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Abstract: Though there is strong numerical evidence for the stability of undercom-
pressive shocks, their stability has not been verified analytically. In particular, the
energy methods used to analyze stability of standard shocks do not apply. Here,
we present the first proof of stability for a particular undercompresive shock, the
real Burgers shock considered as a solution of the complex Burgers equation. Our
analysis is by direct calculation of the Green's function for the linearized equations,
combined with pointwise estimates of nonlinear effects. A benefit of this method is
to obtain fairly detailed information about the solution, including Lι behavior, and
rates of decay in different regions of space.

1. Introduction

Undercompressive shock wave solutions of n x n systems of conservation laws are
viscous profiles with less than the n + 1 entering characteristics of a standard (Lax)
shock, [Lax]. They can arise in association with a loss of strict hyperbolicity, as can
overcompressive shocks, which are viscous profiles with more than n+\ entering
characteristics.

The appearance of these nonclassical waves makes the solution of Riemann
problems considerably more complicated. For example, overcompressive shocks are
generally associated with loss of uniqueness [F], while undercompressive waves
depend sensitively on the way viscosity is introduced via parabolic regularization
[I-Ma-Pl]. Both types of wave violate the Lax characteristic condition for linearized
stability. It has been demonstrated for the case of overcompressive shocks in [L, 3,
F-L, L-Xi] that this confusion at the hyperbolic level can be resolved by closer study
of an encompassing parabolic regularization. In particular, there has evolved [L3]
a general principle for admissibility of waves, which might be called the "stable
viscous profile" condition. That is, an admissible shock must not only have a viscous
profile, but that profile must have sufficient stability properties to be persistent as a
parabolic solution, even as viscosity goes to zero.

These issues motivate the study of the stability and behavior of undercompres-
sive profiles as solutions of parabolic conservation laws. In [Zu-Pl-Ma], a heuristic
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model was developed for the behavior of undercompressive profiles under perturba-
tion, and tested numerically. In all runs, undercompressive shocks showed extremely
robust stabillity, supporting their admissibility as hyperbolic waves. Further, it can
be verified analytically [Che-Xi, Zu.2] that they are stable as hyperbolic solutions,
by a Glimm scheme argument, provided that the viscous profile condition is adopted
as an admissibility requirement, with the form of viscosity specified. This can be
regarded as a consistency result.

However, to this date, there has been no proof of nonlinear parabolic stability
for any undercompressive shock. The main difficulty is that standard methods for
analyzing stability of shocks [Mat-Ni, G.I, L.I, Sz-Xi] require a priori knowledge
of the asymptotic state of a perturbed shock. This is accomplished, following [L.I],
by the ansatz that the asymptotic state consists of a translate of the original shock,
plus diffusion waves in the modes with outgoing characteristics. These diffusion
waves are essentially nonlinear heat kernels, carrying finite mass but the decaying
in L°°. If we denote the unperturbed shock by Φ(x), the perturbation by U, the
translation by d, and the masses of the diffusion waves by p ί ? then conservation of
mass gives the relation

+00 +00

/ Udx = / [Φ(x -d)- Φ(x)] + £p,r, , (1.1)
— OO —OO

where r, denotes the mode of propagation associated with the zth diffusion wave.
For a standard (Lax) shock, then n — 1 outgoing masses p, and the translation

d are determined by the n equations (1.1). However, an undercompressive shock
has n or more outgoing characteristics, and its asyptotic state is not determined.

Here, we study an illustrative example, for which the shock location, time-
asymptotically, can be determined apriori, but the diffusion waves cannot. The com-
plex Burgers equation,

ut + \j2{v2 -ύ2)x = uxx ,

= Vχx (1.2)

is a standard example of a type II quadratic flux model, in the classification scheme
of [Sch-Sh]. We consider the stability under perturbation of the solution given by
the real Burgers shock,

The Jacobian of the flux function of (1.2) is

y I). (i.4)

Thus, along Φ(x), the modes of propagation, given by the right eigenvectors, are
r i — (0) a n d r2 — (JX a n d the associated characteristic speeds are λ\ = —φ(x) and
λ2 = φ(x). Since the shock speed is zero, at x = =F°°5 there is one entering and
one leaving characteristic, so that Φ(x) is indeed undercompressive.

However, note that both outgoing characteristic modes are in the direction r2 —

( j ) . Thus, we can combine p^^r^oo + /?+0oH-oo into (/?_oo + P+00)1*2 and solve
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for the translation d and the total outgoing mass (p_oo + p+oo) by conservation of
mass, in (1.1). By determining the correct translation in the asymptotic state, we
can at least avoid the order one error resulting from the wrong shock location.

On the other hand, the possible error in the mass of diffusion waves still presents
a problem in the standard energy method. Morever, the fact that the secondary char-
acteristic speed λι vanishes at x = 0 is equally serious, as it prevents the "vertical
estimate" [G.I] or weighting method [G.2] used to deal with the lack of compres-
sivity in secondary fields. Thus, our example still retains many of the technical
difficulties of the general case.

A nice feature of the complex Burgers equation is that, like the real Burgers
equation, it has a great deal of helpful structure, making certain estimates possible
by direct calculation. For example, an exact solution of the linearized equations
around the shock profile can be determined.

The model is immediately illuminating at a naive level. The mode of propagation
of the shock is clearly rx — ( ι

0), since it it actually a scalar Burgers shock along the
ύ axis, and the associated characteristic speed is λ\. We can see that the classical
division into fast and slow waves is not applicable here, since the characteristic
speeds λ\ and λι cross as we traverse Φ(x) is neither fast nor slow, but rather
"transitional" between fast and slow waves (cf. [I-Ma-Pl]). This situation is typical
for undercompressive waves.

From this perspective, the label "undercompressive" is something of a mis-
nomer. For, the primary wave field λ\, associated with the mode of propagation of
the shock, is equally compressive for either the standard (Lax) shock or an under-
compressive shock, while the secondary fields are compressive for neither! We can
already see that the mechanism for stability is also similar in either case. Perturba-
tions in the primary, compresssive mode are carried in towards the shock, to cancel
rapidly by diffusion, while perturbations is secondary modes are carried out towards
infinity, to decay algebraically by diffusion in the absence of interaction, like heat
kernels.

The difference is that in the standard case, the secondary waves always travel
with speed different from the shock. In the undercompressive case, the speed of
a secondary wave can coincide with the speed of the shock, leaving open the
possibility of some kind of resonance in the solution. It is precisely this that we
must show does not occur.

At an intuitive level, we can resolve this difficulty easily. When dissipation is
taken into account, characteristics no longer propagate the solution. For a linear,
parabolic system, the propagator of the solution is the Green's function. From this
point of view, the proper generalization of the iterated characteristic methods used to
study nonlinear hyperbolic problems [Co-Fr, Gl, L.2] is the iteration via DuhameΓs
principle, where a nonlinear source is propagated by the Green's function of the
linearized problem.

When we explicitly calculate the Green's function for the linearized equations
around the Burgers shock, we find that, in the secondary family, it consists simply
of two waves, moving with speeds plus and minus one. Thus, even though the
characteristic speed may vanish, the actual speeds at which secondary waves are
propagated are always different from the shock speed, and resonance does not occur.
However, to translate this simple observation into bounds on our iterated solution
requires some rather careful estimates.

It may already be apparent from this description that it will be important in our
analysis to track the location of different waves in the solution. We decompose the
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solution into waves of three main types, namely, the wedge

ί
l -t ^ x ^ t

- ( x - Q 2

e^ci- x ^ t (1.5)
-(*+o2 ^

e to x ^ -t,
the moving heat kernels

(1.6)C

and the stationary wave e~lχl/2C, where the constant C > 1 is to be determined
later.

We will establish the following two theorems.

Theorem 1 Main Theorem. Let C > 1 and t0 be fixed, and let

W o ί X H , (1.7)

with |κo(*)Uι?o(Jt)| ^ δe-χ2/4t° and

Juo(x)dx = O. (1.8)
— oo

Then, for δ sufficiently small, (1.1) has a global solution

ίΰ(x,t)\_ φ
\ φ( u(x,t)

satisfying

u(x,t) = O(l)δ[(t + to)-3/2Wc(x,t + to) + Kc(x,t + to)2

(1.10)

K+(x,t + to)2

where 0(1) is a constant depending only on C,to

Theorem 2 (L1 Behavior). The perturbation u converges to 0 in U at the rate
ί"1/2, while v converges at rate ί~1//4 to a pair of heat kernels moving with speeds
plus and minus 1, respectively.

Remark. In Lp, the rates of convergence given in Theorem 2 become t~x/2 for u
and t~3/4+ι/2P for v, i.e. (") converges to its asymptotic state as

Γ1'2 p ^ 2
,-3/4+1/2/? p ^ 2 *

These rates appear to be sharp.
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Plan of the paper. In Sect. 2, we examine the linearized equation around the shock
profile, and determine a convenient formula for its Green's function. In Sect. 3, we
use this formula and variation of constants to estimate the effects of different source
terms in the linearized equations. This is the main section of the paper.

In Sect. 4, we divide the perturbation equations into a linear part and a nonlinear
source term, and set up the standard iteration scheme for the solution. Using the
estimates from Sect. 3, we show that certain pointwise bounds on the solutions are
preserved in the iteration scheme. We thus obtain an a priori estimate which at once
gives both global existence and decay of the perturbation.

In Sect. 5, we slightly improve the basic (Lι bounded) stability result of Sect. 4
to obtain Theorem 1, and, after a further calculation, Theorem 2. Both calculations
involve tricks separate from the rest of the paper. Finally, in Sect. 6, we state without
proof the straightforward generalization of Theorem 1 to the higher derivatives of
the solution.

We remark that the method of analysis introduced here gives detailed informa-
tion about the decay of perturbations that has been obtained only recently [L.4]
for standard (Lax) shocks. Previous gross estimates from semigroup theory, energy
estimates, etc. were not sufficient even to show stability. This approach seems to be
a useful combination of hyperbolic thinking, in particular in the resolution of the
solution into distinct component waves, and standard parabolic techniques.

2. The Linearized Equations

Linearizing equations (1.2) around the shock profile Φ gives the decoupled system

Lxu = u t - (φ(x)u)x - uxx = 0 , (2.1)

L2u = υt- (φ(x)υ)x - vxx = 0 , (2.2)

In this section, we derive integral representations for Lγι and L^1 by explicitly
finding Green's functions for (2.1) (precisely speaking, for the integral of (2.1))
and (2.2)

Proposition 2.1. Let

Lxu = (Si)* ,

L2v = (S2)x. (2.3)

Then,

u(x9t)= Ju(y,O)Gι(x9t;y)dy
— oo

t oo

J J Gι(x,t = s; y)S,(y,s)dyds , (2.4)
0 —oo

and

oo

υ(x,t)= J v(y,0)G2(x,t;y)dy
— oo

t oo

+ / / G2(x,t - s; y)S2χ(y, t)dyds , (2.5)
0 —oo
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where

U(x,O)± Ju(y,O)dy, (2.6)
— OO

Gx(x,t;y) = [χ-(x)K+(x -y,t) + a+{x)K~{x - y,t)]

+ p- u\x)K+(x -y,t) + oc\x)K-(x - y,t)], (2.7)

G2(x, t; y) = a-(y)K-(x -y,t) + a+(y)K+(x - y,t), (2.8)

and

^ ( ^ , 0 = K(xψt,t)= —L=e:zίΨ1- (2.10)
y/Λπt

Proof. Equation (2.1) is just the linearized Burgers equation. From the first conser-
vation law (1.8), it is natural to integrate this equation to obtain

seλυ = ut - 2φ(x)ux - uxx = o, (2.11)

where

U(x,t)± Ju(y,t)dt.
— OO

Both Eqs. (2.1); and (2.2) can be solved exactly by the method of weights
introduced in [Sat]. Precisely, for

the weighted variables UA(x) and uΛ~ι(x) both satisfy the dampled heat equation

Mw = wt — w — wxx = 0 . (2.11)

The Green's function for (2.11) is

J(x,t;y) = e-'Kix - y,t) , (2.12)

where K(x,t) = -j==e~Tt is the standard heat kernel. Thus, the Green's functions

for (2.10 and (2.2) are 9 fat;y) = $$J(x,t;y) and G2(x,t;y) - $$J(x,t;y)9

respectively.
Evaluating

= cosh ί - J ,

and rearranging, we find (cf. [Zu.2]) that

9 fat;y) = oc-(x)K+(x -y,t) + oc+(x)K~(x - y,t), (2.13)
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and
G2(x,t;y) = a-(y)K-(x -y9t) + *+{y)K+(x - y,t), (2.14)

as in (2.9-10). Note that the relation G2(x,t;y) = @\(y,t;x) follows from the fact
that (2.Γ) and (2.2) are adjoint.

Equation (2.5) now follows immediately, from (2.12) and DuhameΓs principle.
Likewise, the integrated equation

JS?i£/ = Si (2.15)

has solution

oo

U(x,t)= J
— oo

t oo

+ jfSι(yS)<$ι(x,t-S;y)dyds, (2.16)
Ooo

with ^ i given in (2.11). Equation (2.4) follows upon differentiating in x, with the
observation that

3. Main Estimates

In this section, we carry out the main analysis, using the representation derived in
Proposition 2.2 to estimate the effects of different source terms on the solutions of
the linearized equations.

Sources which are naturally associated with the modes of propagation of the
linearized equations are the wedge

( 1 -t ^ x ^ t

e^ict^ x ^ t (3.1)
the moving heat kernels

(3.2)

and the stationary wave e~lχl/2C

5 which is asymptotic to oc°(x/2C). The constant
C > 1 is to be determined later.

Our aim is to prove the following two propositions:

Proposition 3.1. Let Lλu = (S{)x,u(x,0) = 0, and C > 1.

«//

|5| = O(\)[(t + iyrWc(x,t+ 1) + (t + l)qe-W/2C] , and (3.3)

\sx\ = O(i)r1 / 2[(ί + ιyr+ι/2wc(χ,t+ i) + (ί + i

( 3 > 5 )
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(ϋ) V

\S\ = O(l)(t+l)-p[Kc(x,t+lf+K+(x,t+l)2] and, (3.6)

\Sx\=O{\)t-χl2(t+\yp[K-{x,t+\f+K+(x,t+\)2], (3.7)

then

\u\, \ux\ + O(\)[(t + \)-p-γWc(x,t+ 1) + (ί + i){-P-»/2}β-W/2Cj _ ( 3 8 )

Proposition 3.2. Let L2v = (S2)x,v(x,0) = 0, and C > 1. If

0)

x,t+l)], (3.9)

and \Sx\ = O(l)rl/2[Kc(x,t+l) + K£(x,t+\)], (3.10)

or

(")

I], (3.11)

)], (3.12)

then

\v\ = O(l)[K-(x,t + 1) + K£(x,t + 1) and (3.13)

1̂ 1 = O(l)(t 4- \yι/2[K-(x,t + 1) + K+(x,t + 1)] . (3.14)

To establish Proposition 3.1, we first prove two partial results.

Lemma 3.1.a. If
t+l), (3.15)

then

\u (3.16)

Using the relations K^s) = O(l)sι/2Kf(y,s)κ£(y9s)9 (2.4), and

.s) = O(l)K±(y,s)K±(y,s), we have

t oo

)/ / (/,+ +/2

+ +/2" +I2~)dyds , (3.17)
0 —oo

where

= O(l)(s + iyra*(x)K±(x -y,t-s)

xK±(x-y,t-s)Wc(y,s+l),

= 0(1)(/ - s)ι/2(s + \Tra\x)K±{x -y,t-s)

xK±(x-y,t-sWc(y,s+l). (3.18)
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We rely on the identity

(χ-yϊ

supe
y) y _x±_
-s) e 4Cs = e *Ct .

171

(3.19)

Applying the change of coordinates x' = x =F t, yr = y - σ and letting σ vary be-
tween —(s + 1 ) and (s + 1), we find that

• - y9t - s)Wc(y,s

1

- s)

Note that for s ^ ί/8,

min{Wc(x, t + \)Wc(x =F 2(ί - 5-),t

x ^ ±3ί/4

<
x < ± 3 t / 4 τ U

Thus, for s S tβ,C ^ 1,

ocτ(x)Wc(xτ2(t-s%t+l) =

(3.20)

(3.20a)

(3.20b)

(3.20c)

(3.21)

for some positive constant b. Using (3.18), (3.20-21), and α° = O(l)α ± , we find
that the total contribution of the source from s ^ //8 is

tβ oo

0 -oo

x K

= 0(1

+
2 2 2 ) ^ *

ί/8 oo

0 - o o

r^(x — y,t — s)dyds
tβ

)(l+tι'2)e-bιe-^cJ(s
0

υ l—r/i I Λ/2\/r,—bt-—\x\/2C n Λ<Λ\

^ 1 τ~ t )€ e . yj.ΔΔ)

This exponentially small term can be absorbed into (1 + t)~rJrλe~^2C.
To estimate the contribution from s ^ t/%, we use only K^(x — y, t — s)

Wc(y,s+l) S , ' Wc(x,t+l). This gives

t/S - o o
f (s

ί/8-oo

— y,t — s)dyds

\)~rWc(x,t

(3.23)
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and

t OO

/ / ifdyds
ί/8-oo

Lemma 3.1.b. If

then

Proof. Using (2.4) and

t oo

= O(l)α°(x)/ / (s + l)~rKε

ί/8-oo

t

ί/8

= O(l)(ί+lΓΓ + 1e- eW 2 C.

|i/| = O(l)(ί+l)-^-W/2<

^ ( ^ , ) = 0 ( 1 >-i/2^ ( j ;^

c

) we have

T-P. Liu,

— s)dyds

D

(3.25)

(3.26)

\u(x, 01 = / / (Λ+ + /2

+ + A" + Iϊ Wyds , (3.27)
0 —oo

where

1 / 2 ( ^ + l Γ ^ α ^ ί j c ) ^ ^ - y,t- s)e~lyl/2C , (3 .28)

ix -y,t- s)S(y,s)

+ I Γ ^ J C ) ^ ^ - 7^ - ^ ) ^ " b l / 2 C (3.29)

From the identity

and the observation
1 x ̂  0

e x / 2 + e - x / 2 = \ e ± x X ^ O ,

it follows that, for C ̂  1,

* £ * e = 0(l)eW2Ce-^ce^ , (3.32)
^X/Z _j_ ̂  X/Z

or, in other words, that

ocτ(x)K±(x - y , t - s)e~e\y\/2C

(3.33)

Since, also, α°(x) = 0(1 )α =f ( x ) 5

 w e have

(ί - ί)-'](i + l)-ίe-
( '- l ) / 4 Cefe4) . (3.34)
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This gives

t oo

f J(I++I2

++ir+I2-)dyds
0 — OO

t

— O(\ Vlxl/2C ϊdsp~^~s)lΛC\\ + (t — sΛ~1/2¥? 4- 1 λ~q

0

— oo

J 6 [ 1 -f- ( ί — 5") Ĵ JS" H~ 1 ) W51 ,
0

• l ) " ? e | i | / 2 C . (3.35)

Proof of Proposition 3.1. (1) The bound on |M| follows directly from Lemmas 3.1.a
and 3.1.b.

Differentiating (2.4) and integrating by parts, we have

\Uχ(χ, 0 | = / / (Λ+ + 72+ + 73+ + A" + 72~ + 73 ) ^ ^ ' ( 3 3 6 )
0 -oo

where

if = α =F (x)^x

=

-7,ί-s)5x(j,ί),

-V,/-5)S(v,ί).

(3.37)

(3.38)

(3.39)

Since αQ/(x) = O(l)α°(x), and 5X = O(l)Γι/2(t + l) 1/ 2^, each of these terms in
similar to a type already treated in the proofs of the lemmas, and the bound on \ux\
follows from the same calculations.

(ii) Without loss of generality, we may take |5 | = 0(1 )(* + l)~pK£(x,t +

I)2, \SX\ = 0{\)Γχl2{t+ l)-PK+(x,t+ I)2.

From, K^iy.s) = OiiyK^s^iy.slK^s) = O(l)sι/2K±(y,s)K±(y,s\
we have

t 00

\u(x, t)\=Π (A+ +1? + K + Ii )dyds , (3.40)
0 — 0 0

where

x (s+\ypK+(y,s+\? , (3.41)

= α 0 ^ ) ^ ^ -y,t- s)S(y,s)

= 0(1 )α°(x)A:ε

±(x - j , ί - s)K±(x -y,t-s)

x ( ί - ^ ) 1 / 2 ( ^ + \)-pK%{y9s+ I ) 2 . (3.42)

Since (t + 1 )~ ; 7A:+(X, ί + 1) ^ (ί + 1 )~pW+(x, t + 1), the calculation in
Lemma 3.1.a shows that the contribution from s ̂  t/8 is negligible.
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The "parallel propagation" terms /+ and 72

+ in fact give negligible contribution
for all of 0 ^ s ^ t. For, identity (3.19) shows that

K+(x-y9t-s)K+(y9s+l)^ ^ ( t - s)-ι% + l ) " 1 ^ + l)ι/2K+(x9t + 1) .

(3.43)
Thus,

oc-(x)Kε±(x - y , t - s)K±(x - y9t - s)K+2(y,s + 1)

J Γ 1 ^ lΓ 'C + l)e"to^(jc,ί + 1) (3.44)

for b > 0, and

0 - o o

= O(l)e-bt(t + 1)A:+(JC,̂  + l)/(ί - ^)"1/2(^ + \)~p~\\

oo

X

— oo

J K+(x,t+l)dyds

- O(l)e-bt(t + l)K£(x,t+ 1)/1 + (t - s)~ι/2(t - s)~ι/2(s +\)-p- Ids ,
o

= O(\)e-htK%(x9t+\). (3.45)

The "transverse propagation" terms 7j~ and /2~ are the critical terms, and their
estimation uses in a crucial way the transversality of the propagator K~ and the
source K+, via the identity

/ oo

/ / K~(x-y,t-s)K+(y,s + 1 )dyds
0 —oo

— OO

S 1 . (3.46)

The easiest way to verify this identity is to notice that both terms, when considered
as functions of (x, t), satisfy the equation

wt-wx- Cwxx - K+(x, t + 1); w(x, 0) = 0 , (3.47)

the first by DuhameΓs principle and the second by direct substitution.
We find that

t oo

/ j I-dyds = O{\)a\x) sup \K+(y9s + \)\{s + 1)"*
ί/8-oo yj^tβ

t oo

x / / K-(x-y,t- s)K+(y, s + 1 )dyds
0 —oo

= 0(1 )(t 4- \yp-We-V\βc ? ( 3 4 8 )

as required.
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Finally, integrating by parts, we obtain

/ oo t oo

/ / I'dyds = α+(x)/ / K~(x - y,t - s)S(y,s)dyds
Z/8-oo tβ — oo

= α+(x)/ JK-(x -y9t- s)Sx(y,s)dyds
ί/8-oo
t oo

= O(l)f f S-
ι/2(x+l)-P(t-s)V2

ί/8-oo

x ^~(x - .y, f - s)/ς-(x - 7, f - s)K£(y,s + 1 )2rfyrfj . (3.49)

Using identities (3.20) and (3.46), we obtain
ί oo

/ fl-dyds = O(l)Wc(x,t+l) sup \K+(y,s + l)\(s + l ) " ^ 1 / 2

//8-oo J>^ί/8

ί oo

x / / K~(x - y,t - s)K+(y,s + \)dyds
0 —oo

= O(l)Γι/2(t+l)-p-ι/2Wc(x,t+\). (3.50)

The same calculation without integration by parts gives O(l)(t + \)~P~1/2

Wc(x,t + 1). Thus, interpolation completes the estimate for \u\.
The estimate for \ux\ is not critical, and follows from the same calculations

used in the proof of Lemma 3.1.a together with the crude bound Kc(x,t) =
O(l)t~ι/2Wc(x,t). This completes the proof of Proposition 3.1. D

Proof of Proposition 3.2. By symmetry, we need treat only source terms involving

.
We start with the weaker hypothesis,

r 1 / 2 ^ + ( ^ i + i ) ,

+x,t+l), (3.51)

which is valid in both case (i) and (ii).
After integrating (2.5) by parts, we have

t oo

\u(x, 0| =0(1)1 S (/,+ + It + /f + /f )dyds , (3.52)
0 —oo

where

-y,t- s)S(y,s)

= 0(1 Xί - s)-ι/2aHy)Kc(.χ -y^-*** + l)~l/2K?(y,s + 1), (3.53)

if = ±a°(y)K±(x -y,t- s)S(y,s)

ϊ ~y,t- s)(s + lΓi/2K+(y,s + 1) , (3.54)

and C < C.
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For C > C, we improve identity (3.19) to

-ix-yr
7 4C(t-s)

(C/C-iχt-s) 2 (f+l)+(C/C-l)fr+l), C/CC(s+\)
)(s+l)]Λ 4C(t-s)(s+l) κy

[ x2 (C
— e l 4 C ( ' + ! ) 4(t+l)[(t+

(3.55)

The change of coordinates x' = x - (t + 1), gives y' — y — (s + 1), gives

K£(x-y,t-s)K+(y,s+l)

= K+(x,t+l)(t+iy/2(t-s)-[/2(s+iy1/2β(s,y,t,s), (3.56)

where

= e

)(s+i) ιx 9 n

 m (3 .57)

T h e f u n c t i o n β ( x , y , t , x ) i s l o c a l i z e d a r o u n d ( x , y ) = (t + l,s + I). T h i s m o t i -
v a t e s

Lemma 3.2.a. For ?/ > 0,

e-ηMβ(x,y,t9s) = 0{\)e-b{s+λ){t-s)l{t+ι), (3.58)

where b > 0 is independent of t.

Proof Making the change of variables x1 = ^^7/2^1)1/2 >/ = (s+ίχt-s) w e h a v e

e-iMβ(x,y9t,s) = e-^s+ι^-sW^ι\ where

b = (l/4C)(C/C-l)x'2 + η\y'\

(3.59)

Either |*' | > e or | /1 > β or else | ^ V +

1)(, + 1), so that [1/4C(, + D2][-(, + 1) + ̂ f V +

(1/4C)[1 - ε(C/C+ I)] 2 . Thus, b ^ b > 0, proving the claim. U

Combining (3.54), (3,56), and the Lemma 3.2a, we have

= O(l)K+(x,t+
(3.60)
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Therefore,

t OO r ί OO

f Γ J^dyds — (t + lγ^2Kr(x t -\- l)\ ί f (t — s)~^^(s + 1 ) — 1

0 —oo 0 —oo

X J(t - s)ι/2(s
0

= O(l)K+(x9t+l)9 (3.62)

as claimed.
Likewise, we have

1 +(x,t + \){t + \fl\t - sΓ\s + syλa+(y)β(s,yΛs). (3.63)

C / 2 ( J + 1 ) 2

^ (m)+(c/2-iχ,+i)^ oi(

Using ot+(y) ^ 1 and β(x,y,t,s) ^ β 4C(/-5)(ί+) ^ ^ (m)+(c/2-iχ,+i)

we have
t oo / oo

/ / I+dyds = (t+ l)1/2K+(x,t+ 1)/ / (/ - i)- '( i + I ) " 1

0 —oo 0 —oo

(3.64)

as claimed
The remaining, "transverse propagation" terms,

I~ = O(l)a°(y)K-(x - y,t - s)(s + iyι/2K+(y,s + I) (3.66)

can be treated in a symmetric fashion, since

<*-(y)K£(y9s+l) g oc+(y)K-(y,s+ 1) and (3.67)

θ^+l) ^e-^rMKc(y9s-^\)9 (3.68)

for C ̂  1. This establishes the desired bound for \v\.
Differentiating (2.5), we obtain

\vx(x, 01 = / / (/+ + /-)dyds , (3.69)
0 - o o
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where
/ ± = a±{y)K^{x -y9t- s)Sx(y,s) . (3.70)

Integrating by parts gives the alternate formulation

\υx(x9O| = / / (Λ+ + /2

+ + /f + /2-)rfj«fc , (3.71)
O-oo

where

J * = α±(j)A;±(x -y,t- s)S(y,s), (3.72)

/± = T α V ) * ? ^ - M - s)S(y,s). (3.73)

Using Sx = O(l)(t)~ι/2Kc(x,t + 1) and the same calculations as above, we find
that

t oo t—\ oo

\vx{x,t)\ = / / (i+ +/-d3«/5,+ / / (I++IΓ)dyds
t—\ ~oo 0 -oo

0 —oo

i)(ί +1) 1 / 2 / (/ - J ) - 1 / 2 ( J ) - 1 / 2 ( J + ιyι/2ds

) / (t - s)-\s + l
o

I)1/2 7 ( ί - ^
o

(t + 1)~1/2] .

(3.74)

The log(/+ 1) contribution of the critical term L2 f_™(lf +IX )dyds is all
that prevents our claims for \vx\. To complete the proof of Proposition 3.2, we
improve the estimate on this critical term by using the extra hypotheses of (i) and
(ii), respectively:

In case (i), we have

| o / v + \ \ r \ ( i \ \ ( + i i \ — 1 / 2 _ — | x | / 2 C ι ( + ι i \ — l η y + s v ^ ι i \ fΊΊ^λ

|o(X, t)\ = U\i)\\t ~r ί ) ' e ] ' -ή- yt -\- I ) jKς (X, t -f- 1) , (3. /J)

which we estimate term by term.
For \S\ — 0{\){t + \)~xKc(x,t + 1), the critical estimate becomes

t-\

(3.76)
which is now satisfactory.

For \S\ = O(l)(t + l)-ι/2e~W2CK+(xJ+ 1), we recall that Lemma 3.2.a gives

β(x,y9t,s)e-M/2C S e-b'^-^+^+V for some V > 0 independent oft. Thus, the
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critical estimate becomes

t— 1 oo

0(1 ){t + lγ'2K+(x,t+ 1) / / (/ - sΓ3'2(s + I)" 1

ί/2 - o o

χ e-b'{t-s){s+\)l{t+\)e-\u\lwCdyds

+x,ί + \){t+ 1)1/2 / ( ί - ^ Γ 3 / 2 ( ^ + I ) " 1

o

l Γ 1 / 2 , (3.78)

which again is satisfactory.
Case (ii) follows immediately from (3.15), since the contribution on t/2 ̂  s ^

t — 1 can be handled using (3.69-70) and the same calculations used to estimate

M
This completes the proof of Proposition 3.2 D

Remark. The analysis is also sufficient to treat the genuinely nonlinear case in-
cluding a v2 term in the flux of v. Proposition 3.2(ii) would then be necesary, and
is included for that reason. It is not used in the analysis of the complex Burgers
equation.

4. Stability of the Solution

We now consider the full nonlinear perturbation equations

U{u)=\β(u2-v2\; «(x,0) = U°(x),

L2(υ) = (-uv)x; v(x,0) = v°(x) (4.1)

with a localized perturbation.
Our basic stability result is contained in the following proposition, which cor-

responds to Lι-bounded stability. We take to = 1 for simplicity.

Proposition 4.1. Let C > 1 and let \u°(x)\, \v°(x)\ ^ δe~χ2/4 and J^ u°(x)dx = 0.

For δ sufficiently small, (4.1) has a global solution satisfying

u(x,t) =

ux(x,t) = O(\)δ[Γxl2(t+

υ(x,t) = O(\)δ[Kc(x9t + l) + ̂ (jc,/-f 1)],

υx{x9t) = O(\)δ[(tΓ/l2K-(x,t+\) + K+(x,t+\)] , (4.2)

where 0(1) is a bound depending only on C.

Proof. We proceed by iteration. Let {uk,Vk} be the sequence defined by

uo(x,t) = vo(x9t) = O, (4.3)

Lι(uk+ι) = 1/2(1% - v2

k)x; uk+l(x,0) = u\x), (4.4)

= (-ukυk)X9 vk+\(x90) = υ°(x), (4.5)



180 T-P. Liu, K. Zumbrun

Short time existence theory (cf. [H-Sm]) guarantees that the iterates {uk, υk}, con-
verge to a global solution of (4.1), provided that |w,t| and \υk\ are uniformly bounded.

Lemma 4.1.a A Priori Estimate. The sequence {uk,vk} satisfies

ukχ(x,t) ύ

v(x, t) ^ δk[Kc(x, t+l) + K+{x, t + 1 ) ] ,

vφ,t) ύ δk(tyι/2[K-(x,t+l) + K+(x,t + 1 ) ] , (4.6)

where <5o = 0 and δk+\ = O(\)(δ + δ2

k), where 0(1) is a bound depending only
on C.

Proof. We proceed by induction, noting that the assertion holds trivially for k — 0.

We can write uk = ύk + ύk,vk = vk + vk, where

= 0; ύk+i(x,0) = u\x), (4.7)

= 1/2(«| - υj)x; ύk+ι(x,0) = 0 , (4.8)

L2(vk+i) = 0; vk+i(x,0) = i7°(x), (4.9)

L2(ύk+ι) = (vj - v2

k)x; ύk+ι(x,0) = 0. (4.10)

By the induction hypothesis, the source terms S\ = {u\ — v\) and 52 = (ukυk)
satisfy

Si = O(\)δ2

k[(t + \)-2Wc{x,t+ I) 2 + (t + \Γιe-^/2C

+ Kc(x,t+l)2+K+(x,t+l)2], (4.11)

slx = o(i)δ2

k[(t + i)-2wc(χ,t + if + (t + ιyιe-w/2C

+ (t+ iyl/2(K-(x,t+ l)2+K+(x,t+ I) 2 )] , (4.12)

and

s2 =o(i)δ2

k[(t + ιy]/2

e-M/c + (t + ly'Wcixj +1)

+ K+(x,t+l)] (4.13)

S2χ =O(l)«5 2 r 1 / 2 |S x |

= O(l)Γι/2[Kc(x,t+l) + K+(x,t+l)]. (4.14)

By Propositions 3.1 and 3.2, and linearity, we find that

ύk+ι(x,t) = θ(\)δ\[{t+ ιyιwc(χ,t+ i) + (t+ \yV2

e-W2C],

uk+Xχ{x,t) = 0{\)δ2

k[Γxl2{t+ \yl/2Wc(x,t + l) + (ί + i)-i/2e-W/2C] s

ΰk+ί(x,t) = O(\)δ2

k[Kc(x,t+ 1) + K+(x,t + 1),

ΰk+lχ(x,t) = O(\)δ2[(tyι/2[K-(x,t+ l)+K+(x,t+ 1)], (4.15)

as claimed.
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From Proposition 2.1, we have

oo

ύ(x,t)= / U(y,O)Gι(x,t;y)dy,
— OO

OO

v(x,t) = J v(y,O)G2(x,t;y)dy.
— OO

By hypothesis, u°(x),v°(x) = 0(1)5^(x, 1). The condition

OO

fu(y,0)dy = 0
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(4.16)

(4.17)

(4.18)

implies that U\x) + / ^ u°(y)dy = f*°°(y)dy is bounded by O( l )^ ± (x , 1), as
well, since

OO

U\x) = Ju°(y)dy
X

OO

= O(l)K±(\x\,l), (4.19)

for x ^ 1, and similarly for x ίί — 1.
We thus have

ύ=O(l)δ
OO

/ α :

— oo

OO

a°(x) J - y,t)K±(y,l)dy,
— OO

where we have integrated by parts to replace terms a
terms of form oc^{x)K±{x - y,t)u°(y).

Since

(4.20)

-y,t)U\y) by

(4.21)

(by the semigroup property of the heat equation), and α° = O(l)a±, we conclude
that

ύ = O(l)δ<x*(x)K±(x,t+l)

~btK£(x,t), {A 22)

for some b > 0, as claimed.
The bound on ύx follows similarly, as do the bounds on v and vx. D

From the lemma, we have δk+x ^ M(δ + δ\\ for all k. Thus, if 4δM2 ^ 1, it
follows by induction that δk ^ 2Mδ for all k. From this uniform bound, we obtain
both convergence of the iteration scheme, and, in the limit, the desired bounds on
the solution. G
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5. Proof of Main Theorems

We can obtain complete Lx information using the basic stability result and different
bootstrap arguments.

Proof of Theorem 1. Without loss of generality, we restrict to the case to = 1
treated in Proposition 4.1. We need to slightly improve our estimates for u and ux.
We demonstrate the method for w, noting that ux follows similarly.

We first observe that the constant C in the estimates of Proposition 4.1 is not
sharp, and could be improved to C = (1/2)(C + 1).

We write u = ύ + ύ + ύ, where

Ii(ώ) = 0; u(x,0) = u°(x), (5.1)

Ii(tt) = (-v2)x; £(x,0) = 0, (5.2)

L{(ύ) = (-u2)x; J(*,0) = 0. (5.3)

The term ύ is exponentially small, as calculated in Sect. 4. Combining Propo-

sitions 3.1 (i) and 4.1, we find that ύ also satisfies the cliamed bound. However,

Proposition 3.1 (ii) is not sufficient to bound the critical term ύ.

For a better estimate of ύ, we decompose v into v = v~ + f+, where

oo

«±(x,0= / υ(y,O)a±(y)K±(x,t;y)dy
— OO

t OO

+ f fKHx-y,t- s)a±(y)(uv)x(y, t)dyds . (5.4)
0 - o o

Without loss of generality, we need consider only the source term (v+)2 in estima-

ting ύ, since the term (v~)2

x is a symmetric case, and the cross term v~v+ — K^K^

is O(\)e~btKc for some b > 0, hence negligible (Proposition 3.2).
By the standard solution formula for the heat equation, v+ satisfies

vj + i£ - *4 = a+(x)uvx(x, t), (5.5)

so that θ = v+2 satisfies the equation

Vt -r Vx — Vxx — {Vx) + 0C(X)V(UV)x . p.Oj

As in the proof of 3.l(ii), parallel propagation of the source θx is negligible,
as are source effects originating from time s ^ ί/8, and all terms involving α°(x).
Thus, our calculation reduces to the estimation of the critical term

t oo

J = α+(x)/ / K~(x - y,t- s)(θ)xdyds . (5.7)
ί/8-oo

Lemma 5.1. For fixed τ,

t oo

ω ( x , t ) ± f f K ~ ( x - y , t - s ) { θ ) x d y d s
τ —oo

satisfies

ω(x,t) = l/20(jt,O + O(l)[(τ+ l)~1/2A:τ(χ,ί) + (τ + iy3/2Wc(x,t+ 1)] . (5.8)
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Proof. The function ω satisfies

ωt-ωx- ωxx = (θ)x ,

ω(*,τ) = 0, (5.9)

again by the standard solution formula for the heat equation. By (5.6), the residual

r(x,t) ± ω(x,t)-(l/2)θ(x,t) (5.10)

satisifes

rt-rx- rxx = (υxf + ct+(x)v(uv)x ,

r(*,τ) = -(l/2)0(x,τ), (5.11)

so that

oo

r(x,t) = f (l/2)θ(y,τ)K-(x-y,t-τ)dy

K~{x -y,t- s)[{v+)2 + a+(x)v(uυ)x](y,s)dyds . (5.12)

— OO

t OO

τ —oo

The term
OO

/ (l/2)θ(y,τ)K-(x - y,t - τ)dy (5.13)
— OO

is 0 ( l ) ( τ + l)-/2K^(x,t+ 1), by a calculation like that of (4.18). The terms

t OO

θί+(x)J J K~(x - y,t-s)(υ+)2(y,s)dyds (5.14)
τ —oo

and
t OO

α + ( x ) / / K~{x -y,t- s)υ(uv)x(y,s)dyds (5.15)
τ —oo

can be estimated by calculations as in Proposition 3.1(ii) and 3.1(i), respectively,
to give

r(x,t) = O(l)[Kτ(χ9t) + (τ+ir3/2Wc(x,t+l)l . (5.16)

D
Setting τ = t/$ in the lemma, and using ot+(x)K^(x,t 4- 1) = O(l)e~btWc(x,t +

1),0 = O(l)A:+(x,ί + I) 2 , we have

J = O(l)α + (x)/^+ 2 (x,ί + l) + (/+ 1 Γ 3 / 2 ^ C ( X ^ + 1)] , (5.17)

and we are done. D

Proof of Theorem 2. The assertion for u follows from Theorem 1.

We write υ = ΰ + v, where

L2(v) = 0; ΰ(x9τ) = v(x9τ)9 (5.18)

L2(ΰ) = (uv)x; ϋ(x9τ) = 0. (5.19)



184 T-P. Liu, K. Zumbrun

The term v can be split into ϋ = v~ +ΰ+, where

ΰΓ(x9t) * Jκ~(x -y,t- φ-(y)υ(y,τ)dy , (5.20)

— oo

oo

ΰ+(x,t)± / K+(x-y,t-φ+(y)v(y,τ)dy. (5.21)
— OO

These terms satisfy convected heat equations

u~ + v~ - v~x = 0; υ~(x,τ) = <x~(x)v(x,τ), (5.22)

4 + " 7 4 = 0; t>+(*,τ) = α+(jc)i?(jc,τ). (5.23)

Thus, defining

pf= / oί

±(y)v(y,τ)dy , (5.24)

we have (cf.[Che-L], [Zu.2])

\\υ+(x,t) - ptK+(x,t)\\Lι S(t- τyι/2\\(x - τ)a+(x)v(x,τ)\y , (5.25)

\\v-(x9t) - p-K-(x,t)\\Lx S(t- τ)-ι/2\\(x - τ)a-(x)υ(x,τ)y , (5.26)

Since a±v{x,τ) = O(l)K^(x,τ), we have

so that

| | j ; + (x,O-p + * + (*,Ollii = O ( l ) τ 1 / 2 ( / - τ Γ 1 / 2 , (5.27)

||t>-(jc,ί) - p-A: + (jc,ί)llii = O{\)τχl\t - τ)- 1 / 2 . (5.28)

On the other hand,

ΰ = f J G2(x,t - s;y)(uv)x(y,s)dyds = O(l)τ-ι/2[K+(x, + l) + Kc(x, + l)],
Ί —OO

(5.29)
by the same calculations used in the proof of Proposition 3.2, so that

| | % , = O ( l ) τ - ^ 2 . (5.30)

Alternatively, (5.30) follows from the cruder bound (cf. Zu.l)

t

NLi S f\\(uv)x\\Lιds ,
τ

and the sharpened derivative bound IKwiOxllz,1 — O(l)t~3/2 given in the next section.
Combining (5.25-5.26) and (5.30), we have

\\v(x,t) - [ptK+(x,t) + pϊK-(x,t)]\\Li - O(l)[τι/2(t - τ)~1 / 2 + (τ + 1)"1/2] .

(5.31)
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Letting t —» oo in (5.31), we find that

\PΪ -P7\ + If -Pΐ\= (lim | | [ p ί t f + ( * , 0 + p f * - ( * , * ) ]

1 / 2 , (5.32)

for any τ ^ τ. Thus, the sequences {pf} are Cauchy, and approach limits p% at
the rate τ 1 / 2

Combining with (5.31), and setting τ = t1/2, we have

||w(x,0 - [ptoK+(x,t) + p^K-(x,t)]\\Ll = O(l)[τι'2(t - T)'1'2 + (τ)" 1/2]

= O ( l ) r 1 / 4 , (5.33)

as claimed.

Remark. 1. Similar calculations give L°° bounds. Equations (5.27-5.28) becomes
(t ~ τ Γ Ί l " ILi> w h i l e ( 5 2 9) gives ||^||Loo = <9(l)τ"1 / 2Γ-1 / 2. Combining as before,
we obtain the rate of L°° convergence of/~3/4. The rates of convergence in Lp, 1 <
p < oo, follow by interpolation between Lι and L°°.

Remark. 2. A genuinely nonlinear term v2 in the flux of v is no obstacle to the
above analysis. We obtain convergence at the same rates to a pair of "nonlinear
heat kernels" (scale invariant solutions of Burgers eqution), as in [Zu.l].

6. Bounds on Higher Derivatives

The arguments given in the previous sections can be applied almost word for word
to give bounds on higher derivatives of the perturbation. The basic stability result
from Chapter 4 becomes

Proposition 6.1. Let C > l9t0 and N be fixed, and let \u\x)\,\υ\x)\ S δe'^o
and JTOO

U°(X)^X = 0. If δ is sufficiently small, then (4.1) has a global solution
satisfying

Dnu(x,t) - O(l)δ[Γn/2(t + toy
ι Wc(x,t + to) + (t + ί o Γ 1 / 2 e - W / 2 C ] (6.1)

for n < TV,

DNu(x,t) = O(\)δ[ΓNl\t + to)-ιWc(x,t + to) + (ί + t0r
1/2e-W/2C] , (6.2)

and
Dnυ(x,t) = O(l)δΓn/2[Kc(x,t + to) + K+(x,t + t0)] (6.3)

for all n ^ N, where 0(1) is a bound depending only on C9to,N.

The form of Proposition 6.1 illuminates the structure of our original argument
somewhat. We see now that at level N, the argument gives sharp bounds on all v
derivatives, and all u derivatives except for DNu. We are able to "gain a derivative"
in our argument because of strength of Proposition 3.2 gives sharp bounds on v
despite the non-optimal bound on u.
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