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Abstract: Suppose that q is not a root of unity. We classify all bicovariant differ-
ential calculi of dimension greater than one on the quantum groups GLq(N), Oq(N)
and Spq(N) for which the differentials άuιj of the matrix entries uιj generate the
left module of first order forms. Our first classification theorem asserts that there
are precisely two one-parameter families of such calculi on GLq{N) for N ^ 3.
In the limit q —> 1 only two of these calculi give the ordinary differential calculus
on GL(N). Our second main theorem states that apart from finitely many q there
exist precisely two differential calculi with these properties on Oq(N) and Spq(N)
for N ^ 4. This strengthens the corresponding result proved in our previous paper
[SS2]. There are four such calculi on Oq(3). We introduce two new 4-dimensional
bicovariant differential calculi on Oq(3).

1. Introduction

In recent years the theory of quantum groups [D,J] has attracted considerable interest
among both mathematicians and theoretical physicists, cf. [Mj]. Non-commutative
differential calculus on quantum groups is a fundamental tool needed for many ap-
plications. For instance, it enters essentially the formulation of gauge theory with
quantum groups, see e.g. [BM or C]. A general framework for bicovariant differ-
ential calculus on quantum groups has been provided by S.L. Woronowicz [W]
following general ideas of A. Connes. In contrast to the classical differential ge-
ometry on Lie groups, there is no functorial method to obtain a unique bicovariant
differential calculus on a given quantum group.

In this paper we classify all bicovariant differential calculi on the quantum groups
GLq(N),Oq(N) and Spq(N) under "natural" conditions. To be precise, we assume
that q is not a root of unity, the differentials άu^ij = l,...,Λf, generate the left
module of the first order forms and that the dimension of the calculus is greater
than one. Here u = (wy)/,7=i,...,7v denotes the corresponding fundamental matrix.

The results of the present paper and its predecessor [SS2] provide a com-
plete classification of all bicovariant differential calculi on the quantum groups
GLq(N),SLq(N),Oq(N) and Spq(N) under the above assumptions. They show in
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particular that for the quantum groups SLq(N),Oq(N) and Spq(N) there is no such
bicovariant calculus whose dimension coincides with the dimension of the corre-
sponding classical Lie group. Except for the case of Oq(3), the dimension of all
these calculi is N2.

The first main part of the paper is concerned with the classification problem
for the quantum general linear groups GLq(N). The results of our classification are
briefly stated as follows. For N ^ 3 there are two families of non-isomorphic calculi
on GLq(N) both depending on a complex parameter. There is only a single one-
parameter family of non-isomorphic calculi on GLq(2). The latter result is already
obtained in [MH]. All calculi occurring in this classification can be constructed by
the method of B.Jurco [Ju]. Moreover, we describe the structure of these calculi in
terms of the Maurer-Cartan forms, and determine the ad-invariant right ideals of
ker ε associated with these calculi.

The results of the first part are in Theorems 2.1 and 2.2 of Sect. 2. The proofs
of both theorems are contained in Sect. 3. The method of proof is the same as used
in our previous paper [SS2] for the quantum group SLq(N). The crucial step to
achieve the classification is the description of the structure of the associated ad-
invariant right ideals of ker ε by decomposing parts of the adjoint representations
into irreducible components. This is the point where the difference between N = 2
and N ^ 3 occurs.

The purpose of the second main part of this paper is to strengthen the classifi-
cation for Oq(N) and Spq(N) obtained in [SS2], Theorems 6.1 and 6.2. Recall that
we assumed there that the differential duιjj,j = 1,...,JV, generate the left module
of one forms and that the dimension of the calculus is N2. As mentioned above, we
now weaken the latter by requiring only that the dimension is greater than one. We
prove that for N ^ 4 the two calculi (Γ±,d) defined in [SS2], Sect. 6, are the only
bicovariant differential calculi on Oq(N) and Spq(N) satisfying the above weaker
assumptions. For the quantum group Op{3) this is no longer true. In addition to the
calculi (Γ-t,d) there exist two other 4-dimensional bicovariant differential calculi on
Oq(3) which are introduced and studied in Sect. 4. The main results of this second
part are Theorems 4.1 and 4.2. Their proofs are given in Sect. 5. As in [SS2], these
proofs require a number of long computations.

With the exception of Remark 4 in Sect. 2, we assume throughout this paper
that the deformation parameter q is not a root of unity. We essentially use this
assumption in order to have similar decompositions of (certain) tensor product rep-
resentations of u and uc as in the classical case [L,R] (see e.g. [PW]), so that
these decompositions can be labelled by means of Young tableaus [Hm]. (In fact, it
would be sufficient to assume that qn φ 1 for all n £ IN and n ^ c(N), where c(N)
is some constant depending on N.)

Let us briefly explain the terminology and some notations used in the se-
quel. Throughout this paper si denotes the Hopf algebra of functions for one of
the quantum groups GLq{N\Oq(N) or Spq(N) as defined in [FRT], cf. [Ml].
We denote by A the comultiplication, ε the counit, K the antipode and 11 the
unit element of si. Let R = (B!^m) be the corresponding ^-matrix and let P±,
resp. Po be the spectral projections of R. See [FRT], Sects. 1.3 and 1.4, for
details. We denote by u = (uιj) the fundamental matrix for si and by $tn the

linear subspace of si spanned by the products uj ...uι"n. The adjoint repre-
sentation of si is the map ad : si —• si (g) si defined by ad(#) = £z (g> κ:(flz )cz

for a € si, w h e r e ( i d 0 Δ ) Δ ( a ) — at (8) 6/ 0 C[. W e p u t a:— a — ε{x)t for a £ si
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and $ := {b : b G &} for a subset έ% of si. The (complex) linear span of $ C
j / is denoted by (3$). Unless the contrary is stated, we sum over repeated
indices.

Concerning bicovariant differential calculi on quantum groups we use the ter-
minology and the results of [W]. A differential calculus over si is a pair (Γ,d)
of a bimodule Γ for the algebra si and a linear mapping d : si —>• Γ satisfying
the Leibniz rule d(αZ?) = dα 6 + a άb for a,b G ̂ / and Γ = (a db : a,b e si).
Two differential calculi (Γi,di) and (Γ2,d2) over J / are isomorphic if there is a
bimodule isomorphism of Γ\ onto Γ2 which intertwines di and d2.

A differential calculus (Γ, d) over si is called bicovariant if there are linear
mappings zJ/, : Γ —> J / 0 Γ and zl/? : Γ —» Γ 0 J / such that:

(i) (Γ, zJL) is a left comodule and (Γ,z1#) is a right comodule for si.
(ii) Aι(aωb) = Δ(a)Δι(ω)A(b) and Aχ(aωb) = A(a)AR(ω)A(b) for α, Z? G J / and

ft)Gί.

(iii) Zli(dα) = (id (g) d)J(a) and ΔR(άa) = (d (g) id)zl(α) for α G i ,

Let (Γ, d) be a bicovariant differential calculus over si. A form ω G Γ is said to
be left-invariant (resp. right-invariant) if zli(ω) = 1 ® ω (resp. ^#(ω) = ω ® l ) .
The dimension of the vector space Γinv of left-invariant forms is called the
dimension of the calculus (Γ,d). There is a one-to-one correspondence between
ad-invariant right ideals 01 of ker ε and bicovariant calculi (Γ,d) is given by
& — \a G ker ε : Pinυ(άa) — 0}. Here P/Wϋ is the canonical projection of Γ into
Γinv defined by Pinv{ω) = κ:(αz )ωz when ^z(^) = fl* ® ω/. We shall write α = Z? for
a,b <E si if a — b e &. Sometimes we use Sweedler's notation Δ(ά) = a^) <S> a^2)-

2. Bicovariant Differential Calculi on GLq(N): The Main Results

Throughout this and the following section si is the Hopf algebra of functions on
GLq(N). As an algebra, si is generated by the N2 matrix entries uιj and an element x

satisfying xQ) — Q)x — 1, where 3) — Σ σ ( ~ ^ ) / ( σ ) w i ( i ) uσ(N) denotes the quantum
determinant.

The ad-invariant right ideals 0t±iZQ.
First we recall some notation from [SS2]. We shall abbreviate

s := £ q~2\ 5 + := 1 + 5 + q-™~\ $_ := s - q~
2 - q

ί = l

t + : = H - s , t _ : = s - g - 2 y v , r + : = 5 + l - ^ - 2 ,

r_ := s - ? - 2 ] v + q-2Ή~2, Q := q - q'λ,Q+ := q +

j g~2k<uJ,U := jrq-
2iu> and

ί = l

We define linear mappings S± : sti —» j/2 by
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(Lower indices refer to the usual tensor product notations. For instance, (P±u\U2)fm

reads as (P±)i£ιu
k

ju
ι

m. Note that s ± φ θ and t± φO because we assume that q is not
a root of unity.)

Suppose that N ^ 3. We set

+ ( 5 ~ ^~2 + # 2 )^ 2 — 5 _ (S — ̂ ~4 + 1 )z2 — 5
+ ' z ' + ^ β + ( z r + ~ s ) + ' 2 '

if zr+ φ s and

_

if zx- φ s .
Let τ e {+, -} and z G <C\{0} be such that zrτ + s. Let ^ τ > z := ^ I j Z si denote

the right ideal of ker ε, where i? t j Z is the linear subspace of ker ε generated by the
following three groups of elements:

(\)S±{uijUn

m);i,j,n,m = \,...,N.

(2) (D±)< - λ%u) - δijS-ι(V± - λ±zU);i,j = 1 ΛT.

(3) V+ - μ+fl, F_ - μ^U,x - vτ,U.

Now suppose that N = 2. Suppose that z € C\{0} and z r + φ s (i.e. z(q4 + l ) φ
q2 + 1). As above, we set v+>z := (q~2z~2 — ί)(zr+ — s ) " 1 . We define a right
ideal ^ + > z := ^ + > z si of ker ε, where ^ + j Z is the linear span of the following
elements:

(4) (u\)2 + q2(u2)2 - (1 + q2) {u\u2+q-'u\u2\ (u\f, (u2)2, u\{u\ - u\\
u2(u\-u\).

(5) (U -zx+)u[

2,(U -zx+)u2,(U -zx+)(u\ -u2).

(6)(U-zτ+)ϋ,x-v+;U.

The Bicoυariant Differential Calculi (Γ± j Z,d)
We define some bicovariant differential calculi by the method of B. Jurco [Ju]

adapted to the case of GLq(N). Suppose that z+ and z_ are non-zero complex
numbers. Let Z,* = (^/j) be the N x N matrices of linear functionals ±l'j on si as
defined in Sect. 2 of [FRT] by taking the matrices z±R therein. Then we have

=z+R

κ(+l)){u"m) = z~\R );; and κCl))(un

m) = z l 1
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(In order to verify the formulas for the quantum determinant 2, it suffices to note
that ±li

j(®) = ^ ( U ) if zN

± = q*\ cf. [FRT], 2.2.)
Similarly as in case of quantized simple Lie groups (see [Ju] or [SS2] for

details),

Γ+,z := (uc,L+) <8> (u,L~>c) for z = z+zl 1 and

Γ_,z :=(uc,L~)®(u,L+>c) for z=z_z~ ]

define bicovariant bimodules over srf — GLq(N). Here uc and L^c denote the con-
tragredient representations of u and L^, respectively. The structure of Γ±)Z is easily
described as follows: There exists a basis {^ : ij — \,...,N} of the vector space
(Γ±,z)inv of left invariant elements of T±>z such that the bimodule operations of
Γ±iZ and the right action ΔR on (Γ±}Z)inv are given by

and ΔR(ηij) = ηnm <g> {tf^JJ = 1, . . . ,^ .

Since (^)?ttf^-2; - φ^uTq-21 = δnmq~2\ the element η := Σ ^ " 2 ί ? « of Γ ± f ί

is left-and right-invariant. Defining άa := ηa — aη for β G J / , the pair (Γ±tZd)
becomes a bicovariant differential calculus over si.

Further, we set KJL := q-* δy S^g^ := Λ^ and (Λ~)L := (Λ"1)^.. For

zr ± Φs, we define linear mappings Γ± j Z G I ( C ^ 0 C^ (g) C^) by

and

w h e r e X + , z : = / + ( l - z " 1 ) ^ - 1 ^ and X_, 2 : = / + ( z - ] - l ) ^ ^

(Since z r ± Φ s b y assumption, it is easy to check that X±>z is invertible in L ( C W <g>

C^) and that ^ = / + (l -z~l)(zx± -s)~ιK.)
The main results in the first half of this paper are summarized in the following

two theorems.

Theorem 2.1. Suppose that stf = GLq(N) with N ^ 3.
(i) The right ideals J>± ? z for zx± φδ «re ίAe only ad-invariant right ideals $ of

ker ε such that ker ε = ^ + sί\ and codim ^ ^ 2. Moreover, codim ^ ± ? z = TV2

α«J mτ,z Φ ̂ τ/,z/ z/ (τ, z) Φ (τ', z').
(ii) The pairs (Γ± } Z,d) wίίA zr±Φs are ίΛe on/y bicovariant differential calculi

(Γ,d) ot βr J3/ = GLq(N) for which dimΓinv ^ 2 a«<i Γ = (a dwj : a G j/,/,y =
1,.. .,7V). Two calculi (Γτ,z, d) aπί/ (Γτ/ z/, d) wzϊ/z (τ,z) Φ(τ /,z /) are non-isomorphic.
The pair (Γ±z,ά) is the canonical calculus associated with the ad-invariant right
ideal 0t±^z.
(iii) Suppose that z r ± Φ s . The set of one forms ωtj := Kίu^dupiJ — \,...,N, is
a vector space basis of (Γ±tZ)inΌ. The bimodule structure and the differentiation
of the calculus (Γ± j 2, d) can be rewritten as

coija = (fιim * a)ωnm and da = (χnm * a)ωnm,a £ srf , (2.1)
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where the linear functionals fίm and χnm on s$ satisfy

Inmiu)) = δinδjmandχnm(u)ur

s) = / £ , « ) = (X±iZ)ψ . (2.2)

If ω denotes the left- and right-invariant one form ^q~2ι(ύu, then we have

άa = (zx± - s )~ι(ωa — aω) for a e sd

and dQ) = -zN q±2v±^ω, dx = v±,zxωanddx = -z~Nqτ2x2d@ .

Theorem 2.2. Suppose that srf = GLq(2). Then the pairs ( Γ + ? 2 , d ) with z(q4 + l ) φ

q2 - f1 are the only bieovariant differential calculi (Γ, d) over srf such that

dim(Γ,d) ^ 2 α«J Γ = (αdwj : a e ^,/,y = 1,2). v4// assertions of Theorem 2.1
concerning the calculus (Γ+ j Z,d) αrad δfte πϊjλί /deα/ ̂ + , z remain valid for N = 2.

The proofs of both theorems will be given in Sect. 3. Here we discuss these results
and the bieovariant differential calculi occuring therein by some remarks.

1) For zx± = $ the pair (Γ±tZ,d} is still a well-defined bieovariant differential
calculus over ja/, but the differentials dupi,j = l,...,iV, do not generate the left
module Γ±tZ in this case.

2) In [SS2] all bieovariant differential calculi on SLq(N) have been classified
under the assumptions stated in the introduction. A direct comparison with [SS2]
shows that all calculi of this list can be obtained from the calculi (Γ±jZ,d) on
GLq(N) for special values of the parameter z, i.e. by setting zNq2 = 1 for (Γ+ > z,d)
and znq~2 — 1 for (Γ-^, d). That for the latter values of z the calculi (Γ±^9 d)
on GLq(N) factorize to the quotient algebra SLq(N) follows also at once from the
above formulas, since then ±lί

j{2) = ± /}(!) and &(β) = dx = 0.

3) For the calculi (Γ±iZ9d) with z = 1 the commutation relations between the
matrix entries and their differentials are even linear. Indeed, for z = 1 we have

X±,z — I and (2.1) implies that dwjwj = (& )l^(R )n™uk

nduι

m or in matrix notation

Λ _ j - 1 I 1

dU\ U2 — R\2 ul d ^

The particular bieovariant calculi (Γ±,i,d) on GLq(N) have been found in [M2 and
Ml] and studied in [S and SWZ]. Moreover, it follows easily from (2.1) that z = 1
is the only parameter value for which (Γ+ ? z,d) or ( Γ - ^ d ) has linear commutation
rules between the matrix elements and their differentials. Recall from the preceding
remark that for z — 1 the calculi (Γ± z, d) do not factorize to the quantum group
SLq(N).

4) What about the classical limit q —• 1 of the calculi (Γ± j Z,d)?
First we have to explain how this limit should be defined. We will adopt the
viewpoint of [SS2]. (Note that our definition of the classical limit differs from the
one used at various places of the literature, see e.g. [CSSW].) As in [SS2], we keep
the Maurer-Cartan basis {ω^ } of the calculus (Γ±z,d) fixed and we take the limit
of the linear transformation T±^z. After some calculations it follows that for each
fixed (!) number z G C\{0} the limits of Γ+?2 and of Γ_jZ for q -> 1 are

Tz := zRl2R23 + (z - 1)/12 - (z - l)N-ιK23ίl2 , (2.3)
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where ί^m = δnmδij. Replacing 7±? z by Tz, the formulas (2.1) and (2.2) in Theorem
2.1 define a bicovariant differential calculus (Γ2,d) over si — GLq(N) for q = 1.
We consider (Γz, d) as the classical limit of (Γ± j Z, d).

Let 9lz denote the right ideal of ker ε which is defined in the same way as M±,z

with all coefficients occurring in (l)-(6) replaced with their limits for q —> 1 and
for fixed z. It is not difficult to check βfcz is the ad-invariant right ideal associated
with the bicovariant calculus (Γ2,d). (Of course, one may also define other possible
classical limits of the linear transformations T±a by allowing that z varies as q —>
1. For instance, this has been implicitly done in [SS2] for the quantum group
SLq(N).)

If z = 1, then {TJ^ = δinδJmδrs by (2.3). Hence we have ωί7wj = u^ω^ for
ij,r,s — l,...,N. From this it follows immediately that (Γ\,d) is just the classical
bicovariant differential calculus on the group GL(N). (Another way to prove this
assertion is to verify that 9t\ coincides with the right ideal (kerε)2 of the classical
calculus.) Note that the Maurer-Cartan forms ω^ and the matrix entries ur

s do not
commute in general for the calculus (Γ2,d) if z=j=l.

3. Proofs of Theorems 2.1 and 2.2

The proof follows closely the lines of the proofs of Theorems 2.2 and 2.3 in [SS2]
where the corresponding problem for the quantum groups SLq(N) was treated. Sup-
pose 91 is an ad-invariant right ideal of ker ε such that ker ε = £k 4- si\ and
codim^ ^ 2. Let 9tλ2 := & Γ) (si\ + J / 2 + <C JC)~. Since ker ε = 9t + Jλ by
assumption, a simple induction argument (cf. Lemma 1.1 in [SS2]) proves that
91 = 9t\2 si.

Assume first that N ^ 3. Our aim is to show that 9t — 0lτ,z for some τ G {+, -}
and for some complex number z such that z Φ 0 and zxτ =j= $. This is in fact the main
part of the proof of Theorem 2.1.

The following lemma corresponds to Lemma 4.3 in [SS2].

Lemma 3.1. There are numbers δ G {0,1} and λ+,λ~,μ+,μ~,v G (C such that

9tn =δ(U) θ (K+ - μ+ϋ) θ (K- - μ~U) θ (f - vt/)θ

-3T+ θ τT_ θ im5+ θ im5_ , (3.1)

w/ẑ rβ 7F± w /Â  Λŵ Λr 5/?α« of (v±)j - A±wj - δijS~ι(V± - λ±U),iJ = 1,...,7V.

Proof. First suppose that iV ^ 4. Since obviously ad(x) = x ® U, the restriction
to ^i2 of the adjoint representation decomposes as a direct sum of irreducible
components as follows:

1 2 ^ (3 + δ)[0] θ 2 [2,1""2] θ [4,2^-2] θ [2,2, l^" 4 ] , (3.2)

where δ = 0 or δ = 1. (We use the standard notation for the Young patterns, see
e.g. [Hm].) The corresponding representation spaces in (3.2) are the first four direct
summands of (3.1) for (3 + <5)[0], Ί T + and τT_ for 2 [2, I * " 2 ] , im 5+ for [4,2*"2]
and im £_ for [2,2, l ^ " 4 ] . The proofs of these facts are quite similar to the proofs
of the corresponding assertions for SLq(N) in [SS2]. We omit the details and refer
to [SS2].
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If N = 3, then the representation for the Young pattern [2,2,1^~4] does not
occur in (3.2) and S- = 0, so the assertion is also true for N = 3. D

Lemma 3.2. Setting Λ± := s ^ 1 ^ and M± := q(t±s±)~ιμ±, we have the follow-
ing four equations:

(i) 1 - QlΛl(Λ+ + Λ-?-\l + v(s+Λ+ + s_Λ_ - s)).
(ii) 0 = (q-*Λ+ - qΛ-)(qΛ+ - q~ιΛ-).

(Hi) (Λ+ + Λ_) 2 = Q2

+Λ+(Λ+ + Λ_ - 1) + ρ + $ - 1 ( s + M + - Q+Λ+)

x(s+Λ+ -f s_Λ_ — s ) + 1.
(iv) 0 = (q-U+-qΛ x '

1

Proof. The equations (ii)-(iv) appeared already in Lemma 4.5 of [SS2]. Their

proof for GLq{N) is verbatim the same as for SLq(N). We verify (i). The proof

of Lemma 4.5, (i), of [SS2] shows that u\@ - Q2

+A\{A+ + A-f~2u\ G 01 in the

present situation for GLq(N). Put α := Q2

+A\{A+ + Λ_)^~2. Since f = vC/ and

ί/ι/̂  = (ι;+)^ + (v-)\ - suι

2 = (A+ + A" - s)M2 by Lemma 3.1, it follows that

«2 — oocu\ — u\ — Q&u\ — (xu\ = (1 — a)u\ — ccvϋu\

= (1 - α - αv(/ί+ + λ~ - s ))ι/2 = 0 .

Similarly as in [SS2], Lemma 4.2, we have u\ i 9t9 since otherwise codim 9t—\.
Therefore, the preceding implies that 1 — α — ocv(λ+ -f λ~ — s ) = 0 which in turn
gives (i). D

Lemma 3.3. λ+ + λ~ — s = 5+/1+ + 5_yl_ - s φ O .

/ Assume the contrary, that is, A+ 4- λ~ - s = 0. By Lemma 3.2, (ii), we have
(q~ιA+ — qA-)(qA+ — q~ιΛ-) = 0. First we consider the case q~ιA+ — qA~.
Then, by (iv), (qΛ+ - q-ιA_)(q-ιQ+A+ - 1) = 0. Since ^ 4 Φ l,qΛ+ - ^~ 1/1_= 0
leads to A+ = yl_ = 0 which contradicts (i). Thus Λ+ = ^ β ^ 1 and hence A+ -f
yl_ = 1 which also contradicts (i). The second possible case qΛ+ — q~xA- by (ii)
is treated in a similar manner. D

Next we show that the number δ occurring in Lemma 3.1 is zero. Assume to
the contrary that ( 5 = 1 . Then ϋ G 9t and hence ί/i^ = (λ+ + λ~ - s )u\ e 9t. Since
u\ (fc M as noted above, we conclude that A+ + λ~ — s = 0 . This is impossible by
Lemma 3.3, hence we have (5 = 0.

From Lemma 3.2, (ii), q~ιA+ — qA- or qA+ —q~~λA-. Let us begin with
the case q~ιΛ+ = qΛ-. Set z := λ+s+ιQ+q-1. Then we get λ+ = s + β + ^ z = A+^
and A~ = S-Q+ιq~ιz — λ+^. Note that zφO (otherwise yl+ = 4̂_ = 0 which con-
tradicts Lemma 3.3) and zr+ φ s (otherwise zr+ — s = / l + - M ~ ~ - s = 0 which con-
tradicts Lemma 3.3). From the equations (i), (iii) and (iv) of Lemma 3.2 we com-
pute easily that μ+ = μ+z,μ~ = μ + 2 and v = v+?z. By Lemma 3.1, we have shown
that 9t\2 = ^+,z Since & = ̂ i 2 J/ as noted above and ̂ + ^ = Jf+>z si by def-
inition, 01 = &+iZ. Arguing in a similar way, it follows that 9t = 01-^ m the second
possible case qΛ+ = q~ιΛ-.
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Suppose now that N = 2. We will show that M = ^+^ for some z e <C\{0}
such that z(q4 - h i ) + q2 + 1.

Lemma 3.4. There exist numbers δ G {0,1} and λ,μ,vE<C such that

mn = δ(ϋ) e (f - vt7) e ((t/ - /x)t/) ω nr e i r ,

wAer̂  ΊT W f/iέ? /meαr J/ ΛΛ O/ (£/ - λ)w|,(C/ - λ)u2,(U - λ)(w} - ^ ) and V is
the linear span of the five elements of group (4).

Proof. First we decompose ad|"j^2 into irreducible representations. Since adίw^w^)

= UmxUm2 0 (uc)^(uc)^uj^ιuj^ by definition and wc = w by TV = 2, we have

ad|\β/2 C (uc ® uc) ®(u®u)^ ([0] θ [2]) <g> ([0] θ [2]) . (3.3)

Obviously, the two projections for the decomposition u 0 u = [0]0 [2] are the spec-
tral projections P+ and P _ of Λ. Since {P±)iL{Pτ)

k

r

ι

su™un

ι = uί

mιJrι{P±)^{Pτ)
k

r

ι

s = 0,
we conclude that adf im P + ® P _ = ad|~imP_ <g)P+ = 0 for the decomposition at
the right-hand side of (3.3). Clearly, [2] <8> [2] ^ [0] θ [2] θ [4]. Comparing the cor-
responding dimensions, it follows that ad|"^/2 = 2 [0] θ [2] θ [4].

Combined with ad|\a/i = uc 0 u = [0] 0 [2] and ad(*) = x 0 1, we obtain
ad[(j2/ θ j ^ 2 θ <C -x) = 4 [0] 0 2 [2] θ [4] and hence ad|"(j^i 0 J ^ 2 θ C JCΓ = 3
[0] 0 2 [2] 0 [4]. Recall that Mn + Jλ = {stfx θ i 2 θ C x Γ by the assumption
g/l + stfx =kerε . Obviously, the representation space for the Young pattern [2] in
the decomposition of adp/j is (I - Po)^\, where Po :=s~ιK. We have (/—
PQ)J/\ Π^i2 = {0}, since otherwise (/ - P0)sί\ C <%xl and hence codim^ ^ 1.
Putting the preceding together, we conclude that

ad \Stn ^ (2 + δ)[0] 0 [2] 0 [4] (3.4)

with δ G {0,1}. The space for the Young pattern [4] in (3.4) is the five dimensional
vector space iΓ. By construction, the space #^ corresponding to the Young pattern
[2] in (3.4) is an ad-invariant subspace of (/ - PQ)J/\ 0 U (/ - PO)J/\. (The dot
denotes the multiplication in the algebra stf.) Since (/— Po)s/\ fλ$n — {0} as
already noted above, the space ΊV is of the form (U — λt) (/ —PQ)S/\. The sub-
space for the trivial representations (2 + <5)[0] in (3.4) is contained in (U, U U,x),
hence it can be written in the form stated above. D

Lemma 3.5 Setting z : = τ+ιλ = (1 + q~Λ)~ιλ, we have u\{β - q2z2) e 91 and

2 2 s ) ) - l . (3.5)

Proof Recall that u\{u\ - u\\ (u\)2 e Ϋ C 9tn and (U - (14- ^~ 4 »wi £ & by

Lemma 3.4. Therefore, we have u\u\— qu\u\ = ^ w 2 = q2u\u\ and (C/ - (14-

^~4)z)w^ = (1 -h^~4)(w^w^ -zw^) G ̂ . Since 1 + q~4*0,ι$u\ = zu\, and hence

«2^ = @u\ = {u\u\ — qu\u\)u\ = zw}̂ 2 = zqu\u\ = zqu\u\ — zq2u\u\ =z2q2u\,

which proves the first assertion. From u\(&} - q2z2) = 0 we obtain 0 Ξ M ) ( 1 -

q2z2x) = u\(\ - q2z2) - q2z2xu\ = u\{\ - q2z2) - q2z2vUu\ = u\{\ - q2z2) - q2z2v

(zr+ - s)«2 Since u\ φ M as noted above, (3.5) follows. D
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Next we prove that δ — 0. Assume to the contrary that δ —\. Then U G 01, so
(U - δ )u\ G 01 and (U - zr+>4 G ̂ . From u\ £ 01, we get z(l + q~4) = zx+ =
s = g~2 + q~4, and hence g2z2 = 1 by (3.5). The two latter equations imply that
q is a root of unity which contradicts our standing assumption. Thus δ = 0. The
latter argument also shows that λ = zx+ Φ $. Moreover, we have z Φ 0, since oth-
erwise u\Q) G 01, and hence u\ — u\2ΰx + u\Q) G M. From (3.5) we compute that
v = (<?-2z-2 - l)(zr+ - δ )~1. Further, from {U - λ)u\ G 0t and (U - μ)Uu\ G
M, we conclude that (λ — μ)(λ — %)u\ G 01. Since Λφδ and M| £ M, this yields
λ — μ. Thus we have shown that Mn — ̂ + , z by Lemma 3.3. Consequently,
ύft — όft {
tSL z/L _j- z .

The remaining parts of the proofs are very similar to the proofs given in [SS2],
Sect. 4. We shall indicate only a few points where some modifications are nec-
essary. Put q+ := q~ι and #_ := -q~2N~ι. Setting ω,7 := z g g ^ X ^ ) ^ ^ , t h e n

we obtain άu" — rfcoij by the same computation as in [SS2]. Since zr±Φδ by as-
sumption, the linear mapping X±,z is invertible and hence Γ±,z = {a duιj). As in
[SS2], the pair (Γ±z,d) is a bicovariant differential calculus over si and it is of
the form described in Theorem 2.1, (iii). The formulas for &Q) and dx follow at
once from the relations ω = (zx± - δ )η and ηQ) — zNq±2Θη which are easily
verified.

Next we show that for TV g: 3 the bicovariant differential calculus (Γ±yZ,d)
is associated with the ad-invariant right ideal ^ ± , z . Let fχnm denote the lin-
ear functionals χnm (see Theorem 2.1, (iii)) for the calculus (Γ±z,d). Fix a
pair (Γ τ z ,d) with τ G {-f, —},zφθ and z r τ Φ s . From the general theory [W] it
follows that its associated ad-invariant right ideal 0ί has the properties stated
in Theorem 2.1, (i). Therefore, by the above proof, M is equal to some right
ideal 0tτιiZι. We have to show that (τ,z) = (τ ;, z') We restrict ourselves to the
case τ' = +. The case τ' = - is treated in a similar manner. As in [SS2], we
consider the elements α/7 :=(£/ — z'x+)ulj — ip+)) + iP-)) ~ (^+ zι + ^+ z/)w) a n d
bij \— vιj — z'{q -h q~3)uιj — q(v+)ιj — q~ι(v-)lj — (qX\_ z, — q~lλ+z,)uιj for ίΦy of
the right ideal &+^, and we compute

tXij(bij) = (z — z')(g H- ̂ ~3) . (3.6)

Recall that again by the general theory [W], the functionals τ

zχij annihilate the right
ideal ^+, z / which is associated with the bicovariant calculus (Γ τ ? z,d). Therefore,
if τ would be —, then we have zr_ = z'r+ and z(q~x + q~2N~ι) = z\q + q~3) by
(3.6). Some computations show that the two latter equations lead to a contradiction
if q is not a root of unity. Hence τ = +. From tlijΦίj) — 0 we obtain z = z', so
that (τ,z) = {τr, zf). In the case TV = 2 the elements atj — (U — z'r+)wj, /Φy, belong
to ^ + , z and the preceding arguments prove that the bicovariant differential calculus
(Γ+ ? z,d) is associated with the right ideal ^ + , z . Recall that for TV = 2 each ad-
invariant right ideal $ with ker ε = 0t -{- si\ and codim M ^ 2 is equal to some

Finally, let us note that all right ideals $±,z for TV ^ 3 and 0t^z for TV = 2
are different, hence the corresponding differential calculi (Γ± ; Z,d) for TV ^ 3 and
(Γ+ > z, d) for TV = 2 are non-isomorphic.

This completes the proofs of Theorems 2.1 and 2.2.
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4. Bicovariant Differential Calculi on Oq(N) and Spq(N) (Revised)

From now on let si be the Hopf algebra of functions for one of the quantum groups
Oq(N) or Spq(N) with N ̂  3. We keep all notations and abbreviations from Part
II of our previous paper [SS2].

Let M± be the right ideals of ker ε and (Γ±,ά) the bicovariant differential calculi
on si defined in [SS2], Sect. 6. Recall from [SS2] that ^ _ and (Γ_,d) are only
defined if the number QZ + 2s does not vanish, where Q := q — q~ι,Z := qN~ι —
qλ~N for si = Oq(N\Z := q~N~ι - qN+λ for si = Spq(N)9 and s := 1 -f Z β " 1 .

The following theorem is a strengthening of Theorems 6.1 and 6.2 in [SS2].

Theorem 4.1. Suppose that N ̂  4. Let jtf = Oq(N) or stf = Spq(N). The right
ideals $+ and &- for QZ -f 2$ Φ 0 are the only ad-invariant right ideals @ί of
ker ε such that codim ^ ^ 2 and ker ε = $ -f j ^ . 7~Άe differential calculi (Γ + ,d)
and (Γ_,d)/or βZ + 2$ 4=0 are ίAe 0«/y bicovariant differential calculi (Γ,d) oi βr

Γ = (adwj : a G j/,/,y = l,...,iV) an<i dim (Γ,d) ^ 2.

In order to formulate the corresponding result for si — Oq(3), we need to define
two new right ideals 0l\ and ^ 2 of ker ε and two new bicovariant differential calculi
(A,d) and(Γ 2 ,d) on Og(3).

For k — 1,2, we set ^ := ̂  ^ where ^ is the linear span of the following
elements:

( l ) 5 + ( M } ^ ) f o r iJ9n9m=l,...9N.

(2) (/ + )},(/_)i,( M + )},(^ + )}-^ + (κ_)j and (0_)j-Vjf(ιι_)} for ί,y = 1,. ..,7V.

(3) V+-μ+U9V--μϊU.

Here the coefficients i/^ and μ^ are given by

:= 1 and μf := —(q - 1)2(

To define the two new differential calculi on 0^(3), some preliminaries are neces-
sary. For this we consider the quantum group SLp(2), where the complex number p
is chosen such that the square root of q appearing in the matrix C of the metric for
Oq{3) is equal to —p. That is, the elements in the offdiagonal of C are — p~x, l,—p
and we have p2 = q. We denote the fundamental matrix of SLP(2) by t = (^)/,/=i,2

There exists a Hopf algebra morphism π : Oq(3) —> SLp{2) such that

(Λ\2 (\ . -,2^1/2,1/1
V 1 / V ' P ) 2 1

(Here the choice of the square root for 1 + p2 is always the same, but arbitrary.)
To prove this, one verifies by direct computations that the above matrix entries
satisfy all relations of the definition of Oq(3). For this it is essential that q1^2 = — p.
Therefore, the map uιj —• π(uιf) extends uniquely to a unital algebra homomorphism
π of Oq(3) into SLp{2). From the construction it is clear that π is a Hopf algebra
morphism. Since obviously (l,π(wy) : i,j = 1,2,3) = (tj^ζ : n,m,r,s = 1,2), we



326 K. Schmϋdgen, A. Schuler

see that the image π(Oq(3)) is precisely the unital subalgebra of SLp(2) which
is generated by all quadratic monomials t^ζ. Note that above matrix (π(uιj)) is
nothing but the matrix for the spin 1 representation of the quantum group SLp(2).
See, for instance, formula (2.13) in [DK]. Let ( f ,d) denote the 4D+-calculus on
SLp{2) invented by S.L. Woronowicz [W]. Recall that this calculus is characterized
in [W] by its associated ad-invariant right ideal Sf+ of ker ε. That is, £f+ is the
right ideal of ker ε which is generated by the elements

)2 + P2(4)2 - 0 + P2Xt\tζ + p-lt\t\\{t\)\{t\)\t\{t\ - t2

2),

t\{t\ - tlUT - y)tl(T - y)tl(T - y)(t{ - t\\{T - y)(T - 1 - p1) ,

where T := p2t\ +1\ a n d Ί := P~~X + P~3 ( N o t e t n a t i n tw l> P *32, Example 3,
only the quantum group SUp{2) was considered, but the generalization to SLP(2)
is straightforward.)

The most convenient and easiest way for our purposes to describe the calculus
(f ,d) on SLP(2) and to construct the new calculi (Γk,d),k = 1,2, on Oq(3) is to
use the method of B. Jurco [Ju]. In fact, (Γ,d) has the structure of the calculus
(Γ+,z,d) defined in Sect. 2 with z = p~ι and GLq{N) replaced with SLp(2). That
is, the bicovariant bimodule Γ is of the form (f 0 t,L+ <g)L~'c) and the mapping
d: SLp{2) —»JΓ given by dx = ?/x — JC^ for x £ SLp(2), where η := p~2rj\\ +
P~4?l22 = q~l*1\\ + q~2*i22 and {f/̂  : z,y = 1,2} is the corresponding basis of Γzm?.
Recall that f denotes the contragredient representation of the fundamental repre-
sentation of SLp(2).

The map g := (L+ (g)L~'c)π is a homomorphism of the algebra Oq(3) into
M4(C). That is, we have g = (g»™) and g™(a) = + /?(π(α) ( 1 ) )κ(-/;)(π(α) ( 2 ) ) for
n,m,r,s = 1 , 2 and α G 0^(3) with zl(α) = «(i) 0 β(2) Let Γi be the free left mod-
ule for jrf — Oq(3) with basis {ηrs : r,s = 1,2}. There is a unique ^-bimodule
structure on Γ\ such that ηrsa = {gn

rf * a)ηnm, a e Oq(3). We define άa := ^β — #*?
for α G O f(3). Then the pair (Ti,d) is a bicovariant differential calculus over
si — Oq(3). From the preceding definition we conclude easily that there exists a
well-defined linear mapping Ψ : Γ\ —> Γ+z such that Ψ(aηijb) — π(a)ηijπ(b) and
^(αdZ?) = π(aάπ(b)) for α,6e O^(3) and'/,./ = 1,2.

Being a bicovariant bimodule, Γ\ can be written as a pair (w,#), where
w = (w^f) is a representation of the coalgebra 6^(3), cf. [W], Theorems 2.3 and
2.4, or [SS2], p. 638. The matrix entries w™ are the (uniquely determined) ele-
ments in the linear span (wj.,1: ij = 1,2,3) for which π(w™) = κ(fn)tf. For ex-
plicit computations it is convenient to write w as a direct sum [2] Θ [0] and to use
the matrix representations u- — ((w_)j) for the Young tableau [2] and U for the
trivial representation [0].

Since all defining relations for Oq(3) are quadratic in the matrix entries uιj,
there are well-defined linear functionals hn

rf on Oq{3) such that hn

r™(t) = δnrδms

and h™{a) = {-\fg™(a) for α G ̂  The pair (w,A) with h = Qιn™) is also a
bicovariant bimodule for Oq(3) which is denoted by JY As in case of Γi we set
άa := 77a — α?7 for α G Oq(3) and the pair (Γ2, d) is a bicovariant differential calculus
over si = Oq(3). (The missing details of proof for both (A,d) and (Γ2,d) will be
provided at the end of Sect. 5.) Obviously, the calculi (Γk,d),k = 1,2, are four
dimensional and inner.
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Our classification theorem for the quantum group Oq(3) can be now stated as fol-
lows.

Theorem 4.2. Suppose that s$ is the quantum group Oq(3). The four right
ideals ^* + ,^_, $\ and $2 a r e the only ad-invariant right ideals M of ker ε
with codim M.^2 and ker ε = 3t+Aι. The pairs (Γ+,d),(Γ_,d),(Γi,d) and
(Γ2,d) are the only bicovariant differential calculi (Γ,d) over srf for which
Γ = (aάuιj : a G *srf,i,j — 1,2,3) and dim(Γ,d) ^ 2. The pair (Γ τ,d) is the canon-
ical calculus associated with the ad-invariant right ideal $τ for τ = -f, —, 1,2.

Before we begin the rather long proofs of Theorems 4.1 and 4.2, we shall study
the two new bicovariant differential calculi (Γ^,d),A:= 1,2, over stf — 0^(3) in
more detail. For this we take Theorem 4.2 for granted and we fix k G {1,2}.

First we shall describe these calculi explicitly in terms of a basis of
Maurer-Cartan forms. (For the calculi (Γ±,ά) over Oq(N) and Spq(N) this is done
in Theorem 6.2 of [SS2]. The bimodule structure of Γ± and the differentiation d
are expressed with respect to the Maurer-Cartan basis {<%} by the linear trans-
formation T± defined in [SS2], Sect. 6.) We define a basis {ω{,ω2,ω3,ω4} of the
vector space {Γk)inv °f left-invariant forms of Γk by setting

ω1 := Pinv{ά{u-)\\ω2 := Pinv(ά{u-)\\ω3 := Pinυ(ά{u-)\\ωA = ω := Pinv(άU) .

Since ker ε = 0tk -f- ((w-)} : /,y = 1,2,3} + (U) by the definition of Stk and codim
01k = dim (Γ^,d) = 4, this set is indeed a vector space basis of {Γk)inv\ cf.
the proof of Lemma 1.5 in [SS2]. Put φk :—ψ^ + φ^. Using the definition of
π(U) = qπ(u\) + π ( ^ ) + q~xπ(u\) and the commutation rules of the bimodule Γ+ ? z

for SLp{2) we compute ω = Pinυ{dU) — (φk - s )f/. (For A: = 2 this follows also
from the facts that 3) + 2(ιfc - s )~ ! f7 G ̂ 2 and dJ> = - 2 ^ ^ which are proved in
Sect. 5.) Thus the differentiation d of the calculus (Γ*,d) can be written as

άa — (φk — s)~ι(ωa - aω) for a G Oq(3) .

Let A = (̂ 4 )̂,y=i;2,3;«=i,...,4 be the matrix of Mor(wc (8> M, [2] 0 [0]) defined by A\x =

^ 2 := 1 , 4 J = ^ = ^ 3 := s " 1 , ^ - l-q,A2

23=Al2 := - ^ " ^ and 4 := 0
otherwise. Then we have

dw} - wμ7y.ω
Λ for /,y = 1,2,3 .

The right action AR of 0^(3) on the basis elements ωn is given by

where the elements v% of sd\ + C 11 are characterized by the equations A^K(t^)uj —
v^A™! for n — 1,...,4 and k, I = 1,2,3. In fact, (i JJ1) is the matrix for the subrepre-
sentation [2] 0[O] of uc ® u with respect to the basis {ωι,ω2,ω3,ω4}.

Let {ωi?ω2,ω3,ω4} denote the basis of (Γk)mv defined by

+ \)ω\ω2 := ω2,

ω 3 := ω 3 ,ω 4 := ( β + -j- l )ω 4 for k — 1

and ωj := —ω1 — qQ+(Q+ + \)(q — 1) - I ω 4 ,ω2 := —ω2,ω3 := —ω3,

ω 4 := ^δ+(β+ + l)(q- l ) " 2 ω 4 for t = 2 .
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Then the bimodule structure of Γk can be expressed as

ωna = {fn

m * a)ωm for a G Oq{3) and n = 1,... ,4 ,

where the / = (/*) : 0^(3) —> Af4(C) is the unital algebra homomoφhism given
by the following formulas:

f(u\) = ±diag for, 1, l ^ - 1 ) ± β14,/(wl) - ±diag (1,1,1,1) ± (1 - q~ι)el4 ,

/ ( ^ ) = ±diag for1,1, \9q) =F ^-^i4,/(*4) = f(u\) = 0 ,

/(«i) = ±(1 - ^ " 1 > i 2 ±β3 4,/(«?) = ±(1 -<Γ>13 ±^24 ,

/(«?) = Tq~l/\l - q~l)el2Tql/2e34,f(ul) = Tq~l/2(l - q~l)en T ^ 2 4

Here diag (...) is the corresponding diagonal matrix and enm denotes the matrix
with 1 in the (n,m) position and 0 elsewhere. The upper sign refers to k — 1 and
the lower sign to k = 2.

Let 2 denote the quantum determinant for the quantum group Oq(3), see
e.g. [T and H]. For Oq(3) the completely antisymmetric tensor (ε^) is given by

e m = I,βi32 = 2̂13 = "^312 = -^231 = -^,6321 = -q2,&222 = ~q(ql/2 ~ q~ι/2) and
zero otherwise, so that

Q) \^\ + qu\u\u\ + qu\u\u\ — qu\u\u\ — qu\u\u\

= u\u\u\ q2)u\u\u\ - ( 1 + q)u\u\u\ - q2u\u\u\ , (4.1)

where the second equality follows from the first one by the commutation rules for
the matrix entries ιiy The quantum determinant Q) is group-like, it is central in the
algebra Oq(3) and its square is 11. The quotient of Oq(3) by the two-sided ideal
generated by 3) — 1 becomes again a Hopf algebra which is called the quantum
group SOq(3).

From the definition of π and (4.1) we compute π{β — H) = 0. Therefore, the
calculus (Λ,d) factorizes through SOq(3) and defines a bicovariant differential cal-
culus over the quantum group SOq{3). It can be shown that the kernel of the Hopf
algebra morphism π : Oq(3) —• SLp(2) coincides with the two-sided ideal generated
by the element 3) — 1, so the Hopf algebra SOq(3) is isomorphic to a Hopf subal-
gebra of SLp(2). Clearly, the latter is the algebra generated by 11 and all quadratic
terms t^ζ. Identifying SOq(3) with this Hopf subalgebra, the bicovariant calcu-
lus (Γi,d) over SOq(3) is just the restriction to SOq(3) of the 4D+-calculus over
SLP(2).

For the second calculus (Γ2,d) we have ά3) — —23)Ύ\ — ~2(ι^2 - s ) ~ 1 ^ ω φ 0 .
Hence the calculus (Γ2,d) does not factorize through SOq(3)<

Remarks.
1) In the preceding we could have replaced the 4£)+-calculus on SLp(2) with the
4£)_ -calculus.
2) It can be shown that l i = { α G ker ε : π(a) G 5^+} = {a G ker ε : π(α) G ^ _ } ,
where ^± is the ad-invariant right ideal of ker ε associated with the 4D±-calculus.
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5. Proofs of Theorems 4.1 and 4.2

Let si be one of the quantum groups Oq(N) or Spq(N) with TV ^ 3. Suppose

that & is an ad-invariant right ideal of ker ε such that ker ε = & + sί\ and codim

^ ^ 2. Set 9tn '•= @\ Π ( J / I + j/2).

Lemma 5.1. There are complex numbers φ+,φ~,\j/+,ψ~,μ+,μ~ and numbers
δo,δ+9δ- G {0,1} with <5+<5- = 0 swcA that

01x2 = δo{U) 0 3ίf+ 0 ^f _ Θ <5+(w+) Θ δ-(u-) 0 ^ + Θ

, (5.1)

where J f± := (V± — μ±U),(u±) := {{u±)lj)^± \— ((/±)} — φ (u+)j) ana w± :=
{{9±)lj ~ Φ±{u-)ij)' We have ^ _ = {0} (that is, (g-)) = 0 for all ij and φ~ = 0)

y^r si — Spq(4) and S- = 0 /br J / = Oq(3).

Proof The proof is similar to the proof of Lemma 8.2 in [SS2]. By the proof given
there, we obtain for si + Spq(Λ) and si + Oq(3) the following decomposition:

ad\9tn ^ (2 + <5o)[O] 0 (2 + δ+)[2] 0 (2 + δ_)[l 2] 0 ([2,2] 0 [3,1] 0 [4])

with δo,δ+,δ_ G {0,1}. Note that the summand [I4] in (5.2) vanishes for si =
Spq(6). (Recall we assumed in [SS2] that ker ε = 91 0 siu so that δ0 = δ+ = δ- =
0 therein.) We have δ+ — 0 or δ- — 0, since otherwise codim 01 ^ 1. As in [SS2],
the corresponding subspaces of the decomposition (5.2) can be written of the form
(5.1). If <50 = 1 (resp. δ+ = 1,<5_ = 1), we set μ± = 0 (resp. φ^2 = 0,ψ± = 0).

For si — Spq(4) the summands [2,2,1] and [I4] in (5.2) vanish, the coefficient
of [I2] is 1 + δ_, and (#_)} = 0 for all ij = 1,...,JV. Setting φ~ = 0, (5.1) still
holds in this case. For si — Oq(3), the summands [2,2], [2,1,1], [I4] disappear and
S- = 0, so (5.1) is also valid. D

First we treat the case (5+ = δ- = 0 . This assumption was sufficient to derive
the eight equations of Lemmas 8.4 and 8.5 in [SS2]. (Note that the condition
δ0 — 0 was not needed for this.) From these equations the values of φ±,φ± and
μ^1 were computed. In particular, it was shown that either φ+ + φ~ — s = βZΦO or
φ + + φ~ - s = -QZ - s Φ0. If (50 = 1, then U G ̂  and thus 0 = ί/w}, = ( φ + +
φ~ — 5 )MJ/5 SO that φ + + φ~ — $ = 0, since 5+ = <5_ = 0, and hence u\, £ 01. This
is a contradiction, which proves that δo — 0. Therefore, kerε = M 0 J / I and hence
^ = ^ + or ^ — ̂ _ by the proof of Theorem 6.1 in [SS2].

The other possible cases require a number of additional lengthy calculations.
For this we freely use the abbreviations a±,a±,b±,b±,c±,d±,m±,v introduced in
[SS2] before Lemma 8.3. Moreover, we set

- q2)a
+

Because im S ± C ^ by Lemma 5.1, Lemma 8.3 in [SS2] and its proof remain
valid verbation in the present more general situation. This is essential for most of
the subsequent computations.
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Lemma 5.2.

(i) {u±)"m = Q+\q^u"m±KZt,u^) ifn' >

(u±γm = Ql\q±xun

m±K™m,4) ifn' <

(ii) u"mu^,=qQ-2e+un

m if(δ+,δ-) = (0,l),n' > m,n*m and n*ri.

« ' =<lQ+2e~u"m if(δ+,δ-) = (\,0),n' > m,n + m and n + n'.

(iii) u\u\' Ξ qQ+2bu}i if(δ+,δ^) = (1,0) and 1 < n < V.

(iv) β+=α_=0i/(5+,a_) = (0,l).

(v) qQ+le~b+ = 1 and b = 0 if(δ+,δ-) = (1,0).

(vi)b+ = ±Q+ and b- = ±Q+{q~ιz + \)(q^z + q2)'1 if stf*SP<](4) and

(vii) Ou'j = (ψ -z)ΰ'j + δjμ-\μ - \jι)U and(ψ-s)(μ-ψ-s) = 0 if(δ+,δ-) =
(1,0).

Proof, (i) Both formulas are easily derived from the definitions of (u+)f^n and (w_)^.
(ii) We only carry out the proof of the first assertion. Since ((5+,<5_) = (0,1), we
have (w+)^ = un

m — δnms~ιU. Using this and the definitions of F±,P± and a±
(cf. [SS2]), we obtain

ijjk

= Q+2 ((9± T Q)Kn

mi,K^qun

ma±q±λ + (±q~ι + q±)(±\)a±u"m)

= Q+\qq±l(q± =F β ) ± (±<Γ' + ? ± ) ) « ± < •

Since δ- = l,φ± = 0 and hence (g(±)j Ξ 0 Moreover, (P±)ζ'n, = 0. Putting the

preceding facts into formula (8.9) in [SS2] for the element un

mun

n,, we get u"mun

n, =

qQ+2e+u»m.

(iii) From Lemma 8.3, (v.2), in [SS2], ux

nu{ = qu^u\ = qQ~3(d-Ulή +K^n}c+ιί{).

Since (δ+,<5_) = (1,0), we have (w+)j. = 0, so that wf = -qKfjujί'. Moreover,

ί̂111 = 0. Inserting these facts into the above expression for ŵ wj , we compute that

ulu\; =qQ-2buH.
(iv) We first show that a+e+ = 0. From Lemma 8.3, (iii.2), in [SS2] and the first
assertion of (ii), we obtain

u\u\ u\ = q2u\ u\u\ = q2va+u\ u\ = qva+u\u\ = q2vQ+2a+e+u\ .

On the other hand, since {u+)\ = u\ and (u-)\ = 0 by (δ+,δ-) = (0,1), Lemma 8.3,
(iii.l), in [SS2] and (ii) yield

1 1 1 1 1 1 1 1 1 ^ i 1

u\u\ u2 = U2U\u\ = Q+ a+u2u\ = Q+ qa+e u2 .

Since u\ £ & again by (δ+,δ-) = (0,1), the above coefficients of u\ coincide so
that qQ+va+e+ — a+e+. Since qQ+v — 1 + qq+ Φ l , α + e + = 0.

From ((S+,<S_) = (0,1) it follows easily that u\,u2, = q~ιK2}2

u2fu2f' By m e as-

sertions (iv.l) and (vi.l) of Lemma 8.3 in [SS2], we have uι

2,u
2, = Q±2a+u\, and
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q~ιK\}2u\,u\, = q~ιQ+{q+a+u\,, where we used that («_)}/ = 0. Since (δ+,δ-) =
(0,1),u\, does not belong to $. Comparing the coefficients of wj,, we get QZ^CL^ —
q~ιq+a+. From the latter and the equation a+e+ — 0 we compute immediately that
a+ = α_ = 0.
(v) Similarly to formula (8.10) in [SS2] we can prove the identity

C\u\ ΞΞ Cf,ι4κ?,wf + Cl'u\u\',u\ .

We have («_)}, = 0. Since <5+ = 1,O+)|, = 0. Therefore, by Lemma 8.3, (iv), in

[SS2], u\u2,u2 Ξ 0 . From the second assertion of (ii) and Lemma 8.3, (iii.l), in

[SS2], we get u\u\,u\ = qQ+2e~u\u\ = qQ^3e~b+u\. Here we also used the fact

that (u-)\ = u\ and (u+)\ = 0. Comparing the coefficient of u\ £ ^ , we obtain

l=qQ+3e~b+. Since (<5+,<5_) = (1,0), we have κ{' = 0. Hence, by (ii), 0 Ξ

u\ u\ = q~xu\u\ = Q+2bu\ . Because u\ ^ ^ , this gives b = 0.
(vi) is easily computed from (v) and the definitions of b±,b and e~. Note that

3 2

 q(
 5

φ^1 = 0 we have uj = (M~)}

) y p ()

q~3z -h q2φ0, since siή=Spq(4) and hence zΦ — q5.

(vii) Since δ+ = I and hence φ^1 = 0, we have uιj = (M~)} + δij%~ιU and
0. Thus

; (53)

Applying the first assertion to the identity C\,U = Y^( C\,Uu\u\, and using the fact

that U2 = V+ + F_ - 2s U + (1 - s 2 ) ! = (μ - 2s )U9 we obtain

C\,U = C{,z-\ψ -z)(μ-ψ -s)u\', + Cι

ιf$-2(μ - φ)2U .

Since ϋ\t and £/ are linearly independent modulo ^ , we conclude that (φ — s )(μ —
^ - s ) = 0. D

Now we continue the discussion of the remaining cases for the numbers
(50,(5+,(5_ e {0,1}. First we assume that δ+ = 0 and <5_ = 1. Then w}' = (M+)}' £ ^ .
Therefore, the proof of assertion (i) of Lemma 8.4 in [SS2] is still valid in this
case and shows that Q+q+α+d- + α+c+ = Q+ — Q+(α+ + α _ ) 2 . By Lemma 5.2,
(iv), α+ = α- — 0, and hence fl+ = 0. Thus we get Q+ = 0, which is impossible
since q is not a root of unity.

In the rest of this we consider the case <5+ = 1,<5_ = 0 .
Next we suppose that N ^ 5. From Lemma 8.3, (i), in [SS2], u\u\u\ —

u\u\u\ = 0. Applying both assertions of Lemma 8.3, (iv), in [SS2], we obtain
0 = u\u2u\ = Q+2b+u\u\ = Q+*b+b~u\, where we also used the relations (u+)\ =
0 , ( M _ ) ] = u\,(u+)\ = 0 and («_)] = ŵ . (Note that for N = 4 we have 3 = 2;, so
that Lemma 8.3, (iv), does not apply to the terms u\u\ in this case.) Since u\ £ $,
we conclude that b+b~ — 0. On the other hand, Lemma 5.2, (vi), implies that
b+b~ = -q-ιQ2Q4

+z(q~3z + q2)'2 4=0, which is a contradiction.
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Now suppose that si — Spq(4). In this case we have (g_y. = O for all ij
and hence φ~ = 0, cf. Lemma 4.1. Therefore, Z?_ = 0 . From Lemma 5.2, (v),
b = 0 and qQ+3e~b+ = 1. But fr_ = 0 and 6 = 0 imply b+ — 0, which leads to
a contradiction.

It only remains to treat the quantum groups Oq(4) and Oq{3). Let us suppose
that si = Oq{4) or si = 0^(3). Recall that (<5+,<5_) = (1,0) as assumed above.

From the two solutions b+ = ±Q+,b- = ±Q+(q~ιz + l)(q~3z + q2)~ι by
Lemma 5.2, (vi), we obtain the two solutions φ^ and φ2

±, where φf = ~φ2 :=
ρ-1ρ;1(z + ^-1χ^2-^-1z-1) and φ- = -φ-:=Q-ιQ-\z-q)(l+q-ιz-1).
We set i/^ := φ+ + \jf9k = 1,2. We compute ^ - s = β+(l - q)(q"2 - ^),ιfc -

2 2

1) for TV = 3. Therefore, since # is not a root of unity, we have ψ - s Φ O
in all possible cases.

In order to determine m+ and so μ+, we begin with the identity u\u\u\ —
q2u\u\u\. From Lemma 8.3, (vii) and (iii), in [SS2] and the relation Uu\ = (φ —
%)ιr2 by Lemma 5.2, (vii), above, we get

u\u\u\ = (b+(qQ-ιb+ - s - V ) + m+0A - s ) + l>4 .

Here we also used (M+)} = 0 and w} = (M_)} + δ/ S " 1 ^ by (<5+,<5_) = (1,0). Ap-

plying Lemma 8.3, (iii), in [SS2] twice, we obtain u\u\u\ = g+2ό^W2 Compar-

ing the coefficients of u\ £ & and using the facts that φ - $ Φ 0 and frj, = g+

by Lemma 5.2, (vi), we find that m+ = (b+s~ιφ - 2){φ — s ) " 1 . Setting in case

si = Oq(3) the above solutions φj^,k = 1,2, into the latter formula, we obtain

Now we specialize to si = Oq(4). By Lemma 8.3, (i), in [SS2], we have u\u\ =
0. Applying first assertion (viii) and then assertion (iii) of Lemma 8.3 in [SS2] to
the term u\u\u\, we conclude from 0 = u\u\u\ = u\u\u\ that

0 ={Q+l(b+(u2

2 - s- 1 U) + b'(u\ - s- 1 U) + (m+ - m_)U}u\ (5.4)

Ξίf i ίV^" 1 ^ + ̂ ~) - Qϊι*-ιΨ(b+ + ft")

+ (m+-m-)(φ-s)}uι

2. (5.5)

Since Mj ̂  ̂ , the coefficient of ŵ  vanishes. Combined with the above expression
for m+, this yields πi- — Q(q~2z — q)(q~3z + q2)~ι(φ — s ) " 1 . Inserting the two
solutions φj^ into the formulas for m±, we compute μ\ = μ^ + μj~ = β + ! ( ^ 2 + ^ +

+ ^ ~ 2 ) 2 ^ 2 - μ2

+ + μ2" - ( β ; 1 - 1)(^3 - l ) 2 ^ ' 3 . Moreover, φx + s = ρ + ( l +
+ ^~2) a n ( i Φi + δ — δ+(l ~ ̂ X^ ~ ̂ ~2) Using once more that q is not root

of unity, we verify from these formulas that μ — φ — s φ 0 for both solutions. Since
ψ - s φ O as observed above, ( ι ^ - 5 ) ( μ - ψ - 5 ) φ θ , which contradicts Lemma
5.2, (vii).

Putting the preceding together, we have shown that for N ^ 4 there are no other
ad-invariant right ideals $ of ker ε satisfying codim & ̂  2 and ker ε = $ + si\
than the right ideals ^ + and ^ _ defined in [SS2], Sect. 6. Therefore, by the
Theorems 6.1 and 6.2 of our previous paper [SS2], the proof of Theorem 4.1 is
complete, and the assertions concerning the right ideals M± and the calculi (Γ±,d)
in Theorem 4.2 are proven.
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From now on we assume that si — Oq{3). Our aim is to prove the remain-
ing parts of Theorem 4.2. First we note that δo — 0, because otherwise U G M and
hence 0 = Uu\ — (ψ - s)u\ by Lemma 5.2, (vii). Since u\$L0ί and ψ - 5 φ θ , this
is impossible. From Lemma 5.2, (vii), and ψ - s Φ O w e obtain μ = ψ + s. Putting
the solutions i/^ and μ ,̂A; = 1,2, derived above into this equation, we compute
μ~ = μ "̂. (It might be of interest to search for the difference between the quantum
groups Oq(4) and Oq{3) in the paragraph before last. The relation (5.4) still holds
for 0^(3), since u\, = (u+)\, = 0 by δ+ — 1 and hence u\u\ = 0 by Lemma 8.3,
(vi.2), in [SS2]. But, since 2 = 2' for Oq(3), Lemma 8.3, (iii), in [SS2] does not ap-
ply to the term u\u\ in (5.4). A direct computation based on formula (8.9) in [SS2]
yields that u\u\ = Q+lb+u\ for Oq(3), while u\u\ = q'λQ~λb+u\ for Oq{4). The
reason for this difference is that (P±)f2 = qτl ± 1 + q± for Oq(3), while (P+)jj = 1
and (P-)22 — 0 f° r Oq(4). Therefore, in the corresponding relation (5.5) for 0^(3)
the factor q~λ in the first interior bracket is missing and hence no contradiction
appears in the case of Oq{3).)

Thus, by the preceding computations and by Lemma 5.1, we have shown that
St\2 = 0t\ or &λ2 = @2 Hence we have St = St\ or St = @2 by Lemma 1.1 in
[SS2]. The right ideals 0t\ and ^ 2 are ad-invariant by Lemma 1.7 in [W], since
the generating subspaces 3S\ and $2 are ad-invariant. From the definitions of ^
it is clear that ker ε = $k + <st\ and codim 0tk ^ 4. Later in this proof we will
conclude that codim 0tk — 4 for k = 1,2. In the next lemma we take this already
for granted.

Lemma 5.3. If codim 0t\ ^ 2 α«J codim J>2 ^ 2, //z^ we have Q> e βfc\ and

Proof Let k G {1,2}. Since ker ε = ^ + ^ i by definition, there is an element
cik e s£\ such that 2 — ak G ̂  Since the quantum determinant is group-like [H]
and hence ad-invariant, it follows that ak = α̂  £/ for some α̂  G C, so that Q) = α̂  C7.

Now we determine the complex number ock. Recall that the quantum determinant
Q) is central in Oq(3). Therefore, by (4.1), we have

= u\u\u\u\ - (1 + q)u\u\u\u\= u\u\u\u\ - q)u\u\u\u\ + (q + q2)u\u\u\u\ - q2u\u\u\u\. (5.6)

To compute the right-hand side of (5.6) modulo ^ , we apply once again Lemma 8.3
in [SS2]. All references in this paragraph will refer to assertions of that lemma. By
(i), u\u\ = 0, so that u\u\u\u\ — 0. From u\, — (u+)\, G 0tk and (vi.2) we con-
clude that uι

2u
ι

2=Q. Hence u\u\u\u\=Q. Since Z?+= (—\)k+ιQ+ as computed
above and (u+)\ G Mk, we have u\u\ = u\u\ Ξ {-\)k+xu\. From M|, G ̂  and
(iii.2) we get u\u\ = 0. Thus u\u\u\u\ = 0. Therefore, by (5.6) and the preced-
ing, 0ι4 Ξ u\u\u2

2ul Ξ {-\)kJrXu\u\u\ = u\u\.

Further, we have u\u\ — u\u\, = ^g^2e~^2 by Lemma 5.2, (ii), and 1 =
qQ-^b+e- = (~l)MqQ-χ

e- by Lemma 5.2, (v), so that 9u\ = (-l)k+W2. Thus
we get §u\ = (β - 1)M^ ΞΞ ((-1)* + 1 - 1)M^ Ξ otkϋuι

2 = ak(φ - s )M|, where the
last relation follows from (5.3). Since codim Mk ^ 2 by the above assumption,
we have ^ ί ^k Hence we conclude that (—1)^+1 — 1 = ctk(Ψ — s) 9 which yields
αi = 0 and α2 = - 2 ( ^ - s ) ~ 1 . D
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Next we turn to the differential calculi (Λ,d) and (Γ2,d). First we show Γk =

(aάur

s : a G s/,r,s = 1,2,3) for k = 1,2. Throughout this proof let {βtJ

nm) denote the

matrix R for the quantum group SLp(2). Recall that (Γ,d) is the calculus (Γ+jZ,ά)

with z — p~~ι for SLp(2) defined in Sect. 2. From the corresponding formulas therein

we compute

= κ(titj)ηtk

nt
ι

m - δinδjmη = p-2p-2aRZRb

a^χS

mηrs - δinδjmη

= p~\p - p~ι) (&J

yrR
ynmnrs + M y * ) + (P~2 ~ \)δinδjmη . (5.7)

Here we used the equation p laRbcRan = (trnRnRii)in = p ι(p — p ι)δCiδxn +
p~2cδcxδin from Lemma 3.4, (iii), in [SS2]. The right-hand side of (5.7) is
equal to p~3(p - p~ι)ηJm if i=j + n = m, p~3(p- p~λ)2ηti + (p~2 - l)η if/ =
n > j = m, and p~3(p - p~x){p2 + 1 )τ/π + (p~2 — l)η if i = j = m = n. Since
ΦL ^ TE(J/), we conclude that for the pair (A,d) all forms rjijjj' = 1 , 2 , belong to
the linear span (αdwj : a € «s/,r,5 = 1,2,3). Hence the latter coincides with Γ\. Re-
call that we have γ\ijUr

s — (—l)k+ιurιgym(uι

s)ηnm for the bimodule Γk,k = 1,2. There-
fore, a slight modification of the preceding reasoning shows that Γ2 = (aάur

s : a G
s/9r,s = 1,2,3).

In particular, we have Γi = (αdZ?: a,b e s/), so that (Λ,d) is indeed a dif-
ferential calculus over si — Oq(3). Since π : Oq(3) —> SLp(2) is a Hopf algebra
morphism and the 4D+-calculus (Γ,d) over SLp(2) is bicovariant, the calculus
(Γi,d) over Oq(3) is also bicovariant. The easiest way to see this is to use the
map Φ : Γ\ —> Γ + j 2 defined in Sect. 4 and to check Definitions 1.2 and 1.3 in [W]
(which are equivalent to our definition of bicovariance given in the introduction).
Since Γ\ ~ (w,g) is a bicovariant bimodule, it follows immediately from Lemma
1.3 in [SS2] and the definition of the algebra representation h that Γ2 = (w9h) is
again a bicovariant bimodule. Hence (Γ2, d) is also a bicovariant differential calculus
over si = Oq(3).

By a direct computation based on formula (4.1) we verify that π(β) — 1. From
this it follows easily that η@ = @η for the bimodule Γ\. Since 2 is a linear com-
bination of cubic monomials in the matrix entries Up it follows at once from the
definition of the bimodule Γ2 that r\Q) = -Q)γ\ in Γ2. Thus we have ά3> = - 2 ^ φ O
for the calculus (Γ2,d). In particular, we see that the two calculi (A,d) a n d (Γ2,d)
are not isomorphic.

Let M'k,k — 1,2, be the ad-invariant right ideal of ker ε which is associated
with the calculus (Γ^,d), cf. [W]. Since dim (Γ^,d) = 4 by construction and Γk =
{adulj : a £ si,ij = 1,2,3) as just shown, we have codim dt'k — 4 and ker ε =

&'k -$ί\ by Lemma 1.5 in [SS2]. Therefore, by the above proof, each ffl'k has to
be one of right ideals 0t\ or ^ 2 of ker ε. Further, we know that 8H\ φ ^ 2 ' because
the calculi (ΓΊ,d) and (Γ2,d) are not isomorphic. In particular, this implies that
codim M\ = codim &2 = 4. Thus Lemma 5.3 applies, and hence we have 3) G dt\
and 2 $ St2- Since ά® = 0 for (Γi,d) and d ^ + 0 for (Γ2,d), we conclude that
St\ = 9t\ and 3t'2 = ^ 2 .

This completes the proof of Theorem 4.2.
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