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Abstract: For a bounded open domain Ω with connected complement in R2 and
piecewise smooth boundary, we consider the Dirichlet Laplacian —AΩ on Ω and
the S-matrix on the complement Ωc. We show that the on-shell S-matrices S* have
eigenvalues converging to 1 as k | ko exactly when — ΛQ has an eigenvalue at
energy A;2,. This includes multiplicities, and proves a weak form of "transparency"
at k = ko. We also show that stronger forms of transparency, such as S ô having
an eigenvalue 1 are not expected to hold in general.

1. Introduction

In this paper, we consider a simply connected bounded domain Ω in R2, with
piecewise smooth boundary Γ = dΩ. We establish a correspondence between the
eigenvalues of the Dirichlet Laplacian in Ώ, and the S-matrix (also with Dirichlet
condition) for the exterior domain Ωc. In its crudest form, this relation says that
k1 = E is an eigenvalue of the "inside problem" if and only if the on-shell S-matrix
has an eigenvalue 1 at that energy. This relation has been conjectured in [DS] and
subsequently studied numerically in [DS1], [DS2], with an excellent agreement. Fur-
thermore, in the semi-classical limit, this relation leads to a new derivation [DS] of
the Gutzwiller trace formula [Gu]. For an exposition of this and related problems
in quantum billiards, we refer the reader to [S]. One can reformulate the conjecture
to say that the obstacle is transparent for a carefully selected wave, whenever one
scatters at an energy which is equal to an eigenenergy of the Dirichlet Laplacian.
The basic idea of the conjecture is that the scattering wave function and the inside
eigenfunction are simply one and the same function which happens to vanish on
the boundary Γ. It is an easy exercise to check that this conjecture holds for a
owe-dimensional billiard, i.e., for a Laplacian on an interval with zero boundary
conditions and on its complement [F].

However, in 2 or more dimensions, this "inside-outside duality" (or "spectral
duality") does not hold in the exact form given above, but only in a slightly weaker
sense. In order to formulate our result, we will need some machinery which is
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developed below, but we can already describe the main flavor of the statement in
an informal way:

1. If the S-matrix has an eigenvalue 1 at some energy 2s, then this energy is an
eigenenergy of the inside problem. In this case, the interior eigenfunction can
be continued to a bounded solution of the Helmholtz equation in the full plane.

2. If E is an eigenvalue of the inside problem, then for E' close to, but below, E,
the S-matrix has an eigenvalue e~2ίΰ(E'\ with 0 < #(£ ') < π. As E' | E, the
angle ϋ(Ef) reaches π from below. Conversely, if ϋ(Ef) ΐ π as E' j E, then E
is an eigenvalue of the inside problem.

The formulation given above may seem overly cautious, but the statement covers
the (probably generic) case when the eigenfunction of the S-matrix does not exist
for E1 = E. Still, for all nearby E' < E there will be eigenfunctions, and the cor-
responding eigenvalues converge to 1. We will give examples where the S-matrix
does not have an eigenfunction for energies corresponding to the inside problem,
because the inside eigenfunction can simply not be extended to the full plane R2. In
[B], an example of a domain Ω is given for which the extension of the eigenfunc-
tion is unbounded. This provides another class of domains for which the S-matrix
does not have an eigenvalue 1 on the energy shell E.

This basic idea underlying the analysis is the application of potential theory to
this problem, combined with some functional analysis. The potential theory aspects
are exposed for example in [R] or in [KR], but for the convenience of the reader,
the relevant features of this theory will be explained here. We will connect the
scattering theory and the eigenvalue problem by expressing both the resolvent of
the inner Laplacian and the scattering matrix of the outer problem in terms of
the single layer potential on the common boundary Γ. We then characterize the
spectrum of the S-matrix by a variational formula.

The paper is organized as follows. In Sect.2 we define the S-matrix and we
formulate the results (Main Theorem). We also give examples for which the S-
matrix does not have a eigenvalue 1 at E. In Sect.3 we present the potential theory
aspects of the problem. They involve in particular the Green's function, restricted to
the boundary of the billiard. We also define a modified S-matrix, which acts on the
boundary, and which has the same spectrum as the conventional S-matrix. This is
useful for applications [DS1], [DS2]. In Sect.4 we prove that the boundary restriction
operator is Fredholm. It is here that the restrictions on the shape of the domain are
crucial. In Sect.5 we establish a resolvent formula, and express the S-matrix in terms
of the boundary restriction operator. Equipped with this information, we characterize
in Sect.6 the eigenvalues of the S-matrix as the solution of a variational problem,
establishing the spectral duality.

In a subsequent paper with B. Dietz, U. Smilansky, and I. Ussishkin [DEPSU],
we plan to give numerical examples of the precise meaning of the Main Theorem.

2. Definition of the S-Matrix and Statement of the Results

In this paper, we shall give proofs of the spectral duality for piecewise smooth
bounded domains Ω:

Definition. A standard domain Ω is a simply connected bounded domain in R2

whose boundary Γ — dΩ is piecewise C 2. By this we mean that Γ has a finite



Spectral Duality 285

number of differentiable pieces. Furthermore, we require the angles at the corners
to be bounded away from 0 and 2π. Finally, we always assume Ω is non-empty.

Remarks.

1. We do not assume that Ω is convex, and the difficulties with the spectral duality
are not related to convexity.

2. We note the slightly astonishing fact that the proofs given in this paper gener-
alize with only notational differences to the case of a finite union of standard
domains, replacing Γ by UJ^Γy. But we really need that R2\ί2 is connected.

Notation. We denote by AQ the Laplacian in Ω with Dirichlet boundary conditions
on Γ, and by G(ΔQ) its spectrum. We let Ωc denote the exterior of the billiard and
ΔQC the corresponding Dirichlet Laplacian.

We next define the quantum-mechanical S-matrix. For a "free" Hamiltonian HQ
and an interacting Hamiltonian H, it is given by the formula

oo

S = s-lim ε ϊdt e~ε ιeι H*ιe ~2/ Htei ***' , (2.1)

where s-lim denotes the strong limit. In our case, — Ho = A and —H — AQ 0 ΔQC.
By energy conservation S can be decomposed as a sum over the on-shell S-matrices
S# which act on L2 of the energy shell F^ = {p £ R2\p2 = k2}. A detailed formula
will be given in the next section. The following lemma describes the eigenvalues
of the on-shell S-matrix:

Lemma 2.1. Let Ω be a standard domain, and let k > 0. Then the operator
Sjc is unitary with spectrum on the unit circle. It consists of eigenvalues of finite
multiplicity, accumulating only at 1. Furthermore, they accumulate there only from
below.

Remark. Similar statements can be found in [Yl, Y2, JK].

This will be shown in Sect.5. The spectrum is illustrated qualitatively in Fig. 1.
We next fix k > 0. By the lemma, we can write the eigenvalues of S* as e~2ιΰ^k\
and we order these scattering phases ΰjj = 0, 1, ..., by

π > ΰ0 ^ ??! ^ ΰ2 ^ ^ 0 . (2.2)

While 0 is always an accumulation point of the ΰj, it might not correspond to an
eigenvalue. We can now formulate the spectral duality result:

Main Theorem. Let Ω be a standard domain. Then the following two statements
are equivalent:
1. The Laplacian —AQ has an M-fold degenerate eigenvalue k$.
2. As k I k0, exactly M eigenphases ΰj(k) of the S-matrix S^ converge to π from

below.

If S# has an eigenvalue 1, then we can state the simpler

Theorem 2.2. Let Ω be a standard domain. If the operator Sk,k > 0, has an
eigenvalue 1 of multiplicity M with eigenvectors in L2(Fk), then —AQ has an
eigenvalue k2 of multiplicity at least M. Furthermore, the corresponding Dirichlet
eigenfunctions can be extended to bounded solutions of the Helmholtz equation in
all of 'R2.
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Reσ

Fig. 1. The qualitative aspect of the spectrum of the S-matrix. Note that eigenvalue accumulate at
1 only from below.

Remarks.

1. The proofs will be given in Sect.6, by using a variational principle. Our results
deal with the behavior of the eigenvalues of S* for k < ko. Although these
eigenvalues simply cross 1 for scattering from a circle, numerical studies [EPSU]
seem to indicate that for a general domain, non-analytic behavior at k = ko is
to be expected.

2. We present the theory only for the case of Dirichlet boundary conditions. The
extension to other conditions should be rather straightforward. Also, the study of
this paper is restricted to 2 dimensional domains. We conjecture that the results
extend to higher dimensions, but this needs a definition of standard domains in
higher dimensions for which the methods of Sect.4 are applicable.

3. For a discussion of some numerical aspects, see the end of Sect.3.

As mentioned in the introduction, one could think that spectral duality holds
in one of the following stronger forms: The inside eigenvalues are in one-to-one
correspondence with those energies where the on-shell S-matrix has an eigenvalue
1, or, a specific scattering wave extends to an eigenfunction of ΔQ. It has been
noticed earlier that such stronger forms hold when Ω is a disc, an ellipse, or a
rectangle [DS1, DS2]. We now show that there are domains where for some (or
all) k2 e σ(—ΔQ\ the operator S& does not have an eigenvalue 1, so that neither
of the stronger forms of spectral duality hold.

Example 1. The cake. Consider the domain

Ω = {(r, φ) : 0 < r < 1, \φ\ < π/3} , (2.3)
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written in polar coordinates. For this domain, σ(—ΔQ) = {kfn, /,n = 1,2,...}, where

kin is the nth nontrivial zero of the Bessel function j3iβ{x) and the corresponding

eigenfunctions are

ψι,»(r,φ)=J3ι/2(kιtnr) cos(3/φ/2) .

When / is odd, these functions do not extend to R2 because they are not 2π-periodic
in φ, and hence S#, H cannot have an eigenvalue 1 by Theorem 2.2. Note that the
eigenfunctions have their branch points on the boundary of the domain. In Examples
2 and 3 below the singularity lies outside the domain.

Example la. The irrational cake. Consider the domain

Ω = {(r ,φ) :0 <r < l , | φ | < vπ} , (2.4)

where v is irrational. Then none of the inside eigenfunctions (which are still
explicitly known), can be continued outside.

Example 2. Smooth boundary. We define

C(ρ, φ) = Jv{kvp) cos(v^),

where kv is the first nontrivial zero of Jv. In the sequel, we take v = 3/2, but any
other non-integer v would be just as good. Note that p — 0 is a branch point of the
cake function C(p,ιj/). We construct a new function, fixing p G Z + :

R(r,φ)= Σ % W ( 2 5)
j=0

Here, we fix t > 0 and define ψj• = φ + 2πj/p,

yj =rsin(φj) .

Finally,

Pj COSiφj) = Xj

Note that Pj = 0 if r — t and ψj — ±π, i.e., if φ = (2j/p - l)π. We define the
curve Γ as the zero level set of R near the origin, see Fig. 2.
Then, R is the Dirichlet eigenfunction with eigenvalue A:2 for the corresponding Ω,
which is smooth and convex, but R has branch points strictly outside Ω.

Example 3. Smooth boundary and a dense set of singularities. One can construct
an example with a convex boundary and a set of singularities which are dense on
a circle. Let R(r,φ) be the function defined in Example 2 and let Γ be the zero
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Fig. 2. The level curves for the function R defined in Eq.(2.5), for p = 3. We have chosen t = 0.6.
Solid lines correspond to positive values of R, dashed lines to negative ones, with a level spacing
of 0.06. The three branch points, with their cuts, are marked by circles. The outermost solid line
is the boundary of a domain Ω with an interior eigenfunction which cannot be continued into the
complement Ωc.

level curve of this function. Fix a large radius ro, and enumerate the rational points
on this circle, with angles an,n = 1,... . Define

where

and

Note that we have ρn = 0 if r — r0 and φ — an. Thus, F(r,φ) has branch points
at all points (ro,ocn), since the sum converges by the choice of our very large
denominator. In fact, on every compact set, | F | is uniformly bounded, and it is
analytic for r < ΓQ. For all ε, the function

xn = r0 -rcos(φ-ccn)

yn = rsin(φ-otn) ,

pncos(ψn) =xn ,

= yn .

has singularities at the three points determined by R and on the rational points of
the cirle of radius r0. Furthermore, when ε is very small the level zero curve Γc

of K is very close to Γ, and since F is analytic near Γ, the curve remains strictly
convex if ε > 0 is sufficiently small. Let Ωε be the domain whose boundary is Γε.
Then K is an eigenfunction of — ΔQE with eigenvalue ky2- ft cannot be continued
beyond the circle of radius r$.
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3. Potential Theory

In this section we present notions from potential theory which will be used through-
out. This allows us to formulate the strategy of the proof, as well as some results
connected to numerical calculations. After introducing some function spaces, we
will define the restriction y of a function to Γ, and the "single layer potentials" G^
and their very important "boundary restriction" operators A*.

The natural spaces on which we consider the problem are L2 spaces, and Sobolev
spaces. In order to define these spaces, we introduce a new system of coordinates,
the arclength along Γ. We call the corresponding variables s,s'. Thus s varies in
IL = [—L/2,L/2], and there is a periodic map x : IL —> R2 which maps IL onto
the curve Γ c R 2 . The space 2f?r is the space of L2 functions on the boundary
Γ, with the measure ds. The Sobolev spaces Jtfβ

Γ are defined in the usual way:
Denoting by ds, the derivative with periodic boundary conditions on IL and setting
A = (1 + {ids)2)1'2, we define, for β ^ 0,

Jff = {u e J f r : Λβu £ 3<ίfΓ} .

To simplify notations, we write

Jds \Kx(s)) = Jdσ(z)φ(z) .

Notation. When no confusion is possible, we write k instead of \k\, for k £ R2,
and similarly for other coordinates. If &2φ0, then we always tacitly assume that
k > 0.

Notation. The letters u,v,... denote functions on the boundary Γ, the letters ψ9φ,...
denote functions in R2 (or in Ω,ΩC), and χ denotes a function (of p) on the energy
shell Fk.

Definition and properties of y and y*. The restriction to Γ is given by

(yφ)(z) = ψ(z)9 when zeΓ ,

= Jdσ(z)ΰ(z)φ(z) .

For the boundary Γ of a standard domain Ω one has the following classical results
[Ne] for y:

y:Hfoc(R2)->^n for all β > \ ,

\•f : tfΓ ^ tf-£p(R2), for all β \ ,

f :

and,
ker(y*) = {0}. (3.2)

Here, //COmp is the subspace of functions with compact support in H, and H\oc are
the functions which are locally in //, see [H].
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Definition and properties of G^ and A*. Here, we introduce the central objects,
the "single layer potential" G and the "boundary restriction" A. We denote by G
the free space Green's function in R2:

A-ζyι , (3.3)

and, for fixed energy E — k2,k > 0,

G± = G(k2 ± zΌ) . (3.4)

For this operator, one has [H]

G ± : j f / - , ζ p ( R 2 ) - , / / - / + 2 ( R 2 ) , for all β. (3.5)

Then we define the single layer potentials by

(Gfu)(x) = Jdσ(z)G±(x - z)u(z). (3.6)

r

In other words,
G± = Gfy* . (3.7)

Combining (3.1), (3.5), and (3.7), we see that

G^ : #Γ -+ Hfoc(R2), for all β < \ . (3.8)

This means in particular, that G maps to continuous functions. Furthermore, from
( - A — k2)G^u = y*w, we see that G^u solves the Helmholtz equation in R 2\Γ.
By Eq.(3.2) it follows that

± = {0}. (3.9)

Coming back to Eq.(3.8), we can define the "boundary restriction" operator

(Aku)(z) = (Gtu)(z), (3.10)

for z G Γ. In other words, A# = yG^γ*. It follows that

Ak'.jer-tJ^r- (3.11)

It follows at once from the definition that

A,* = A* = yGj-y* , (3.12)

where A* is the adjoint and A is the complex conjugate. In Sect.4 we will show
that for standard domains, one has the stronger result: A^ : Jfr —• ^r-

It will be important to consider the decomposition of A^ into its real and imag-
inary parts:

A* = Yit + ίJΛ , (3.13)

where Y^ and Jk are real, self-adjoint operators. This notation reflects the decom-
position of G into Hankel and Bessel functions:

Gf{x) = (i/4)H±(k\x\) = (i/4yb(φ|) T (\/4)Y0(k\x\).

Note that Jo is entire analytic, and YQ has a logarithmic singularity at 0.
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Strategy of proof, and numerical aspects. Our proof of the Main Theorem will be
based on a number of identities which we now list without specifying domains of
applicability. Starting with the operator J#, one can write it as

Jk = 1mAk = π&t&k, (3.14)

where S£^ maps functions on the boundary Γ to functions on the energy shell Fk.
With these notations we have two important identities:

1. The on-shell S-matrix S* is given by

S* = 1 - 2πi&kAj-χ&*k . (3.15)

2. The eigenvalues of — ΔQ are exactly those k2 for which A^u — 0 has non-trivial
solutions. (This is a well-known result from potential theory.)

Using the intimate relations between 5£k and A* one can define a modified
S-matrix which acts on functions on the boundary alone, which is given by

S ^ A A*-1. (3.16)

This operator has the same spectrum as S^ and seems to be useful for doing
numerics [DS1, DS2].

4. The Fredholm Property of the Boundary Restriction Operator A*

n

In this section we study the operator A^ on the Sobolev spaces 3tfp

Γ. We shall use
mostly the coordinates s £ IL, and the map x : IL -* Γ C R2 defined in Sect. 3. The
operator A* has then an integral kernel Ak(s,sf) (as a map from L2(JL) to itself),
given by

Recall the decomposition A* = Y* -f iJ*. The main result of this section is:

Theorem 4.1. Let Ω be a standard domain and k > 0. Let A = (l -f (ids)
2) .

Then, for all β € [0,1], the operator

Λι-βAkΛ
β (4.1)

is bounded and Fredholm on 3tfΓ and has index 0. Furthermore, one has, for
β = 1/2, the representations

Λι/2YkΛ
ι/2 = i l + B + jTjfc.1 , (4.2)

Λ ι / 2 J k Λ ι / 2 = Jfka ^ 0 . (4.3)

The operator B is independent of k, self adjoint, and bounded, | |B|| = r < \.

Finally, Jfk,\ and Jf" 2̂ are Hίlbert-Schmidt and they are analytic in {k\k e C\0}.

Corollary 4.2. Let Ω be a standard domain and let k > 0. Then Y^ = ReA# has
a finite number of negative eigenvalues.
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Corollary 4.3. Let Ω be a standard domain and let k > 0. Then

ker(A t | j r_ / t)=ker(A*| j r /,), (4.4)

for all β e [0,1].

Remarks.
1. One can express Eq.(4.1) in terms of the spaces J^p : A* is a map

A*] β : *rf"-* *r~β • ( 4 5 )
,π Γ

Similarly, Eq.(4.4) says that every function in the kernel of Ak\ ~β is in the
^ r

more regular space J^Y
2. If A*| _/Ϊ is Fredholm, this means that AΓ1 is bounded from Jf !r^ to ffl~r\

whenever ker(A^) = {0}. It is this property which is used throughout the paper.
In fact, the proof of Theorem 4.1 will give a rather detailed description of the
essential spectrum of ΛA.

3. The proof of Theorem 4.1 is straightforward, but a little long, and this is due
to the class of domains we want to handle. For example, if Ω has a smooth
boundary, then the corresponding result is known, and is spelled out in [R]. On
the other hand, even in the case we consider, there is a large body of results
describing the boundary behaviour of eigenfunctions of —ΔQ. In particular, the
lectures of Agmon [A], as well as a lot of subsequent literature (see e.g., [GT,
Ne]), deal with domains which have the "uniform exterior cone property" and
our definition of standard domain is a slightly stronger version of this property,
adapted to the case of 2 dimensions. (The strengthening is that we allow only for
a finite number of corners). Although the literature contains detailed information
about the boundary behaviour, we have not been able to extract Theorem 4.1
from it. Therefore we give here a self-contained proof of Theorem 4.1.

4. It will follow from the proof that all the bounds are also valid upon replacing
k2 -f zΌ by an arbitrary complex number zΦO.

Proof of Theorem 4.1. The proof will take up most of this section, and its details
are independent of the other developments of this paper. We omit the index k in
the sequel. We begin by showing that A : J^r —* ^\ is Fredholm, and we will
extend this later to arbitrary β. More precisely, we differentiate and show that

\ids\A:L2(lL)->L2(IL) (4.6)

is Fredholm.
Since we are interested only in the essential spectrum of \ids\A, it is useful

to introduce the notation « for equivalence up to Hilbert-Schmidt operators. Note
that any piece P of A for which idsP(s,sf) is Hilbert-Schmidt can be eliminated
[K]. Indeed, if idsP(s9s') is Hilbert-Schmidt, then \ids\P(s9s') is Hilbert-Schmidt
as well, since \ids\ = sign(ίds) iδs and sign(ids) is a bounded operator.

We start the proof by noting that the Green's function for the Helmholtz operator
is the Hankel function [AS]:

Ak(s,s') = Gϊ(x(s),x(s')) = ^H+(k\x(S)-x(s')\) .
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The known singularity of //0

+ leads to the representation

The function A (1) is the sum of terms of the form (x(s) — x(s'))2n~2 and logics)

-x(s')\-(x(s)—x(s'))2n, n ^ 1, [AS, 9.1.12-13]. Since Γ is bounded, ίdsA
{x\s,s')

is bounded as well, and hence A « A^°\ It suffices therefore to analyze A . We

write it as

1
2π

r l o g

('
x(s)-x{s

sin(-(s -
x(s)-x(sf) (3)

We want to consider first the term A(2) which will be identified below as the main
term. We start with some useful identities:

Lemma 4.4. One has the following identities for the integral kernels:

\ids\-\s,s') = —log [Λsίn\π{s - s'

sign(ids)(s,s') — -cot(π(s - sf)/L).
Li

(4.7)

(4.8)

Proof. We consider on L2{Iι) the generator of translations ids with periodic bound-
ary conditions. An orthonormal eigenbasis is given by the functions φt(s) =
£-\/2ei2πfs/L^ fQΐ wγί[QJ[ί idsφf = —ί-2πL~xψ/. Thus, the operator |/^ | is invertible
on the orthogonal complement L^{Iι) c L2(Iι) of the constant functions. The inte-
gral kernel of the inverse is then

oι2fπ(s-s')lL
,2π|/|

The sum is readily evaluated by first considering \z\ < 1 and then taking the limit
and one obtains

- 2 R e z ) .

When z = e"9, this leads to

l τ r ^ I / I 6 '
= -i-log (4.9)

From this, we find Eq.(4.7). Upon differentiating Eq.(4.9) w.r.t. $ we obtain in
addition (4.8). The proof of Lemma 4.4 is complete.
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We continue the proof of Theorem 4.1. By Lemma 4.4, we find

A(2\s,sf) = -(2π)-1log|sin(π(5 - s')/L)\ = i | / 3 , | - W ) + (2πΓ 1 log4 .

Therefore,
|ί3,|A - K 1 - ^const) + |iθ,|A(3) « ί 1 + \ids\A(3), (4.10)

where Pconst is the projection onto constant functions.

Remark. Although the study of \ids\ is more complicated than that of ids, we have
preferred it because it leads to the appearance of the operator \\ in Eq.(4.10).

We next study A (3). Not all of its contributions are negligible, and in fact
the corners play an important role. In order to isolate their contribution, we need a
variety of cutoffs. We use a cutoff function h G ̂ °°, which is symmetric, of compact
support and equal to 1 near the origin. We start by isolating the irrelevant parts of
A (3). We have the

Lemma 4.5. If h has sufficiently small support, then

Proof. By the chain rule, we find, with ζ(s - s') = sin(π(* — s')/L),

= -jcos(π(s - s')/L)h'(ζ)A{3) + (1 - h(ζ))dsA°\s,s').

Note that both h'(ζ) and 1 - h(ζ) vanish near the diagonal s = s\ and that A ( 3 )

and dyA(3) are bounded outside any open neighborhood of the diagonal. Therefore,
the differentiability of JC(^) away from the corners implies that ids(l — /z(£))A(3) is
Hilbert-Schmidt. The proof of Lemma 4.5 is complete.

Thus, we are led to study A ( 4 )O,s7) = h(ζ(s - s'))A{*\s9s'). We let sjj =
1,...,A/, be the position of the / h corner. We assume that the support of h is
so small that the h(ζ(s — sj)) have disjoint supports. We next consider A ( 4 ) away
from the corners, which leads to another irrelevant piece.

Lemma 4.6. If h has sufficiently small support, then

ids ί 1 ~ ΣKζ(sf - SJ

Proof By the chain rule, we have

ds (1 - Σ » A(4) = (1 - Σh) (|cos(π(5 - s')/L)h'U)A™ + h(ζ)dsA
(3)) .

We have already seen above that the first term leads to a Hilbert-Schmidt operator.
The second term has support near the diagonal, but away from the corners. We are
now using that x(s) is Ή2 away from the corners. This implies that

= - ^ , l o g
π x(s)-x(sf)

L sin(π(s - s'



Spectral Duality 295

Fig. 3. The coordinate system near a corner of the boundary Γ.

is bounded away from the corners, and for bounded s,sr. (One derivative is used
to bound the difference quotient, and the second is used by the differentiation w.r.t.
s.) Thus, the assertion of Lemma 4.6 follows.

Thus, the only relevant term coming from A ( 3 ) is A ( 4 ) near a corner (and also
near the diagonal). These "corner terms" are

Bj(s,s') = h(ζ(s - s')) • h(ζ(s' - Sj))A(3\s,s').

Since the supports of the localizers are disjoint for different j , and the expressions
are translation invariant, we may assume without loss of generality that sj = 0 and
we omit henceforth the index j . We now straighten the edges near the corners as
follows. We let x± denote the two unit tangent vectors along Γ, pointing away
from s = 0. We set y(s) — s>x+, when s > 0 and y(s) — — s x_, when s < 0.
Then we define

2π

y(s)-y(s')

L sin(π(s - sf)/L)

which is just like B, but with y(s) replacing x(s) in the quotient. We can now go
to the straight coordinates, by virtue of

Lemma 4.7. One has

Proof. The difference of the logarithms leads to a term proportional to

The chain rule of differentiation creates 2 terms, Ti -f- T2, of which the first is
Hilbert-Schmidt, because it is localized away from the diagonal.

The second term is more complicated to bound, and makes use of the geometry
of a corner, cf. Fig. 3. We study first the second term when ssf < 0. Without loss
of generality we consider only the case s > 0, t = -s' > 0. Denoting α the angle
between the two tangents, we have

\y(s) - y(t)\2 =s2 + t2 - 2stcos(θί). (4.11)
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Remark. Since we assume the corners have angles for which |cos(α)| < l-by the
definition of standard domain-it follows that \y(s) — y(t)\2 > d(oc)(s2 + t2), with
d(oc) > 0.

Since x is a ^ 2 function, we find

x(s)-x(t)
- y(t)

where the last term is %>l. Therefore, we see that

(4.12)

Therefore, the contribution to T2 from the region s t > 0 is Hilbert-Schmidt. We
finally estimate the contribution from s t < 0 to T2. In this case, the two points are
on the same side of the corner, and hence \y(s) - y(t)\ is proportional to \s — t\.
This leads to a bound

x(s)~x(t)

- y(t)

and after differentiation, we obtain again Eq.(4.12). The proof of Lemma 4.7 is
complete.

The upshot of these calculations is that the only relevant terms modulo Hilbert-

Schmidt operators coming from A ^ are

N

7 = 1

(4.13)

Assuming again that the corner is at s — 0 and omitting the index j \ we analyze

4π sm(π(s —

since again the term involving the derivative of h is supported away from the
diagonal. Finally, to simplify our task, we replace the cutoff function by a simple
one, modulo Hilbert-Schmidt operators, and redefining h, if necessary. Thus, we
study

π y(s)- y(sf)

4π v y v ; * *\L sm(π(s-sf)/L)/

As a last step, we replace the sinus by a linear function, and thus, we study

2

idsB
m(s,s') w ~~h{s) • h(s') 3slog

4π

y(s) - y(s')

s — sr
(4.14)
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Note now that if s and s' have the same sign, then the argument of the logarithm is
a constant. Therefore, it suffices to consider the operator B ( 0 ) restricted to ss' < 0.
A straightforward calculation using Eq.(4.11) shows that in this case

Ύπ
y(s)-y(s')

o i —,-\-T-Πί-\ Λ ,J (4 15)
/7Γ7 \ V — V ? - I - <i Pίσ V H - v ^

Thus, the reductions done so far show that

\ids\A « 11 + ΣsignO'δ,)*^ - Sj)h(s' - sj)Caj(s - sj9s' - Sj), (4.16)
7 = 1

where OLJ is the angle at the / h corner. We continue by analyzing the opera-
tor sign(ids)h(s)h(s/')Cαy. Before we can do so, we want to simplify the operator
sign(/δy), defined in Eq.(4.8). This is achieved by

Lemma 4.8. The operator with kernel

K(s,s') = ycot(π(s - s')/L)h(s') - ~h(s)-^—- (4.17)
L π s - s'

is Hilbert-Schmidt from Z2(R) to L2(IL).

Proof. Recall that s e h = [-L/2,L/2]. Then, we can write

-cot(π(j - s')/L)h{s') = - —ί-h(s ' ) + /?(/) ©(J - s').
L π s — s'

The second term is clearly the kernel of a Hilbert-Schmidt operator from £ 2(R) to
L2(IL). Therefore,

-s'
(4.18)

We bound the r.h.s. of (4.18) by considering three regions:
1. The region where s,s' £ supp/*: There, Ki is bounded, since the h are ^°°.
2. The region where s' G supp^,^ ^ supp/z: Again, Kj is bounded.
3. The region where s E supp h,sf £ supp/z: This is a non-compact piece, because

s' varies in R. But then IKiCy,,?')! ^ ^(1A ;)?

 a n d hence the kernel is in L2.

Thus, J^dsf^ds'lKis^s')]2 < oo, and K is Hilbert-Schmidt. The proof of

Lemma 4.8 is complete.
Using Eq.(4.8) and this last lemma, we see that near any corner,

|/<3,|B(0) = s ign(^) idsB
{0) « s\gn(ίds)hCΛh

(4.19)
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Here h, denotes the operator of multiplication by h, and P is sign(/35), but
viewed on L2(R), i.e., the operator whose integral kernel is

We shall show below that Cα is a bounded operator on L2(R) and therefore (4.19)
implies that

|/δ,|B ( 0 ) w APCαA* , (4.20)

where ft* is the multiplication by h (viewed as a map from L2(IL) to L2(R)) and h
2 2

To study Cα on L2(R) it is advantageous to identify L2(R) with Z 2 ( R + ) Θ
L2(R+), using the map u(s) \-> (u+(s),u-(s)) with

u+(s), when s > 0 ,
u-(—s), when s < 0 .

Having gone to unbounded coordinates, we can now use them for an explicit cal-
culation. We define the self-adjoint generator, D, of the dilatations on R+,

This operator is diagonalized by the Mellin transformation dty defined by

I oo

y/π0

Note that Ji : L2(R+) -> Z2(R) is unitary and JfeiDt = eiλtJi. With the above no-
tation, we see that JiQ^u is given by

(JίCau)σ(λ)

°?ds' ( 1 , 1
2"

0 ' s — s'em s — ,

where σ €{+ ,—}. Replacing the integration variable s by ss' and noting that the
integrand is homogeneous of degree iλ + 1/2 in sf, we get

OO rlc . / I I I

0 2πΓ \s-\-l 2s-eia 2 s - e~i{

= -σca(λ)(Jtu-σ)(λ) .

Thus, Cα becomes matrix multiplication under the Mellin transform. We next eval-
uate the integral cx(λ). Note that the integrand is Θ(s~3/2) at infinity and Θ(s~ι/2)
near 0. Therefore, for large R, we find

£ ds n
ll^ I r - J n Δ

- s — em s — e

- i - I + Θ(R~ι/2). (4.21)
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Res

Fig. 4. The contour used in evaluating the integral cα(A) of Eq.(4.21).

The integrand is meromorphic in the annular sector {s : 1/R < \s\ < R, arg(s) £
(0,2π)}. To evaluate the integral, we consider the contour given in Fig. 4.
The integral over the circles which are concentric around the origin contributes
Θ(R~χl2) and the integral over the segment \/R ^ s ^ R, arg(s) = 2π equals
(e2πiyλ-\/2Ca(λy Letting R -> oo, we obtain

Σ
/eiλ-l/2 o/Λ-1/2 eiλ-l/2

Res — —
s~z \

if IJ:
2s-eia 2s- e~i(X

This leads to
/ + sinh((π - oc)λ — ioc/2)

2cosh(π/ί)

Note that ca(λ) = 0 when α = π. We next compute the operator P in the Mellin
representation [Gr, D]. We find

where the matrix M has elements

M__ = —Af++ = —tanh(πl).

cosh(πA)
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Altogether, we find

/ - 1 + zsinh((π - oc)λ - zα/2)

2cosh2(τd)
tanh(πΛ,)

J-P Eckmann, C-A Pillet

ί + sinh((π - oc)λ - ioc/2) \

2cosh(π/ί)

\
tanh(πl)

i + sinh((π - a)λ - ioc/2) - 1 + zsinh((π - a)λ - ioc/2)

2cosh(π/l) 2cosh2(πl)

The eigenvalues b(u,λ) of JfPCΛJί* are then

i + sinh((π - α)A - ια/2)
)) ^

2cosh2(π/)
(4.22)

Using the definition of &±(α,/l), we see that b±(oc,λ) = b±(oc,-λ). Furthermore,

sinh2(πλ)
sinh((π - α)λ - zα/2)|2

2cosrΓ (π/l)

cosh((π — α)/l) — cos((π - α)/2) cosh((π — oc)λ)

2cosh(π/ί)

(4.23)

We can now complete the proof of Theorem 4.1. Consider first Eqs.(4.10),
(4.16), (4.19), and finally (4.20). By Eq.(4.23), we see that every corner contributes
a bounded piece to \ids\A. Combining all these estimates, we see that \ids\A is
bounded on J^Γ, which means that A is bounded from Jf> to #P\.

Reσ e s s

Fig. 5. The essential spectrum of the operator 1 1 + B ( 0 ) , for the case of one corner with α = 0.9 2π.
Note that it lies strictly in the right half plane. In fact we show that for α with |cos(α)| < 1, it
lies strictly inside the dashed circle.
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We next determine a bound on the essential spectrum of |/<35|A. In Fig. 5
we show the essential spectrum of | l + 2?(0), for one corner, i.e., the set 1/2 +
b±(a,λ),λ e R. The curve of Fig. 5 encloses the essential spectrum of \ids\A.
Note that JίYQ^M" is normal so we have the estimate

with p(α) = max;ι€R|Z?±(α, λ)\ < ^. Therefore, denoting by hf the cutoff of / near
a corner, we find

|(/,APCαA/)| g p(α) | |Λ/ |β 2 ( R ) ^ p(α

Since the supports of the distinct BJ0) are disjoint, we have

where Jf is the Hilbert-Schmidt error term. By WeyΓs theorem [K], it follows that

) C {z : \z\ < maxp(α ) < 1} .
(4.24)

This implies that 0 £ σQSS(\ids\A).
We can now prove the Fredholm property. By the decomposition Eq.(4.10) and

by Eqs.(4.13),(4.24) we have

\ids\A= μ + B ( 0 ) + j f , (4.25)

where | |B ( 0 ) | | = r < 1/2, and X is Hilbert-Schmidt. Since A = (1 + (ids)
2)ι/2 and

\ids\ have the same asymptotic distribution of eigenvalues, their difference is com-
pact, and therefore Eq.(4.25) implies

ΛA= (4.26)

Here, and in the sequel, Jf i , . . . denote compact operators. The Eq.(4.26) clearly
implies that A A is Fredholm on J^γ.

To see that its index is 0, we note that AA is a compact perturbation of \ 1 + B ^
and hence has the same index. But the latter operator has index 0 because its kernel
and that of its adjoint are trivial. The proof of Theorem 4.1 for β — 0 is complete.

Note that because the logarithmic term is real, it can only contribute to the real
part of A and therefore the proof of Theorem 4.1 really implies

AJ - J f 3

(4.27)

We now extend these results to β G [0,1]. We need some machinery to compare
A A w i t h A λ $ K
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Definition. Let Z be a bounded operator. Then we define its Fredholm radius by

PF(Z)= inf | |Z + j f | | .
Jt :Jf compact

Lemma 4.9. Let Z be a bounded, self adjoint operator and let A ^ 1 be a positive,
selfadjoint, possibly unbounded operator. Assume that Z maps into the domain of
A, i.e.,

Ran(Z) C D(A).

Then, for all β e [0, 1], the operator Aι~βZ Aβ is bounded, and

p¥(Aι~βZAβ)^p¥(AZ). (4.28)

Postponing the proof of this lemma, we continue the proof of Theorem 4.1. Con-

sider Z = A~ιB{0\ Then ρ¥(AZ) = r < \, by Eq. (4.24). The lemma implies

p¥(A-βB(0)Aβ) = p¥(Aι~βZ Aβ) = r < \. Similarly, choosing Z = Λ-1Jf2,3 we
obtain p¥(A~βJf2,3Aβ) = 0. Acting with A~β Aβ on Eq. (4.27), we get imme-
diately

(4.29)
Aι~βJAβ = Jf5 ,

where Bβ = A~βB^Aβ has norm bounded by r < 1/2, and JΓ4, Jf5 are compact,
and analytic in k. Thus, Aι~βAAβ has the same properties as those shown for
β = 0. The proof of Theorem 4.1 is complete.

Proof of Lemma 4.9. The proof is an application of analytic interpolation methods.
Let F = A Z. This is a bounded operator, and thus Z A extends to the bounded
operator F*9 which we write again as F* = Z A, by a slight abuse of notation. By
interpolation, the operator

F(β) = Ax~βZAβ , J 8 e [ 0 , 1 ] ,

also extends to a bounded operator, and ||F(j8)|| ^ | | F | | . Since Aιt is unitary, for
real t, we have the same bound for F(w), where w G S = {0 ^ Re(w) ^ 1}. For
u, υ e D(A), the matrix elements

are analytic in w in the interior of the strip S and by density, this is also true for
arbitrary u, v. Hence, F(w) is weakly analytic, and therefore norm-analytic in the
interior of S.

Consider next the resolvent

For \z\ > \\F\\, this is an analytic function of 2 which satisfies the identities

G(w, z)Λ'w = Λ~wG(0, z) = Λ~w(z - F)~x ,

, z) = G(l, z)/T ( 1 - w ) = (z - F*yxΛ-(x~w) .
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Thus, the arguments above allow us to conclude that, G(w, z) is analytic in

Wo = {Rcw e (0, I)} x {\z\ > \\F\\}.

Furthermore, the matrix elements f(w, z) — (u, G(w, z)v) are continuous in

Choose now a p > pv(F). Then the functions f(it, z) and / ( I + it, z) are mero-
morphic in {\z\ > />}, with poles of order v7 at points zj,j = 1,...,]V. Define next

g(w, z) = Π O - Zjlz) - e ( w - 1 / 2 ) 7(w, z) .

Then 0 is analytic in Wo, continuous in W, and analytic in {\z\ > p} when w — it
or w — 1 -f zϊ. Furthermore, as w —> CXD inside the strip S, we have the bound

g(w, z) = Θ(e~\lmw\2). Therefore, the Cauchy integral yields

Thus, this analytic completion argument shows that g is analytic in the envelope
S x {\z\ > p}. Thus, / is meromorphic in the same domain and thus σQSS(F(w)) Π
{\z\ > p} = 0. Since p > p? was arbitrary, the assertion of Lemma 4.9 is proved.

Proof of Corollary 4.2. By Eq. (4.2), we know that

Λ ^ Y Λ ^ μ + B + J f ! ,

where ^1 + B ^ ^ — r > 0 . Therefore, the subspace on which the form
(w,Λι/2YΛι/2u) is negative definite has finite dimension. The subspace on which
(v, Yv) = (υ,Λ~ιl2Λλl2YΛλl2Λ~xl2v) is negative has the same dimension, and hence
Corollary 4.2 follows from the minimax principle.

Proof of Corollary 4.3. It clearly suffices to show that ker(A| # _i) c ker(A|e#y),

since Jff ] D J T Γ . Since A* = A by Eq. (3.12), we have

By Theorem 4.1, we also have mdex(A|j^Γ) = 0, and since it is preserved by con-

jugation, index( A| jf r) = 0. From ker( A) = ker(A), we have

dimker(A| # -i) = dimker ((A| e^Γ)*) = dimker (A\^ Γ )

= dimker (A |^ Γ ) = dimker (A|,^Γ).

The proof is complete.

5. The Relation Between A# and the Dirichlet Boundary Value Problems

In this section, we establish the relations between the boundary restriction A^, the
spectrum of AΩ, and the on-shell S-matrix.
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Definition and properties of the restriction to the energy shell. We recall that the
energy shell is Fk — {p G R2 |/?2 = k2}. We define the restriction Σk to the energy
shell Fk:

(Σkφ)(p) = fd2ye-ιpyψ(y), when p G Fk ,

R2

(Σtχ)(x) = fdμ(Py?xχ(p), when x e R2

Here, dμ — (4π)~ιdφ, where φ is the angle on the circle Fk. We will use the
following facts about these operators, which follow easily from the definition:

Σl : L\Fk) - < C ( R 2 ) , for all β ^ 0 ,

£ H~i(R2) -> Z 2 (F,), for all β 2; 0 .

Furthermore, Σ | has trivial kernel,

= {0}. (5.2)

We can now combine the actions of γ (defined in Sect. 3.) and Σ into the
operator if:

Definition and properties of ££k and JSf|. We define

The properties of y and Σk then imply L2(Fk),
(5.3)

Since Fk is bounded, it follows from the definitions that one has the stronger pro-
perties

&l : L\Fk)-+tfλ

Γ ,
(5.4)

The next lemma relates i£k to the imaginary part J^ of A*.

Lemma 5.1. Let Ω be a standard domain. For all k > 0 one has the identity

Jk = π&ί&k (5.5)

Proof Let u e J^r- By definition, J = Im(A) = (2z)~1(A - A*). Therefore,

(M, 3ύ) = lmjdσ(z)dσ(zf) ΰ(z)G£(z-z')u(z') .
r

Since Im ((-A - (k2 + ίO))"M = πδ(-zl - k2) = C, this implies

(w, JM) = fdσ(z)dσ(z')ύ(z) C(z-zf)u(z') . (5.6)
r
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Going to Fourier transforms, we see that this implies

(M, iύ) = fd2pfdσ(z)dσ(z')e-ipz' u(zf)δ(p2 - k2)eipzu(z) . (5.7)
r

Going back to the definitions of y and Σ, one sees that (u, Ju) = π(y*w, Σ*Σy*u),
so that (5.5) follows. The proof is complete.

Lemma 5.2. Let k > 0. The following kernels coincide:

ker(A*) = ker(A*,) = ker(J^|^_1/2) = k e r ( j ^ | r _ 1 / 2 ) . (5.8)

Proof The properties of ker(A^) are described in Corollary 4.3, and Eq. (3.12)

says that ( A ^ ) * = A | r _ i . Therefore ker(A) = ker(A*).

By definition, we have J = Im(A). We first show that Aw = 0 implies Ju = 0.
Indeed, Au = 0 implies u e J^r and Im(w, Aw) = 0, that is, (M, JM) = 0. Since
J = πJ5f*«5f this means ||«£?M|| = 0. Thus, J£?M = 0 and therefore Ju = 0, as asserted.

Assume next Ju = 0 and u G Jf^1/2. Then, by Eq. (3.1), one has y*u e H^p(R2).

On the other hand, \{u, Ju) = (M, JSf*JS?w) = \\^u\\2 = 0, and therefore ^u = 0.

Denoting the Fourier transform of ψ by φ, we consider

r
Since (y*u) is the Fourier transform of a distribution with compact support, it is
entire and bounded on R2. Since !£u = 0, we find (y*u) (p) — 0 when p is on the
energy shell Fk. Thus, we can divide by p2 — k2 and we see that

(Gtf() L(/I,f(p)(Gtuf(p) = Γ

is defined and is in I 2 ( R 2 ) , since y*u € / / ^ ^ ( R 2 ) . Note now that G^w is a solution

of the Helmholtz equation and is in L2(R2). Therefore, it must vanish at infinity and
hence on all of Qc. (Here, we make use of the assumption that Ωc is connected.)
But this means A^u = 0. The proof is complete.

Remark. It follows from the proof that A^u — 0 implies that

φ = Gtu = G;u (5.9)

vanishes on the complement of Ω.

We can now establish a resolvent formula for the Dirichlet problem. We use
the notation G — (—A — z)~ι and GQ — (—ΛQ — z)~ι.

Theorem 5.3. Let Ω be a standard domain, and let z = k2 -h ιΌ. Then

GΩΘGΩc = G- Gy*A~^ιyG . (5.10)

Proof We take z = k2 + iη, η > 0. Let φ e L2(R2) and define φ = (G -
Gγ*(γGγ*)-{Gγ)φ. The operator γGγ* is Fredholm from Jf~ι/2 to tfψ , by the
Remark 4 following Corollary 4.3. Note further that
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so that it is strictly positive by Eq. (3.2). Therefore, (yGy*)~ι exists and maps Jf7/
to <#7 ι / 2 . Combining this with Eqs. (3.1) and (3.5) we see that φ G Hι(R2). By
construction, (—A — z)φ = φ on R 2 \Γ and yφ — 0. Thus, the r.h.s. of Eq. (5.10)
is equal to GQ Θ GQC . The proof is completed by noting that

limyGy* = A* .

Lemma 5.4. Let P denote the orthogonal projection onto ker(A^) c J^Γ Then
the operator

0 (5.11)

is positive (on ker(A*0)). The residue of A^1 at k0 > 0 is given by

res A^1 = P(dkPAkP\k=koy
ιP . (5.12)

Proof. Let u e ker(A^0), u φ 0. We denote / = y*u. We have already argued above
that PA^P is analytic. Using scalar products in JfY and in L2(R2), as adequate,
we have

M r ( GΨ + m G(tf + iO) ,
ku)\k=ko = , l i m u> y 7—7— y

= lim hm (M, y— — ^ - ^ —yu
k-+k0 ε,ε010 \ A: — A:0

kkεεiθ \ K — Ko

= lim lim [G(k2 + ifi)/, (* + A:o + / f ^ ) G(Â  + iβo)/) = X
^ A | O \ k - k0 )

By the remark after Lemma 5.2 we know that G^w vanishes in Ωc. Therefore,

G{kl + iεo)f -* G ôw, weakly in Z 2(R 2), and it follows that

x = n S {Gik2+iε)f> {k+k0+^
Noting again that G^Qu vanishes in Ωc, and furthermore that G(k2 — iε)f —>• G "̂w

in Z2

OC(R2), we can get rid of the limit ε j 0. Thus, X is equal to

Λ

lim(G t-«,(* + Ab)G^«) = 2£o(G^, G + M ) . (5.13)

Since A ôw = 0, we know by Eq. (5.9) that G^w — Gjζw. Therefore, (5.13) is equal
to

The last inequality follows from Eq. (3.9). The proof of the first statement of
Lemma 5.4 is complete.
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To prove the second part, we define Q = 1 - P. Then,

A* = (PA*P θ QA^Q) + (PA*Q + QA^P)

By Lemma 5.2, we have ker(A^0) = ker(A£0) and therefore, A^0P = 0, and PA^0 =

(A^P)* = 0. Furthermore, PA^Q and QA^P are analytic in k, so that

Letting ε = k — ko, we find, in matrix notation,

A k ' { 0 QAQj + U(ε) Θ(ε))

A simple calculation leads to

The proof of Lemma 5.4 is complete.

Lemma 5.5. IfuG ker(Ayt0) then φ = Gku is an eigenfunction of —ΔQ with eigen-

value k\. This correspondence is bijective, i.e.,

dimker(-Zlβ - k$) = dimker(A^0) .

Proof. Let R^ denote the residue of A^1 at k — ko. By lemma 5.4, we have
Ran(#£0) = ker(A^). The spectral projection onto the eigenspace —ΔQ correspond-
ing to A:Q is given by the residue of the resolvent. By the resolvent formula, this is
equal to

Since G^y* is injective by Eq. (3.9), the assertion follows because Rk0 is positive.

Proposition 5.6. Let k > 0. Then the S-matrix, restricted to the energy shell F^
is given by

S* = 1 - 2%i<ekPιΓk

xS£*k . (5.14)

Remark. By Eq. (5.4), if* maps to ffl\. Therefore, by Theorem 4.1 and Lemma 5.5,
A" 1 if* is a bounded operator when k2 0 G{—ΔQ). Furthermore, this extends to all
k > 0 by Lemma 5.2. Thus, S* is defined on L2(Fk) for all k > 0.

Proof We apply the resolvent formula (5.10). As is well known, see e.g., [N],
taking limits in Eq. (2.1), leads, for k, k' G R2, to

<*|S|*'> =δ{k-k')-2πiδ(k2-k'2){k\Ίw\k') , (5.15)

where T is the T-matrix. It is defined as the solution of

GΩ θ GΩC = G - Gy*ΎkγG , (5.16)
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when z = k2 + iO. By the resolvent formula, one obtains

Ίk = (yG(k2 + iθ)γ*yι = A~k

ι . (5.17)

Since the restriction Σk to the energy shell satisfies if* = Σkγ*, substitution of
(5.17) into (5.15) leads to the desired result. The proof of Proposition 5.6 is com-
plete.

Proof of Lemma 2.1. We use the representation Eq. (5.14) for the S-matrix. The
unitarity follows from Lemma 5.1 by a simple calculation. We next show that the
spectrum of S^ can only accumulate at 1. To see this, consider i f A " 1 ^ * . By
the remark following Proposition 5.6, A" 1 if* is bounded, and by Eq. (5.4), i ? is
compact as a map from ifΓ to L2(Fk). Hence S^ — 1 is compact. We finally show
that the eigenvalues accumulate at 1 only from below. By Eq. (5.14), we have

ImS* - -

We denote by Y+ the positive part of Y and we let Y_ = Y — Y+. Then,

-Im(S^) - 1 1 1 1

The operator lp is positive by construction and 1/ is finite rank, by Corollary 4.2.
Note that the sum of two such operators can have at most as many negative eigen-
values as the rank of the second one, as follows by writing the eigenvalues as the
solutions of a minimax principle:

λn+χ = inf sup (φ9 (lp + lf)φ) .
E > d i m E=n xl/eE,\\ψ\\=ι

Indeed, if t is the rank of I/, we can find a φ orthogonal to the range of 1/ as soon
as άimE > /, and then the supremum above is non-negative. Hence there can be
at most i negative eigenvalues, as asserted. Thus, we have shown that the number
of scattering phases in the upper half plane is bounded by the rank of I/, and is
finite. The proof of Lemma 2.1 is complete.

6. Proof of the Main Theorem by a Variational Formula

In this section, we prove the Main Theorem and Theorem 2.2.

Proof of Theorem 2.2. This proof is relatively easy, because in this case the exis-
tence of the eigenfunction of S^ is part of the assumption. Assume S^χ = χ, χ + 0,
for some χ G L2(Fk). Let P be the orthogonal projection in J^r onto ker(Ayt) and
set Q = 1 - P. Then, by Proposition 5.6 and the remark following it, we have

^kQ(QAkQΓιQJ?*kχ = 0. (6.1)

We next show that S£\χ = 0. Indeed, ker(jS?*) = ker(A^), by Lemma 5.2, and, by

the construction of Q, Eq. (6.1) implies (QA^Q)"1 Q^£\χ — 0. A similar reasoning
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then implies Q&*kχ = 0, and finally Se\χ = 0. But this means that yΣ*kχ = 0, by
the definition of £?k We now claim that

<K*) = (Σ*kχ)(x) = Jdμ(p)e^χ(p) (6.2)

is the desired eigenfunction. First ψ φ 0 because Σ | is one-to-one by Eq. (5.2).
Clearly, φ solves the Helmholtz equation in all of R2 by construction. Since
yΣ^χ — 0, it also satisfies the Dirichlet boundary condition. Furthermore, it can-
not vanish on an open set, because of unique continuation. Applying the Schwarz
inequality to the integral in Eq. (6.2), we see that ψ is uniformly bounded. This
completes the proof of Theorem 2.2 for the case of a simple eigenvalue. In the case
of an eigenvalue with multiplicity M, one repeats the above calculation for M lin-
early independent vectors χj. Using again Eq. (5.2), we see that Eq. (6.2) produces
M independent eigenvectors. The proof of Theorem 2.2 is complete.

Remark. It follows from this proof that k2 0 O{—ΔQ) implies ker (if | ) = {0}.

Proof of the first half of the Main Theorem. Here, we show that existence of
eigenvectors implies convergence of eigenphases. We are going to use a minimax
principle on the cotangents of the scattering phases. We use the definition of the
ϋj from Eq. (2.2). Let En C 2tfr denote an n dimensional subspace of J"f Γ

Theorem 6.1. Let Ω be a standard domain and let k2 0 σ(~Δa). For j ^ 0, the
cotangent of the scattering phase Όj(k) ofSk is given by

cot ΰj(k)= inf sup ̂  ^ ^ . (6.3)
7 V l «€E,+ι (W, J*K)

Proof It is useful to consider the Cayley transform X^ of S&, given by

Xk = i(l+Sk)(l-Sky
ι . (6.4)

For k2 $• σ(—ΔΩ), Theorem 2.2 says that 1 0 σ(Sk). Therefore X^ has dense domain
D(Xk) = Ran(l — Sk). Since Sk is unitary, it follows that X^ is self-adjoint [Ru,
Theorem 13.19]. Using the spectral mapping theorem we obtain:
Lemma 6.2. Let Ω be a standard domain, and let k2 £ σ(—Δa). Let ϋ € (0, π)
be given. Then e~2ιΰ is an eigenvalue of Sk of multiplicity M if and only if cot ΰ
is an eigenvalue of multiplicity M of\k-

We introduce the polar decomposition of if:

Lemma 6.3. For k2 0 O(—ΔQ) there is a unitary operator Uk : J^fΓ ~> L2(Fk, dμ)
for which

&k = Uk\Xkl Jl/2 = V^\^k\. (6.5)

Proof The existence of a polar decomposition is well known [K, 6.2.7]. We have
already shown that k2 £ O{—ΔQ) implies k e r ( i ^ ) = ker( i f | ) = {0}, and therefore
Uk is not only a partial isometry but in fact unitary. The proof is complete.

We continue the proof of Theorem 6.1. The two lemmas above allow us to give
another characterization of cot #,(&), which we will use to derive Eq. (6.3). Having
established that only a finite number of scattering phases are in (π/2, π), we first
observe that the spectral mapping theorem implies that Xk is bounded below, and
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has a finite number of negative eigenvalues. Since Xk is self-adjoint and bounded
below, the usual minimax principle [RS, Vol. IV Theorem 13.1] says that

cot#,-(*)= inf sup ( { ' X *{ ) , (6.6)

where the infimum is taken over the y + 1 dimensional subspaces isj+1 of D(X^) c
L2(Fk) (and the supremum only over non-zero / ) . We now show, through a straight-
forward calculation, that Eq. (6.6) implies (6.3). If / is in D(Xk), then, by the
definition of X& and the representation (5.14) of S&, we have

where χ e L2(Fk). Therefore,

Xkf = 2/(1 - iπJSftAί"1 J2?)χ . (6.7)

We omit the index k in the following calculations, and we consider only j = 0, to
simplify the notation. Combining Eq. (6.6) with (6.7), we see that

Using the polar decomposition Eq. (6.5), if = U\£P\ = π~1 / / 2£/J1 / 2, we can rewrite
this as

(Jι/2A-ιJι/2u,Jι/2A~ιJι/2u)

We next set υ = A" 1 J1/2w. Then,

= mf
(J1/\J1/2Ό)

(t;, Jι/2u - iJυ)

(v, Jυ)
. (v, Av - iJv) . (v, Yv)
i n f i n j :

Since A^ is bounded, we have ker((A^)*) = {0}. For k2 £ G(—AQ), Lemma 5.5

and Lemma 5.2 imply ker(J^) = {0}, and we find that ker(J1 / 2(A~1)*) = {0}.

Therefore, A~ 1 J 1 / 2 J^ Γ is dense in Jf> and

,nf fit*ί . ,nf
( J)

The proof of Theorem 6.1 is complete.
We continue the proof of the first half of the Main Theorem. We consider

a k0 > 0, for which k\ G σ(—ΔQ) is an M-fold eigenvalue and we denote by P
the orthogonal projection onto ker(A^) C 2tfr This kernel is M-dimensional by
Lemma 5.5.
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Let next u e ker(A^0). We will show that there is a C > 0 for which

(", Y*Ό < c_ ? ( 6 β 8 )
(M, Jku) ~~ k0 - k '

when k < ko. Letting k f k0 and observing that (6.8) holds for every u £ ker(A^0),
the first half of the Main Theorem follows. In order to show Eq. (6.8), we note that
since PA^P is in fact analytic in k, because the integral kernel of A^ is analytic
and P is finite dimensional by Theorem 4.1, we have

= («, PAkPu) = (u,P((k - £O)A;O + 0((* - ko)
2))Pu)

' - ko)
2)\\u\\2 .

By Lemma 5.4, and since the kernel of A^o is finite dimensional, there is a C\ > 0
for which

Therefore, when k < ko, we have

(«, Y*«) = Re(«, AtM) = (k- ko)(u, PA' i oPM) + <P((A - ko)
2)\\u\\2

^ Ciik - ko)\\u\\2 + &((k - ko)
2)\\u\\2 ,

(«, J*u) = Im(«, A t «) ^ C2(A: - k0)
2 .

Therefore, using (u, J^u) S; 0, and k < ko, we see that the quotient satisfies

Cι(k-k0)\\u\\2 (l + &(k-k0)) C, 1

(M, Jjfcw) (M, JjtM) C 2 A: - ^o

from which the assertion Eq. (6.8) follows at once.

The second half of the proof of the Main Theorem. Here, we assume that, as
k t k0, there are exactly M eigenvalues e~2ιΰJ^k) of S* which converge to 1 from
the upper half plane and show that k\ is an M-fold eigenvalue of —ΛQ.

By the variational principle, there is, for each k, an M-dimensional subspace
Ek c Jf ΓΪ s u c n that

sup ψψ\ £ -4 , (6.9)

and AA; —> oo as Λ —̂  oo. Let now P^ denote the orthogonal projection on the

M-dimensional subspace Λ~~ι/2Ek, where A — (l + ( ^ ) 2 ) . It follows from (6.9)
that

P k A χ l 2 Y k A x l 2 P k ^ 0 , (6.10)

UmPkΛ
ι/2JkA

ι/2Pk = 0 . (6.11)

Let Qεk denote the spectral projection of Aιl2YkA
112 corresponding to (—oo,ε].

By Eq. (4.2) one can choose ε > 0 in such a way that this projection is finite
dimensional and analytic in k for k near k0. From Eq. (6.10), we obtain Ran(i\) C
Ran(g ε ^) and hence

a , Λ β α = Pk (6.12)

Taking a weakly converging subsequence, w-lim^^oojP^ = Poo, Eq. (6.12) implies
that limH-xxΛ,, = ̂ oo holds in fact in the norm topology. Therefore, PQQ is an
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orthogonal projection on an M-dimensional subspace of JfV It follows further
from Eq. (6.11) that this subspace is in the kernel of Λι^2Jk0Λ

ι/2. Therefore,

We complete the proof by using Lemma 5.2, which implies

dimker(A*0) ^ Λf .

Thus, by Lemma 5.5, there are at least M eigenvectors of —ΔQ with eigenvalue k$.
The proof of the second half of the Main Theorem is complete.

Sketch of the connection between Eq. (3.15) and (3.16). We have shown
Eq. (3.15) in (5.14). Since we assume that k2 0 G(—ΔQ), we can write JS?* =
Ukl&kl, with Uk unitary, by Lemma 6.3. Therefore, for any u e J-fr, we have,
omitting the subscript k, and with scalar products in

(Uu, SkUu) = (ί/w, t/w) - 2πi(Uu,

= (w, u) - 2πi(^*Uu,

= (M, u)-2πi(\&\u9 AΓι\&\ύ)

= (u, u) - 2i(Jι/2u, A~ιJι/2u)

= (v,J-ιv)-2i(v,A~-ιv)

= (Aw, J~ιAw) — 2i(Aw, w)

= (Aw,J~\Aw-2iJw))

= (Aw,J-\Yw-iJwj)

= (Aw, J-!A*w) = (υ,J-ιA*w)

~ιwhere v = Jι'2u, and w — Aιv.

Acknowledgements. Our interest in this problem was raised by a sequence of lectures [S] by
Uzy Smilansky which he gave in the 3 e cycle de la Physique en Suisse Romande. We have
profited from numerous discussions with him, which helped us to sharpen our outlook on this nice
problem. A useful discussion with Peter Buser has led to the examples of Sect. 2. Our work was
completed in the nice atmosphere of the Weizmann Institute, with support from the Fonds National
Suisse, a Julius Baer Fellowship at the Weizmann Institute for JPE, and the Einstein Center of
the Weizmann Institute.

References

[AS] Abramowitz, M., Stegun, L: Handbook of Mathematical Functions. New York:
Dover 1965

[A] Agmon, S.: Lectures on Elliptic Boundary Value Problems. New York: Van
Nostrand 1965



Spectral Duality 313

[B] Berry, M.: Evanescent and real waves in quantum billiards, and Gaussian beams. J.
Phys. A: Math. Gen. 27, L1-L8 (1994)

[D] Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in
Mathematics, 1341. New York: Springer 1988

[DS1] Dietz, B., Smilansky, U.: A scattering approach to the quantization of billiards - the
inside-outside duality. Chaos 3, 581-589 (1993)

[DS2] Dietz, B., Smilansky, U.: Scattering from a square obstacle. Preprint. (1993)
[DEPSU] Dietz, B., Eckmann, J.-P., Pillet, C.-A., Smilansky, U., Ussishkin, I.: In preparation

[DS] Doron, E., Smilansky, U.: Semiclassical quantization of billiards - a scattering approach.
Nonlinearity 5, 1055-1084 (1992)

[F] Flugge, S.: Rechenmethoden der Quantenmechanik. Berlin: Springer 1965
[GT] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.

Grundlehren Vol. 224. Berlin: Springer 1977
[Gr] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Boston: Pitman 1985
[Gu] Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. New York: Springer

1990
[H] Hδrmander, L.: The Analysis of Linear Partial Differential Equations. Berlin, Heidelberg,

New York: Springer 1983-1985
[JK] Jensen, A., Kato, T.: Asymptotic behaviour of the scattering phase for exterior domains.

Comm. Part. Diff. Equ. 3, 1165-1195 (1978)
[K] Kato, T.: Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York:

Springer 1966
[KR] Kleinman, R.E., Roach, G.F.: Boundary integral equations for the three-dimensional

Helmholtz equation. SIAM Review 16, 214-236 (1974)
[Ne] Necas, J.: Les Methodes Directes en Theorie des Equations Elliptiques. Paris:

Masson 1967
[N] Newton, R.: Scattering theory of waves and particles. New York: Springer 1982
[R] Ramm, A.G.: Scattering by Obstacles. Dordrecht: Reidel 1986

[RS] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. New York, San
Francisco, London: Academic Press 1972

[Ru] Rudin, W.: Principles of Mathematical Analysis. New York: McGraw-Hill 1976
[S] Smilansky, U.: Semiclassical quantization of chaotic billiards. In: Chaos and Quan-

tum Chaos. W.D. Heiss, ed. Lecture Notes in Physics 411, Berlin: Springer 1993,
pp. 57-120

[Yl] Yafaev, D.R.: On the asymptotics of scattering phases for the Schrόdinger. Ann. Inst.
Henri Poincare 53, 283-299 (1990)

[Y2] Yafaev, D.R.: On the scattering matrix for perturbations of constant sign. Ann. Inst.
Henri Poincare 57, 361-384 (1992)

Communicated by A. Kupiainen






