Commun. Math. Phys. 170, 315335 (1995) Communications in

© Springer-Verlag 1995

Classification of Bicovariant Differential Calculi on
Quantum Groups

Konrad Schmiidgen, Axel Schiiler

Fakultat fiir Mathematik und Informatik und Naturwiss., Theoretisches Zentrum, Universitit
Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany; E-mail schmuedgen@mathematik.
uni-leipzig.d400.de

Received: 16 May 1994/in revised form: 20 December 1994

Abstract: Suppose that g is not a root of unity. We classify all bicovariant differ-
ential calculi of dimension greater than one on the quantum groups GLq(N ), O4(N)
and Spy(N) for which the differentials duj of the matrix entries u; generate the
left module of first order forms. Our first classification theorem asserts that there
are precisely two one-parameter families of such calculi on GL,(N) for N = 3.
In the limit ¢ — 1 only two of these calculi give the ordinary differential calculus
on GL(N). Our second main theorem states that apart from finitely many ¢ there
exist precisely two differential calculi with these properties on Oy(N) and Spy(N)
for N = 4. This strengthens the corresponding result proved in our previous paper
[SS2]. There are four such calculi on O4(3). We introduce two new 4-dimensional
bicovariant differential calculi on O,(3).

1. Introduction

In recent years the theory of quantum groups [D,J] has attracted considerable interest
among both mathematicians and theoretical physicists, cf. [Mj]. Non-commutative
differential calculus on quantum groups is a fundamental tool needed for many ap-
plications. For instance, it enters essentially the formulation of gauge theory with
quantum groups, see e.g. [BM or C]. A general framework for bicovariant differ-
ential calculus on quantum groups has been provided by S.L. Woronowicz [W]
following general ideas of A. Connes. In contrast to the classical differential ge-
ometry on Lie groups, there is no functorial method to obtain a unique bicovariant
differential calculus on a given quantum group.

In this paper we classify all bicovariant differential calculi on the quantum groups
GL4(N),04(N) and Sp,(N) under “natural” conditions. To be precise, we assume
that g is not a root of unity, the differentials du}, i,j=1,...,N, generate the left
module of the first order forms and that the dimension of the calculus is greater
than one. Here u = (uj )ij=1,.,~ denotes the corresponding fundamental matrix.

The results of the present paper and its predecessor [SS2] provide a com-
plete classification of all bicovariant differential calculi on the quantum groups
GL4(N),SLy(N),O0x(N) and Sp,(N) under the above assumptions. They show in
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particular that for the quantum groups SL,(N ), O4(N) and Sp,(N) there is no such
bicovariant calculus whose dimension coincides with the dimension of the corre-
sponding classical Lie group. Except for the case of O,(3), the dimension of all
these calculi is N2.

The first main part of the paper is concerned with the classification problem
for the quantum general linear groups GL,(N). The results of our classification are
briefly stated as follows. For N = 3 there are two families of non-isomorphic calculi
on GLy(N) both depending on a complex parameter. There is-only a single one-
parameter family of non-isomorphic calculi on GL4(2). The latter result is already
obtained in [MH]. All calculi occurring in this classification can be constructed by
the method of B.Juro [Ju]. Moreover, we describe the structure of these calculi in
terms of the Maurer—Cartan forms, and determine the ad-invariant right ideals of
ker ¢ associated with these calculi.

The results of the first part are in Theorems 2.1 and 2.2 of Sect. 2. The proofs
of both theorems are contained in Sect. 3. The method of proof is the same as used
in our previous paper [SS2] for the quantum group SL,(N). The crucial step to
achieve the classification is the description of the structure of the associated ad-
invariant right ideals of ker £ by decomposing parts of the adjoint representations
into irreducible components. This is the point where the difference between N = 2
and N = 3 occurs.

The purpose of the second main part of this paper is to strengthen the classifi-
cation for Oy(N) and Sp,(N) obtained in [SS2], Theorems 6.1 and 6.2. Recall that
we assumed there that the differential duj,i,j = 1,...,N, generate the left module

of one forms and that the dimension of the calculus is N2. As mentioned above, we
now weaken the latter by requiring only that the dimension is greater than one. We
prove that for N = 4 the two calculi (I'y,d) defined in [SS2], Sect. 6, are the only
bicovariant differential calculi on O,(N) and Spy(N) satisfying the above weaker
assumptions. For the quantum group O,(3) this is no longer true. In addition to the
calculi (I'4,d) there exist two other 4-dimensional bicovariant differential calculi on
0,4(3) which are introduced and studied in Sect. 4. The main results of this second
part are Theorems 4.1 and 4.2. Their proofs are given in Sect. 5. As in [SS2], these
proofs require a number of long computations.

With the exception of Remark 4 in Sect. 2, we assume throughout this paper
that the deformation parameter q is not a root of unity. We essentially use this
assumption in order to have similar decompositions of (certain) tensor product rep-
resentations of u and u¢ as in the classical case [L,R] (see e.g. [PW]), so that
these decompositions can be labelled by means of Young tableaus [Hm]. (In fact, it
would be sufficient to assume that g”" +1 for all n € N and n < ¢(N), where ¢(N)
is some constant depending on N.)

Let us briefly explain the terminology and some notations used in the se-
quel. Throughout this paper o/ denotes the Hopf algebra of functions for one of
the quantum groups GL,(N),O04(N) or Sp,(N) as defined in [FRT], cf. [Ml1].
We denote by 4 the comultiplication, ¢ the counit, x the antipode and 1 the
unit element of /. Let R = (RY,) be the corresponding R-matrix and let P,

resp. Py be the spectral projections of R. See [FRT], Sects. 1.3 and 1.4, for
details. We denote by u = (u;) the fundamental matrix for o/ and by </, the

linear subspace of o/ spanned by the products uj-‘l ...ujf;. The adjoint repre-

sentation of o/ is the map ad : &/ — &/ @ & defined by ad(a) = b; ® x(a;)c;
for a € o/, where (id ® 4)4(a) = a; ® b; @ ¢c;. We put d:=a — ¢&x)1 for a € &
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and % := {b:bc B} for a subset # of .o/. The (complex) linear span of % C
of is denoted by (4). Unless the contrary is stated, we sum over repeated
indices.

Conceming bicovariant differential calculi on quantum groups we use the ter-
minology and the results of [W]. A differential calculus over o is a pair (I',d)
of a bimodule I' for the algebra .&/ and a linear mapping d : o/ — I satisfying
the Leibniz rule d(ab)=da - b+a -dbfora,be of and I' = {a - db:a,b € ).
Two differential calculi (I'y,d;) and (I';,d;) over < are isomorphic if there is a
bimodule isomorphism of I'; onto I, which intertwines d; and d;.

A differential calculus (I',d) over «f is called bicovariant if there are linear
mappings Ay : [ - o/ ®I' and Ag : I’ — I’ ® o/ such that:

(i) (I',4) is a left comodule and (I, 4z) is a right comodule for 7.

(ii) dp(awd) = A(a)A(w)A(b) and Ag(awb) = A(a)dr(w)A(b) for a,b € &/ and
wel.
(iii) 4z(da) = (id ® d)4(a) and 4dg(da) = (d ®id)4(a) for a € .

Let (I',d) be a bicovariant differential calculus over /. A form w € I' is said to
be left-invariant (resp. right-invariant) if Ap(w) =1Q® w (resp. Az(w) =0 Q1).
The dimension of the vector space [, of left-invariant forms is called the
dimension of the calculus (I',d). There is a one-to-one correspondence between
ad-invariant right ideals # of ker ¢ and bicovariant calculi (I',d) is given by
A = {a € kere: Py,(da) =0}. Here P, is the canonical projection of I' into
T}y, defined by Piy(w) = x(a;)w; when A(w) = a, ® w;. We shall write @ = b for
a,b€ of if a—bc R Sometimes we use Sweedler’s notation 4(a) = a1y ® ag).

2. Bicovariant Differential Calculi on GL,(/V): The Main Results

Throughout this and the following section .o/ is the Hopf algebra of functions on
GL,(N). As an algebra, o/ is generated by the N? matrix entries u; and an element x

satisfying x& = 9x = 1, where 2 = 3 (—¢)"Puy,...ul),, denotes the quantum
determinant.

The ad-invariant right ideals R+ ..
First we recall some notation from [SS2]. We shall abbreviate

5 =

M=

I

g s =145 4+qg N 25 =5 —qg 2 g,

7

tyi=14s,1_ ::s—q"ZN, s :=s+1—q“2,

—2N —2N-2
bl

1.:=5—q " +gq !

Q:=q—q 0 =q+q ",
. 4 N
(Ui)} = (Pi)ﬁzmq—zkuzu;",U = >

1

. . n . .
g uj and Vi =3 g ¥ (vg )
1 i=1

We define linear mappings Sy : o7y — o/5 by

2 2
Si(u;u,';) = (P:tu1u2 ;r’tn — g—;(Pi(Ui)zpi ;m + _;_q_

i PV -
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(Lower indices refer to the usual tensor product notations. For instance, (P+uu; ;’,’n
reads as (Pi. )};’;uf u!,. Note that 54 +0 and t; +0 because we assume that ¢ is not
a root of unity.)

Suppose that N = 3. We set

1

M. =s407'92,25, =507 'q vy = (g2 — D)y —s) 7,

(s —g 4+ 1P -5
q0+(zry —s)

(s—g?+q)—-s _

+
s =1
qQ+(zry — ) Hiz *

.u+,z = t4—

>

if zr, s and

AL =9.07"7"200 =507 gz v = (P27 — D)(zes — )7,

(5 _ q—2N + q—ZN——4)Z2 .

+
To=t ,
Hoe =m0 e —5)
'u: . g (S _ q—2N+2 + q—2N—2)22 -
’ qQ+(zr— —s)
if zv_ #+s.

Let 7 € {+,—} and z € €\ {0} be such that zr, +s. Let #,, := %, .- o denote
the right ideal of ker ¢, where 4, , is the linear subspace of ker & generated by the
following three groups of elements:

(1) Sx(iup)si, jon,m=1,...,N.
(2) (v:f:);' - ;Llj,:zu; - 5ij5—1(Vi - i%l,:zU)’ l’] = la“ -aN-

@) Vi—ph UV —p U,5—v..U.

Now suppose that N = 2. Suppose that z € C\{0} and zr, +s (i.e. z(¢* + 1)+
g* +1). As above, we set v, = (¢ 2272 — 1)(zr; —s)~!. We define a right
ideal #, ,:=%, .+ o of ker ¢, where %, is the linear span of the following
elements:

(‘2‘2 (lu%)zz_;qz(u%)z —(14+¢*) (g +q wpud), W), )P, ub(u) —13),
ul ul - u2 .

6) (U —zr+)u~§,(U —ztt)u%,(U —zvy Yul — ).

(6) (U = 2t)U, % vy, U.

The Bicovariant Differential Calculi (I'y ,,d)

We define some bicovariant differential calculi by the method of B. JurCo [Ju]
adapted to the case of GL,(N). Suppose that z, and z_ are non-zero complex
numbers. Let L* = (*1%) be the N x N matrices of linear functionals £/, on .o/ as

defined in Sect. 2 of [FRT] by taking the matrices z4R therein. Thén we have

10,0 i — i 5= 1\in i — gi -
P = 2 R 1) = 2 (R 1(2) = g8y, 1(9) = 2V g0y,

k(P EY) = 27 (R and (" EYl) = 2 'R,

Jm *
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(In order to verify the formulas for the quantum determinant 2, it suffices to note
that £/5(2) = (1) if 2} = ¢F', cf. [FRT], 2.2.)

Similarly as in case of quantized simple Lie groups (see [Ju] or [SS2] for
details),

Iy, :=W,LY)® L) for z =z,z"' and
I_,:=@w,L7)®wL"™) forz=2z_z7'

define bicovariant bimodules over &/ = GLy (N ). Here u° and L*° denote the con-
tragredient representations of u and L*, respectively. The structure of Iy, is easily
described as follows: There exists a basis {#;; : i,/ = 1,...,N} of the vector space
(I'+.2)iny of left invariant elements of I'y . such that the bimodule operations of
I'y ; and the right action 4z on (I'y ;)i are given by

nyja = (SLk(FI) * aYm,a € o

and  dr(1ij) = fpm ® (W)}, j = 1,...,N .

iU
Since (u)/ul'q % = k(i ul"q* = d,mg~?", the element n:=3,q ¥ n; of I'y,
is left-and right-invariant. Defining da :=#na —an for a € o/, the pair (I'y .d)
becomes a bicovariant differential calculus over /. -

Further, we set Kiy = ¢~ 8;j Opm, R, = Iéfn’j and (R7)Y, = (R™! i For
zv4 %5, we define linear mappings Ty, € L(CY @ €Y @ €V) by

oA e Al
Ty, = z(Xy )5 RioRos(Xy 2)12 and T— ;== z(X_ )5 RpRys (X_ )12 s

where X, , :=1+(1~z"")gQ 'K and X_, :=1+(z7! — )¢*" "1 QK.
(Since zry +s by assumption, it is easy to check that X , is invertible in L(C" ®
CV) and that XL =1+ (1 -z )(zry —s)7'K.)

The main results in the first half of this paper are summarized in the following
two theorems.

Theorem 2.1. Suppose that o/ = GLy(N) with N = 3.

(i) The right ideals Ry, for zxy s are the only ad-invariant right ideals # of
ker ¢ such that ker ¢ = B+ o/, and codim # = 2. Moreover, codim Ry, = N?
and R, ¥Ry if (v, z)*+(7,2').

(i) The pairs (I'y ,,d) with zvy £s are the only bicovariant differential calculi
(I',d) over of = GLy(N) for which dim T,y Z 2 and I' = (a - du} :a € A,i,j =
1,...,N). Two calculi (I ;,d) and (I ,»,d) with (t,z)%(7',2") are non-isomorphic.
The pair (I'y ;,d) is the canonical calculus associated with the ad-invariant right
ideal R+ .

(iii) Suppose that zvy +s. The set of one forms w,; 1= K(ui,)du;?,i,j =1,...,N, is
a vector space basis of (I'x ;). The bimodule structure and the differentiation
of the calculus (I'y ,,d) can be rewritten as

wya = (f2, % a)oum and da = (fum * a)Oum,a € o , (2.1)
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where the linear functionals f v and Anm ON A satisfy

Ko () = SinOjm and oum(@uil) = [0, () = (T2 )" (2.2)

If o denotes the left- and right-invariant one form S q=*wy;, then we have

da = (zr+ — s ) Y(wa — aw) for ac of

and d2 = —Z2"¢*vy Do, dx = v xwand dx = —z N gFx*dD .

Theorem 2.2. Suppose that o/ = GLy(2). Then the pairs (I'y. ., d) with z(g* + 1)+

¢* +1 are the only bicovariant differential calculi (I',d) over o such that
dim(l',d) =2 and I = (aduj» ta € sf,i,j =1,2). All assertions of Theorem 2.1
concerning the calculus (I'; ;,d) and the right ideal R, remain valid for N = 2.

The proofs of both theorems will be given in Sect. 3. Here we discuss these results
and the bicovariant differential calculi occuring therein by some remarks.

1) For zry = s the pair (I'+.,d) is still a well-defined bicovariant differential
calculus over o7, but the differentials du§,i, j=1,...,N, do not generate the left
module I'y ; in this case.

2) In [SS2] all bicovariant differential calculi on SL,(N) have been classified
under the assumptions stated in the introduction. A direct comparison with [SS2]
shows that all calculi of this list can be obtained from the calculi (I'y ;,d) on
GL,(N) for special values of the parameter z, i.e. by setting zVg* = 1 for (I'y ;,d)
and z’q~2 =1 for (I'_,,d). That for the latter values of z the calculi (I'y.,d)
on GL4(N) factorize to the quotient algebra SL,(N) follows also at once from the
above formulas, since then */i(2) =* [i(1) and d(2) = dx = 0.

3) For the calculi (/' ;,d) with z =1 the commutation relations between the
matrix entries and their differentials are even linear. Indeed, for z =1 we have

o . sl ir Akl . . .
Xi, =1 and (2.1) implies that duiu = (R™), (R )jsmu’,,‘dufn or in matrix notation

A1 At
du1 U =R12 uy - du2R12 .

The particular bicovariant calculi (I'y;,d) on GL,(N) have been found in [M2 and
M1] and studied in [S and SWZ]. Moreover, it follows easily from (2.1) that z = 1
is the only parameter value for which (I'y ;,d) or (I'_,,d) has linear commutation
rules between the matrix elements and their differentials. Recall from the preceding
remark that for z =1 the calculi (I'y ;,d) do not factorize to the quantum group
SLy(N).
q4) What about the classical limit ¢ — 1 of the calculi (I'y ,,d)?

First we have to explain how this limit should be defined. We will adopt the
viewpoint of [SS2]. (Note that our definition of the classical limit differs from the
one used at various places of the literature, see e.g. [CSSW].) As in [SS2], we keep
the Maurer—Cartan basis {w;;} of the calculus (I'y ., d) fixed and we take the limit
of the linear transformation 7y .. After some calculations it follows that for each
fixed (1) number z € C\{0} the limits of T, and of 7_, for ¢ — 1 are

T, = zRyRo3 + (z - l)flz —(z—~ I)N—1K231’12 ) (2.3)
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where [ vy = OnmOyi;. Replacing T4 , by T, the formulas (2.1) and (2.2) in Theorem
2.1 define a bicovariant differential calculus (I';,d) over &/ = GLy(N) for g = 1.
We consider (I';,d) as the classical limit of (I'y ,,d).

Let £, denote the right ideal of ker ¢ which is defined in the same way as %4,
with all coefficients occurring in (1)—(6) replaced with their limits for ¢ — 1 and
for fixed z. It is not difficult to check %, is the ad-invariant right ideal associated
with the bicovariant calculus (I',,d). (Of course, one may also define other possible
classical limits of the linear transformations 74 , by allowing that z varies as g —
1. For instance, this has been implicitly done in [SS2] for the quantum group
SLy(N).)

If z=1, then (T,)[" = 0indjm0ys by (2.3). Hence we have wju; = ulw; for
i,j,r,s = 1,...,N. From this it follows immediately that (I';,d) is just the classical
bicovariant differential calculus on the group GL(N). (Another way to prove this
assertion is to verify that %, coincides with the right ideal (ker ¢)? of the classical
calculus.) Note that the Maurer—Cartan forms w;; and the matrix entries u, do not
commute in general for the calculus (I',,d) if z#1.

3. Proofs of Theorems 2.1 and 2.2

The proof follows closely the lines of the proofs of Theorems 2.2 and 2.3 in [SS2]
where the corresponding problem for the quantum groups SL,(N) was treated. Sup-
pose # is an ad-invariant right ideal of ker & such that ker & = # + &/, and
codimZ = 2. Let Z;; . =RN (A + >+ C - x)~. Since ker ¢ = R+ oA by
assumption, a simple induction argument (cf. Lemma 1.1 in [SS2]) proves that
gi) =R 12 ° .

Assume first that N = 3. Our aim is to show that # = %, for some t € {+,—}
and for some complex number z such that z=0 and zr,#+s. This is in fact the main
part of the proof of Theorem 2.1.

The following lemma corresponds to Lemma 4.3 in [SS2].

Lemma 3.1. There are numbers 6 € {0,1} and AT, A=, u*, u~,v € € such that
Rz =5<(7) D <I7+ —;l+U> D <I7_. - ,u‘U) D (¥ — V(j)@
W, SW_S imS.® imS_ (3.1)

where W+ is the linear span of (v+); — A%l — 65 =\ (Vy — AFU)ijj = 1,...,N.

Proof. First suppose that N = 4. Since obviously ad(x) =x ®1, the restriction
to %, of the adjoint representation decomposes as a direct sum of irreducible
components as follows:

ad[Z, 2 (3 +8)0]a2 [2,1" 1@ 42" e 2,211, (32)

where 0 =0 or d = 1. (We use the standard notation for the Young patterns, see
e.g. [Hm].) The corresponding representation spaces in (3.2) are the first four direct
summands of (3.1) for (3 + 8)[0], # . and ¥ _ for 2[2,1¥=2], im S, for [4,2V2]
and im S_ for [2,2, 1V=4]. The proofs of these facts are quite similar to the proofs
of the corresponding assertions for SL,(N) in [SS2]. We omit the details and refer
to [SS2].
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If N =3, then the representation for the Young pattern [2,2,1¥~4] does not
occur in (3.2) and S_ = 0, so the assertion is also true for N =3. [

Lemma 3.2. Setting Ay := s;'* and My = q(tis+)~'u®, we have the follow-
ing four equations:
(D) 1= QA Ay + A VW21 + sy Ay +5_A_ —5)).
(ii) 0 = (g7'4, - 6]/12- NgAy —q'A0).
(i) (A4 + A = B34 (AL + A = 1)+ Qs (s My — Q4 A4)
X(s4A4 +s5-_A_ —s)+ L
(iv) 0=(¢7'Ay —qA_)qQs Ay — 1) +(qgAy —q7'A_XNg™'Q1 A1 — 1)
s s My —s M_ —Q,(Ay —A_))s4 AL +5_A_ —5).

Proof. The equations (ii)—(iv) appeared already in Lemma 4.5 of [SS2]. Their
proof for GLy(N) is verbatim the same as for SLy(N). We verify (i). The proof

of Lemma 4.5, (i), of [SS2] shows that w9 — 02 A2 (A4 + A_)V"2ul € # in the
present situation for GLy(N). Put o := Q2 A2(A; + A_)"~2. Since ¥ =vU and
Uuy = (v4)} + (v_)) —sul = (A* + A~ — s)ub by Lemma 3.1, it follows that

Uy — oxXuy = uy — afuy — oy = (1 — a)ud — avOub

=(l-—a—av(AT+A" —s))uy =0.

Similarly as in [SS2], Lemma 4.2, we have u} ¢ %, since otherwise codim % = 1.
Therefore, the preceding implies that 1 — a — av(At + A~ — s) = 0 which in tumn
gives (1). O

Lemma 33. At 4+ A" —s=s,4, +5_A4_ —s+0.

Proof. Assume the contrary, that is, A* + 1~ — s = 0. By Lemma 3.2, (ii), we have
(g 'A; —qA_)gAy —q~'A_)=0. First we consider the case ¢~ 'A, =qgA_.
Then, by (iv), (g4, — g~ 'A_)g 'Q; A, — 1) =0. Since g* +1,g4, — g~ 'A4_=0
leads to Ay = A_ =0 which contradicts (i). Thus 4, = g0 ' and hence 4, +
A_ =1 which also contradicts (i). The second possible case g4, = g~ 'A_ by (ii)
is treated in a similar manner. [J

Next we show that the number § occurring in Lemma 3.1 is zero. Assume to
the contrary that § = 1. Then U € # and hence Uu} =T+ 4" —s)ul € A. Since
u} ¢ A as noted above, we conclude that A* + 1~ —s = 0. This is impossible by
Lemma 3.3, hence we have 6 = 0.

From Lemma 3.2, (ii), ¢~'4, =qgA_ or gA, = ¢ 'A_. Let us begin with
the case ¢~ ' A, = gA_. Setz := A*s7'0,q7". Then we get At =5,07'gz = 11,
and A~ = s_QIIq_lz = A5 . Note that z40 (otherwise 4, = A_ = 0 which con-
tradicts Lemma 3.3) and zr, #s (otherwise zry — s = At + A~ — s = 0 which con-
tradicts Lemma 3.3). From the equations (i), (iii) and (iv) of Lemma 3.2 we com-
pute easily that u* = ui ,,u~ = uy, and v =v, ;. By Lemma 3.1, we have shown
that R, = #,,. Since # = X1, - & as noted above and £, = %, - </ by def-
inition, # = % ,. Arguing in a similar way, it follows that Z = %_ in the second
possible case gA, =g '4_.
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Suppose now that N = 2. We will show that #Z = %, for some z € C\{0}
such that z(g* + 1)+4* + 1.

Lemma 3.4. There exist numbers 6 € {0,1} and 7, p,v € C such that
R =80)® (F U)o (U-wl)ew o,

where W is the linear span of (U — MDul,(U — A3, (U — A)u} —u3) and V" is
the linear span of the five elements of group (4).

Proof. First we decompose ad[.«7, into irreducible representations. Since ad(u! u?

u]luJZ
= sy ® ()2 (u); w ' u? by definition and u® = u by N = 2, we have
ad[of) C(W' @u) R e u)=([0]a[2)® ([0]®[2]) . (33)

Obviously, the two projections for the decomposition u ® u = [0] & [2] are the spec-
tral projections P, and P_ of R. Since (P Jon(Px )X ultull = ul,ub (P4 )i (P+)K = 0,
we conclude that ad[ im P, ® P_ = ad[imP_ ® P, = 0 for the decomposition at
the right-hand side of (3.3). Clearly, [2] ® [2] = [0] & [2] @ [4]. Comparing the cor-
responding dimensions, it follows that ad[.«/, 22 2[0] & [2] @ [4].

Combined with ad[.o/; ¥ u‘ @ u =2 [0]®[2] and ad(x) =x®1, we obtain
ad[(/ & A, dC-x)=Z4[{0] P 2[2]® [4] and hence ad[(1 B A, & TC-x)~ =3
[0] & 2[2] & [4]. Recall that %, + o/, = (A ® /> ® C-x)™ by the assumption
R + /| = kere. Obviously, the representation space for the Young pattern [2] in
the decomposition of ad[&fl is ( —Po)%], where Py :=s~'K. We have (I —
Po)ed1 N Ry = {0}, since otherwise (I — Py)e/1 C Ry, and hence codim# < 1.
Putting the preceding together, we conclude that

ad [#1, = (2+9)[0] & [2] & [4] 34)

with § € {0,1}. The space for the Young pattern [4] in (3.4) is the five dimensional
vector space ¥". By construction, the space #~ corresponding to the Young pattern
[2] in (3.4) is an ad-invariant subspace of (I — Py)/1 ® U - (I — Py).o/1. (The dot
denotes the multiplication in the algebra .«7.) Since (I — Po)/) N Ry, = {0} as
already noted above, the space ¥ is of the form (U — A1) - (I — Py).«/;. The sub-
space for the trivial representations (2 + 6)[0] in (3.4) is contained in (U, U - U,%),
hence it can be written in the form stated above. [J

Lemma 3.5 Setting z .=t ' 2 = (1 +q~*)~'4, we have ul(2 — ¢*z*) € # and

P21+ v(zr, —s))=1. (3.5)

Proof. Recall that uy(u} —u3), (u})? € ¥ C Ry and (U — (1 +q~*)z)ul € Z by
Lemma 3.4. Therefore, we have ulul = qulu} = qulul = ¢*u3u} and (U — (1+
g2y = (1 + ¢ *)Bu) — zu}) € R. Since 1+ g *+0,u3u} = zu}, and hence
w2 = ul = (ulid — quiid ) = zulul = zqulu) = z2quiid = 2g*3u) = 2%,
which proves the first assertion. From u}(2 — ¢’z*) =0 we obtain 0= ul(l —
¢*22x) = wy(1 — ¢*2%) — ¢*2%%u) = ul(1 — ¢?2%) — ¢?22vUu) = uh(1 — ¢°2%) — ¢*2%v
(zr; — s )ub. Since u) ¢ & as noted above, (3.5) follows. [J
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Next we prove that § = 0. Assume to the contrary that § = 1. Then U € £, so
(U —s)ub € # and (U —zry )ul € R. From u} ¢ R, we get z(1+q~ )=z, =
s =g 2+ ¢ *, and hence ¢°z> = 1 by (3.5). The two latter equations imply that
g is a root of unity which contradicts our standing assumption. Thus 0 = 0. The
latter argument also shows that 1 = zr, 5. Moreover, we have z=+0, since oth-
erwise u}% € #, and hence u} = Wl D%+ ulP € . From (3.5) we compute that
v=1(q"%"2 — 1)(zr; —s)~'. Further, from (U — A)ul € Z and (U — u)Uu} €
A, we conclude that (A — pu)(A—s)ul € #. Since A+s and u) ¢ &, this yields
A=pu. Thus we have shown that #, =%, . by Lemma 3.3. Consequently,
«@ = gg.;_’z.

The remaining parts of the proofs are very similar to the proofs given in [SS2],
Sect. 4. We shall indicate only a few points where some modifications are nec-
essary. Put ¢, := ¢~ and q_ := —q~2"~!. Setting w;; := 20g5 ' (Xt )" um, then
we obtain du] = ujw;, by the same computation as in [SS2]. Since zry #s by as-
sumption, the linear mapping X . is invertible and hence I't ; = (a - du}). As in
[SS2], the pair (I'+ ., d) is a bicovariant differential calculus over ./ and it is of
the form described in Theorem 2.1, (iii). The formulas for d2 and dx follow at
once from the relations w = (zr+ —s)y and 72 = zNg*2Py which are easily
verified.

Next we show that for N = 3 the bicovariant differential calculus ("4 ;,d)
is associated with the ad-invariant right ideal %, ,. Let ;': Anm denote the lin-
ear functionals y,, (see Theorem 2.1, (iii)) for the calculus (I'y,,d). Fix a
pair (I';,,d) with 7 € {+, —},z%0 and zr,%s. From the general theory [W] it
follows that its associated ad-invariant right ideal # has the properties stated
in Theorem 2.1, (i). Therefore, by the above proof, # is equal to some right
ideal Z. ;. We have to show that (7,z) = (7/,z’). We restrict ourselves to the
case 7' = +. The case 7/ = — is treated in a similar manner. As in [SS2], we
consider the elements a;; := (U — 2'vy )u} = (v3); + (v-);, — (A1, + A5 ., )u} and
by =} —z'(q+q 7 = q(v)s — g~ () — (g25 ., — ¢ ' A5 )i for i) of
the right ideal #, ., and we compute

Tafag) =zem —z'v Ty (by) =2(g7 + 97N ) —z'(g+¢7?) and
Fribi) =@z —2'Ng+q¢7%). (3.6)

Recall that again by the general theory [W], the functionals [y;; annihilate the right
ideal #, , which is associated with the bicovariant calculus (I';;,d). Therefore,
if © would be —, then we have zr_ =z't, and z(¢7' + ¢ V") =2'(¢+¢7>) by
(3.6). Some computations show that the two latter equations lead to a contradiction
if ¢ is not a root of unity. Hence t = +. From [y;;(b;;) = 0 we obtain z =2/, so
that (7,z) = (7/, z’). In the case N = 2 the elements a;; = (U — z'r4 )u},i#:j, belong
to £, and the preceding arguments prove that the bicovariant differential calculus
(I'y;,d) is associated with the right ideal £, . Recall that for N =2 each ad-
invariant right ideal # with ker ¢ = Z + /1 and codim # = 2 is’ equal to some
Ry,

Finally, let us note that all right ideals %4, for N = 3 and %, , for N =2
are different, hence the corresponding differential calculi (I'y ;,d) for N = 3 and
(I'yz,d) for N =2 are non-isomorphic.

This completes the proofs of Theorems 2.1 and 2.2.
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4. Bicovariant Differential Calculi on O,(/V) and Sp,(N) (Revised)

From now on let .7 be the Hopf algebra of functions for one of the quantum groups
Oy(N) or Sp,(N) with N = 3. We keep all notations and abbreviations from Part
IT of our previous paper [SS2].

Let Z. be the right ideals of ker ¢ and (I'4,d) the bicovariant differential calculi
on o/ defined in [SS2], Sect. 6. Recall from [SS2] that #_ and (I'_,d) are only
defined if the number QZ + 25 does not vanish, where Q :=¢q — ¢~ 1,Z := ¢V~ —
q' N for of = Oy(N),Z :=q V=1 —g"*! for o/ = Sp,(N), and 5 := 1 +ZQ".

The following theorem is a strengthening of Theorems 6.1 and 6.2 in [SS2].

Theorem 4.1. Suppose that N =z 4. Let of = Oy(N) or of =Spy(N). The right
ideals R, and R_ for QZ + 25 %0 are the only ad-invariant right ideals ® of
ker ¢ such that codim # = 2 and ker ¢ = R + o/,. The differential calculi (I',,d)
and (I'_,d) for QZ + 2s £0 are the only bicovariant differential calculi (I',d) over
o for which I' = (adu}; :a € o,i,j = 1,...,N) and dim (I',d) = 2.

In order to formulate the corresponding result for .o/ = Oy(3), we need to define
two new right ideals #; and %, of ker ¢ and two new bicovariant differential calculi
(I'1,d) and (I'2,d) on O,(3).

For k = 1,2, we set % := By - o, where %, is the linear span of the following
elements:

(1) Sy (udy,) for i,j,m,m=1,...,N.
(2) (f+)}a(ft)§:(”+)§,(gf)} =Y (u-), and (9-); — g (u_)j for i,j=1,...,N.
GV Vy— U V_—p U.

Here the coefficients Ih(:t and uf(t are given by

U= =0 -0 +g+1+q7 "+ )Y =g =107,
o=@ +q+l+qg " g u i=1and yf == —(q— 1)*(¢ + 1)~ 'yt

To define the two new differential calculi on O,4(3), some preliminaries are neces-

sary. For this we consider the quantum group SL,(2), where the complex number p

is chosen such that the square root of g appearing in the matrix C of the metric for

0,(3) is equal to — p. That is, the elements in the offdiagonal of C are —p~!,1,—p

and we have p?> = q. We denote the fundamental matrix of SL p(2)byt= (tj". )i, j=12-
There exists a Hopf algebra morphism 7 : O,(3) — SL,(2) such that

~ O A | PG L Y
(n(u}))i,/ﬂlﬁ =14 pz)z/ i 1 —l_zli/; 2)t%t1 (i p2)2/ 54
) (1+ p*) "5t ()

(Here the choice of the square root for 1 + p? is always the same, but arbitrary.)
To prove this, one verifies by direct computations that the above matrix entries
satisfy all relations of the definition of Oy(3). For this it is essential that ¢'/> = — p.
Therefore, the map u; — 7(u;) extends uniquely to a unital algebra homomorphism
n of 04(3) into SL,(2). From the construction it is clear that = is a Hopf algebra
morphism. Since obviously (1, m(ul) i, j = 1,2,3) = (L, - nymyr,s = 1,2), we
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see that the image n(O4(3)) is precisely the unital subalgebra of SLP(Z) which
is generated by all quadratic monomials #¢/. Note that above matrix (n(u )) is
nothing but the matrix for the spin 1 representatlon of the quantum group SL »(2).

See, for instance, formula (2.13) in [DK]. Let (I",d) denote the 4D, -calculus on
SL,(2) invented by S.L. Woronowicz [W]. Recall that this calculus is characterized
in [W] by its associated ad-invariant right ideal &, of ker ¢. That is, &, is the
right ideal of ker ¢ which is generated by the elements

M)+ PPBY = (L + X6+ p~ '), ) ()6t — 5),
1t — 8),(T =)y, (T =), (T =)t — 8),(T —y T — 1 — p?),

where T := pt] + £ and y := p~! 4+ p~3. (Note that in [W], p. 132, Example 3,
only the quantum group SU,(2) was considered, but the generalization to SL,(2)
is straightforward.)

The most convenient and easiest way for our purposes to describe the calculus
(F d) on SL,(2) and to construct the new calculi (I';,d),k = 1,2, on O,(3) is to
use the method of B. JurGo [Ju]. In fact, (I',d) has the structure of the calculus
(I'y.;,d) defined in Sect. 2 with z = p~! and GL4(N) replaced with SL,(2). That
is, the bicovariant bimodule I is of the form (1 ®t,L* ® L™°) and the mapping
d:SL,(2) > T given by dx=nx—xn for x € SL,(2), where n:= p~ 2y +
P~ nn =g "mi +q %y and {n, :i,j = 1,2} is the corresponding basis of [ oo
Recall that ¢ denotes the contragredient representation of the fundamental repre-
sentation of SL,(2).

The map g :=(L* ® L™)n is a homomorphism of the algebra O,(3) into
My(C). That is, we have g = (¢") and g7"(a) = T I}(n(a)q))x(~ L, )(n(a)2)) for
n,m,r,s = 1,2 and a € O,(3) with 4(a) = aq) ® ae). Let I'; be the free left mod-
ule for o/ = 04(3) with basis {#, :r,s =1,2}. There is a unique .«/-bimodule
structure on I'y such that n,a = (gy" * a)um, a € Oy(3). We define da := na — an
for a € Oy(3). Then the pair (I';,d) is a bicovariant differential calculus over
o = 04(3). From the preceding definition we conclude easily that there exists a
well-defined linear mapping ¥ : I'y — I', . such that ¥(an;;b) = n(a)n;n(b) and
¥(add) = n(adn(d)) for a,b € Oy(3) and i,j = 1,2.

Being a bicovariant bimodule, Iy can be written as a pair (w,g), where
w = (wjy") is a representation of the coalgebra 0,4(3), cf. [W], Theorems 2.3 and
2.4, or [SS2], p. 638. The matrix entries w);* are the (uniquely determined) ele-
ments in the linear span (u 1:4,j=12, 3) for which n(w") = k(,)t}". For ex-
plicit computations it is convement to write w as a direct sum [2] @ [0] and to use
the matrix representations u_ = ((u_)j.) for the Young tableau [2] and U for the
trivial representation [0].

Since all defining relations for O,(3) are quadratic in the matrix entries uj
there are well-defined linear functionals %" on O,(3) such that A}'(1) = 6,-Oms
and A"(a) = (—1)*g"™(a) for a € o/;. The pair (w,h) with h = (h ) is also a
bicovariant bimodule for O,(3) which is denoted by I';. As in case of 'y we set
da := na — an for a € Oy(3) and the pair (I',d) is a bicovariant differential calculus
over o/ = Oy(3). (The missing details of proof for both (I';,d) and (I2,d) will be
provided at the end of Sect. 5.) Obviously, the calculi (I'y,d),k = 1,2, are four
dimensional and inner.
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Our classification theorem for the quantum group O,(3) can be now stated as fol-
lows.

Theorem 4.2. Suppose that < is the quantum group O, (3). The four right
ideals R, R_, R, and R, are the only ad-invariant right ideals # of ker ¢
with codim # = 2 and ker ¢ = R+ A;. The pairs (I'y,d),(I'—,d),(I';,d) and
(I,,d) are the only bicovariant differential calculi (I',d) over </ for which
I'=(adu}:a € o,i,j=1,2,3) and dim(I",d) = 2. The pair (I';,d) is the canon-
ical calculus associated with the ad-invariant right ideal #. for © = +,—,1,2.

Before we begin the rather long proofs of Theorems 4.1 and 4.2, we shall study
the two new bicovariant differential calculi (I'y,d),k = 1,2, over & = 0,(3) in

more detail. For this we take Theorem 4.2 for granted and we fix k € {1,2}.

First we shall describe these calculi explicitly in terms of a basis of
Maurer—Cartan forms. (For the calculi (I'+,d) over Oy(N) and Spy(N) this is done
in Theorem 6.2 of [SS2]. The bimodule structure of 'y and the differentiation d
are expressed with respect to the Maurer—Cartan basis {w;;} by the linear trans-

formation T defined in [SS2], Sect. 6.) We define a basis {o', w?, @3, w*} of the
vector space (I'y )iy of left-invariant forms of I’y by setting

o' 1= Pip(d(u_)}), @ := Pip(d(u_)}), 0* := Pipp(d(u_ ), 0* = 0 := Pyp(dU) .

Since ker ¢ = % + {(u_ )j» :4,j = 1,2,3) + (U) by the definition of %; and codim
R, =dim (I'y,d) =4, this set is indeed a vector space basis of (I'j)imy; cf.
the proof of Lemma 1.5 in [SS2]. Put 4 :=y;" + ¢, . Using the definition of
n(U) = qn(ul) + n(u3) + ¢~ 'n(u3) and the commutation rules of the bimodule I'; ,
for SL,(2) we compute w = Py,,(d U) = (Y« —s)n. (For k =2 this follows also

from the facts that & + 200 —s)"'U € #, and d9 = —29# which are proved in
Sect. 5.) Thus the differentiation d of the calculus (I'y,d) can be written as

da = (Wi — ) (wa — aw) for a € 0,(3).
A} =14} =4} =AY =57 4}y =1 —q A5 = A3 == —¢~'* and A4} :=0
otherwise. Then we have
duf = widj;0" for i,j =1,2,3.
The right action 4z of O,(3) on the basis elements w” is given by
Ap(0™) = 0" @V,

where the elements vy of «/; + C - 1 are characterized by the equations 47; k(U ] =
Al forn=1,...,4 and k,/ = 1,2,3. In fact, (v}}) is the matrix for the subrepre-
sentation [2] @[0] of u° ® u with respect to the basis {w!, w?, v, w*}.

Let {wy,wy, w3, w4} denote the basis of (I'y )iy, defined by

;=o' + (g — 1)(Q4 + Do*, w 1= o?,
w3 =0, w4 = (04 + o’ for k=1

and o) :=-0' —g0,(0s + )(g—- 1o, 0 1= —0?, 03 := -,
w4 =q0(Qy + 1)qg — 1) 2w* for k=2



328 K. Schmiidgen, A. Schiiler

Then the bimodule structure of I'; can be expressed as
wpa = (fy, *xa)w, for a € Oy(3) and n=1,...,4,

where the f = (f7,): 04(3) — My(C) is the unital algebra homomorphism given
by the following formulas:

f(u)) = *diag (¢,1,1,¢7") £ ey, f(43) = diag (1L, L, 1L, 1D+ (1~ g e,
f@3) = diag (g7, 1,1,9) F g 'ers, f(ud) = f(]) =0,

fy) =+(1—q e £ ex, f(u]) = (1 — g ez L e,

f@3) =TF¢7 (1 = g7 e ¥ q'esa, f(13) = Fq~ (1 — g Neis F 4" e .

Here diag (...) is the corresponding diagonal matrix and e,, denotes the matrix
with 1 in the (n,m) position and 0 elsewhere. The upper sign refers to £ = 1 and
the lower sign to £ = 2.

Let 9 denote the quantum determinant for the quantum group O4(3), see
e.g. [T and H]. For O,(3) the completely antisymmetric tensor (g ) is given by
a3 = Lein = ea13 = —&310 = —&31 = —¢, €31 = —¢ a0 = —q(q"> — g~ "/?) and
zero otherwise, so that

123 1.2.3 1,23 1,23 1.2.3
9 = wjuyuy + quauuy + quaUsUy — qUolius — quU Uz,

—q(q"? — g "Pybudu — Puludus
= u}u%ug +(g+ qz)uéugui —(1+ q)u}u%ug - qzuéugu? , 4.1)

where the second equality follows from the first one by the commutation rules for
the matrix entries uj. The quantum determinant & is group-like, it is central in the
algebra O,(3) and its square is 1. The quotient of Oy (3) by the two-sided ideal
generated by & — 1 becomes again a Hopf algebra which is called the quantum
group SO,(3).

From the definition of 7 and (4.1) we compute n(Z — 1) = 0. Therefore, the
calculus (I'y,d) factorizes through SO,(3) and defines a bicovariant differential cal-
culus over the quantum group SO,(3). It can be shown that the kernel of the Hopf
algebra morphism n : O4(3) — SL,(2) coincides with the two-sided ideal generated
by the element & — 1, so the Hopf algebra SO,(3) is isomorphic to a Hopf subal-
gebra of SL,(2). Clearly, the latter is the algebra generated by 1 and all quadratic
terms ¢ . Identifying SO,(3) with this Hopf subalgebra, the bicovariant calcu-
lus (I';,d) over SO,(3) is just the restriction to SO,(3) of the 4D, -calculus over
SL,(2).

For the second calculus (I'2,d) we have d2 = —291n = —2(Y3 — s )" ' Dw 0.
Hence the calculus (I';,d) does not factorize through SO,4(3). ‘

Remarks.

1) In the preceding we could have replaced the 4D_ -calculus on SL,(2) with the
4D_-calculus.

2) It can be shown that #; = {a € ker ¢ : n(a) € S} ={a €ker ¢: n(a) € ¥_},
where ¥4 is the ad-invariant right ideal of ker ¢ associated with the 4D -calculus.
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5. Proofs of Theorems 4.1 and 4.2

Let o/ be one of the quantum groups Oy (N) or Sp,(N) with N = 3. Suppose

that # is an ad-invariant right ideal of ker ¢ such that ker ¢ = # + </, and codim
R = 2. Set Ry =Ry N(A| + 7).

Lemma 5.1. There are complex numbers @t, o~ Wy~ ,ut, u~ and numbers
00,04,0_ € {0,1} with 6.6 =0 such that

Ry =0(U) B A &H_ By (uy) ®O_(u) ®F 1 ®
f_®g+®g_@ims+@im5_, (51)

where #y = (Vi — pEU), (us) = ((ux)), F+ = ((f+) — 0F(uy)) and G+ =
((9+); — ¥E(u_)}). We have %_ ={0} (that is, (9-); =0 for all i,j and y~ = 0)
Jor o/ =Spy(4) and S_ =0 for o/ = 0,(3).

Proof. The proof is similar to the proof of Lemma 8.2 in [SS2]. By the proof given
there, we obtain for .o/ +Sp,(4) and o + O,(3) the following decomposition:

ad[ R, = (2 +50)0]® 2+ )21 2+ )P ([2,2] @[3, 1] @ [4])

& ([2,2]1@ 2,1, 11®[1%) (5.2)

with 89,,,6_ € {0,1}. Note that the summand [1*] in (5.2) vanishes for .o/ =
Spy(6). (Recall we assumed in [SS2] that kere = Z @ o1, s0that §g = 0, = d_ =
0 therein.) We have 6, = 0 or _ = 0, since otherwise codim #Z < 1. As in [SS2],
the corresponding subspaces of the decomposition (5.2) can be written of the form
(5.1). If 69 = 1 (resp. o, = 1,6_ = 1), we set u* =0 (resp. T = 0,y* = 0).

For «/ = Sp,(4) the summands [2,2,1] and [14] in (5.2) vanish, the coefficient
of [17]is 14+ 6_, and (g_)} =0 forall i,j=1,...,N. Setting Yy~ =0, (5.1) still
holds in this case. For ./ = O,(3), the summands [2,2],[2,1,1],[1*] disappear and
S_ =0, so (5.1) is also valid. [

First we treat the case 0, = 6_ = 0. This assumption was sufficient to derive
the eight equations of Lemmas 8.4 and 8.5 in [SS2]. (Note that the condition
8o = 0 was not needed for this.) From these equations the values of ¢*,y* and
u* were computed. In particular, it was shown that either ™ + ¢~ — s = QZ+0 or
ot + o  —s =—-0Z —5+0. If § = 1, then U € # and thus OEUu}, = (ot +
@~ —s)u}, so that o* + ¢~ —s =0, since 6, = _ = 0, and hence u!, ¢ Z. This
is a contradiction, which proves that 9 = 0. Therefore, kere = Z & </, and hence
R =R or = AR_ by the proof of Theorem 6.1 in [SS2].

The other possible cases require a number of additional lengthy calculations.
For this we freely use the abbreviations a,a™, by, b™, ci,di, my,v introduced in
[SS2] before Lemma 8.3. Moreover, we set

bi=bi +(Qvq- —q Ib_,e:=(0sqs + Day —q%a_,

et =(04qr +q 1 —gay +ae” i=by+(¢g " —q7201q )b .

Because im Sy C # by Lemma 5.1, Lemma 8.3 in [SS2] and its proof remain
valid verbation in the present more general situation. This is essential for most of
the subsequent computations.
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Lemma 5.2.
() (uz)l = Q7' (g7 u, :tK,’;m,u ifn' > mn+m
(ui)m 07 (g%l + un ) if ' < montm.
(i) u” un, =q07%etu! zf(5+,5 )—(0 D,n' > mn+m and n¥n'.
ul n,_qQJr " if (64,0-)=(1,0),n' > m,n+m and n%n'.

(iii) wlul _qQ+2bu 1f((3+,5 Yy=(1,0)and 1 <n < 1.

(iv) ay =a_ =0 if (0+,0-) = (0, 1).

(v) q07%e by =1 and b= 0 if (6:,6_) = (1,0).

(vi) by =04 and b_ =x0.(¢7'z+1)g 2+ ¢*)"" if L +Sp,(4) and

(§+55'—):(150)" -

(vii) Uuy = (Y — )il +05~ (u —yY)U and (Y —s )~y —5) =0 if (3+,0-) =
Proof. (i) Both formulas are easily derived from the definitions of (u. )}, and (u_ ).
(ii)) We only carry out the proof of the first assertion. Since (d4,0-) = (0,1), we
have (uy)!, = ul, — 8,5 "'U. Using this and the definitions of Fi,P+ and a4
(cf. [SS2]), we obtaln

F:t(u u/)—za:l:(P:t (fﬂ:);c(Pi)mn'

= g™ (P 1 Y (P Y+ (P (s (P Yot
= 07 (g F QKK quta=q™ + (4~ +q2)(E D,

= 0799 (q+ F 0) £ (£q™" +q1))arul,

Since d_ = 1,* =0 and hence (g+ )i = 0 Moreover, (Pi)""', = 0. Putting the

precedmg facts into formula (8.9) in [SS2] for the element uyu;,, we get u,, n, =

qQ+ €+ Up,.

(iii) From Lemma 8.3, (v.2), in [SS2], ulu! = qu'u! = q07%(d_u] +K'n, cu).
Since (64,0-) = (1,0), we have (u+)j' =0, so that u’l’/ = "qu”] Moreover,
(p = 0. Inserting these facts into the above expression for ulu} , we compute that

!
) = q077bu) .
(iv) We first show that a, et = 0. From Lemma 8.3, (iii.2), in [SS2] and the first
assertion of (ii), we obtain

L1l 1 ¥ 11 2002, o+,
wuy uy = q° “1 Wy = gPvaguy uy = qvayupuy = ¢ov0aetuy

On the other hand, since (1)} = ) and (u_)} =0 by (6,,6-) = (0,1), Lemma 8.3,
(iii.1), in [SS2] and (ii) yield

|90 L RS TS TS LA | 11 _ -3 +.17
ujuy uy =y = Q7 ajupuy; = Q7 qareTuy .

Since u{ ¢ R again by (5,,0_) = (0,1), the above coefficients of uél coincide so
that gQ,va et =a,et. Since qQ,v=1+¢qq,*+1,a,e" =0.
! I /
From (64,0_) = (0,1) it follows easily that ul,u?, = q“‘Kzl,lzluf,uf,. By the as-
sertions (iv.1) and (vi.1) of Lemma 8.3 in [SS2], we have ul,u? = O7%a*ul, and
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‘1K21,‘2 u%,uf, =q7'07'q+a,ul,, where we used that (u_)!, = 0. Since (6;,0_) =
(0,1),u}, does not belong to #. Comparing the coefficients of uj,, we get Q7lat =

g 'q.a, . From the latter and the equation a;e™ = 0 we compute immediately that
a =a_- = 0.
(v) Similarly to formula (8.10) in [SS2] we can prove the identity

Cl Cz/uzu]/ul + Cl uzullul

We have (u_ ) , = 0. Since 6, =1, (“+)1' = 0. Therefore, by Lemma 8.3, (iv), in
[SS2], uzul,u1 = 0 From the second assertion of (ii) and Lemma 8.3, (iii.1), in

[SS2], we get uzul,u1 = g0 e~ ulu} = g0 e b ub. Here we also used the fact
that (u_ )2 =u} and (u;)} =0. Comparing the coefﬁcwnt of u} ¢ #, we obtain
1=qQ+ e~ b;. Since (d4,0-)=(1, 0), we have u, = 0. Hence, by (ii), 0=
w'ul = g7 'ulul = 072bul’. Because ul' ¢ %, this gives b= 0.

(vi) is easily computed from (v) and the definitions of b.,b and e~. Note that
g7z +¢**0, since o/ +Sp,(4) and hence z+ — ¢°.

(vii) Since &, = 1 and hence ¢* = 0, we have u} = (u_); + ;5 ~'U and (f+)} =
0. Thus

Uy = (v4); + (0= + 6ys ' — sl
=(f )+ )+ (g +(g-) + dys T M+ Vi + Vo) —su)
=" Y )un) + dys Tt + )0 - s
= — )il + 8ys (w— )T . (53)

Applying the first assertion to the identity Cll, U= > C’, U ”1“1/ and using the fact
that 0° =V, +V_ — 250 + (1 — )1 = (s — 25)U, we obtain

CLO=Cls (Y —s)(p—— )il + Clhs2(u— Y20 .

Since d}; and U are linearly independent modulo %, we conclude that ( — s )(u —
y—s)=0 0O

Now we continue the discussion of the remaining cases for the numbers
80,04,0_ € {0,1}. First we assume that 6, = 0 and 6_ = 1. Then u! = (u;)!' ¢ £.
Therefore, the proof of assertion (i) of Lemma 8.4 in [SS2] is still valid in this
case and shows that Q,qia.d_ +a‘c, =0} — Oi(a; +a_)*. By Lemma 5.2,
(iv), a; =a_ =0, and hence a™ = 0. Thus we get O, = 0, which is impossible
since ¢ is not a root of unity.

In the rest of this we consider the case 0, = 1,d_ = 0.

Next we suppose that N = 5. From Lemma 8.3, (i), in [SS2], u2u3ug
u2u2u3 0. Applying both assertions of Lemma 8.3, (iv), in [SS2], we obtain

= u2u3u2 0 +2b+u3u2 QI4b+b uz, where we also used the relations (1)} =
0,(u_)} =ul,(uy)} =0 and (u_)} = u}. (Note that for N =4 we have 3 = 2’ )
that Lemma 8.3, (iv), does not apply to the terms uju3 in this case.) Since u} ¢ %,
we conclude that b5~ = 0. On the other hand, Lemma 5.2, (vi), implies that
b*b™ = —q 'Q*Q%z(¢73z + ¢*)~2 %0, which is a contradiction.
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Now suppose that .o/ = Sp,(4). In this case we have (g_)} =0 for all i,/
and hence Yy~ =0, cf. Lemma 4.1. Therefore, b_ = 0. From Lemma 5.2, (v),
b =0 and qQ;3e‘b+ =1. But b_ =0 and b =0 imply b, = 0, which leads to
a contradiction.

It only remains to treat the quantum groups O,(4) and O,(3). Let us suppose
that o/ = Oy(4) or o = O,(3). Recall that (d,,6_) = (1,0) as assumed above.

From the two solutions b, = +Q,,b_ = :tQ+(q_‘z +1)g3z+¢*)"" by
Lemma 5.2, (vi), we obtain the two solutions (pl and (//2ft , where Y = -y =
07107 @ +g7 NG —¢7'z7") and Yy =Yy =070 @ - )1+ 4727,
We set Y, ="+ ",k =1,2. We compute ¥y —s = O.(1 —¢)(g™% —g). % —
5s=0.(1+¢9)g > +q)for N=d4andh —s =(1—g)g > —qhth —5 = —0;4
(Q+ + 1) for N = 3. Therefore, since g is not a root of unity, we have y — s +0
in all possible cases.

In order to determine m, and so ut, we begin with the identity ululul =
q* u%ulu1 From Lemma 8.3, (vii) and (iii), in [SS2] and the relation Uu2 -
s)u, by Lemma 5.2, (vii), above, we get

wujuy = (b (qQ5 by —s W) +m (Y — )+ Duj .

Here we also used (u4); =0 and ) = (u-); +d;5 U by (64,0-) = (1,0). Ap-
plying Lemma 8.3, (iii), in [SS2] twice, we obtain ululul = Q7?b2u}. Compar-
ing the coefficients of u} ¢ # and using the facts that Y — s 0 and b3 = Q2
by Lemma 5.2, (vi), we find that m, = (bys ' —2)( —s)~'. Setting in case
o = 0,4(3) the above solutions (//ki,k = 1,2, into the latter formula, we obtain
ut =

Now we specialize to o7/ =0,(4). By Lemma 8.3, (i), in [SS2], we have ujul =
0. Applying first assertion (viii) and then assemon (111) of Lemma 8.3 in [SS2] to

the term wbulul, we conclude from 0 = wlulu? = uludu} that

0={07'b" W3 — s 'U)+ b7 (u; —s'U) + (my —m_)Uluy  (54)
={07%b (g7 'b +gb7) — O s (LT +b7)
+ (my —m ) —s)}uj . (5.5)

Since u} ¢ %, the coefficient of u} vanishes. Combined with the above expression
for m,, this yields m_ = Q(¢g7%z — q)(¢ >z + ¢*)"'(y — s )~ !. Inserting the two
solutions 114‘i into the formulas for m., we compute y; = uf + u; = 07 (¢* + g+
D(g -+ o =3 + 5 = (07" — 1)(g — 1)’¢7> Moreover, 1 +s = 0.(1+
q)g+q %) and Y +5 = Q. (1 — q)(g — g~?). Using once more that g is not root
of unity, we verify from these formulas that u — ¥ — s 0 for both solutions. Since
Y —s+0 as observed above, (Y — s )(u — ¥ — s)=+0, which contradicts Lemma
5.2, (vii).

Putting the preceding together, we have shown that for N = 4 there are no other
ad-invariant right ideals % of ker ¢ satisfying codim %2 > 2 and ker ¢ = # + ./
than the right ideals #, and #_ defined in [SS2], Sect. 6. Therefore, by the
Theorems 6.1 and 6.2 of our previous paper [SS2], the proof of Theorem 4.1 is
complete, and the assertions concerning the right ideals % and the calculi (I'y,d)
in Theorem 4.2 are proven.
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From now on we assume that &/ = O,(3). Our aim is to prove the remain-
ing parts of Theorem 4.2. First we note that o = 0, because otherwise U € # and
hence 0 = Uu2 (¢ — s)ul by Lemma 5.2, (vii). Since u} ¢ # and ¥ — s +0, this
is impossible. From Lemma 5.2, (vii), and 1// — s +0 we obtain u = + 5. Putting
the solutions lh( and pf,k = 1,2, derived above into this equation, we compute
u~ =, . (It might be of interest to search for the difference between the quantum
groups O,(4) and O4(3) in the paragraph before last. The relation (5.4) still holds
for 0,(3), since ul, = (u4)}, =0 by 6. =1 and hence ulu} =0 by Lemma 8.3,
(vi.2), in [SS2]. But, since 2 = 2’ for O,(3), Lemma 8.3, (iii), in [SS2] does not ap-
ply to the term u2u2 in (5.4). A direct computatlon based on formula (8.9) in [SS2]
yields that w3u} = Q+1b+u2 for O4(3), while wuy =q7'0r 1b+u2 for Oq(4) The
reason for this difference is that (P )22 =gT' £ 1+ g4 for O4(3), while (P;)% =
and (P_)% = 0 for O, ,(4). Therefore, in the corresponding relation (5.5) for Oq(3)
the factor ¢~! in the first interior bracket is missing and hence no contradiction
appears in the case of O,(3).)

Thus, by the preceding computations and by Lemma 5.1, we have shown that
Ry =B, or R, = %B,. Hence we have # =%, or # =%, by Lemma 1.1 in
[SS2]. The right ideals #;, and %, are ad-invariant by Lemma 1.7 in [W], since
the generating subspaces %, and %, are ad-invariant. From the definitions of %
it is clear that ker ¢ = %, + /1 and codim %; < 4. Later in this proof we will
conclude that codim %, = 4 for k = 1,2. In the next lemma we take this already
for granted.

I:emma 5.3. If codim #, = 2 and codim %, = 2, then we have 9 € R, and
D+200 —3s) U € %

Proof. Let k € {1,2}. Since ker ¢=% +./, by definition, there is an element
ay € 2 \ such that 9 — a; € %. Since the quantum determinant is group- -like [H]
and hence ad-invariant, it follows that a; = o U for some a; € €, so that 9 = , U.

Now we determine the complex number «;. Recall that the quantum determinant
2 is central in O,4(3). Therefore, by (4.1), we have

Duy = 1, D = uyujg — (1 + Quyuiudu + (g + ¢ usuyudu, — qubuiudu. (5.6)

To compute the right-hand side of (5.6) modulo %#;, we apply once again Lemma 8.3
in [SS2]. All references in this paragraph will refer to assertions of that lemma. By
(i), ulul =0, so that ululudu; = 0. From u}, = (u;)}, € % and (vi.2) we con-
clude that ulu} =0. Hence ululuiui = 0. Since by = (—1)y*1Q, as computed
above and (u+)2 € Ak, we have u}u} =ubuj = (—1)"'u}. From ul, € % and
(iii.2) we get ulu3 = 0. Thus ululudud = 0. Therefore, by (5 6) and the preced-
ing, 2u} = wuldud = (-1} u%ug = uéug

Further, we have uéug = uhul, = g07% u} by Lemma 52, (ii), and 1=

g0 bie™ = (=1)"*1q07 e~ by Lemma 5.2, (v), so that Gul = (—1)*'ul. Thus
we get Ju} = (2 — Du) = (—DF! — Db = 0, Uul = o (¥ — s )ul, where the
last relation follows from (5.3). Since codim %; = 2 by the above assumption,
we have u) ¢ %;. Hence we conclude that (—1)**! — 1 = o ( — s ), which yields
ap=0and 0y = -2y —s)". O
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Next we turn to the differential calculi (I';,d) and (I';,d). First we show I'y =
(adu) : a € of,r,5 = 1,2,3) for k = 1,2. Throughout this proof let (R,,,) denote the
matrix R for the quantum group SL p(2). Recall that (I',d) is the calculus (I'y ., d)

with z = p~! for SL p(2) defined in Sect. 2. From the corresponding formulas therein
we compute

Adi Abx acj Ays

K(tlit{)d(trlftril) = K(t/it[j )ntt];trln - 51'"5/'”77 = p_zp_ZaRbcRanRyrRxmnrs - 5in5jmrl

= p7(p— ™) (R)Rits + Suttin) + (072 = Dbt - (5.7)

Here we used the equation p‘z“ﬁzlcﬁi; = (trlzléuRzg,):: =p Y p—p )80 +
P %000, from Lemma 3.4, (iii), in [SS2]. The right-hand side of (5.7) is
equal to p=(p — p~"Wym if i = jEn=m, p7(p— p~ " 20+ (p~> — D if i =
n>j=m, and p>(p—p " )p*+ 1)+ (p~>— 1)y if i =j=m=n. Since
11!, € n(a/), we conclude that for the pair (I';,d) all forms 7;;,1,j = 1,2, belong to
the linear span (adu) : a € o/,r,s = 1,2,3). Hence the latter coincides with I';. Re-
call that we have n;jul = (—1)*"'u! gion(u! Yium for the bimodule I,k = 1,2. There-
fore, a slight modification of the preceding reasoning shows that I'; = (adu} : a €
oL, r,s =1,2,3).

In particular, we have I'1 = (adb : a,b € /), so that (I'1,d) is indeed a dif-
ferential calculus over & = O4(3). Since m: Oy(3) — SL,(2) is a Hopf algebra
morphism and the 4D, -calculus (I',d) over SL »(2) is bicovariant, the calculus
(I'1,d) over O,(3) is also bicovariant. The easiest way to see this is to use the
map ¥ : Iy — I'y , defined in Sect. 4 and to check Definitions 1.2 and 1.3 in [W]
(which are equivalent to our definition of bicovariance given in the introduction).
Since I'y = (w,g) is a bicovariant bimodule, it follows immediately from Lemma
1.3 in [SS2] and the definition of the algebra representation /4 that I', = (w,h) is
again a bicovariant bimodule. Hence (I';,d) is also a bicovariant differential calculus
over o = 0,(3).

By a direct computation based on formula (4.1) we verify that 7(2) = 1. From
this it follows easily that 2 = 9y for the bimodule I'y. Since Z is a linear com-
bination of cubic monomials in the matrix entries #’, it follows at once from the
definition of the bimodule I'; that 2 = —@# in I';. Thus we have d2 = —291+0
for the calculus (I'7,d). In particular, we see that the two calculi (I'y,d) and (I'>,d)
are not isomorphic.

Let #;,k = 1,2, be the ad-invariant right ideal of ker ¢ which is associated
with the calculus (I'y,d), cf. [W]. Since dim (['4,d) = 4 by construction and I'; =
(adu} ta€ A,i,j=1,2,3) as just shown, we have codim %, =4 and ker ¢ =
R, /| by Lemma 1.5 in [SS2]. Therefore, by the above proof, each #; has to
be one of right ideals #; or #, of ker &. Further, we know that %/ & %), because
the calculi (I';,d) and (I'2,d) are not isomorphic. In particular, this implies that
codim #; = codim %#; = 4. Thus Lemma 5.3 applies, and hence we have 9 € R
and 9 ¢ A,. Since d2 =0 for (I'},d) and d2+0 for (I';,d), we conclude that
@Il = .@1 and %; = @2.

This completes the proof of Theorem 4.2.



Bicovariant Differential Calculi on Quantum Groups 335
References

[BM] Brzezinski, T., Majid,S.: Quantum group gauge theory on quantum spaces. Commun.
Math. Phys. 157, 591-638 (1993)

[CSSW] Carow—Watamura, U., Schlieker, M., Watamura, S., Weich, W.: Bicovariant differential
calculus on quantum groups SU,(N) and SO,(N). Commun. Math. Phys. 142, 605-641
(1991)

[C] Castellani, L.: Gauge theories of quantum groups. Phys. Lett. B292, 93-98 (1992)
[D] Drinfeld, V.G.: Quantum groups. In: Proceedings ICM 1986, pp. 798-820, Providence,
RI : Am. Math. Soc., 1987
[DK] Dijkhuizen, M.S., Koornwinder, T.W.: Quantum homogeneous spaces, duality and
quantum 2-spheres. Preprint, Amsterdam, 1993
[FRT] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie
algebras. Algebra and Analysis 1, 178-206 (1987)
[Hm] Hammermesh, M.: Group theory and its application to physical problems. Reading, MA:
Addison-Wesley, 1992
[H] Hayashi, T.: Quantum groups and quantum determinants. J. Algebra 152, 146-165 (1992)
[J] Jimbo, M.: A g-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math.
Phys. 10, 63-65 (1985)
[Ju] JurCo, B.: Differential calculus on quantized simple Lie groups. Lett. Math. Phys. 22,
177-186 (1991)
[L] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras.
Adv. Math. 70, 237-249 (1988)
[Mj] Majid, S.: Quasitringular Hopf algebras and Yang-Baxter equations. Int. J. Mod. Phys.
A5, 1-91 (1990)
[M1] Maltsiniotis, G.: Calcul différential sur le groupe linedire quantique. Preprint, ENS, Paris,
1990
[M1] Manin, Yu. L.: Quantum groups and non-commutative geometry. Publications du C.R.M.
1561, Univ. of Montreal, (1988)
[M2] Manin, Yu. L: Notes on quantum groups and quantum de Rham complexes. Preprint,
Max-Planck-Institut, Bonn, (1991)
[MH] Miiller-Hoissen, F.: Differential calculi on the quantum group GL, 4(2). J. Phys. A. Math.
Gen. 25, 1703-1734 (1992)
[S] Sudberry, A.: Canonical differential calculus on quantum linear groups and supergroups.
Phys. Lett. B 284, 61-65 (1992)
[PW] Parshall, B., Wang, 1.: Quantum linear groups. Memoirs Am. Math. Soc. 439, Providence,
RI (1991)
[R] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping
algebra of a complex simple Lie algebra. Commun. Math. Phys. 117, 581-593 (1988)
[SS1] Schmiidgen, K., Schiiler, A.: Covariant differential calculi on quantum spaces and on
quantum groups. C.R. Acad. Sci. Paris 316, 1155-1160 (1993)
[SS2] Schmiidgen, K., Schiiler, A.: Classification of bicovariant calculi on quantum groups of
type 4,B,C and D. Commun. Math. Phys. 167, 635-670 (1995)
[SWZ] Schupp, P., Watts, P., Zumino, B.: Differential Geometry on Linear Quantum Groups.
Lett. Math. Phys. 25, 139-147 (1992)
[T] Takeuchi, M.: Matric bialgebras and quantum groups. Israel J. Math. 72, 232-251 (1990)
[W] Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum
groups). Commun Math. Phys. 122, 125-170 (1989)

Communicated by M. Jimbo








