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Abstract: We consider the Weyl asymptotic formula

for eigenvalues of the Laplace-Beltrami operator on a two-dimensional torus Q
with a Liouville metric which is in a sense the most general case of an integrable
metric. We prove that if the surface Q is non-degenerate then the remainder term
n(R) has the form n(R) — Rι/2Θ(R), where Θ(R) is an almost periodic function of the
Besicovitch class Bι, and the Fourier amplitudes and the Fourier frequencies of Θ(R)
can be expressed via lengths of closed geodesies on Q and other simple geometric
characteristics of these geodesies. We prove then that if the surface Q is generic
then the limit distribution of Θ(R) has a density p(t), which is an entire function
of t possessing an asymptotics on a real line, \ogp(t) ~ — C±t4 as t —> ±oo. An
explicit expression for the Fourier transform of p(t) via Fourier amplitudes of Θ(R)
is also given. We obtain the analogue of the Guillemin-Duistermaat trace formula
for the Liouville surfaces and discuss its accuracy.

1. Introduction

The question about the relation of a quantum system to its classical limit has been
discussed since the moment of appearance of quantum mechanics. Recently this
question became popular again both in physics and mathematics due to the theory
of quantum chaos. It turns out that statistical properties of quantum energy levels
depend strongly on the ergodic properties of the underlying classical system. As an
important and instructive example one may think of the Laplace-Beltrami operator
on a Riemannian manifold and of the geodesic flow in the manifold as its classical
counterpart. This case has been widely discussed in many physical and mathematical
papers (see, e.g., [1-11, 13-17, 20, 21]).

Let X be a smooth compact Riemannian manifold and let —Δ be its Laplace-
Beltrami operator. The eigen-states of a free quantum particle moving on X are the
eigenfunctions of the Laplace-Beltrami operator, i.e., the solutions of the equation
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The positive square root of this operator, y/^A is a selfadjoint elliptic pseudo-
differential operator of order one. Its spectrum is discrete and each eigenvalue has
finite multiplicity. If we enumerate them in non-decreasing order then we have

0 = Ro < Rι g R2 ^ S Rk ^ > oo as k -» oo .

Note that the corresponding eigenvalue Ek of the Laplace-Beltrami operator is equal
to R^. One of the possible approaches to the study of statistics of the spectrum is
to consider the trace of the operator φ(—Δ) for various functions φ (see [1, 2, 10,
11]). Properties of this trace, for some particular function φ, are closely related to
the properties of the Green function of the wave equation

on X which allows to use this relation reciprocally (see [9, 10, 13, 14]).
The behavior of the sum ]ζ]£i Φ(Rk) depends on the geometry of X and in

particular on the structure of the set of closed geodesies on X. Before formulat-
ing corresponding results let us introduce some definitions. Denote by M the unit
cotangent bundle over X and denote by ξ the Hamilton vector field on M whose
generating function is the symbol of \Λ-2". We recall that the Hamilton flow gen-
erated by ξ is the geodesic flow acting on M whose trajectories, when projected
onto X, are geodesies. Let y be a periodic trajectory of period T. The map Qxp(Tζ)
maps M onto M and it is the identity map on y. Thus for x G y, the differential
d(expTξ)x is a linear map on Tx onto inself such that the tangent space to γ is
its one-dimensional eigenspace. By Py we denote the induced linear transformation
of the orthogonal complement to the tangent space to y at the point x G y. Py is
the linearization of the Poincare map defined on a small submanifold of codimen-
sion 1 transversal to y. Two linear Poincare maps taken at two distinct points x
and x' of y are conjugate. A periodic trajectory y is called nondegenerate if it is
isolated and I — Py is invertible. A periodic trajectory {γ(t% 0 ^ / ̂  T}, y(T\ is
called primitive if it does not contain periodic trajectories of smaller period, i.e.,
y(0) φ y{Tr) for 0 < Tf < T. Each periodic trajectory is obviously an iterate of a
primitive periodic trajectory. Given a periodic trajectory we denote by Ty its period
and by T* the period of the primitive trajectory of which it is the iterate.

If all periodic trajectories of ξ are nondegenerate then as shown in [9], the
difference of the distributions

)) - ( Σ ^τ;\i-py\-χi2δ{t-τy)\
Λ2Gspec(—J) / \all periodic trajectories J

is a locally Z^-summable function of t on the interval (0,oo). Here mdy is the
Maslov index of the trajectory y. (Note that indτ is an integer mod 4).

When X is a surface of constant negative curvature the exact expression of this
function is given by the Selberg trace formula ([16, 18]).

Surfaces with completely integrable geodesic flow are in a sense opposite to the
last mentioned case. Namely, the phase space M is foliated onto ^-dimensional in-
variant tori with quasi-periodic motion defined by ξ. When the ratio of frequencies
of this motion on a torus is rational then this torus is filled up with periodic trajec-
tories of the same period. It is not surprising that the exact expressions of the type
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of Selberg trace formula are not true any longer. We remark that general methods
described in [9, 10, 13, 14] allows one to obtain some trace-type formulae even
in the case when closed trajectories fill submanifolds of nontrivial codimension. In
this paper we take a different approach.

In the present paper we continue to study spectral properties of the Laplace-
Beltrami operator on Liouville surfaces started in [15] and [6]. The geodesic flow
on a Liouville surface is completely integrable and it is believed that this is the
most general class of surfaces for which this is the case (cf. [22]). It is to be
noted also that contrary to surfaces of revolution a generic Liouville surface has no
symmetries.

Let (Q,dq2) be a two-dimensional compact closed Riemannian manifold homeo-
morphic to a torus. We may think of Q as being represented by unit square with
coordinates q\,q2, 0 g q\,q2 ^ 1. A surface Q is called Liouville if its metric dq2

has the form

dq2 = [t/i(?i) - U2(q2)](dq\ + dq\) , (1.1)

where U\(q\),U2(q2) are periodic functions of period 1 satisfying the inequality

U\(q\)-U2{q2) > 0 for all q = (quq2),0 ύ q\,<tι ^ 1 d 2)

The Laplace-Beltrami operator —A defined by this metric is given by the formula

(13)

This is a non-negative selfadjoint operator in the Hubert space L2(Q,μ(dq)) having
a discrete spectrum. Here

μ(dq) = (U^qO ~ U2(q2))dqιdq2 .

The first eigenvalue of — A is simple and corresponds to the constant eigenfunction.
If we enumerate the eigenvalues in a non-decreasing order then we have

0 = E0 <Eχ ^ E2 ^ g Ek ^ > oo as k -+ oo .

Denote by N(x) the number of eigenvalues Ek which are not greater than JC,

N(x) = # { k : E k ^ x } . (1.4)

Then due to the Weyl asymptotic formula (see [14])

N(x) = ^^-x + n(x), (1.5)
4π

where ^ - —•> 0 as c -^ oo. The behavior of the remainder term n(x) as x —» oo for
Liouville surfaces was studied in [15], and it was shown that under a certain condi-
tion of non-degeneracy on the Liouville surface, the function Θ(R) — R~ι^2n(R2) is
an almost periodic function of the Besicovitch class Bι. In addition, if the surface
(Q,dq2) is generic then the probability distribution corresponding to the function
Θ(R) possesses nice analytical properties. In particular, it has a density which is an
entire function of its argument decaying on the real axis at least as exp(—| ( 1 6 / 9 )

when t —> ±oo.
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Surfaces of revolution are Liouville surfaces but they do not satisfy the non-
degeneracy conditions assumed in [15]. This case was considered separately in [3-7]
(see especially [6]). It was proven that under similar conditions of non-degeneracy
the function Θ(R) is an almost periodic function of the Besicovitch class B2, and the
set of the Fourier frequencies of Θ(R) coincides with the geodesic spectrum of Q,
i.e., with the set of the lengths of all closed geodesies on Q. The Fourier amplitudes
of Θ(R) have a nice geometric interpretation as well. In addition, for generic surfaces
of revolution, which are characterized by linear independence of the lengths of all
primitive geodesies on Q, the density of the distribution corresponding to Θ(R)
is an entire function which decays on the real axis roughly as exρ(—λt4) when
| ί | ->oo.

It is to be noted that almost periodic functions appear naturally in various prob-
lems of number theory (see e.g. [4, 7, 12, 15] and references therein). In particular,
one interesting application of the theory of almost periodic functions to the problem
of the distribution of primes in arithmetic progressions was described in [19]. As
was shown in [15], the spectrum of the Laplace-Beltrami operator on a Liouville
surface has a nice geometric inteφretation in terms of points of two-dimensional
lattices. Then the study of the function N(x) is reduced to the counting lattice points
in a planar domain which is essentially a problem in number theory.

In this paper we extend the results of [6] to the case treated in [15] and we obtain
a refined estimate on the rate of decay of the distribution density corresponding to
the function Θ(R). This proves a conjecture stated in [15]. In addition, we prove a
trace formula for the Liouville surfaces. The structure of this paper is the following.
All necessary properties of the geodesic flow on a Liouville surface are described in
Sect. 2 and the main results are formulated in Sect. 3. Section 4 contains a reduction
of the main results to corresponding problems in number theory. The main steps
of the proofs are exposed in Sect. 5 with some technical lemmas proven in Sect. 6.
In Sect. 7 we prove some properties of the kernel of fractional integration of order
3/2 which were used in the other parts of the paper.

2. Properties of the Geodesic Flow of Liouville Surface

Consider a torus Q with the Liouville metric (1.1). Denote by Qr,0 ^ r ^ oo, the
space of pairs of Cr-functions (U\, U2) on a circle satisfying (1.2) and the following
condition:

Al. For each function U\9U2 there are exactly two points where its derivative
vanishes. One of these points is its maximum, and the other one is minimum. Both
of these points are non-degenerate (i.e., the second derivative does not vanish at
these points).

Qr is a topological space with the Cr-topology. One may think of points in the
space Qr as of corresponding Liouville surfaces, defined by means of the functions
U\,U2 and the formula (1.1). The structure of the geodesic flow on a surface Q
with the metric from the space Qr was described in detail in [15] and for proofs
we refer the reader to that paper.

The geodesic flow is embedded into the Hamilton flow acting on the cotangent
bundle T*Q and defined by the Hamiltonian
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where

P i = (£/i(<7i) ~ U2(q2))dqh / = 1 , 2 .

This Hamilton flow possesses the first integral different from the energy integral,

and thus it is completely integrable. The function S(p,q) (as well as H) is a
homogeneous function of order 2 of the momentum p — (p\,p2). We associate
with S(p,q) the quantum operator

A direct computation shows that zl and σ commute.
Introduce the constants ci,c2,C3,C4,mi,Mi,m2>M2 as

Ci = max C/I(Λ;) = C/i(Mi), c2 = min U\(x) = U\(m\) ,

o3 = max C/2(x) = C/i(M2), c4 = min U2{x) = C/i(/w2),

For £ > 0 and o G [04,01], define

ME,c = {(p,q) € r β : //(p ; ί) = E, S(p,q) = cE} .

Due to the complete integrability, every set ME,C consists of two two-dimensional
tori when c G (c 4,c 3) U (c 2 j ci), and of four two-dimensional tori when c^ < c <
c2. The phase trajectories of the Hamiltonian system are windings over these tori,
and the projection π : (p,q) —• g maps them onto geodesies on the configuration
torus Q.

In the case c G (04,03) U (o 2 jci),π projects each component of M£?c onto either
a horizontal or vertical strip, and the projection of any trajectory on ME,C is a

geodesic which rotates along the strip and oscillates between its two boundaries.
Two components of Λ/#jC correspond to two possible directions of the rotation along
the strip. If c G (03,02), π projects each component of Mβ,c

 m a one-to-one way
onto the whole configurational torus Q, and every trajectory on ME,C is projected
onto a geodesic, which is a curvilinear winding over Q. Four components of A/#>c

correspond in this case to four possible combinations of the direction of rotation
along q\ and q2.

The values c — 01,02,03,04 are exceptional: for 0 = 01,04 the tori degenerate into
two circles while for 0 = 02,03 they degenerate into four cylinders corresponding
to the direct product of the separatrix and the circle, with different directions of
motion along separatrix and the circle (for more detailed description see [15]). In
what follows we will call freely the components of ME,c when 0 = 01,02,03,04
invariant tori as well.

The Hamiltonian flow can be described with the help of action-angle variables
IιJ2,φι,φ2' Let ζ\,ζ2 be the circles on Q defined by the equations q\ =M\,q2 =
m2, respectively, with the orientation induced by the coordinate axes. For each
invariant torus corresponding to a nonexceptional value of the parameter 0 a con-
nected component of its intersection with π " 1 ^ - ) is a cycle α, homeomorphic to
circle (/ = 1,2). The canonical form pdq — p\dq\ -f p2dq2 determines uniquely an
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orientation of the cycle oc;. Namely, the tangent vector to αz is positively oriented
if the value of pdq on it is positive. The action variables I\, I2 related to the cycles
oc\,cc2 are given by the formulae:

— / pdq, if π : a,- —• ζ, is bijective and π(α,) and ζt have different

orientations

/ pdq, otherwise .

By φuψi we denote the angle variables canonically conjugate to I\,I2.
As follows from (2.1) and (2.2), (p,q) £ ME,C implies

p\ = 2E(Uι(q{)- c\ p\ = 2E(c - U2{q2)) , (2.3)

hence the action variables are

, c)=

2(2£)1/2

when c2 < c ^ c\
1 (2.4)

0

k when C4 ^ c < C2

and

I2(E, c) = § p2dq2 = <
π(α2)

when C3 < c ^ c\

2{2E)1'2 J I
(2.5)

, when C4 ^ c < C3

According to the definition, in formulae (2.4) and (2.5) we put the plus sign if the
motion goes in the positive direction (with respect to a given coordinate) and the
minus sign otherwise. More precisely, the formulae (2.4), (2.5) enable us to define
I\J2 as functions on the phase space T*Q which are constant on each invariant
torus, and the value of which on the given torus is defined by (2.4), (2.5). It is
noteworthy that the mapping which maps an invariant torus to the corresponding
pair (I\J2) is one-to-one. Note also, that the actions I\{E,c\I2(E,c) are multival-
ued functions of E and c, namely, the values of I\ and I2 on the invariant tori
corresponding to the same pair (E, c) are equal in absolute value but may differ in
sign.

The frequencies of the motion along an invariant torus defined by a pair (I1J2)
are given by the formulae

c) = — , ω 2(£, c) = — .
cl\ ol2

(2.6)

The frequencies ω\(E,c),ω2(E,c) like the actions I\,I2 are multivalued functions
of E and c. Namely, frequencies of motion along invariant tori corresponding to the
same pair (E, c) are equal in absolute value but may differ in sign. We define the
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functions ω\,ωι at c = c\,C2,c^,C4 by continuity. The functions Ij(E,c),ωi(E,c)
are homogeneous functions of E of order 1/2, hence

//(£, c) = (2Eγ/2Mc), ω, (£, c) = (2£)1 / 2£ (c), (2.7)

where j\{c) = //(l/2,c), &(c) = ω/(l/2,c). Recall that an invariant torus is called
non-degenerate if on this torus,

d2H\ Λ (dωk\
7Tr) = d e t - Tj j= d e t Λ T

If the invariant torus is non-degenarate then in its small neighborhood the frequen-
cies cύj can serve as local coordinates, instead of the action variables. A straight-
forward computation gives

μ fl μ f \ .
Cl = T ' 2̂ = —-Γ ,

A A ( 2 8 )

where

Λl=/l/2

Hence

ί i / ί + 6 / 2 = 0, (2.10)

6/1+6/2 = 1, (2.11)

and

5i«2-i25i = 4 . (2.12)
^ 1

This implies

Observe that det ί ^-^-) (£, c) does not depend on E. In the sequel we shall need

the following functions:

rl fit _ f/ ril

a(c) - {ξ\ -f φ3/2Z>(c) = det ί ^ f " ) (^ <0 (2.15)

and

2 / l ( c ) W h e n °2 = C = C l ; (2.16)
/ι(c) when C4 ̂  c ^ C2

{ /2(c) when C3 ^ c ^ c\
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The functions a{c\b(c) like f\,fiΛ\Λi are multivated functions of c and their
values on different branches at the same point c are equal in absolute value but
may differ in sign.

Denote by W the set of all invariant tori with E — 1/2. As was said above,
every ω G W is characterized by the value of the parameter c<\ ^ c ^ c\ and by
the choice of one or two signs, which give the direction of rotation on ω along the
axes q\,q2. It is to be noted that the tori ω G W fill up the unit cotangent bundle
over Q. Denote by W+ the set of ω £ W with positive direction of rotation.

Let & be the set of all nonzero oriented closed (in general, multiple) geodesies
on Q. For g £ $ denote by ω(g) £ W the invariant torus on which π~ιg lies and
by c(g) the value of the parameter c on ω(g). Let n\(g),n2(g) G Z be the rotation
numbers of n~ιg along the axes q\,q2, respectively. If π projects co(g) onto the
whole Q (which occurs when c3 ^ c(g) ^ c2) then we assign to n\{g\n2{g) the
signs of the direction of rotation of g along the axes q\,q2, respectively. If π projects
ω(g) onto a strip along q\ (which occurs when C4 ^ c(g) < C3) then we assign to
n\{g) the sign of the direction of rotation of g along q\ and the sign -f to n2(g).
Observe that in this case n2(g) describes the number of oscillations of g along
the axis q2 so it is natural that n2{g) ^ 0. Similarly, if π projects ω(g) onto a
band along q2 (which occurs when c2 < c(g) ^ c\) we assign to n2(g) the sign
of the direction of rotation of g along q2 and the sign + to n\(g). We denote by
£\(9)Ai(.9\ f\(9\ fi{9\ respectively, the frequencies and the actions of the motion
along ω(g).

If g G *& then the Hamiltonian flow is periodic on the invariant torus co(g) and

We will call two closed geodesies equivalent if they correspond to the same torus
ω(#), and we will denote by G the set if geodesies g G ̂  factorized by this relation
of equivalence. Remark that all equivalent closed geodesies have the same values
of n\(g),n2(g) and of the length

nf+nf (2.18)

so Π\(g),n2{g) and \g\ can be viewed as functions on G.

3. Formulation of the Main Results

We begin with some definitions. We shall call a pair of real numbers αi, oc2 dio-
phantine if there exist τ > 1 and C > 0 such that for any nonzero pair of integers
kufa,

A number α is called diophantine if the pair 1, α is diophantine. The complement
to the set of diophantine pairs of numbers (as well as to the set of diophantine
numbers) has zero Lebesgue measure. Real numbers 1 = λo,λι,λ2,. . are called
linearly independent over TL if

&0 + M 1 + + U = 0

with kf G Έ implies k0 = = kn = 0.
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A function f(t) on the positive half-axis {t > 0} is called an almost periodic
function of the Besicovitch class Bp if for any positive ε there exists a trigonometric
polynomial

Nε

n=\

such that
Mm svφT-χ$\f{t) -Pc{t)\pdt ^ ε .

T—>oo 0

In addition, a trigonometric series

is called the Fourier series of f(t) with respect to Bp if

T

lim lim sup T x f
N-+°° Γ-oo 0

N P

dί =

The Fourier series of an almost periodic function is always well-defined and unique
(see [17]).

Theorem 3.1. Let a Lίouvίlle surface g G f , r ^ 5, satisfy the following condi-
tions:

(i) The function

has only finitely many zeroes and all these zeroes are zeroes of the first order.
(ii) If c is a zero of a(c) then the pairs (ξ\(c),ξ2(c)) and (/i(c),/ 2 (c)) are

diophantine.
(iii) The pairs (/ i (c 2 ) ,/ 2 (c 2 )) and (fι(c3χf2(c3)) are diophantine,
(iv) The pairs (ω\(c\),ω2(c\)) and (ω2(c4),ω2(c4)) are diophantine.

Then the function N(x) = #{k : Ek ^ x} has the representation

^ l 2 ) , (3.2)

where Θ(R) is an almost-periodic function of the Besicovitch class Bι. The Fourier
series of θ(R) with respect to Bι is

Θ(R) = (2π3)~1/2 Σ \g\-y\{gyVhm (\g\R - ^inάg- - σ(g)) . (3.3)

geG V 2 4 /

Here ind g means the Maslov index of any geodesic from the class g £ G and

κ(g) = |dett/2//|, σ(g) = sign det d2H , (3.4)

where the value o/det a^H is taken on the torus co(g).

It is noteworthy that the fulfillment of assumptions in Theorem 3.1 does not
depend on the choice of the branches of the functions tf,/i,/2,ωi,ω2. The almost-
periodic function Θ(R) was also considered by Berry and Tabor in [2]. As concerns
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the properties of the function Θ{R), it is plausible that this function belongs actually
to the Besicovitch class B2 (and not only to Bι as stated), and Theorem 4.3 below
strongly supports this conjecture. Also the B2 property of Θ{R) is established for
a class of surfaces of revolution, see [6]. Still in Theorem 3.1 we have a problem
with proving the B2 almost periodicity, when we estimate the difference between
the function Θ{R) and the function θo(R) of Theorem 4.3. Namely, to estimate this
difference we use semiclassical quantization of the energy levels, and the usual
Bohr-Sommerfeld quantization formula turns out to be insufficient for our purposes,
because it does not work near unstable periodic orbits. So we derive a more so-
phisticated semiclassical quantization formula which works near unstable periodic
orbits, and a difficult problem is to obtain a good uniform estimate of the error
term in this formula, see [15] and [6a].

Denote by Go the subset of G consisting of all closed geodesies (up to the equiv-
alence) with non-negative relatively prime rotation numbers n\{g),n2{g). In other
words, Go is the set of all primitive closed geodesies on Q, up to the equivalence
and to the choice of orientation.

Theorem 3.2. Let Q be a Liouville surface which satisfies the assumptions of
Theorem 3.1. Assume in addition that the numbers {\g\, g 6 Go} are linearly in-
dependent over Έ. Then the limit distribution of the function Θ{R) is absolutely
continuous with respect to the Lebesque measure, and the density p(t) of this
distribution is an entire function of t which has the following asymptotics on the
real axis'.

lim {-Γ4\ogp{t)) = C± > 0 , (3.5)
t—> ± o o

where C± are two {in general different) constants which can be expressed explicitly
via geometrical characteristics of the geodesic flow {for an exact formula see
(4.25) below).

Before formulating the exact statement concerning the trace formula on the
Liouville surface we give a heuristic derivation of it. Let φ{t) be a test function
from the Schwartz space, i.e., φ{t) decays faster than polynomially as \t\ —» oc,
together with all its derivatives. Put

F{x) = Σ <P(x - Rk\ M{R) = N{R2\ m{R) = n{R2) .

Then integrating by parts we have

oo oo

F{x)= Σ <P(x-Rk)= Jφ{x-y)dM{y)= J φ'{x - y)M{y)dy

Area β ^ ,.
v . ,,, „, , fφ'{x-y)m{y)dy

4π o -o

JΨ'(χ-y)yι/2θ(y)dy

- 0
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Replacing θ(y) by its Fourier series (3.3) and neglecting the error term coming
from this replacement (since the Fourier series of a function from Bι represents the
function only asymptotically at infinity) we obtain

F{χ) = ̂ -Jφix - y)ydy + {2n'y^ Σ b Γ 3 / 2 ^ ) - 1 / 2

z π o geG
oo / 7C 7U \

x f φf(x - y)yι/2srn(\g\y - -ind g - -σ(g)) dy . (3.6)
-o

Now,

/ φ'(x - y)yι/2 sin [\g\y - -ind g - -^σ(g)J dy

= \ΰ\ Jψ(x ~ y)yl/2oos (\g\y - ^ind g - | σ ( ^ ) ) dy + O(χ-χ'2l

so neglecting the error term O(x~ιf2) in the last formula we arrive at

J - y)ydy + (2n^'2 Σ \
o geG

oo

X

- 0

Jφ(x - y)ymcos[\g\y - - indg - -σ(g)j dy . (3.7)

In the language of the theory of distributions this is equivalent to

Σ δ(x-Rk) =

x c o s ( | g f | ^ - | i n d g - ^

where
for x > 0 ,
for x < 0 .

Passing to the Fourier transform we obtain that

x e±]i{linάg+σ{g))v(ξτ\g\), (3.8)

where v(ξ) = ψe^iξ + /Ό)" 3 / 2 is the Fourier transform of xψ. The formula (3.8)
is certainly only approximate since in its derivation we neglected different error
terms. The sense of the formula (3.8) is that it describes the principal singularities
of the tempered distribution

χ(ξ) = tr e

In contrast with the case when all closed geodesies are isolated and χ(ξ) has sin-
gularities of the homogeneity order — 1 at the points of the geodesic spectrum of
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the riemannian manifold (see [9,10]), in our case when closed geodesies form the
families filling up the invariant tori, χ(ξ) has stronger singularities at the points of
the geodesic spectrum, of the homogeneity order —3/2.

Theorem 3.3. Let Q be a Liouville surface which satisfies the assumptions of
Theorem 3.1. Consider the tempered distributions

(3.9)

and

d(ξ) = Σ _ ***** + ̂ ( f + 'Ό)-2 - (2π3)-'/2 Σ ψ\-l/2«0)-112

^β C3-function φ(t) satisfies the inequalities

< const(Λ)(l + k l 2 ^ ) " 1 , A = 0,1,2,3, (3.11)

r

Γ-1/ ί~1/2K^*^)l(O^->0 as Γ->oo, (3.12)
o

T-ιfΓι/2\{d,exp(-itξ)φ)\dt^0 as T -> oc . (3.13)
o

It is worthwhile to note that the general trace formula discussed in [9,10] and
the trace formula of Theorem 3.3 in a sense complement each other. Namely, to
the local Lx property of the function d(ξ) in the general trace formula of [9,10],
the formula (3.13) adds some control of this function at infinity.

4. Proofs

As was shown in [15], the study of the spectrum of the Laplace-Beltrami operator
on a Liouville surface can be reduced to the study of distribution of lattice points
with respect to some particular domains dilated with some factor and then shifted.
For the convenience of the reader we describe below this reduction proven in [15],
and then we derive the desired theorems from the corresponding results for the
lattice-point problem. It should be noted that the latter is of interest in itself.

Here we give a reduction of Theorem 3.1 to Theorems 2.1(a) and l l . l( i) of [15].
According to [15], the study of the function N(x) can be reduced to the following
lattice-point problem. Consider the curve Γ on a plane given parametrically as

x = (xι(c),x2(c)), c4 S c ^ cx ,
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where

J (Uι(qt) - c)ι/2dqι ,
l)-cS0

(4.1)
J (C - U2(q2)Ϋ'2dq2 .

Observe that x[(c) < 0 and xf

2{c) > 0. In addition, x\{c\) — xi{c^) = 0. This im-
plies that Γ is a star-like curve in the first quadrant so it can be written in the polar
coordinates p, α as a graph of an single-valued function,

p = G(α), 0 ^ α ^ π/2 .

Define the angles 0 = 0C4 < 0C3 < α2 < oc\ = π/2 as solution of the equations

tanα / = ^ , 1 = 1,2,3,4,

and partition the first quadrant into three sectors A\,A2,A2 with

^ α ^

Theorem 4 . 1 . ( [ 1 5 ] , T h e o r e m 6.3) . Let Q eQr,r Ξ> 3 be a Liouville surface.
Then
(a) G(α) G C1 ((0, \π)) and the tangent line to Γ at the point with the angle
coordinate at is parallel to the xraxis (i = 1,2).
(b) G(a)GCr+ι ((0,α,)U(αi,α 2)U(α2,iπ)).
(c) For all I (0 ^ / ^ r 4- 1) ?/zere exist finite limits

( 4 2 )

lim ^ ( α ) = G(0 (l _ o ) . (4.3)

addition, G ( 0 )(+0) = G(0) > 0, G ( 0 )(^π - 0) = G(^π) > 0 and G ( 1 )(+0)Φ0,

(d) In the vicinity of the critical angles oc\,a2 derivatives of G have the following
asymptotics:

dιG/ x const(z,/)
- r τ ( α ) ^ - ^ p j , as α ̂  α,, / = 1,2, 1 < / < r - 1 .

(4.4)
(e) The following inequalities hold for 0 ^ α ^ | π :

G(α) ^ const > 0 ,

dG
—-(α) g Const .
da
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Denote by D\,D2,D3 the finite sectorial domains cut off by the curve Γ from the
sectors Aχ,A2,Ai, respectively. Let RDj be the image of A under the dilation with
the factor R with respect to the origin. Consider the lattices

Lx = {(π(mi +(l/2)),2πm 2 ), (mum2) G Z2} ,

L2 = {(2πmu2πm2),(mum2) E Z2} ,

L3 = {(2πmuπ(m2

 2

and define
}, / = 1,2,3,

^o(Λ) = 2Λ î(Λ) + 4N2(R) + 2N3(R).

Theorem 4.2. ([15]), Theorem 6.2). Tfα Lίouville surface Q e £r,r *> 5,

w an almost periodic function equivalent to 0 in the Besicovitch class Bι, i.e.,

^ O. (4.5)^ / |
Γ-^oo 7 0

Denote Γ, = Γ Π i Let

DA = {(x\9X2) e 1R2 : (πxu2π\x2\) e A } ,

A = {(*i,*2) € IR2 : (2π|x1 |,2π|x2 |) € A } ,

D6 = {(xuxi) e R2 : (2π|xi|,πx2) E A } , (4.6)

and for a point a E 1R2 and a domain £) C 1R2, put

N(R,a,D) = #{(α + Έ2) Π i?D} ,

n(R, a,D) = N(R, a,D) - R2AreaD .

Obviously,

N(R,α49D4) = 2Nι(R)9 N(R,α5,D5) = 4N2(R), N(R,α6,D6) = 2N3(R) ,

with
α4 - ((1/2), 0), α5 = (0,0), α6 = (0,1/2)) ,

hence

and by (4.5),

lim ~jR-i/2\N(R2)-N(R,a4,D4)-N(R,a5,D5)-N(R,a6,D6)\dR = 0. (4.7)
7—>oo 1 0

By the Weyl law (see (1.5)),

An
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with n(R2) = o(R2), and it is easy to see that

N(R, ai9 A ) = (Area A )R2 + n(R, ah A ) , z = 4,5,6 ,

with n(R,ai9Di) = £>C#2). Hence (4.7) implies

Area β

4π

and

= Area At -f- Area£>5 + Area As

lim ^jR-ι/2\n(R2) - n(R,a4,D4) - n(R,a5,D5) - n(R,a6,D6)\dR = 0 . (4.8)

This equation shows that we have reduced Theorem 3.1 to a problem of number
theory about the behaviour of the number of lattice points inside a dilated domain.

Let Do be a star-like domain given in the polar coordinates by the inequalities

0 S P S G0(β) , βi S β ύ h , (4.9)

and denote by Γo a part of its boundary given by equation:

p = Go(j8) , βi ύ β ^ βi . (4.10)

Assume that:

(Al) Γo e C\[βuβ2]) ΠPC 5 ((β u β 2 )) where PCr denotes the space of piecewise
Cr-functions, and for βx ^ β g β2,

0 < c £ G0(β) ύ C, \G'(β)\ S C .

(A2) The curvature κo(β) of Γo has only finitely many zeroes and each zero has
the first order. More precisely, if %o(βo) — 0 then

xo(β) = (β - βo)xι(β) with κ,(/S0)Φ0.

(A3) There are only finitely many points on ΓQ with infinite curvature. If β* is
such a point then in the vicinity of β* the function κ0 and its derivatives have the
following asymptotics:

C(β*,k) £ o i 2 3
£ = o i 2 3

dβk ( j !-jS )1 +*(log|jϊ-/ί r 1 ) 2 ' ' ' ' '

Here C(β*,k) are nonvanishing real numbers depending on the critical point β*.

Denote by V the set of all points of Fo with infinite or zero curvature and
include also in V the endpoints of ΓQ if it is not closed.

(A4) If Vή=Φ then for each point from V with finite curvature the directions of
its radius-vector and the tangent line to ΓQ at this point are dίophantine {i.e. the
tangents of the slope angles are diophantine). For points where the curvature is
infinite the directions of the radius vectors of these points are diophantine and the
directions of the tangent lines at these points are either diophantine or rational.
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For a given curve ΓQ define the function So(η), which maps a vector η E IR2\{0}
onto the set of all points x on ΓQ for which the vector of outer normal n{x) to DQ
has the same direction as η, i.e.,

S0(η)=LeΓ0 : "(*)=Λ} (4.Π)

For some η the set So(*?) can be empty. Note that the assumptions Al, A2 imply
that the curve Γo consists of finitely many concave and convex arcs. This in turn
implies So(η) to be a finite set whose cardinality is uniformly bounded from above.

Define

E = {n = (nun2) E N : nun2 are coprime} U {(1,0),(0,1)} , (4.12)

and
Λ = UηeE{{x,η)\xeS0(η)}. (4.13)

A(5) The elements of A are linearly independent over TL.

Theorem 4.3. ([15]), Theorem 11.1 (i), Lemmas 13.1-13.8). If the domain Do

satisfies the assumptions A1-A4 then for any a E IR2 the function Θo(R) =
R~χl2n(DQ,a,R) is an almost periodic function of the Besicovίtch class B2. The
Fourier series of θ0 with respect to B2 has the form:

θo(R)=π-1 Σ Σ H~3/2|ico(*)Γ1/2

x sin ( 2πR(x, m) — 2π(a,m) πsignxo(^)) (4.14)

In addition, for any T and K sufficiently large and β > 0

T-ιJ\θ0(R)~Pκ(R)\2dR g const(β) ( r ^ - f Γ ^ ^ I π r 1 2 ) , (4.15)
o v '

where

pκ(R)=π-1 Σ hΓ3 / 2M*)Γ1 / 2

x sin ί 2πR(x,m) — 2π{a,m) πsignκo(x) I . (4.16)

Theorem 4.4. ([15], Theorem 11.1 (//)). If in addition to the assumptions of Theo-
rem 4.3 the condition A5 is also fulfilled, then the limit distribution μ(dy) of θo(R)
does not depend on a E R 2 and has a density p(y) with respect to the Lebesgue
measure. The density p(y) is an entire function of its argument and satisfies the
following inequalities on the real line: Vε > 03y(ε) > 0 such that

p(y) S exp ( - b Γ ~ ε ) when |^ | ^ y(ε) . (4.17)

For a finite collection of domains B\,B2,...Bι, consider the linear combination
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where Sj, i = 1,...,/, are arbitrary real numbers. Denote by A[ the set defined by
(4.13)

Theorem 4.5. ([15]), Corollary 11.2). If the assumptions A1—A4 are satisfied for
each domain Bt then the function R~xl2ns(R) belongs to the Besicovitch class B2

of almost periodic functions. In addition, if the assumption A5 holds for the set
A = \JAi then the density p(y) of the limit distribution of R~ι/2ns(R) posesses all
the properties formulated in Theorem 4.4.

In the proof of Theorem 3.2 we use an improvement of the estimate (4.17)
which will be proven in Sect. 5 below. For an exact formulation of the improved
estimate we need some definitions.

Define
1

φ(λ) = Jexp(iλB(t))dt, (4.18)

o

where

B(t) = Σm-3/2sm(2πmt - (π/4)) , (4.19)

m=\

and

A(λ) = (4/3)/x~7 / 3 \ogφ(λx)dx . (4.20)
o

It follows from (4.18) that φ(iy) is a positive real-analytic function of y G IR with
φ(0) = 1 and φf(0) — 0. In addition, φ(iy) has exponential asymptotics as t —> ± o o .
This implies that the RHS of (4.20) is well-defined for λ pure imaginary and

Λ.V4/3 if v > 0
( Λ4/3 Γ Λ (4 .21)

_(—vy/ό if v < 0 , v J

with A± = A(±ί). We will show in Sect. 6 below that there exists δ > 0 such that
the RHS of (4.20) is well-defined for all λ in the sector

Sδ = {λe C\{0} : |Re λ\ ^ δ\hnλ\} , (4.22)

and

A(ieiθv)=A±(±ewvf3

for all |0| ^ δ and ±v > 0.
Define

Φα)=Π Π φ(π-ιp(m,x)λ), (4.23)
meExeS0(m)

where E,S0(m) and φ(λ) are defined in the formulas (4.12), ( 4 . l l ) and (4.18),
respectively,

p(m,x) = |mΓ3 / 2sign (κ(x))\κ(x)\-ι/2

and κ(x) is the curvature at the point x.

Theorem 4.6. Let all the conditions of Theorem 4.5 be satisfied. Then the char-
acteristic function Φs(λ) of the limit distribution of R~ι^2ns(R) is equal to the
product
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where the function Φ^ι\λ){\ ^ / ^ /) is defined by (4.23) with the help of the
domain Bt, and the density p(t) of this limit distribution is an entire function of
t such that for real t,

-ΓAlog p(t) -* C± > 0 as t -> oo (4.24)

with

4 ( A(±isjsgnκj(x))\κj(x)\ι/3dlj(x)) . (4.25)

stands for the differential of the length of arc along the curve.

Proof of Theorem 3.1. Theorems 4.1, 4.2, 4.3, and 4.5 expressed in terms of the
geodesic flow on Liouville surface give the desired result immediately.

Let

Γ4 = {(xuxi) e JR2 : (πxu2π\x2\) G Γ{} ,

Γ5 = {(xuxi) Ξ R 2 : (2π|x1 |,2π|x2 |) e Γ2} ,

Γβ = {(JCI,JC2) G R 2 : (2π|x1 |,πx2) G Γ3} , (4.26)

so that Γi is the curvilinear part of the boundary of Dt (cf. (4.6)). Denote by
Si(η), i = 4,5,6, the function -SΌ(̂ ) constructed as described above with the help of
the curve Γ, instead of ΓQ (see the paragraph before (4.12)). According to Theorems
4.2, 4.5 the Fourier series of Θ(R) is

Θ(R) =π~ι E Σ / /

1=4,5,6

x sin(2π(rn,x)R - 2πlKm,aι) - (π/4) sign κ, (x)), (4.27)

where |m| = (m^ + m^)1^2, (m,x) — πi\X\ + ̂ 2^2 and κ/(x) is the curvature of Γz at
the point x G Γ/.

We can establish a one-to-one correspondence between the set of invariant tori
w e W filling up the unit cotangent bundle and the set

Γ* = Γ 4 U Γ5 U Γ 6 .

Namely, let an invariant torus w £ W correspond to the point x(w) —
(2π)~ι (Iuh\ where I\,h are the values of the action variables on w (see (2.4),
(2.5)). Comparing (2.4), (2.5) with (4.1), (4.26) we see that x(w) e Γ*. Observe
that E = 1/2 on any w G W hence by (2.7) h = /,-. Therefore, (2.7), (2.8) imply
that the vector (ω 1,0)2) is collinear to the vector of the outer normal to F* at the
point x(w). This allows us to establish a one-to-one correspondence between the set
G of families of closed geodesies on Q and summands in (4.27). Namely, every
g G G is characterized by an invariant torus w(g) G W where it lives and by the
rotation numbers n\(g),n2(g). So we can define the map

g->(m = (m(g)9n2(g))9x = x(w(g))),

which is the one-to-one correspondence between G and the summands in (4.27).
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Since the equation of Γ* is x(c) = (2π)~ 1 (/i(c),/ 2 (c)) the curvature Xf(x) is

*,(*) = 2π(fxrt - ΛA'xf?+f?rm •

By (2.18),

|m|2 = n] + n\ = \g\\ω\ + ω\) = \g\\ξ] + ξ\),

hence

\m\\{x) = \g\\ξ\ + ξ\Ϋl22π{f[rt - fΊf'ίXf? + /22Γ3/2,

and by (2.15),

\m\hiix) = 2π\g\3det(d2H)((l/2),c) . (4.28)

Also, (2.18) implies
2π(m,x) = nxfλ + n2f2 = \g\ . (4.29)

By (4.28),
2

and the number 4(m,β/) mod 4 is the Maslov index of g € G. Thus the formula
(3.3) follows from (4.27).

In addition, the formulae (2.3)-(2.5), (2.8), (2.14), (2.15) and Theorem 4.1
show that the conditions of Theorem 3.1 coincide with the conditions of Theorem
4.3 formulated in terms of the geodesic flow on Q which completes the proof of
Theorem 3.1.

Proof of Theorem 3.2. Invariant tori w £ W+ of the unit cotangent bundle with
non-negative frequencies correspond to the points of

Γo = Γ* Π {x = (xi,x2) G R 2 : xi,x2 ^ 0} .

We define the multiplicity function h(x) on Γ° as

(2 if xeΓ4,

h(x) = < 4 if xGΓ5 ,
I 2 if xeΓ6 .

Consider the set

E = {n = (/ii,w2) € N : /ii,w2 are relatively prime} U {(l,0),(0,1)} .

Then
Ω = {\g\,g eG0}= \J {2π(m,x),x G S0(m)} .

m£E

Theorem 3.2 follows directly from Theorems 4.5, 4.6 in view of the formula (4.28).

Proof of Theorem 3.3. To prove (3.12) let us first observe that if φ(t) satisfies
(3.11) then the series

Σ \g\~il2κ{gTxl2]ψ'{χ - y)yxllύn(\g\y - - indg, - -Ma)) dy

= Σ \9r5βκ(θΓX/27ίψ'(x - y)yl/2]'oos(\g\y -^indg- ^g)) dy
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is absolutely convergent because the sum over g is basically a two-dimensional
lattice sum and Σg \g\~5^2 < oo. This implies that if we define the tempered dis-
tribution dχ(x) as

then
1 τ

lim lim - fΓι/2\(d - dK) * φ(t)\dt = 0 . (4.30)
K-^oo T—>oo T Q

On the other hand,
dκ*φ(t) = εκ*φf(t), (4.31)

where

8,(0 =N(t2) - ^ t\ - (2π3)

x 4/2sin(|<5f|x - I ind - |

and by Theorem 3.1

lim lim ^

hence
1 τ

lim lim -fΓι/2\εκ*φ'(t)\dt = 0. (4.32)
K-^oo T-+00 T Q

From (4.30)-(4.32) we obtain (3.12). Since d is the Fourier transform of d, (3.13)
follows from (3.12). Theorem 3.3 is proved.

5. Proof of Theorem 4.6

Proof of Theorem 4.6. We consider a particular case when / = \,s\ — 1 and
D = D\ is convex. The proof for the case of several convex and concave arcs
goes mutatis mutandis.

Using the inverse Fourier transform we obtain

oo

J Φ(λ)e-itλdλ. (5.1)

Lemma 5.1. (see [15], Lemma 15.1). If the conditions of Theorem 4.4 are
satisfied then the function Φ(λ) is an entire function of λ — λ\ + iλ2 satisfying
the estimation

\Φ{λ)\ ^ exp^cμ.fμΓ^ + c^iμp/4) a s μ| ̂  I ,

where C\,C2 are some positive constants.
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By Cauchy's theorem and with the help of Lemma 5.1 we can shift the axis of
integration in (5.1),

oo

p(t) = (2π)~ι J Φ(μ + iv)Qxp(-it(μ + iv))dμ . (5.2)
— oo

We evaluate the asymptotics of p(t) as t —> ±oo with the help of the saddle-point
method. To this end we put

lp(m)λ), (5.3)
m£E

where φ(λ) — logφ(/l) and p(m) = p(rn,So(m)) (recall that we assume that So(m)
consists of one point). Due to Lemma 7.5 formulated in Sect. 7 below, there exists
a δ > 0 so that for λ such that |Λ,i| ^ δ\λ2\, the function \j/(λ) is well defined and
analytic. Let us choose δ > 0 so that all the statements of Sect. 7 are valid and
rewrite (5.2) as

-h(2π)~1 / Φ(μ + iv)exp(-it(μ + iv))dμ (5.4)

Lemma 5.2. If λ e Sδ = {z e C \ {0} : |Rez| S δ|Imz|}, then

Ψ(λ) = (κ/2)Ά(π-ιλ)(l+o(l)) as \λ\ -> oc , (5.5)

uniformly in arg λ. Here

= J\κ(x)\ι/3dl(x)
Γ

is the affine length of Γ, the curvilinear part of 3D.

Corollary 5.3. // λ e Sδ then

as \λ\ -> 00 , (5.6)

p"(Λ) - (4/9) (πλy2κ A(π~ιλ) (1 +

uniformly in arg λ.

Corollary 5.3 is an obvious consequence of the Cauchy integration formula and
Lemma 5.2, and we leave it without proof.

Let us apply the saddle-point method to the integral I\(δ). If δ is chosen small
enough then Lemma 7.5 below shows that the function Ψ(λ) — itλ has in S$ for large
\t\ a unique critical point λc(t) = μc(t) + ivc(t) with μc(t) — 0. Taking v = vc(t) in
(5.2) we obtain, with the help of the saddle-point method, the following lemma:

Lemma 5.4.
log/i(δ) = -Sπ\κA±y3t\\ +
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The following lemma completes the proof of Theorem 4.6:

Lemma 5.5.
as t -> ±oo .

6. Proof of Technical Lemmas

Proof of Lemma 5.2. Introduce the set of measures μ#, R > 0, in the first quadrant,

μR = (π2/6)/T2 £ δ(x - R-2m). (6.1)
meE

The family μ# weakly converges to the Lebesgue measure as R —> oo so that for
any continuous function g with compact support,

oo oo

lim R-2 Σg{R~{m) = (6/π 2 )/ Jg(x, y)dxdy . (6.2)
κ-*°° meE 0 0

Consider a sequence of C°° functions ζn(λ) equal 1 inside the disk |λ| g n and
having the support in the disk \λ\ ̂  In. Applying (6.2) to the sums

and letting n —• oc for λ G S$, we get uniformly in arg /I,

oo oo

Σ Ψ(π~ιp(m)λ) = π" 4 / 3 μ | 4 / 3 / /<F(p(m)exp(zargΛ))</m(l + o(l)) . (6.3)
meE 0 0

Recall that the geometrical meaning of the vector m is that it is a normal vector
to Γ. Since Γ is a convex curve it can be smoothly parametrized by the angle β
between the direction of the normal vector to Γ and polar axis. Then we can split
the variables of integration in (6.3):

oo oo

|A|4/3/ Jψ(p(m)aφ(i3rgλ))dm
0 0

= μ|4/3JfΨ(exp(iargλ)r-3/2κ(β)-{/2)rdβdr
o r

9 oo

φ(i arg λ) sκ(β)~ι/2) s'lβdβds
3 o r
j oo

= UjΨ(λt)Γ^κ(βf2)dβdt. (6.4)
J 0 Γ

We changed in (6.4) the variables by putting r~3/2 = s and s = κ(β)^2\λ\t. Thus
substituting the integration with respect to the arclength parametrization for the
integration with respect to β finally we get

oo

Σ Ψ(π-ιp(m)λ) = (2β)κfΨ(π-ιλy)y-Ί'3dy(l+o(l))
meE 0

(6.5)

Lemma 5.2 is proved.
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Proof of Lemma 5.4. Corollary 5.3 shows that vc(t) is the unique solution of the
equation

Hence using (4.21) we obtain

- 3

Thus by (4.20),

Ψ(ivc(t)) + tvc(t) = -(π 4 /

In addition, by (5.6)

Ψ"(ivc(t)) = C±r 6(l

(6.5)

(6.6)

t-* ±oo . (6.7)

±oc , (6.8)

with some C± > 0. From (6.7), (6.8) with the help of the saddle-point method we
get that as t —* ±oo,

\ogh{δ) = log[(2π)-' exp (ψ(ivc(t)) + tvc(t) - iπsign Ψ"(ivc(t)ή

x |«P"(ivc(0)l"1/2](l +o(i))= -(π4/4)((2/3)κΛ±Γ3ί4(l + 0 ( l ) ) .

(6.9)

Lemma 5.4 is proved.

Proof of Lemma 5.5. Fix a large number N. Then from Lemmas 7.2, 7.4 and
formulae (6.7), (6.8) we have for large \t\,

/

Φ(ivc(t))

π

dμ

(6.10)

If |Λ.| ^ TV, \Reλ\ ^ δ|Imλ| and TV is large enough then due to Corollary 7.5,

φ(λ)

φ(Reλ) VΊI
1/2

In addition, if \t\ is large then the number of m € E for which 5 ί(m)φ0 and
|π—Ip(m)(ju + ivc(ί))| ^ 1 is bounded from below by cί2N~2^. Hence

Φ(ivc(0)
1 +

-Γ
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and

as t\ -

\h{δ)\ <

Uδ)\ =

VII

-> oo. Lemma

at

5.5

oo

V(OI
7(1-W2))^2

is proved.

1

2))(l +

/3'2 - o

Vc(O
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dμ

7. Properties of Auxiliary Functions

Define the functions

^ ) — Σ m exp(2π/mx),
/ w = l

oo

5(JC) = Σ m~V2 sin(2πmx - (π/4)),
m=\

(7.1)

which are continuous periodic functions of period 1. In addition, b{x) can be
extended to the upper complex half-plane as a bounded periodic analytic function
of period 1. Remark that

B(x) = Im &(*)) (7.2)

Lemma 7.1. The function B(x) is a continuous periodic function of period 1 wz

/
o

= 0 , (7.3)

and moreover B(x) is a real analytic and strictly concave function on (0,1), so
that

B"{x) < 0, V 0 < x < 1 .

Also the function B(x) has a unique maximum point xm a x on the interval (0,1)
and

> 0 . (7.4)

(7.5)

(7.6)

In addition, B(x) is minimal at the point xmm — 0 and

B(0) < 0 .

Near 0 the function B(x) has the form

where

1/2

^{o
if y > 0 ,

if V < 0 ,

β^ίi b\(x) is analytic near 0 with b\(0) < 0.
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It is to be noted that by (7.6), B(x) is real-analytic from the left of 0 with
B'(—0) < 0 and it has a square-root singularity from the right of 0.

Proof of Lemma 7.1. For z = x + iy with y > 0 we have from (7.1) that

oo oo

b"(z) = -4π 2 ]Γ> 1 / 2 exp(2πz mz) = -4π 2 £ m+/2exp(2πzmz) . (7.7)

Define for z e <C with Imz > 0,
OO OO Z — I

β(z) = J mιl2Qxp(2πimz)dm = fmι/2exp(2πimz)dm = —— z~3/2 . (7.8)
-oo 0 8 π

Then by the Poisson summation formula

f> 1 / 2 exp(2π/mz)= Σβ(m + z\ Imz > 0 , (7.9)
m—\ m— — oo

hence
1 OO

b"{z) = π £ (z + /w)"3/2, Imz > 0 . (7.10)

This formula defines Z?r/(z) as an analytic function in the strip {z = x + /> : 0 <
x < 1}. Now from (7.2) we obtain

B"(x)= lm(]—^b"(x)) =--?-Σ(m+χ)-V\ 0 < x < 1 . (7.11)
V v 2 / v2w=o

This proves that B"(x) (and hence B(x)) is a real analytic function on (0, 1) and
B"(x) < 0 so that B(x) is concave.

Equation (7.3) follows directly from (7.1), and this implies (7.4) and (7.5).
Finally, (7.6) follows from (7.11). Lemma 7.1 is proved.

Introduce the constants B± and D± as follows:

B+=B(xmaκ), 5_ =
(7.12)

D+ = -Bf/(xmax\ D_ = - ^ ( - 0 ) ,

and consider the function

1

φ{λ) = fGxp(iλB(x)) dx . (7.13)
o

Lemma 7.2. φ(λ) is an entire function for which

φ ( 0 ) = l , φ'(0) = 0; (7.14)

φ(λ) > 0, Reφ'(λ) = 0, φ"(λ) < 0 if Reλ = 0 (7.15)

ιv)| ^ φ(ίv) V (μ + iv) € C . (7.16)
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Proof Equation (7.13) implies that φ(λ) is an entire function and

1

φ'(λ) = ifB(x)exp(iλB(x))dx

φ"(λ) = -fB2(x)exp(iλB(x))dx ,
o

(7.17)

so Lemma 7.2 follows.

Corollary 7.3. The function φ(it) is a strictly convex positive function of t 6 IR
which achieves it minimum at t = 0.

Lemma 7.4. The following asymptotics holds as \λ\ —> oo: if λ — μ + iv with
v ^ 0, then

φ(λ) = i(D-λ)-λe~iλB-{\ +

c > 0 w independent of λ; if v ^ 0

\λ\ι/2e~cv)) ,

Corollary 7.5. As \λ\ = \μ + iv\-> oo,

φ(μ + iv) iv
-1/2N

(7.18)

(7.19)

(7.20)

Proof of Lemma 7.4. Let χ(x) be a C°° function which is equal to 1 in
ε-neighborhood of the point xmax and which is equal to 0 outside of 2ε-neighborhood
of xm a x. Then φ(λ) = ψ\(λ) + ψi(λ) + ̂ (Λ), where

(7.21)

= / [1 -

Let us first evaluate ψ\{λ).
Assume v ^ 0. Let y = y(x) be a smooth increasing function near xm a x such

that
y2=B(xmm)-B(x) = B+-B(x).

Then
OO -

φι(λ) = e?XB+ J χ{y)e-iλy x'(y) dy .
— OO

We can write

Ay) = t + ys(y), t = ( |ΰ"(χm aχ)|/2)- 1 / 2 = Φ + / 2 ) - 1 / 2

with smooth s(y), hence

Ψι(λ) = e/A (7.22)



Distribution of Energy Levels of Quantum Free Particle 401

where

e~i/y dy ,

2

Ψs(λ) = J χ(y)e-Uy ys(y) dy .
— OO

Now we can write φ^{λ) as follows: φ^λ) = φβ(λ) -f φη(λ) with

— oo

-l)dy, (7.23)
— oo

and

7 2 ) , (7.24)

e*v) , (7.25)

where
εo = 2 max |.y(*)|2

Indeed, (7.24) is obvious when |μ| ^ 1 and when |μ| > 1,

~"~ 2 o o ^ 2 oo ^ 2

^ — f e~ιμy dy+ f [I — χ(y)]e~ιμy dy = co\μ\~1'2 + O(\μ\~ι) ,

which implies (7.24). Also (7.25) is obvious when |μ| ^ 1, and when |μ| > 1 we
integrate by parts in (7.23) which gives

y2oo 2 / pvy2 _ i \

φΊ(λ) = / e-'w χ(y)— dy =
—oo \ *Ί\λy j

Thus (7.24) and (7.25) are proved. Since also

φ5(λ) = (2iλyι Je-iλ2

— OO

we obtain from (6.22)-(6.25) that

We may assume εo is small, say, ε0 < B+/2- Then the last relation implies

(7.26)

Let us estimate now ψ2(λ).
By Lemma 7.1 B(x) is a smooth increasing function on the interval 0 < x <

*maχ — £ with B'{x) > 0 and B'{x) has a square-root singularity at x — 0 (see (7.6)).
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Therefore B0(y) = B(y2) is a smooth increasing function with B'0(y) > 0 on [0, j/o],

where yo = (xmax — ε)2. Making the change of variable x — y2 in (7.21) we have

φ2(λ)=f[l-χ(y2)]eiλB^2ydy.
o

Since B'Q{y) > 0 we can integrate by parts twice in the last formula, integrating

the exponent and differentiating the rest. The main contribution comes from the

boundary term at y — 0 and this gives

ψ2(λ) = O(\λ\-2eB-v). (7.27)

Similarly, the function B(x) is a smooth decreasing function on [xmaχ + ε, 1]

with B'(x) < 0. So we can differentiate by parts in the third formula in (7.21),

integrating the exponent and differentiating the rest. The main contribution comes

from the boundary term at x = 1 and this gives

φ,{λ) = i(D^λΓιe-iλB-(l + O(\λ\~1)) . (7.28)

From (7.26)-(7.28), (7.19) follows. Equation (7.20) is proved similarly. Lemma 7.4

is proved.
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