΛέ? constant γ and the integer T(ζ} are the same as in Lemma 3.1.

Proof. Otherwise, there would be ζ > 0, a subsequence ;t(/)(,7) and a sequence of

translations (ίw)n^0 such that, denoting yn = xφ(n)(t + tn\ &Ίo,\](yn)\ + /J |^«|2 ^

ζ2, and either ^/^τ^ τ(ζ)](yn) ^ 7, or ^^(j7/?) ^ 0 for some interval ./,7, with
[0, i ]cΛc[-Γ(C),r(C)].

By Lemma 3.4, we have SUP / O GIR|| v / 7χ [ r o, r o +i] | |L2 ^ C.
So j>/7 = LR'(yn) + LI'(yn) is precompact in L2

CC.
After extraction, we get yn -^ y,x in L2

OC, and, by a standard bootstrap argu-

ment, βyn -^ βy^ in £", for any fixed smooth function β, compactly supported.
n^oo

As a consequence, y^ =L/?/(jvo c). So y^ is a solution of (1.1). Moreover,

^[o,i](jΌc)| + /J Joel2 ^ C2, and either ̂ T(:}J(C}](yoo) ^ 7, or ̂ /00( V o o ) ^ 0,
by continuity in E. Here, ,/oc is an interval whose end points are the limits of the
end points of (-/,2), after extraction. Now, from Lemma 3.3, for any i; > 0 and
/ G 1R, we have

[H(y00)*bl.](t)= lim [ H ( y n ) * 6,.](0 = 0 .
/2^ + OG

So H(y00) — 0, and j^o lies on Σ. So we get a contradiction with Lemma 3.1, and
Lemma 3.6 is proved. D

Thanks to the two preceding lemmas, we are now ready to prove the key propo-
sition of this section:

Proposition 3.7. Suppose that (Jtf\ to 4) are true. Let (xn)n^o be such that
(1 + IM^H/'OOIU, -> 0 and I ( x n ) -> c € IR as n -+ +00.

Then the sequence (||^Λ|| ̂ 2 X 2 ^ 0 ^ bounded.
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Proof, v, Co and 7 being those of Lemmas 3.1 and 3.5, we take ζ\ < Co such that:

< 7 , (3.20)
v ^ i / 4

where C is the constant of Lemma 3.4.
From (3.20) and Lemma 3.5, there is ΠQ such that, for any n ^ ΠQ and any

m\ < mi £ TL U { — oo, +00}:

(3.21)

^ v(c0)Co

s

if -(

then

A-+1

A-

n»,.»-2](^)l + 'î

2 ςχ9

< Cl

2
/; <

Π

(3.22)

We take /? ^ max(«o»N(ίι))> where the function 7V(C) is the same as in
Lemma 3.6.

Proposition 3.7 is an immediate consequence of (3.21) in the case

A + l

A

So we may assume that |^[A,A + I J ( * / > ) | + j\ χn\ ^ (\ for some k £ Z. Then there
is a partition ,̂ " = {./'/, / G An] of IR, where ^/7 is a subset of N, and each set ./'/
is an interval of one of the two following types:

Type L <9'9n(xn) > 7, and 2Γ(Cι) ^ -//? | ^ 3Γ(Cι), where the function T(ζ) is

the same as in Lemmas 3.1 and 3.6.

Type 2. |./'/ G N* U {+00}, and, if we subdivide ./'/ into ./;/| disjoint intervals
/'(<7) of length 1, then for any q,(\ ^ q ^ ,/'/!), we have

Moreover, any interval ,/ of type 2 is adjacent to two intervals of type 1 if J
is bounded, and one otherwise.

Proposition 3.7 follows from the existence of 2Pn ' .
Indeed, if we call A\,A\ the subsets of A'1 associated to the intervals of type 1,

2 respectively, we have Card Λ'j = 1 + Card A".

So, from (3.22),

(3.23)
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hence

/(*„) ^ Σ^/'/fe)- Σ yf»,M\
/e/ί',' I'eA'i l

^ -Card(^ΐ) ^ I (Card 04")- 1) . (3.24)

But I(xn) — » c. So (Card Λ") is a bounded sequence. Now, if / e Λ'/, then ||*,,χ/" ||^2

^ 3Γ(ςι)C2, where C is the constant of Lemma 3.4. Combining this with (3.23),
we find that the norm

I k / i l l ^ = Σ I l w/';ll2 + Σ l l w/ '/ l l 2

is bounded independently of n.
So, to end the proof of Proposition 3.7, we just have to give the construction

of 3Pn. We write T instead of T ( ζ \ ) to simplify the notations, and we proceed as
follows:

We choose k^^TL minimal such that |-5^μ0,A0+i]fc)| + /A ° *n\ = C? From

Lemma 3.6, we have ^[kQ_τ^kQ^τ](xn) > y.

Moreover, the interval ,/(j =] — oo,&o ~ ^] is of tyPe 2, by minimality of k$.

Now, two possibilities may occur:

1st case. [kQ + 27, +oo[ is of type 2. H^> take ,?\ = [ A r j , +00], iv/YΛ k\ G Z Π [/c0 +
Γ,^o + 2Γ] minimal such that ,?*]_ is of type 2, and we take J" = [̂ o — T9k\].

Since \^[k.k+\](Xn)\ + /A. | ̂ «| ^ C? f°r ^ ^ {^o?^ι - 1}' Lemma 3.6 implies
that ,/Ί7 is of type 1 .

So, in the first case, (J^,./'/,./^) ^s me desired partition.

2nd case. There is minimal integer k\ ^ko + 2T such that \^/\/,}^l + \](xn)\ +

r A l + 1 i r 2 > r2

J A , \χn ^ 4 ι

If for some integer ^ G [̂  + Γ,min(£0 + 2T,k\ - Γ) - 1], |5^A/ I A / + I]( X /?) | +

J^+1 |x/7

 2 ^ C?, then we choose J'{ = [kQ - T,min(k0 + 2T,k{ - T)]. From Lemma

3.6, ,/ΐ is of type 1. When k0 + 2T < k} - Γ, we also take ,?\ = [k0 + 2Γ,y^, - T].
This interval is of type 2, by minimality of k\ .

If no such ^ exists, we take ./'/ - [kQ - T,k0 + Γ],./^7 - [λ0 + T,k\ - T}.
<f\ is again of type 1, -/2 ^s of type 2.

To continue the construction, we apply the preceding procedure to k\ instead of
£o Iteratively, we find the desired partition, and Proposition 3.7 is proved. D

So we know that any Cerami sequence (xn)n^Q is bounded in global Z2-norm.
Moreover, xn = LR'(xn) + LI'(xn), with LI'(xn) -> 0 in £, and R'(x)\ = Q(\x ).
So, by classical arguments of the Concentration-Compactness theory, (see [5, 17]),
Theorem 2 is true ("vanishing" is forbidden by Lemma 3.5).

A more direct way to end the proof of Theorem 2 is to make use of the
construction given in the proof of Proposition 3.7.
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This construction implies that, after extraction, there are an integer p (0 ̂  p ^

f̂ + 1), p sequences /, ! , . . . , tn of real numbers, with (/ φy => |^ — ί/7 —> 4-oc), and,

for each n, a partition of IR by intervals,

S" = on u 0 , with ρ',' = {[< - 4,/;, + d'n], i ^ i ί p } ,

= p+\,
\ / /

and with:

for any ./ G Q\ , &,(xn) > 7, (3.25)

for any ./ G Q{ , \,y?(xn)\ + f \ x t l \
2 < ~ . (3.26)

We have seen in the proof of Lemma 3.6 that, given a sequence σn G IR,
xn(t + σ n ) has at least one limit point x^ in the L\QC-topology, and that x^ is
an orbit of (1 .1) on Σ. We can say more: if δn = dist(σ/7, {tl

n, 1 rg i rg p}) is a
bounded sequence, and if XOQ is a limit point of xn(t + σn\ then (3.25) implies that
jCoc φO. Moreover,

a +a+σn ,,

J ΩX o o(f0 0) rg lim J [ΩXl](xn) — //(jcw)] ^ c + - ,
— a n^°°—a+σn ^

for any a ^ sup(^/7)/?^o + (¥ + 0^(Cι )• So x^ is a homoclinic orbit. If On —» +00,

then, from (3.26) and Lemma 3.1, jc^ = 0. So, using Lemma 3.5, we find that, for
any £ > 0, there are zl(ε) > 0 and «/: > 0 such that

Finally, after extraction, xn(t + ^7) —> Z; in L^oc, with Z; homoclinic, and ||x/7 —
Σ/Li ^'(^ ~~ ^7)11^2 —* 0. By a bootstrap argument, \\xn — Σ?=\ ^'(t — tl

n)\\E ~^ ^> an^
Theorem 2.1 is proved. D

IV. Proof of Theorem 2.3

In this part, we shall use the notations given in Sect. II by formulas (2.3) to (2.22).
We define a function e\ G ̂ (IR,IR2Λ/), (<f being the Schwartz class of C°°

functions / such that (dy f}P is bounded on IR for any α G N, and P polynomial),

by
, (4.1)

v2
where ^f( ξ) = ( 1 , 0, . . . , 0, / sign( ξ ), 0, . . . , 0 ) is an eigenvector of — ίJ with eigenvalue

sign (c), and φ is some function whose Fourier transform φ G ̂ (R, IR) is non-zero

and even, with φ Ξ 0 on a neighborhood of 0.
The essential properties of e \ ( λ t ) are given in the following lemma:

Lemma 4.1.

a s / ~.+oo, (4.2)

a s / - » + o o . (4.3)
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Proof. As |c —» oo, we have

D(ξ) = iξJ -i

hence

~

So

From there, by straightforward calculations, we get (4.2) and (4.3). D

From (4.2), for λ greater than some constant ΛQ, we can define

(4.4)

We are going to choose e = eΛ in Theorem 2.3, for some λ large enough.2 This
strategy is going to work because the support of eL is included in (—/),/ U /,,/,

where ./ in a fixed closed interval of IR with 0 ^ ,/, so that, for / large, \L\k(x] is
"small" on support (e-,) for x E #_(σ). As a consequence, eΛ is "almost" orthogonal
to Φ(£_(σ)). We will also use the fact that for / large, eΛ(t) "looks like" e \ ( λ t ) .

The following result corresponds to (i) in Theorem 2.3.

Lemma 4.2. Assume thai (JfΊ-4) are true. Then there are σ,λ\ > 0 such that,
for any λ ^ λ \ , exists an I-admissible functional /;., with

0. (4.5)

Proof. From formula (2.17), it is easy to check that k: E —> E is smooth and has a
differential ^'(jc) uniformly bounded on E. We also have &(0) = O^^O) = 0, hence

\\E = , Vx and lim
IWU

(4.6)

This estimate will be used repeatedly.
The proof of Lemma 4.2 is divided in several steps.

First step. There is C > 0 such that, for any λ large enough, and all σ > 0,
(x,s) G £ _ ( σ ) x [0, σ],

I(Φ(X) + ̂  ) ^ / + - + C— .
2 λ

(4.7)

2 The introduction of e, has been inspired by some familiarity of the author with the wavelets
theory. The interested reader is referred to the book of Yves Meyer, [M].
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Proof of the first step. For x G B-(σ\s G [0, σ], we have

seλ). (4.8)

We write

= s(k(x)9\L\e,.)E ^ s\\k(x}\\E\\Le/\\E

^ Csσ-, from (4.3) and (4.6). (4.9)

We also have
i

)) = s f d t f d h R'(Φ(x) + hs e ί) <?/.(/)
k o

i

0

1

^ sfdh\\R'(Φ(x) + h s e λ ) \ \ E \ \ L e ; \ \ E

o

)-, from (Jf4), (4.3) and (4.6). (4.10)
A

Combining (4.8), (4.9) and (4.10), one easily proves (4.7).

Second step. We consider a non-zero function 0 in ^(IR, IR) such that θ is even,

and such that \η\ ^ ̂  for any η G support(O) and ξ G support(e\\

There are b,B > 0 such that, for λ large enough, and all σ > 0, (x,s) G

7
S S(7

IR '" λ λ3/2 '

Proof of the second step. Roughly speaking, this proof is based on the idea that
Φ( c) and e, are "almost orthogonal" in L2.

Denoting f ( t ) = θ ( t ) e \ ( t ) , we see that / is of the form ~g(ξ) X ( ξ ) , where

cj G //(IR,IR) is non-zero and even, and satisfies g = 0 in a neighborhood of 0. So
Lemma 4.1 can be applied to /.

We also denote n/ = \\P+(e\(λt))\\E From Lemma 4.1, nλ tends to a non-zero
limit as λ tends to infinity.

We write
»Λ = y+—e}(λt), (4.12)

with the notation y — Φ(x) - -^P_(e\(λt}}.

We have

•-—(y(t\f(λt))L2 . (4.13)
Λ n/
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Now,

( y ( t ) , f ( λ t ) ) L 2 = (\L\k(X\P±(f(λt)))L,+(y(t\P_(f(λt)))L2

^ \\k(x)\\E\\ \ L \ 2 P + ( f ( Ϊ Λ ) ) \ \ E + \ \ y \ \ E \ \ \ L \ P - ( f ( t i ) ) \ \ E

(4.14)
/ 2 / \ / 2

and (4.11) is proved by combining (4.13) and (4.14).

Third step. We consider a non-zero function 0 G C° nL^D^IR) such that \0(t)\ ^ 1
for all t, and \\Q\\ L\ ^ 1.

Given ΓQ > 0, // a function X G E is such that

f\X(t)\2θ(λt)dt ^ ̂  , (4.15)
IR Λ

then

\2 0(λt)dt . (4.16)

Proof of the third step. Given two non-negative functions f,y with / in
and g in C° Π L^IR), it is well-known that

We choose f ( t ) = |^(/)|2 and g ( t ) = \θ(λt)\. The assumptions on 0 and the con-
dition (4.15) imply

« ^ * • (4 18)

So / / / / / > ,.2 \ ^ i//#> and (4-16) is proved.

Conclusion. We recall the notation /(σ) — sup/ o Φ(£_(σ)). From Corollary 2.2,
we have limσ^+oc /(σ) = — oc.

We fix a function 0 satisfying the assumptions of the second and third steps.
We fix TO such that \x rg y for any jc G Σ.

2

We choose ΛΌ such that ^b ^ ΓQ, and σ ^ ^o such that /(σ) ^ — Λ Q. We then

v2 -2 v2

take λ\ ^ /o such that C^ ^ ^, and 5-^y ^ ^fe. Here, C,5,fe are the constants

of the first and second steps.
If / g; λ\ and (Φ(jc) + ̂ e;J G c,M^ (σ,β;), there are two possibilities:

1) Λ G [0,5Ό], and x G 5_(σ). Then, from the first step,

< -^ < 0. (4.19)- 4
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2) s G [so,fϊ], and x G #_(σ). The first step gives

I(Φ(x) + seλ) ^ °- + C^r - M . (4.20)
2 /o

But from the second step,

So, using the third step,

*- . (4.22)

We choose a(λ) = λ^ and we construct a smooth nonnegative function R; such
Γo

that Rλ(x) = 0 when \χ\ ̂  ^ and Rλ(x) = ά(λ)\x\2 when Λ:| ^ r0. The functional

//(x) = I(x) - fR,.(x) is /-admissible, and from (4.20), (4.22), we have

ϊλ(Φ(x) + seλ) ^ -M < 0 . (4.23)

Lemma 4.2 is thus proved. D

We define, for / ^ λ\,

Fλ : B-(σ) x [0,σ] -̂  E_ x R+

(jc,j) ̂  (P_(Φ(jc) + *?;.) , ||Φ(jc) + .ye;.|||) . (4.24)

We have the following result:

Lemma 4.3. Assume (:^l) to (Jfy4) are true. Then there exist λ ^ λ\ and ~ρ > 0
such that ( A ι , σ are those of Lemma 4.2):

• For any x G 54(p), /(Λ:) ^ ̂ .

• 772 e equation F-(x,s) = (0,p2) /?<xv ί/ unique solution in #_(σ) x [0,σ], (x,^) =
(0,p).

• 77? f differential of F^ at (0, p) /.v ί/« automorphism of E- x 1R.

77?cj geometric meaning of the two last properties is that

6 ί

+(p)n,^_(σ,^)-{pβI},

and that this intersection is transversal.

Proof. We first take p < ~σ and λ ^ λ\ arbitrary.
The equation F^(x,s) = (0, p2) has at least one solution in the set B-(σ) x [0,σ],

(Λ:,5 ) = (0,p). At that point, the differential of F; is dF^(0,p) = (dx,2pds). It is
an automorphism of E_ .
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The tangent space to 1ft "_ at 0 is £_, and the differential of Φ at 0 is the identity
of E-. So there is ε > 0 such that the only solution of the equation P- o Φ(z) = 0
in #_(ε) is x = 0. As a consequence, the equation Fλ(x,s) = (0,p2) admits (0,p)
as unique solution in B-(ε) x [0,σ].

We now have to study the equation F,(x,s) = (0,p2) in the set (B-(σ)\B-(ε)) x

[0,σ].
Let η = inf{| |Φ(x)| |£, x e E_\B-(ε)}. η is strictly positive, because l ( ε ) =

s u p / o Φ(S-(ε)) is strictly negative.
There is K > 0 such that, for any x e £_(σ)\£_(ε) and Λ G [0,σ],

^ η2 - K— + s2, from (4.2) and (4.6)

_ 2

^η2-K—. (4.25)

— - 2 2

Let us fix Λ ^ /i such that A^^ ^ ^-. We get

HΦOO + sejIl! ^ — . (4.26)

So, if p2 < y, the equation F-(x,s) = (0, p2) has no solution in the set (B-(σ)\

To end the proof of Lemma 4.3, we choose p < -4^ such that for any x £ #+(p),

f R ( x ) + R-(x) < ̂ ^ . D (4.27)
J v x / v ' Λ

In Theorem 2.3, the constants σ and p will be the same as in Lemmas 4.2 and
4.3, and we shall take (β,7) = (e-,ϊj). We define

^ : B_(σ) x [0,σ] x IR+ -+ £_ x IR+

Here, (/>τ is the flow of — VI.
We have the following result:

Lemma 4.4. Suppose (J^l) to (J^4) /rwe. 77zβ/7 ̂  w ί/ smooth Fredholm operator
of index 1, and there is ε > 0 .sweΆ that for any T > 0, fAe restriction of -^ to
Uί:J = .^~1(^_(^) x [(p - ε)2, (p + £)2]) Π (B-(σ) x [0, σ] x [0, Γ|) λv /?/Ό/7£?r.

Proof From the form of the differentials of VI, VI,

(Viy h = P+h- P^h - \L\(R"(x) A ) ,

)7 A = (V/y A - |L|Gft"(;c) A ) , (4.29)
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we find by the method of variation of the constant that 3F is a smooth Fredholm
mapping. Since

(^/(O) (h,ds,dτ) = (/z,0) , (430)

3F is of index 1.
Let us take ε > 0 and a sequence (xn,sn,τn) in Uκj such that ^(xn,sn,τn) =

(.y,?,p
2) converges to a limit (y*,pl) E #_(ε) x [(p - ε)2,(p + ε)2]. To end the

proof of Lemma 4.4, we have to show that for ε small enough, (;t,7) is precompact
in Zs_.

If we could write φτ = Λτ + AΓτ with /Lτ a linear isomoφhism, and Kτ a compact
mapping, as is the case in periodic problems, then the compactness of (*,7) would
be trivial. Unfortunately, this classical decomposition is impossible here, because we

work with a space of function defined on the time domain IR, and φτ is equivariant
by translations in time.

This difficulty has been solved by Hofer and Wysocki in ([H-W], proof of
Lemma 4.4). In our framework, their idea can be expressed as follows:

First of all, by the method of variation of the constant, we may write

φτ(Φ(x) + se) = eτ(x + \ L \ K ( x , s , τ ) ) , (4.31)

where K is uniformly continuous from B-(σ) x [0,σ] x [0, Γ] to E.
We have xn = e~τ"yn - e~τnP-\L\K(xn,sn,τn) = e~τ" yn - zn, where (zn) is

bounded in //2(IR,IR 2 Λ /). After extraction, we impose that (sn,τn) converges to

a limit (s*,τ*). From the compact Sobolev embedding H^c C H Ϊ , we see that after
a new extraction, there is z^ E E such that βzn —» βz* in E as n —» oo, for any
compactly supported function β E C°°(IR, IR).

Let us denote x\ — xn — e~τ*y* — z*. Clearly, x\ E £*_, and it is not very dif-

ficult to prove that P_ o φ o Φ(x}Ί) -^ 0 in E and that \\φ o Φ(x}

n}\\E is smaller
than ~p + 2ε for n large enough. So, choosing ε small enough, we find from Lemma
4.3 that

l iminf / o φ(χ}

n) ^ limmfϊoφτn o Φ(χ]Ί) ^ 0 . (4.32)

Since l ( r ) = sup/ o Φ(S-(r)) is a strictly decreasing function of r, this inequality
implies that x\ —> 0 in E. The sequence xn is thus convergent in E, and Lemma 4.4
is proved. Π

We now end the proof of the theorems.
Given T g: 0, we denote

V,j = &'l(B-(ε) x [(p - ε)2,(p + ε) 2])n(5_(σ) x [0,σ] x {Γ}) . (4.33)

The mapping ^γ — &( , * , T) is Fredholm of index 0, and its restriction to V^τ
is proper, from Lemma 4.4. Moreover, (0,p) ^ ^τ(SVι:ί /-). So, following Smale
[Sm], we can define a 2^ degree ^V = deg(^Y, Fί;. /,(0,p)).

From Lemma 4.3, we have ί/o — 1> an^ from Lemma 4.4, dj = CJQ. As a
consequence, the equation ^Y^s) — (0,p2) has always a solution in J^.j. This
proves ( i i i ) of Theorem 2.3. By Lemmas 4.2 and 4.3, (i) and (ii) are also true, so
Theorem 2.3 is proved. This ends the proof of Theorem 1.1. D
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