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Abstract: In this article we analyse a two dimensional lattice gauge theory based
on a quantum group. The algebra generated by gauge fields is the lattice algebra
introduced recently by A.Yu. Alekseev, H. Grosse and V. Schomerus in [1]. We
define and study Wilson loops. This theory is quasi-topological as in the classical
case, which allows us to compute the correlation functions of this theory on an
arbitrary surface.

1. Introduction

Quantum groups appeared in the mid-eighties as hidden algebraic structures gen-
eralizing the notion of group symmetries in integrable systems [11]. There are
now different definitions of quantum groups which include the local point of view
(deformation of the Lie algebra) as well as the global point of view (deformation
of the algebra of continuous functions on a Lie group).

The latter provides examples of quantum geometry, and the ordinary tools of
differential geometry on Lie groups can be successfully defined and used to study,
for example, harmonic analysis on quantum groups [19]. This success has encour-
aged people to apply these tools to build examples of quantum geometry where the
notion of group symmetry is essential: quantum vector spaces, quantum homoge-
neous spaces, quantum principal fiber bundles [5]. It is then tempting to hope that
quantum groups can be used in a much broader area than just integrable models,
and could give, as an example, a Yang Mills type theory associated to a quan-
tum group, leading hopefully to new Physics. There has been quite a lot of work
dealing with q-deformed Yang Mills theory with a base space being a classical
space or a quantum space. These works only deal with the study of what could be
called classical configurations of the gauge fields, but do not study the path inte-
gral on the space of connections. The work of [5] although perfectly coherent for
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classical configurations requires a finer analysis when it studies path integrals, be-
cause the gauge fields, in their work, are living in the deformation of the envelop-
ping algebra and it is not at all obvious to define the path integral on the space
of connections taking values not in the Lie algebra but in the envelopping algebra
and to show that when the parameter q goes to one, one recovers ordinary quantum
Yang Mills.

Another way to cope with the problem of summing over all the configurations
is to use a lattice regularization of the theory [7]. This is what has been first
described by D.V. Boulatov [4]. He studied there the q-deformation of Wilson lat-
tice formulation of gauge theories in dimension two and three and computed the
lattice partition function of these models when q is a root of unity and when the
Yang Mills coupling constant goes to 0. He argues that the partition function of this
q-deformed lattice model is the Turaev-Viro invariant in dimension 3 and the par-
tition function of (G/G)k models in dimension 2. This theory is unfortunately not
consistent with the gauge invariance and moreover we have shown (unpublished)
that it is equivalent, in the two dimensional case, to the undeformed Yang-Mills
theory.

In their recent work [1], A. Alekseev & al. have studied a combinatorial quan-
tization of the hamiltonian Chern-Simons theory. They were led to define an
algebra of gauge fields on which the gauge quantum group acts. This algebra is
an exchange algebra which appears to be a generalization of the discretization of
the current algebra found by [2,3]. The commutation relations between different
link variables are the quantization of those found by V.V. Fock & A.A. Rosly
[9].

In our present work we will define and study a quantum deformation of
a lattice gauge theory on a triangulated surface. The gauge symmetry is de-
scribed by a deformation of the algebra of continuous functions on a Lie group.
The gauge fields living on the links generate an algebra on which coacts the
gauge symmetry. Invariance under the gauge symmetry implies that this alge-
bra is the algebra of gauge fields of A. Alekseev, H. Grosse and V. Schome-
rus. Our presentation of the gauge symmetry is dual to these authors and do
not involve any involution. Using this point of view computations are greatly
simplified.

Wilson loops in our formalism are obtained using the notion of quantum trace
and have the usual properties: invariance under departure point, gauge invariance.
We will use them as usual to define the Boltzmann weights of the theory. These
Boltzmann weights satisfy the familiar convolution property of two-dimensional
Yang Mills theory which implies that the theory is quasitopological, i.e. physi-
cal quantities depend only on the topology and the area of the surface. We are
able to compute correlation functions in this model; they finally appear to be
the q-analog of the correlation functions of ordinary two dimensional Yang Mills
theory.

The present work is divided in four sections: in the first section of this work
we recall standard properties of two dimensional Yang Mills theory. In the second
section we derive and study the algebra of gauge fields using gauge covariance.
The third section is devoted to the definition of Wilson loops and the study of
their commutation properties. In the fourth section we define and study the analog
of standard tools of quantum lattice gauge field theory, i.e. Boltzmann weights,
Yang-Mills measure. We compute the correlation functions, i.e. partition functions
on Riemann surfaces with punctures.
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2. Algebraic Properties of Ordinary Lattice Gauge Theory

In this part we recall algebraic properties of ordinary lattice gauge theories associ-
ated to a compact group G.

Let R be a D-dimensional lattice, R = ΊP and denote by V the set of vertices
of R and L the set of oriented links, i.e. the set of couple of nearest neighbour
points.

A lattice gauge theory is defined by assigning to each link / = (z,y) an element
Uι of G satisfying

= 1 0)
These link variables interact in a gauge invariant way. The group of gauge

transformations is the group of maps g from V to G, which acts on the set of link
variables by:

Ug

(ίJ} = βiU(^. (2)

A particular set of gauge invariant functions are the Wilson loops.
If C = ( Z I , . . . , / P , Z I ) is a loop in R, with (/),/7+ι) element of L, we will define

tfc = π;=ιtv+i)
Let φ be any central function on G, (i.e. φ(xy) = φ(yx),Vx,y £ G), then φ(Uc)

is a gauge invariant function, which moreover does not depend on the departure
point of C.

Let α be a representation of G, then the character χα is a central map.
When G = SU(n),SO(n) it is the custom to associate to each plaquette, i.e. to

each elementary loop P — (/,/,&,/,/) a Boltzmann weight

wβ(UP) = exp (^Re(χj(UP) - n)\ , (3)

where / is the fundamental representation of G and n the dimension of /.
Let dμ be the normalized Haar measure of G; this measure is right and left

invariant.
We can define a gauge invariant measure on the set of configurations by:

dv(UleL) = Uwβ(Up)Udμ(Uι), (4)
P /€!

where P exhausts the set of all plaquettes, / the set of links, and £// satisfy relation
(i).

One is then interested in the evaluation of mean values such as:
(ψ((Uι)i£j)dv), where / is a finite set of links and ψ a function of the variables

(£//) /€/-
It is also possible to define another Boltzmann weight [14] which includes all

the equivalency classes of representations of G and is equivalent to the weight (3)
when β goes to infinity or in the continuum limit. This weight is defined by:

χΛ(UP)e-a-fr 9 (5)

where we have used the notation Irr(G) for the set of equivalency classes of ir-
reducible representations of G, dα for the dimension of α, and Cα for the value of
the Casimir element in the representation α.
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When β goes to infinity the two weights approach the δ function located at the
unit element.

In two dimensions it is well known that Yang Mills theory is invariant
under area preserving diffeomorphisms, and when the coupling constant of the the-
ory goes to zero then this symmetry is enlarged to the group of all diίfeomorphisms
of the surface, i.e. Yang Mills theory in two dimensions is a topological field theory
[17,18].

The Boltzmann weight (5) is perfectly suited to describe this invariance nature
of the theory because it satisfies an exact block spin transformation, as shown by
Migdal [14] i.e.:

Following the general philosophy of quantum geometry we will now redefine
algebraic properties of lattice gauge theory using only the algebra of functions on
the set of link variables and on the gauge group.

Let us define for z G V, the group Gz = G x {z} and G — Πz^v Gz.

G is the gauge group. Let us now define for / G L, the set G/ = G x {/} and

5£ — Πi£LGι9& is the set of link variables. The gauge group G acts on the set
Jzf by gauge transformations:

(7)

The general principle of arrows reversing implies that if we define the algebras
f = ^(G) = ®Z£V^(GZ) and A = &(&\ we have a coaction Ω of the Hopf

algebra Γ on A.

Ω:A-*Λ®f. (8)

It satisfies the usual axiom of right coaction:

(9)

By construction it is a morphism of algebras:

Ω(AB) = Ω(A)Ω(B) MA,B G A . (10)

The algebra ^(G(xy)) has a Hubert basis which consists in the matrix

elements <x.(U(Xy)){9 where α is in Irr(G), and the coaction Ω on them can be
written:

We will systematically use this point of view when dealing with the q-deformed
version.

It is trivial to show that an element φ of A is a gauge invariant function if and
only if:

φ®l. (12)
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In the next section we study a q-analog of lattice gauge theory. The main prin-
ciple which will guide us throughout this section is gauge covariance: in technical
terms, we define a non-commutative deformation of the algebra A — ̂ (3?) such
that a Hopf algebra Γ ("the quantum gauge group") coacts on it.

3. Gauge Symmetry and Algebra of Gauge Fields

Let ^ be a simple Lie algebra over C and let q be a complex number non-root of
unity, then the Hopf algebra A = Uq^ is quasitriangular. Let Irr(A) be the set of
all equivalency classes of finite dimensional irreducible representations. In each
of these classes α we will pick out a particular representative α. Let Fα be the
vector space on which the representation α acts.

We will denote by α (resp. α) the right (resp. left) contragredient representation
associated to α acting on V* and defined by: ά = 'α o S (resp. α — 'α o S~[). We
will also denote by 0 the representation of dimension 1 related to the counit ε.

Due to the quasitriangularity of A there exists an invertible element R £ A ® A
(the universal R-matrix) such that:

Δ'(a) = RΔ(a)R~l Ma G A , (13)

(Δ 0 id)(R) = RnR23 , (14)

(id ® Δ)(R) = R13R12 . (15)

Let us write R — Y^i a{ (8> Z?ί? then the element u = Σt S(bι)aι is invertible and sat-
isfies [8]:

S2(x) - uxu~{ , (16)

uS(u) is a central element,

)=\9 (17)
i

Δ(u) =

Moreover Uq<& is a ribbon Hopf algebra [16], which means that an invertible
element v exists such that:

v is a central element ,

υ2 = uS(u\ ε(v) = 1, S(v) = v , (19)

A(uv~l) = uv~l Θ uv~l . (20)

α

Let us define the group-like element μ = uυ~[ and μ — α(μ) G End(Kα).
α α

The ^-dimension of α is defined by [rfα] = trj/α(^) = tr^α(^ -1). We also denote
y.

by z;α the complex number α(u), and w = α(w).
α)5 α

We define R = (α ® )8)(Λ) e End(Fα 0 Fjy). Let (^)/=l...dιmί/α be a particular
!X K

basis of Va, and (e')/ =ι...dιmfα its dual basis. We will define the linear forms g\ —
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The existence of R implies that they satisfy the exchange relations:

*β „„ * . β , β α y-β

Σ RU? 91 91 = Σ 9 n 9 m R Ύ (21)
/,£ /«,Λ

which can be simply written:

αj9 α j? j8 α αβ
(22)

.
using the convenient notation: Q — Σi, eΐ ® eJ ® 9j This relation is also equivalent
to:

Λβ Λ β β Λ Λβ

2i . (23)

Let Γ be the restricted dual of Uq(^)\ it is by construction a Hopf algebra,
α .

generated as a vector space by the elements glj.
The action of the coproduct on these elements is:

(24)

Fα can be endowed with a structure of right comodule over Γ:

j

We also have

j J

Let α, /? be two fixed elements of Irr(A), because q is not a root of unity; finite
dimensional representations are completely reducible:

(27)

Let us define, for each y, (^w)m=1...#v a basis of Hom^(Fα (g) F^, F7) and

= . . a basis of

(28)
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We can always choose them such that they own the properties:

It is easy to check that we can always choose:

where λφ = (VχVβV~1)1/2.
We can define the Clebsch-Gordan coefficients by

α β

a b

We then obtain the relation:

α - β , i k α β

This relation can also be written:

α β

675

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Let us now specialize ^ to be a Lie algebra of type An,Bn,Cn,Dn and / to be
a fundamental representation of Uq(^). In this case the restricted dual is the Hopf

algebra generated by g satisfying the relation:

and
if 9= AΛ9

(37)

where det^ is the quantum determinant and C is the quantum quadratic form defined,
for example, in [15].

The antipode is defined to be the antimorphism of the algebra satisfying:

(38)
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An explicit description of S is obtained using the quantum analog of Cramers
α

formulas [15]. The matrix elements 9 \ are expressed as polynomials in the ma-

trix elements Q\\ these polynomials can be computed using the Clebsch-Gordan
coefficients.

Because of the relation (24) they satisfy:

gJ

k = Sfk. (39)

We will now define a non-commutative analog of the gauge symmetry Hopf
algebra Γ and a non-commutative analog of the gauge field algebra A.

Let Γ be a compact connected triangulated oriented Riemann surface with
boundary dΣ and let (F/)/=ιv..;W/Γ be the oriented faces of Σ. Let us denote by
L the set of edges counted with the orientation induced by the orientation of the
corresponding faces. We have L — Ll ULb, where L\Lb are respectively the set of
interior edges and boundary edges (dΣ = Lb).

Finally let us also define V to be the set of points (vertices) of this triangulation,
V — V1 U Vb, where V\ Vb are respectively the set of interior vertices and boundary
vertices.

If / is an oriented link it will be convenient to write / = (x,y)9 where jc is the
departure point of / and y the end point of /. We will write x — d(l) and y = e(l).

It is important to notice that the definition of a triangulation imposes x φ y. This
property implies that for any link / incident to a vertex z it is possible to determine
unambiguously if z is the departure or end point of /. We will moreover assume
that a link / is completely characterized by its departure and end points.

If / is an interior edge then we define 7 to be the corresponding edge with
opposite orientation.

Definition 1 (Gauge symmetry algebra). Let us define for z e V, the Hopf algebra
Γz = Γ x {z} and Γ = ®Z^VΓZ. This Hopf algebra will be called the gauge sym-
metry algebra.

In order to define the non-commutative algebra of gauge fields we will have to
endow the triangulation with an additional structure, an order on the set of links
incident to each vertex, the cilium order. This can be achieved using the formalism
of ciliated fat graph described by V.V. Fock and A. A. Rosly [9].

Definition 2 (Ciliation). A ciliatίon of the triangulation is an assignment of a
cilium cz to each vertex z which consists in a non-zero tangent vector at z. The
orientation of the Riemann surface defines a canonical cyclic order of the links
admitting z as departure or end point. Let / ι , / 2 be links incident to a common
vertex z, the partial cilium order < is defined by: l\ < 12 / / / ι Φ / 2 , / 2 and the
unorίented vectors c z ,/ι ,/2 appear in the cyclic order defined by the orientation
of the surface.

We will assume in the rest of this work that the triangulated Riemann surface
Σ is endowed with a ciliation.

Definition 3 (Gauge fields algebra). We shall now define the algebra of gauge
α

fields A to be the algebra generated by the formal variables U(ljj with I G L, α G
Irr(A\iJ — 1 dimV^ and satisfying the following relations:
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Commutation rules.

U(χ,y)\ U(z,y)2Rn = U(z,y)2 U(χ,y)\ , (40)

U(x, y)ι *R n U(y,z)2 = U(y,z)2 U(x, y)ι , (41 )

Λ i 2 U(y,x)ι U(y,z)2 = U(y,z)2 U(y,χ)ι , (42)

V(y,x),(y,z) e L *φz and (x,y) < (y,z) ,

xβ y. β aβ . β α

Λ i 2 U(χ,y)ι U(x,y)zRπ = U(x,y)2 U(x,y)ι (43)

V ( x , y ) € L ,

U(x,y)U(y,x)=l, (44)

U(x,y)ι U(z,t)2 = U(z,t)2 U(x,y)ι

Vx,y,z,t pairwise distinct in V . (45)

Decomposition rules.

U(χ, y)ι U(χ, y)2 = ΣΦIJ U(χ, yWξ*fu , (46)
y,m

U(x,y)=\,V(x,y)€L, (47)

where we have systematically used the notation:

U(x,y) = Yei®
Λej®U(x,y)i

]. (48)
lj

This algebra was recently introduced by A.Yu. Alekseev, H. Grosse and
V. Schomerus in [1].

The defining relations of the gauge fields algebra are obtained by demanding a
property of covariance under the coaction of the gauge algebra Γ defined as follows:

Definition 4 (Gauge covariance). A can be endowed with a right comodule struc-
ture Ω : A — > A 0 Γ such that

1 . Ω is a morphism of algebras.
y.

2. The action of Ω on the elements U(x,y)lj is defined by the formula:

Ω(U(x,y)) = (A, ® A* 0 id)(U(x,y)) . (49)

This expression can be expressed in terms of components as:

Ω(U(χ,y}'j) = Σ U(x,y)p

q ® frjpS&y) , (50)
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y. y.
where (9x)'p is the image of the element 9 'p by the canonical injections Γ <—* Γx

^ Γ.

Proof. It is straightforward to show that the relations of definition of Λ are com-
patible with the definition of Ω. We shall verify in detail that relations (40,46)
are indeed covariant under the coaction of Γ. Covariance of other relations can be
checked using the same scheme.

Verification of the covariance of relation (40):

Ω(U(x,y)ι U(z,y)2Rn) = Ω(U(x,y)ι)Ω(U(z,y)2)Rn

α * α β β β *β
= 9\ U(x,y)ιS(gy)ί 9\ U(z,y)2S(gy)2Rί2

a β x β x β *β
= g\g2 U(x,y)\ U(z,y)2S(gy)lS(gy)2Ru

2 β X β Xβ β X

= 9\9\ U(x,y)ι U(z,y)2Rί2S(gy)2S(9y)}

= 9\9\ U(z,y)2 U(x,y

] U= 92

2 U(z,y)2S(gy)2g

= Ω(U(z,y)2U(x,y)ί).

Verification of covariance of relation (46):

Ω(U(x,y)ι U(x,y)2) = Ω(U(x,y)λ)Ω(U(x,y)2)

= g\ u(χ,y)ιS(gy), gx

2 U(χ,y)2S(dy)2

= 9\ g\ U(χ,y)ι U(χ,y)2S(gy)lS(gy)2

α β » β «β , α v βv

= Σ, Φ^βψ^φu(χ,y)ψ;

; U(x,yWf,*Pi2 Π
\m'? ' /

At this point we have many comments to make.
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Remark 1. We just have seen that the braiding relation (22) is compatible with
the exchange relation (40). But relation (22) can also be written (23), this would
as well imply an exchange relation of the type (40) with R\2 exchanged with R^1 .
The aim of the ciliation is precisely to solve this ambiguity. Indeed if / — (jt, y)
and 7 = (z,y) with / < 7, then the relation

α β αjβ β α

(i)i (51)

β * β
implies U(i)\ 6^(7)2^21 ~ U(j)2 U(i)\ for / > 7. This can be easily checked by
applying the permutation operator.

Remark 2. The commutation relations given in the definition of A are not minimal.
The exchange relations of the type (40,41,42) are related to every other using
relation (44) when links are interior links. If (x,y) is an interior link then we also
have from relation (43):

α * β β xβ α

2\ U(y,x)2 = U(y9x)2R\2 U(x,y)ι , (52)

β β α/J α

Ϊ2 U(y,x)2 = U(y9x)2R2ι U(χ9y)\ - (53)

It is also easy to see that (46) implies relations (43). Moreover we have a relation
α α

between U(y,x) and U(x,y) which can be shown to hold using (46,44):

Proposition 1. I f ( x , y ) is an interior link, we have

) = μ~ltU(x,y). (54)

(This is the relation (4.8) of [I].)

Proof. We first have to describe in detail the map ι/ '̂α and φ|α, where as usual 0

denote the trivial representation of dimension 1. ι/ '̂α is the usual canonical map:

ξ®x^(ξ,x). (55)

is the map:

(56)
tr(wα

This is an easy consequence of the identity S(x) = uS~l(x)u~l. The normalization

of φ|α is chosen such that ψ^*φ\ α = idc-
Let (x,y) G L, the decomposition rule (46) implies that

<Af α U(χ, y)ι U(x, y)2 = ΨS*Pi2 = Ψ^*R2iv-} , (57)
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in terms of components this can be written:

Σ,U(x,y)i

lU(x,yy, = μ J , . (58)
/

This relation can also be written

)l = Σu(χ,y)$~-ιy, (59)

which is exactly relation (54). D

Remark 3. The associativity "constraints" coming from exchange relations between
elements of the algebra are automatically satisfied from quasitriangularity of Uq(&).

Remark 4. In the classical case the variables ί/^ are elements of the group G, in
this case the gauge fields variables are of the same type as elements of the gauge
group. In the q-deformed case this does not hold true as can be seen from the
commutation relations in Λ. Let X C L and AX be the subalgebra of A generated

α
by U(l) with / G X and α G Irr(A). The q-deformed lattice theory is a nonultralocal
theory in the sense that the algebras AX and Aγ are pointwise commuting if X and
7 have no link incident to the same vertex.

Let M = {/i, , lp} be a subset of links such that M contains the boundary
links and each of the interior links in one and only one orientation.

It is trivial to show using the commutation relations in the algebra A and
α/

the relation (54) that {ΠjLi U(lj)nj'},(x.j G Irr(A)9mj9rij = 1 dj is a generating
family of the vector space A.

We will assume in the rest of the paper that this family is a basis of A. This
assumption is quite natural and perhaps it can be proved using a representation of
the algebra A or using techniques like the Diamond Lemma. What can easily be
shown is that this property is independent of the choice of M. We will use the
assumption of independence of this family of vectors in order to build an analogue
of the Haar measure in Sect. (5).

4. Wilson Loops

In this section we define elements of the algebra A, called " Wilson loops" attached
to loops on the lattice and owning the following properties: gauge invariance and
invariance under departure point (we will call this last property cyclicity).

A loop C of length k — l(C) is said simple if C = (x\, -Xk,Xk+\ — *ι) with
xι, -,Xk pairwise distincts. From now we allow us to identify *„+* and xn for
all n.

Let us define the sign ε(jc/,C) to be 1 (resp. -1) if ( X i - ι 9 x t ) < (jcz,jc / +i) (resp.
( jc/_i , j f j ) > (xi,Xι+\)) and denote N(C) the cardinal of the set {i G {1 . . .&}/(.*:,_ i,*/)
< (Xi,Xi+ι)}.

If C is a contractile loop, N(C) is simply the number of cilia located at the
vertices of {JCI,...,Λ:^} and directed inside the domain enclosed by the loop C.

We have the relation: 2N(C) = /(C) + Σjecφ^Q
Let C\ and €2 be two simple loops of length greater than three with common

edges such that C\ and C2 have opposite orientation on these edges. We will denote
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Cι#C2 to be the loop obtained by gluing C\ and C2 along their common part and
removing these common edges.

Definition 5. Let ̂  be the set of loops of length k(k ^3), i.e. the set of (k -f 1)—
uplets C = (x\, ,Xk,Xk+\ — x\), where (xl9xi+\) £ L. The set of loops is defined
by <$ — [jk>2^k We als° define Ήs to be the set of simple loops.

Let us define for arbitrary adjacent links (jc, y\ (y,z) the matrix:

i xfl
Rn //(*,,) «»*) (60)

R2i i f ( χ , y ) > (y,z).

We define the Wilson loop in the representation α attached to C £ ̂ s by:

(61)

where the expression tr\.,,k means the trace over the space Vfk,σ^ is the per-
mutation operator σ^ = Pkk-\ * 'f*2i> and ωα(C) is a non-zero complex number
depending only on the distribution of cilia along the loop.

Proposition 2. Wilson loops W<χ(x\,...,Xfζ) are gauge invariant and cyclic invari-
ant, i.e. W*(x\,X2>...,Xk)=W*(x2>...>Xk>x\')- We have the following important
relation:

W*(C) = pα(xι,C)ωα(C)trrα(μ t/(jrι,x2) t/(**,*ι)), (62)

where py(xι,C) = v

Proof. Let us show first the cyclίcity property. From the definition of ,̂ the com-
mutation rules (41) can be written:

α α α α

We first have:

k-\ ~ -

^

^^
oc y.

U(X\,X2)\ U(Xk,X\ )k

Tι(Xk,X\,X2} U(X\,X2)\

j + ι X j 9 Xj+\
7=1

= ]\((Xj,Xj+l)jaS+λ(Xj,Xj+ι,Xj+2))U(x\tX2)\
7=2
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Using the identity

Pkk-l "P^P2\ = PlkPkk-l '-P32, (64)

we finally obtain:

W Λ ( x l 9 x 2 , . . . 9 X k ) = W * ( x 2 , . . . , X k , x ι ) , (65)

which ends the proof of cyclicity.
Using the following formula:

*ι...k(Pkk-ι - • P32P2iA(ΐ) 4Λ)) = tr04(1) -A™) , (66)

where A(l\...,A^ are elements of End(V^) and the usual properties on u recalled
in (17, 19), we can easily write W*(x\,X2,...,Xk) in the more convenient form:

ι )) (67)

Gauge invariance is more explicit in this form. Indeed we have:

l W*(Xl,X2... . Λ)) (68)

(we have used an implicit sum over repeated indices)

= £ ^ X X s g ^
α k α

-" ' ;=2 '' 0 y Pl

j=ιUXj'

k k

'*+! II y=2 ^ .̂= 1 ^' -/+ ί/+l

A: A: α

y=2 ^7=1 7? 7 q/+l

.. p^rΓ^
1,

which shows that )^α(Λ:ι,JC2 ,*#) is a gauge invariant element D

Remark. We should make here a comment on the notion of trace and </-trace
α

following the remark of Drinfeld in [8]. Let g be the matrix of elements of Γ. We
y. y, y. % %

can define tr(0) = ]Γ)Z 0 j (the ordinary trace) and tr^(0) = tr(μg) (the q-trace). It is
a well known result that the trace is cyclic but not Ad-invariant and on the contrary
the q-trace is Ad-invariant but not cyclic. We need both of these properties to build
a consistent q-Yang Mills type theory. One of the great benefits of the algebra A
is that the q-trace defined on it is both cyclic and Ad-invariant.
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A path P of length k is a (k + 1)— uplet P = (x\,... ,xk+\), where (xl9xi+\) <E L.
In the proof of the next proposition we will have to extend the definition of Wilson
loop to a path P by:

M*(P)=flU(xj,xj+l). (69)

When P is a simple closed loop we of course have W*(P) = tr
We will now study the commutation relations of the Wilson loops.
Let us consider two loops C and C'. Let C Π C7 be the set of common vertices

of C and C7. C Π C7 is naturally a disconnected union of paths P(1),... ,P(^) (resp.
P'^\...,P'^) with the orientation induced by C (resp. C7). For each of these
paths we define L(l\...,L(k^ (resp. Ll(l\...,Lf(k}) to be the paths obtained from
P(l\... ,P(k} (resp. P7(1),... ,PW) by adding the neighbour vertices of the latter in C
(resp. C7). Let us now consider a connected component P^ of C Π C7 and its related

paths L^ and L^l\ L^ (resp. L'^) is a set of links (4, , / / , . . . , / > £ \ l n ? + ι ) (resp.

( / Q , / j , . . . , In,, / „ j )• L^ is said to be a crossing zone if one of the following

condition is fulfilled:

1. « 7φO, 4* < l'^ < ̂  and /«/ < 4+j < C(+ι or cyclic.perm.

2. «,φO,/όω < 4° < /ί° and /if < /^ < /^+I or cyclic.perm.

3. m = 0,/ό ( / ) < 4° < /ί(0 < /ι° or cyclic.perm.

4. n, = 0,/ί(0 < 4° < 4(° < /(ι° or cyclic.perm.

We shall declare that two simple loops C and C7 do not cross if and only if
they have no crossing zone.

We have the following important proposition:

Proposition 3. If C and C' are non crossing simple loops then the corrresponding
Wilson loop W*(C) and W^(C') are commuting elements.

Proof. Let us denote by &~xyz and 3~'xyz the elements:

g-*β — \ (RnR2\)~l if (χ,y) < (y,z)
xyz j

I 101 \ΐ(x,y)> (y,z)

and

I 1 0 1 if(x,y)< (y,z)

It is easy to show the following relations using the basic commutation rules in
A. Those are obtained by a tedious enumeration of all possible configurations of
links and ciliations:

α β n β β β α

~" —~~a* — )2 = U(x,y)2U(y,z)2u(w,y)ι,

if (y,z) < (x,y) < (w,y) or cyclic perm.,
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α β , o β β β *
U(w,y)ι U(χ,y)2(^'x*£)ι2 U(y,z)2 = U(x,y)2 U(y,z)2 U(w,y)ι ,

α β β β β α

£/θMv)ι £/(jt,.y)2 ί/(^z)2 = U(x,y)2(f'x*£)ι2 U(y,z)2

if (x, _y) < (j,z) < (w, 3;) or cyclic perm.,

α jί β β
U(z,y)\ U(x,y)2(^x

p

yz)i2 U(y,z)2 U(z,w)2

β β R β OL

= C/(Λ:,3/)2 C/(^,z)2(«^"^w,)i2 U(z9w)2 U(z,y)\ ,

α j5 , a β β
U(z9y)ι U(^y}2(3~'x*y

β

z}\2 U(y,z}2 U(z,w)2

β β , e β α

= U(x9y)2 U(y,z)2(3fy/w)ι2 U(z,w)2 U(z,y)ι ,

z ) ι U ( χ , y ) 2

A, . .„,

U(y,z)ι

,w)2 U(y,z)ι ,

U(y,z)2 u

If C and C' have no common vertices then W*(C) and Wβ(Cf) are trivially
commuting.

Let C Π C be the set of common vertices of C and C '. C Π C is naturally a
disconnected union of paths P\,...,Pk (resp. P{, . . . ,P'k) with the orientation induced
by C (resp. C7). For each of these paths we define Lι,...,Lk (resp. L ( 9 . . . 9 L f

k ) the
paths defined as before.

It is sufficient to show that Mα(Zy) commute with M\L'j) to prove the com-
mutation relation between Wilson loops attached to C and C' unless the marginal
case where one of the Pj or Pj is a closed curve (because in this case one of the
Lj or L'j is ill defined). This case is studied at the end of the proof.

Let us now consider a connected component of C Π C' and its related paths L
and L' . Let us first suppose that Lj and L'j have opposite orientation. We can write
L = (xn+\,xn," xι,xo) and the respective L' = (XfrX\,...,xn,x'n+l). The fact that C
and C' do not cross implies that we fulfill one of the following conditions:

(xΌ,x\) < (XQ,X\) < (x\,x2) and (xn-ι,xn) < (*«,*«+ 1) < (xn,x'n+\)

or

(xo,x\) < (x'Q9x\) < (x\,x2) and (xn-\,xn) < (xn,x'n+\) < (xn,xn+\)

or cyclic perm.

Using the latter commutation properties and the latter remark, it is easy to show
that Mα(L) commute with M^(Z/). This is more or less the standard "railway proof
of integrable models. In one of the latter situations we have for example:

α α β

= U(χn+\9χn)\ ' ' U(X\,XQ)I U(χQ,χ\)2
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= U(xn+ι,Xn)ι U(X2,Xl)l ί/C4*lM , ) l2 U(XI,X2)2
π 1 2

β

χ λX χ
π— 1 « / 7_)_ι

If L and L7 have the same orientation, we can easily modify the proof to the result:

β β
U(xo,xι)ι U(xn9xn+ι)\U(x0,xι)2 - U(xn,xn+l)2

α α β

U(x0,xι)ι U(xn-ι,xn)ιU(x'0,x\)2

.

x U(x\,x2)ι ...U(x»,xn-ι)ι

β β * α

U(xQ9x\)2... U(xn,xn+l)2U(xo,xι)ι - U(xn,xn+ι)\

The latter proofs do not work if exceptionally XQ = xn, xn+\ =x\. In this case the
proof is a bit different:

α a β β

= U(xn+ι9xn)ι - U(xι9xo)ιU(xι,x2)2 - - U(xn9x\)2

* * β β
= U(xn+ι9xn)\ - - U(x29x\)\0tι2(xQX\x2)U(x\9x2)2 - U(xn9x\)2

= U(xn+ι,xn)

β α

• U(xΠ9xι)2U(x29 x

β β β
= U(xn+ι,xn)ιU(xι9x2)2 - U(xn-ι9xn)2(^_lXnXl)}2U(xn9xι)2

α α

x U(xn9xn-ι)\
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β β α α

In order to complete the proof of this theorem it remains to study the case where
the two loops C and C' are equal up to orientation. Let C = (x\9...,xn9xn+\ = x \ ) .
It is easy to show using an induction proof on k ^ n + 1 that we have:

^

.

As a result we get:

..,XΛ^

β α

%*ι,...,^

2, . . . ,^π+ι )\Mβ(x2, . . . ,^+ι )2

x2,...,j:π^^

,...,̂

Applying the permutation operator to this identity we obtain the equivalent equa-
tion:

These two equivalent relations can be recast in the reflection equation:

xι9X2) (72)

Let us denote ^""1(^π,JCι,jc2) = Σiai ® '̂» from quasitriangularity properties we
have:

(73)
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Therefore:

When C' — C a similar proof applies as well.
This ends the proof of the theorem. D

All what we have previously done is a study of a q-analog of the space of con-
figurations of lattice gauge theory and its gauge co variance. We have not included
for the present time the quantum fluctuations of the gauge fields. This will be
achieved in the next section.

5. Quantum q-Deformed Lattice Gauge Theory

In ordinary lattice gauge field theory, integration over the fields uses as a central
tool the Haar measure. This has been already recalled in Sect. 1 . We will now study
a q-analog of this notion, i.e. we will study integrals over A invariant under the
coaction of the gauge algebra Γ.

Proposition 4 (Invariant measure). There exists a unique linear form h : A — * A$Σ
such that:

1. (invariance) (h <g> id)Ω(A) = h(A) ® IVA 6 A ,

2. (factorisation) h(AB) = h(A)h(B)

MA G Aχ,^B eΛγ,VX,Y cL,(

3. h\dΣ = iddΣ .

It can be evaluated on any element using the formula:

y)'j) = δxfl, (74)

where 0 denotes the trivial representation of dimension 1, i.e. 0 is the counit, and
(x,y) is an interior edge.

It can be recursively computed on any element of A using the formula

(75)

with (x,y) an interior edge and A,B e Λχ,(x,y) 0 Λχ,(y,x) 0 Λx.
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Proof. From the assumed invariance of h we get that

h ( U ( x 9 y ) l j ) l 0 1 - (gxymh(U(X,y^)S((gy)nj) . (76)

α α

Using the independence of the vectors (gx)l

m we get that h ( U ( x 9 y ) l

f ) — 0, except in

the case α = 0. Let M = Lb U { / i , . . . , /p} be a subset of links such that M contains
the boundary links and each of the interior links in one and only one orientation.
From the assumption on the basis of A we can write any element A of A as a
unique linear combination:

/ P *, \
, (77)

where <zαiv..,αp £ End^^V^) and U I''"'' p G
From h\dΣ = id^Σ and the assumed factorisation property we get that

«o,...,o^""°- This shows uniqueness of Λ.
It is straightforward to show that h defined by the last formula is invariant under

the coaction of Γ.
The factorisation property is proved using the commutation relations in A and

Oα ocO
the relation R = R = idγy. Relation (75) is proved similarly. D

It will be convenient in the rest of this article to use the notation fdh instead
of h.

Proposition 5. Let (x,y) be an interior link, we have the important formula:

y α L- 1 α

which can also be written:

h(U(y,x)ιμ2U(x,y)2) = T^PU (79)

Proof. Let (x,y) be an interior edge. From the decomposition rule we get:

)2ϊ = ΦlttfPn = Ά i ^ 1 - (80)

Using the known expressions of the right-hand side (see Proposition (1)) we obtain:

h(U(x,y)'jU(X,y)k

l) = - ( - ' ) f . (81)

Using relation (54) we finally prove the relation (79). D

We will now define an analog of the Yang-Mills action which is, as usual, built
with elementary Wilson loops attached to faces of the triangulation.
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Definition 6 (Boltzmann weights). Let F be a face of the triangulation, we define
a Boltzmann weight element of A :

arc* , (82)

where ap is the area of the face F and Cα are fixed non-negative numbers.

This element is the non-commutative analog of the Boltzmann weight (5). If F
and F' are two faces, Proposition (3) implies that Wp and Wpi commute. We can
then define unambiguously the gauge invariant element: ΓKi^F/ which does not
depend on the labelling of faces.

Proposition 6 (Yang Mills measure). The Yang Mills measure hYM on A is defined
as follo\vs\

hYM(A) = h (AI\WF\ VAtA. (83)
V 1=1 /

It is an invariant measure in the sense that:

(hγ M <8> id)Ω(A) = hγ M(A) <8> 1 \/A G A . (84)

It will be convenient to use the notation:

hYM(a) = fa dhYM . (85)
Σ

Proof. Let A be an element of A. We have:

(hYM (g) id)Ω(A) = (A ® id)\Ω(A)(γ[WFi ®
\ \ι=l

=hYAf(A)®l . D
/=!

Definition 7 (Correlation functions). Let Σ be a triangulated Riemann surface with
boundary dΣ — \J"=lCi9 where Ct are nonintersecting simple loops. We define the
partition function Z(Σ'9C\,...,Cn) to be the element of QQ^Ac, defined by.

= /l dhYM . (86)

Proposition 7 (Locality). Let Σ be the same surface as before, and let us consider
C a simple loop (consisting in links belonging to the triangulation) which divides
Σ in two pieces Σ\ and Σ^.

We have the usual Markov (or locality) property.

(87)
/ec

Proof. Commutation of Boltzmann weights implies obviously the Markov prop-
erty. D
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We will later on use this locality property to compute any correlation functions
using only two and three point correlation functions.

In the rest of this work we will choose a precise expression (see Proposition 8)
for the functions ωα(C). This implies that the theory is quasitopological. In order to
simplify expressions in the proofs we will moreover assume that WF is independent
of the area of the face, i.e. we are choosing Cα = 0. We could as well compute the
correlation functions of the continuum limit of the theory in the case where CαφO.
The relationships between correlation functions of the theory where Cα φ 0 and the
topological one is the same as those described by [17, 18] in the undeformed case.

Recall the theorem of Alexander [10] in the two dimensional case: Let K,L be
compact simplicial complexes of dimension two and ΣK, (resp. ΣL) the topological
surfaces defined by K (resp. Z), Σκ is homeomorphic to ΣL if and only if K and
L admit a common subdivision obtained by a finite number of stellar moves.

The stellar move can be conveniently replaced by an equivalent set of two
moves called Matveev moves M\,M2 which consist respectively in:

1. replacing any triplet of triangular faces described by their boundary links:
(x,a, y), (y, b,z), (z, c,x) by the triangular face (α, 6, c).

2. replacing a couple of neighbour triangular faces, described by their boundary
links, (a,b,x),(x,c,d) by the couple (a,y,d),(y,b,c).

It is important to remark that each move applied to the triangulation leaves the
set of boundary links fixed.

In order to simplify the notations inside the following proofs, we have made
a convenient abuse of notation and have used the same letter / to denote the link
/ and the gauge variable U\ attached to it. We also have used the convention of
labelling the loops by their links and not by their vertices.

Proposition 8 (Topological invariance). If ωα satisfies the following property:

ωα(d#C2) - ωα(d)ωα(C2) (88)

for any simple loops d>d of length greater than three with common edges, then
the correlation functions do not depend on the triangulation of the surface with
fixed boundaries.

A particular set of ωα is defined as follows: let t% be any complex numbers,

(89)

Proof Let us first prove invariance under the first Matveev move:
Let us glue three Boltzmann weights associated to triangular faces labelled by

their boundary C\ — (x,a, y), C2 — (y, 6,z), €3(2, c,x) around the same vertex m.
The result after integration on the common links is simply the Boltzmann weight
of the triangular plaquette C = (a,b,c). Indeed we have:

= fdh(x)dh(y)dh(z) Σ [dΛ][dβ][d7]pΛ(m, d )pβ(m, C2)p7(ro, C3 )
«,Ay

α α α α β β -\^ β_ι 7 7 7 7_ ι
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but we have, using the integration formula (79), that:

In order to integrate over the link x, we can use Proposition (2) and the relation

l\pa(m,Ci) = pa(m,(x,a,b,c,χ-1)), (90)
/=!

so that we can write:

which shows that MI is satisfied.
Let us now show the invariance under the second Matveev move. Consider two

triangles C\ ~ (a9b,x), C2 = (x,c,d) and denote by m the vertex common to a,x
and d,

9 C, )pβ(m, C2)ωα(C,

β β
c2d2)

= W(a,b9c,d).
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We just have to use cyclicity of W(a,b,c,d) and to invert the previous computation
to conclude the proof. D

Remark. Let C\ and €2 be simple loops of length greater than three with com-
mon edges, let C\ Π C2 be the set of common edges, then it is easy to show the
convolution property:

W(Cl#C2) = fW(Cl)W(C2) Π dh(l). (91)
/GCΊΠC2

In the rest of this work we will assume that

fΓ \ fcd + sΣreCefcC1)) / Π O Λωα(C) = ι;α

 2 fc . (92)

Proposition 9 (characters). Let C be a simple closed curve on Σ. We will define
a "character"

χ(C) = v-*-'*Wa(C). (93)

These elements satisfy the following usual orthonormality property.

(94)
/ec

Proof. The orthogonality relation is proved as follows:

)
/ec

tri2 μ
\ i=l ι=k

Π

Π
ι / = A : - l

Proposition 10 (Two and three points correlation functions). Let £2,2 6e the two
holed sphere with boundary loops C\ , €2 and S2j be the three holed sphere with
boundary loops C\,C2,Cτ>. The expression of the two points and three points cor-
relation functions is expressed in terms of characters as:

Z(S2,2;Cl,C2)= E fc22,cΛ2A' (95)
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Proof. Let us compute the two point correlation function with the loops C\ and C2

as boundaries.
To simplify the proof we consider the cylinder obtained by gluing two opposite

edges of an hexagon C — (a,b,c,d,e,c). Let us denote by m (resp. n) the departure
point of b (resp. e). We have C\ = (a,b) and C2 = (d,e\

, C)ω,(C)tτ(μbcdec-]a)

Using the relation σ(6)P25 = ^43^32-^65^51, the previous equation can also be
written:

Therefore we have proven (95) when Cι,C2 have length two. The structure of the
proof is the same when CΊ,C2 have different lengths.

Let us now compute the three point correlation function with the loops C\, C2, C^
as boundaries. To simplify the proof we consider the three holed sphere obtained
from a decagon C = (b^2\a9c^\e,d^\d(2\e9c

(2\ά9b^). We will denote by x,y,z
respectively the departure points of b^\c£l\c^l\

= Jdh(a)dh(e)Σ[dΛvxωx(C)tΐ0...<)(μ0μ9μΊμ5 μ,P09

α α α α



694 E. Buffenoir, Ph. Roche

Therefore we have proven (96) when CΊ,C2,C3 have length two. The structure of
the proof is the same when Cι,C2,C3 have different lengths. D

Proposition 11 (Partition function of a general Riemann surface). The partition
function Zg of a compact connected orientable Riemann surface of genus g without
boundary is given by the formula:

Z9 = Σ(v*+tW)2-29 (97)
α

Proof. This result is easily obtained as in the undeformed case by using the
expression of the two and three point correlation functions and the orthogonality of
the characters [17, 18]. D

Remark 1. When CαφO the last formula is modified as follows:

Zg = Σ(vl*+'*[<t*])2~2βe~AΣC* , (98)
α

where AΣ is the area of the Riemann surface Σ.

Remark 2. The previous proposition clearly shows that the partition function is
independent of the choice of the ciliation we choose to define the algebra of gauge
fields.

Proposition 12 (Correlation functions). The correlation functions Z^(Ci,- ,
Cn) of a Riemann surface of genus g with boundary dΣ = U/C/ is given by the
formula:

Z9 = Σ(^+^«])2~^~"ΠXΣ,c, . (99)
α i=l

Proof. The proof is the same as in the classical case. It suffices to cut the surface
in three holed spheres glued along their boundaries and to use Proposition 10. D

Up to this point the choices of the ία were completely arbitrary. From Propo-
sitions (11-12) we clearly see that the choice tx = -1 is particularly important.
In that case final formulas exhibit a complete symmetry in the exchange of q and
q~l. If we take ^ = sl2 and formally set q being a root of unity and truncate
the spectrum according to the value of q the partition function Zg is equal to the
Turaev-Viro invariant of Σ x [0, 1]. This tends to support the connection between
our theory at tΛ — — 1 with hamiltonian Chern-Simons theory.

In the rest of this work we will set ία = — 1 and prove the fusion identities for
characters. But it is nice to introduce a new notation:
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Definition 8. From now the holonomy ffl associated to a simple closed curve
C — (x\,X2, . . . ,*„+! = x\) will be a renormalised version of the previous definition'.

Then we have:

χβ(C) = tr(AbT(C)) (101)

and for each plaquettes F:

(102)

Proposition 13 (Fusion of characters). Let C be a simple loop, we have the fol-
lowing fusion identity on characters:

(103)

Proof. We will prove it when C is of length three. The generalization to arbitrary
length is straightforward. Let C — (x9y9z)9 where jc, y9z are the links of C, where
x — (m9n\y — (n9p)9z = (p9m); using the trick of the last part of the proof of
Proposition (3) we can write:

y2&2fa^

As a result we get:

^mPna(hλ-^

x 2^ι.
y,/fl
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which implies straightforwardly the fusion relation:

. D (104)

Finally it is possible to show that WF is in a certain sense a delta function
which constrains the holonomy of the plaquettes to be equal to one.

Proposition 14 (Delta function and flat connections). The Boltzmann weight is
a delta function located at the unit element for the holonomy around the pla-
quette C:

Wc xp^(C)- 1) = 0. (105)

Proof. In fact we will show the latter property in a slightly different form:

Wc(tr(μj^β(C)V) - tr(μK)) - 0 (106)

for any V in End(Vβ).
With the same method as before we have:

In order to simplify the last part of the latter equation, we must establish some
relations between Clebsch-Gordan coefficients. There exist complex numbers Ay
and BΊn such that:

idv,.)(idV ® φ ) ,

with:
Λ|., = [dβ]. (107)

Using the scalar product it is also easy to obtain the relations:

The latter formulas imply the identity:

with V
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We are now able to conclude the proof:

= Σ

yβ(μVβ). D

This property is essential in the context of quantum gauge theory as described
before [14], but it also allows us to understand why this theory is related to Chern-
Simons theory.

In our next work [6] we will study more deeply the algebra of gauge invariant
elements and develop the properties of P — Y[t Wpι . We will define gauge invariant
and cyclic invariant objects associated to intersecting curves and will show that the
expectation values of these Wilson loops are in fact 3 -dimensional knot invariants
related to Reshetikhin-Turaev ribbon invariants in the three manifold Σ x [0,1].

6. Conclusion

In this work we have defined and studied a two dimensional quantum gauge field
theory where the gauge symmetry is described by a quantum group. This model is
a quasitopological field theory with an infinite number of fields. We still have to
understand the situation where q is a root of unity (this was not allowed in our
setting). In order to solve this problem one should certainly use the formalism of
weak quasi Hopf algebras [13] to ensure truncation of the spectrum. This study has
already been started in [1]. Our formalism does not use any involution but it is
highly desirable to introduce one to ensure reality properties of the theory. It seems
that when q is real there is no problem of this type and the corresponding theory is
a deformation of two dimensional Yang Mills theory associated to compact classical
Lie groups.

This gauge theory appears to describe a three dimensional topologίcal theory,
i.e. that all correlation functions of Chern-Simons theory can be obtained by a
finite dimensional path integral formalism in a two dimensional space time [6].
One of the remaining challenging problems is to extend the present formalism to
higher dimensional space time where the corresponding theories should be far more
interesting. In two dimensions the definition of A uses as a central tool a cilium
order at each vertex. This is easy to define using the natural cyclic order on a
two dimensional oriented surface. In higher dimension it seems that there is no
problem of definition of A using as well a cilium at each vertex, but one has to
find clever permutation invariant objects in order to compensate non-commutation
of Boltzmann weights.

Another important problem which still remains open is to find representations
of the gauge field algebra A. Representations of lattice Kac Moody algebras have
already been found in [3,2]. Constructions inspired by these works should lead
to representations of A. Representations of this algebra is an important step to
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understand the precise continuum limit of those theories and to compare them with
Hamiltonian Chern-Simons theory.
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