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Abstract. We state and prove various new identities involving the Zκ parafermion
characters (or level-X string functions) cl

n for the cases K = 4, K = 8, and
K = 16. These identities fall into three classes: identities in the first class are
generalizations of the famous Jacobi ^-function identity (which is the K = 2
special case), identities in another class relate the level K > 2 characters to
the Dedekind ^/-function, and identities in a third class relate the K > 2 characters
to the Jacobi ^-functions. These identities play a crucial role in the interpretation
of fractional superstring spectra by indicating spacetime supersymmetry and aiding
in the identification of the spacetime spin and statistics of fractional superstring
states.

1. Introduction

Zκ parafermion theories [1] have recently found a new application as the basic
worldsheet building blocks of fractional superstrings [2]. Fractional superstrings
are generalizations of the traditional superstring and heterotic string, and are
constructed essentially by replacing the worldsheet supersymmetry of the super-
string with a fractional supersymmetry (parametrized by an integer K) which
relates worldsheet bosons not to fermions but to Zκ pαrαfermions. It is found that
the critical spacetime dimensions of such string theories are less than ten, and are in
fact given by the simple formula

Dc = 2 + ̂ , K^2. (1.1)

The special case K = 2 reproduces the usual superstring and heterotic string with
critical dimension Dc = 10, and the cases with K = 4, K = 8, and K = 16 yield new
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fractional superstring theories with critical spacetime dimensions Dc = 6, Dc = 4,
and Dc = 3 respectively.

The worldsheet field content of these string theories consists in general of
bosons and Zκ parafermions; the special-case Z2 parafermions are equivalent to
ordinary Majorana-Weyl fermions. The partition functions of fractional super-
strings therefore involve the Zκ parafermion characters for K > 2, just as the
partition functions of the superstring and heterotic string involve the ordinary "Z2"
characters of the Majorana-Weyl fermions. Similarly, just as the usual fermion
characters can be written in terms of the classical Jacobi theta-functions <%, the
more general Zκ parafermion characters can be written in terms of the so-called
"string functions" cl

n originally introduced in the study of infinite-dimensional Lie
algebras [3]. For K = 2 these string functions are equivalent to the Jacobi $-
functions, but such is of course not the case for K > 2.

As is well-known in the K = 2 superstring theory, the spacetime properties of
the string spectrum are reflected at the partition-function level in the properties of
these fermion characters. For example, any superstring or heterotic string spectrum
exhibiting a spacetime supersymmetry gives rise to a partition function propor-
tional to the factor

J = 93

4- 92

4 - V , (1.2)

and the well-known Jacobi identity J = 0 is therefore responsible for the vanishing
of such partition functions at all mass levels of the theory. This reflects the exact
cancellation of spacetime bosonic states (which arise from the Neveu-Schwarz
sector of the theory and yield the terms $3

4 — $4

4 within J) and spacetime
fermionic states (which arise from the Ramond sector and yield the term $2

4).
A similar situation exists for the K > 2 fractional superstrings, where once

again we expect the spacetime properties of the fractional superstring spectrum to
be reflected in the partition function through identities satisfied by the Zκ parafer-
mion characters (i.e., by the string functions cl

n). Indeed, since the consistency of
fractional superstrings remains to be verified, the existence and use of such
identities provides an important step towards that goal. In this paper we obtain
and prove these new string-function identities, and discuss as well their relevance to
fractional superstrings.

In particular, we state and prove three series of identities. First is a series of
identities for the Zκ parafermion characters which are analogous to the K = 2
Jacobi identity and which can be considered to be its K > 2 generalizations. We
will see that these new identities arise naturally in the partition functions of
fractional superstrings, and their presence can therefore be interpreted as a signa-
ture of spacetime supersymmetry in fractional superstring spectra. For each value
of K, we will find that the corresponding identity in this series involves a vanishing
combination of only the Zκ parafermion characters; we will therefore, for reasons
to become clear, refer to this series of identities as the [K, 0] series. Second, just as
the individual terms within the K = 2 Jacobi factor J can be recognized as arising
from either spacetime bosonic or fermionic sectors, we will see that a similar
self-consistent grouping of terms is possible within each of our new Jacobi-like
identities for K > 2, This will result in a second series of new string-function
identities, each of which (as we will see) relates the K > 2 characters to the K = 2
characters. We will therefore refer to this series of identities as the [K, 2] series.
Finally, we find a third series of identities which generalize another well-known
ι9-function identity ι92$3ι94 = 2η3 (where η is the Dedekind ^/-function, the inverse
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of the boson character). Just as this identity relates the boson character η ~ί to the
fermion characters $>, our third series of identities relates the boson character η~1

to the Zκ parafermion characters cl

n. We will therefore refer to this series of
identities as the [X, 1] series, since (as we will see) the K = 1 character is equal to
the boson character η~*. As our notation suggests, these are undoubtedly only
three of many such [K1? K2]-type series of identities relating the characters of
ZKl and ZK2 parafermions to each other, and in this paper we also discuss how such
general [X1} K2] identities may be obtained and proven.

Clearly, many of these new identities may have interpretations in the theory of
Zκ parafermions which are independent of fractional superstrings. As a striking
example, our [16,2] identities indicate that the simple algebraic differences of
many of the Z16 characters are nothing but the Z2 (fermion) characters; the
implications of this fact for the relationship between ordinary fermions and
Z16 parafermions are yet to be investigated. Similar relationships exist as
well for other values of K. Therefore, we have organized this paper in such a
way that it can be read without a detailed understanding of fractional super-
strings per se. In Sect. 2.1 we provide a brief introduction to the Zκ parafermion
theory and review the definitions and properties of the Zκ parafermion characters
(or level-K string functions). In Sect. 2.2 we then discuss the role of the
Zκ parafermion theory in the fractional superstring, along the way introducing
some of our new identities and discussing the fractional-superstring contexts in
which they arise. Section 3 is simply a list of all of these new identities, and in
Sect. 4 we prove these identities using some powerful results from the theory of
modular functions. The proofs of the K > 2 identities exactly mirror the proofs
of the well-known K = 2 special cases, and accordingly we have kept the dis-
cussion in Sect. 4 sufficiently general so that it is clear how additional [Kί9 K2^
identities may be obtained and proven. A reader unconcerned with fractional
superstrings can skip Sect. 2.2, but it seems that the fractional superstring
framework provides interesting physical interpretations for many of these new
identities.

2. Zκ Parafermions and Fractional Superstrings

In this section we first review the definitions and properties of the Zκ parafermion
characters (or level-K string functions) which appear in our new identities. We then
provide a brief but self-contained introduction to the fractional superstring idea,
presenting many of these new identities in the physical contexts in which they arise
and discussing some of their implications.

2.1. The Zκ Parafermion Characters. The Zκ parafermion theory [1, 4] is closely
related to, and in fact can be derived from, the SU(2)K Wess-Zumino-Witten
(WZW) theory [5]. As is well-known, the Sl/(2)κ WZW theory can be viewed as
a tensor product of two independent theories: the first is that of a free U(i) boson

compactified on a circle or radius 2^/K9 and the remaining SU(2)κ/U(i) coset
theory is the Zκ parafermion theory. It therefore follows that the characters of these
remaining Zκ parafermion fields can be obtained from the full SU(2)K characters by
appropriately factoring out the 17(1) boson characters. We now review precisely
how this is done.
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We begin by considering the chiral 517(2)* WZW theory [5]. This theory
consists of holomorphic primary fields ΦJ

m(z) which can be organized into SU(2)
representations labelled by eZ/2, where 0 ^j ^ K/2 and \m\ ^j with j — meZ.
Since SU(2)K always has a U(l) subgroup which can be bosonized as a free boson

φ(z) compactified on a circle of radius 2^/K, we can correspondingly factor the
primary fields as

Φi(z) = ΦU*)exp ί~iφ(z) . (2.1)

The φj

m(z) are therefore primary fields of the coset SU(2)κ/U(ΐ) theory, i.e., of the
Zκ parafermion theory. The parafermion fields φj

m have conformal dimensions hlk,
where

- <*"*>•
and it is convenient to extend the definition of the parafermion fields outside the
range \m\ ^j via the identifications

Φl = Φin+κ = Φκ/fκll-m}. (2.3)

The fusion rules of these parafermion fields φj

m follow from those of the SU(2)K

theory:

[0fcjx|>fe]= Σ [0i1+*2], (2.4)
j = \h-J2\

where r = minOΊ + j2, K — jΊ — j2) and where the sectors [φ4] include the pri-
mary fields φj

m and their parafermion descendants. Note that a given field φj

m may
appear multiple times in the theory.

The SU(2)K characters χt(τ, z) for spin; = 1/2 are given in Ref. [3]:

> x »Θι f 2 (τ,z)- Θ _ l f 2 ( τ , z )

where the classical (Jacobi-Riemann) 6)-functions are defined by

®n,ι.(τ, ^) = Σ exp{2π/L(52τ - s z ) } for neZ (mod2L) . (2.6)
seZ + n/2L

These Θ-functions have relatively simple properties under modular transforma-
tions

, (2.7)
cτ + a

where y = ( , I is an element of the homogeneous modular group f = SL(2, Z)
\c ά)

if a,b,c,deZ and ad — be = 1. The modular group Γ = Γ/{ ±1} is generated by
T: τ -> τ + 1 and S: τ -» — 1/τ, and under the action of these two generators we
have

θBtL(τ + l,z) = e x p 2 π i — V βΠ t L(τ,z) , (2.8)
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and

/ 1 Λ / _ / > (ττrT.72^ 2L~1 f i r / w w O
,(τ,z). (2.9)

Here the square root indicates the branch with non-negative real part. From these
results the modular transformation properties of the full SU(2)K characters χ/(τ, z)
can be obtained.

We are primarily interested in obtaining the characters Z2^ of the parafermion
sectors \_φj

m~\, for the string functions cl

n are simply related to these characters via

Zi(τ) = η(τ)cl

n(τ) , (2.10)

where / = 2j, n = 2m, and where η is the Dedekind >/-function:

η(τ) = q1/24 Π (1 - «") = Σ (-l)"43("~1/6)2/2 (2.11)
«=1 n = 0

with q = exp{2πzτ}. However, since the Zκ parafermion theory is equivalent to the
SU(2)κ/U(ί) coset theory, the parafermion characters Zl

m can be obtained by
expanding the full SU(2)K characters χt(τ, z) in a basis of 17(1) characters [6]:

χ,(τ,z)= Σ lZl

n(τ)θn'κfτ'z)= *£ ' cl

n(τ)Θn,κ(τ, z) . (2.12)
n=-l *HTJ n=-l

Here Θ n t K ( τ , z ) / η ( τ ) are the characters of a 17(1) boson compactified at radius
2^/K. Equation (2.12), then, can be taken as a definition of the string functions cl

n.
Explicit expressions for the cl

n can be extracted from (2.5), (2.6), and (2.12). The
original formula obtained by Kac and Peterson [6] is

^n( τ)= C^(τ)] /__! sign(x)^x 5 (2.13)
χ,y

where the prime on the summation indicates that x and y must be chosen so that
three conditions are satisfied: (1) — |x| < y ^ |x|; (2) either x or (^ — x) must equal
(/ + 1)/[2(K + 2)] modulo 1; and (3) either y or (^ -f 3;) must equal n/(2K) modulo
1. For many calculational purposes, however, a useful alternative expression is [7]

X [g> (.; + m) + s(y-m) _ K+ 1 - 2j + r(K+ 1 -j-m) +s(K+ 1 -j + m)| Q 14)

where / — n e 2Z and where hl

n are the highest weights given in (2.2). Note that the
string functions exhibit the symmetries

cln = cLn = c%~Jn = cl

n + 2K, (2.15)

as a consequence of which for any K we are free to choose a "basis" of string
functions cl

n9 where 0 ^ / g K and 0 g n ^ nmax, where nmax equals / if / ̂  K/2, and
/ — 2 otherwise. Note also that the K-dependence of the string functions is sup-
pressed in this notation. From (2.14), then, we see that the string functions cl

n all
take the general form qRln(l + . . . ) , where within the parentheses all powers of
q are non-negative integers, and where
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For arbitrary fixed K, the set of string functions forms an admissible representa-
tion of the modular group, i.e., they close under modular transformations. In fact,
under T they transform as eigenfunctions:

ci;(τ), (2.17)

and under S they mix among themselves [6]:

Σ fe(U />0c£(τ) , (2.18)

Γ-n 'e2Z

where the mixing coefficients b(l, n, Γ, nr) are

,1,9,

The first square root in (2.18) once again indicates the branch with non-negative
real part. It is often convenient to define the linear combinations d1^ = cl

n ± c» ~l

when / and n are even: if K e 4Z, then these d ± -functions are also eigenfunctions of
Γ, and (2.18) implies that the d + -functions close exclusively amongst themselves
under S. The d~ -functions, on the other hand, close exclusively with themselves
and with the odd (/, n) string functions under S. We will see that for K > 2 all of our
new identities involve only the dl

n = dl

n

+ functions.
As expected, the string functions cl

n reduce to the better-known Dedekind
^/-function (2.11) and the Jacobi ^functions for the K = 1 and K = 2 special cases
respectively. In particular, for K = 1 there is only one independent string function
CQ, and since the ί'Z1 parafermion" theory SU(2)1/U(ί) consists of only the identity
field φo — 1, we immediately find

K=l: Z% = ηc% = l=>c% = η-i. (2.20)

Similarly, for K = 2, there are precisely three independent string functions CQ, c{,
and Co, and these can be expressed in terms of the three non-vanishing Jacobi
^-functions

&4(τ)= Π (!-«"' 1/2)2 (!-«"), (2-21)
n = l

via the relations

= 2:

(2.22)

We thus see that for K = 1 and K = 2, the string functions reproduce the boson
and fermion characters respectively; indeed, (2.22) reflects the fact that the Z2

parafermion theory is equivalent to that of a free fermion in two dimensions. For
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K > 2, on the other hand, the string functions are the characters of pαrαfermions,
and as such they are not a priori related in these simple ways to the boson and
fermion characters. However, we will see that our [K, 1] and [K, 2] series of
identities nevertheless provide such unexpected relations. These new identities arise
naturally in the partition functions of fractional superstrings, and it is in such
theories that they find possible physical interpretations.

2.2. Fractional Superstrings. We now provide a brief introduction to the theory of
fractional superstrings [2]. Since our purpose here is to motivate many of our new
string-function identities and discuss some of the physical contexts in which they
arise, our treatment will focus primarily on fractional-superstring partition fun-
ctions. A fuller treatment of these and other aspects of the fractional superstring
can be found in Refs. [2] and [8].

As indicated in the Introduction, the basic idea behind the construction of the
fractional superstring is simple [2]. Let us first recall the special case of the
superstring. The worldsheet structure of the superstring theory is closely related to
the SU(2)2 WZW theory [5]: the worldsheet superpartner of the coordinate boson
Xμ is a Majorana fermion ψμ which can be described by the SU(2)2/U(ί) coset
theory, and the spacetime coordinate Xμ can be interpreted as the remaining U(l)
boson but with its radius of compactification relaxed to infinity. (The spacetime
index μ runs from 0 to Dc — 1.) This boson-decompactification procedure destroys
the SU(2)2 symmetry of the original WZW model, but its superconformal sym-
metry survives and exists on the worldsheet.

The fractional superstring theory is related in the same way to the SU(2)K

WZW theory for K ^ 2. The coset theory SU(2)κ/U(l) is the Zκ parafermion
theory [1, 4], and once again we obtain the spacetime coordinate field Xμ by
completely decompactifying the remaining WZW (7(1) boson. Replacing the super-
current for K > 2 is a new chiral current [5, 9] whose conformal dimension is
(K -f 4)/(K + 2); these new currents have fractional spin, and transform the
bosonic Xμ fields to fractional-spin fields on the worldsheet. It is natural to refer to
this remaining worldsheet symmetry as a fractional superconformal symmetry
[10], and to the strings based on these worldsheet fractional supersymmetries as
fractional superstrings.

We are interested in constructing the one-loop partition functions Z that such
fractional superstring theories must have; in particular, we focus here on the "Type
Π" fractional superstring in which both the left-moving and right-moving world-
sheet theories exhibit a level-K fractional supersymmetry. We can therefore con-
sider, for simplicity, only the holomorphic components of Z; these are the terms
arising from the left-moving worldsheet degrees of freedom. As discussed in Sect.
2.1, for each K such terms will be products of the characters of free worldsheet
bosons Xμ and worldsheet Zκ parafermions (φj

m)μ: each coordinate boson Xμ

contributes to the partition function a factor of l/η (the character of an infinite-
radius boson), while its fractional superpartner (the corresponding worldsheet
parafermion) contributes a factor of ηcl

n. Thus, the net holomorphic contribution to
the fractional-superstring partition function from each spacetime dimension is
a factor of one string function cl

n. Even though the fractional superstring theory is
formulated in Dc spacetime dimensions (i.e., even though the full worldsheet
structure of the fractional superstring is a tensor product of Dc copies of the
individual boson/parafermion theories), the large gauge symmetry of critical string
theory is expected to remove all time-like and longitudinal components, thereby
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leaving a spectrum of physical states arising from the excitations of fields corres-
ponding to only the Dc — 2 transverse dimensions [2, 8]. This is completely
analogous to the case of ordinary K = 2 superstring theory, in which there are only
Dc — 2 = 8 "effective" dimensions giving rise to propagating fields (as is evident, for
example, in light-cone gauge). The holomorphic components of K-fractional super-
string partition functions therefore consist of (Dc — 2) factors of level-K string
functions, and take the general form cDc~2.

Let us now consider the contribution to the partition function from some of the
low-lying states of the fractional superstring; this will, as a byproduct, yield one
method of determining the critical dimension Dc. Recall that in general an expan-
sion £ anq

n of the holomorphic factors within the partition function Z indicates
the net number an of states with (left-moving) mass M2 = n contributing to that
term. As explained in Refs. [2] and [8], the left-moving bosonic vacuum state of the
Dc-dimensional fractional superstring corresponds to (co)Dc~2. Since (2.16) in-
dicates that this term takes the form

+ .. .), where Htach = - , (2.23)
2)

we see that for Dc > 2 the bosonic ground state is tachyonic. This is analogous to
the case of ordinary Type II superstrings, in which the bosonic ground state is
tachyonic with M2 = Htach = — i Similarly, the left-moving vector state in the
fractional superstring theory contributes to the first term in the expansion of

(c8)Λ'-3(cS)~ίH '«'(l + ...), where tfgraΐ = - - (2-24)

Since this vector state is the left-moving component of the graviton, the fractional
superstring theory will therefore be a theory of gravity (i.e., contain a massless
graviton) only if #grav = 0, or

Dc - 2 = ̂  . (2.25)
iv

Thus, for K = 2, 4, 8, and 16 we have the integer critical spacetime dimensions
Dc = 10, 6, 4, and 3 respectively.

Physically, we are interested only in fractional superstring theories which are
tachyon-free. This requires that all tachyonic states be projected out of the physical
spectrum, as occurs in physically sensible superstring and heterotic string theories.
Hence, when constructing partition functions Zκ for the closed "Type Π" K-
fractional superstrings, we seek modular-invariant combinations of terms of the
form cDc~2 = cΐ6fκ in which the massless sector (2.24) is present but the tachyonic
sector (2.23) is absent.

For the K = 2 (superstring) theory, of course, there exists such a unique
tachyon-free modular-invariant solution:

. (2.26)

Here τ2 is the imaginary part of τ, and A2 is the modular-invariant combination

56(c°0f(c2)5 + 8(cg)(cg)7 - 8(c})8 . (2.27)
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This can be translated into a more familiar form by recalling the equivalences (2.22)
between the K = 2 string functions and the Jacobi ^-functions; using these results,
we find that A2 can be rewritten as

where A = η24 and J is the vanishing Jacobi factor (1.2).
We can construct solutions satisfying our requirements for the K > 2 cases as

well. For K = 4, we find one tachyon-free modular-invariant partition function [2]

2 ), (2.29)

where A4 and B4 are the combinations

A4 = 4(cg + c$)3(c§) - 4(c2

0)
4 - 4(ci)4 + 32(c2)(cf)3 ,

B4 = 8(cg + 4)(cg)(c!)2 + 4(c° + c t ) 2 ( c 2

2 ) ( c 4

2 ) - 4(cg)2(ci)2 . (2.30)

Unlike A2, which was by itself modular-invariant, A4 and B4 mix amongst
themselves under modular transformations; under T we find that A4 and B4

transform as eigenfunctions with eigenvalues 4-1 and — 1 respectively, whereas
under S we find

1 / 1 / 2 3 \(A4

' "τ 2 \l/4 - l/2J\B4

Similarly, for the K = 8 closed "Type II" fractional superstring, we find the
unique tachyon-free modular-invariant partition function [2]

Z8(τ) - τ2

l(\A8\
2 + \BS\

2 + 2|C 8 | 2), (2.32)

where we now have the three combinations

As = 2(co + CQ)(CQ + CQ) — 2(co)2 — 2(c4)
2 + 8(c4c|),

Bs = 4(c°0 + cg)(c5) + 4(cg + c§)(c|) - 4(c4

0c
4

4) ,

C8 = 4(c\ + cf)(cl + cl) - 4(c2)2 . (2.33)

These combinations are eigenfunctions of Γ with eigenvalues +1, — 1, and — i
respectively, and under S they mix as follows:

S: h
*
c«/

j

τ

/1/2

1/2

1/2

1/2

1/2

-1/2

1

0

(2.34)

For the K = 16 fractional superstring there also exists a solution:

, (2.35)

where our combinations are

A16 = c2

0 + cέ4 - eg - c§ + 2ci4 ,

C16 = cl + ci4 - cl . (2.36)
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These combinations have eigenvalues +1 and — i under Γ, and under S they mix
as follows:

S:(M ' > P «)(M ,237,
V c i 6 / J-iτ 2^/2 V 1 -V \ c i6/

It turns out that each of the partition functions Zκ in this series has a remark-
able property: viewed as a function of q = e2πi\ each vanishes identically. We shall
prove this assertion in Sect. 4. In the K = 2 (superstring) case, we see from (2.26)
and (2.28) that this vanishing is equivalent to the Jacobi identity

J = 53

4 - 52

4 - V = 0 , (2.38)

and indeed it is well-known that the particle spectrum of this Type II superstring
exhibits a spacetime supersymmetry. Thus, the famous Jacobi identity (2.38) is the
reflection (at the partition-function level) of this underlying spacetime supersym-
metry. In analogous fashion, we interpret the vanishing of each Zκ for K > 2 as
a sign of spacetime supersymmetry in the/rαcί/onα/-superstring spectrum of states:
the contribution to Zκ from each bosonic state at every mass level in the theory is
cancelled by the (equal but opposite) contribution from a corresponding fermionic
state. Since these K > 2 partition functions Zκ have been written as the sums of
squares, it follows that the separate string-function combinations AK,BK, and Cκ

must each independently also vanish as functions of q:

A4 = B4 = A8 = B8 = C8 = A16 = CΪ6 = Q. (2.39)

These string-function identities (2.39) are therefore the K > 2 analogues of the
(K = 2) Jacobi identity, and we shall prove this series of new Jacobi-like identities
in Sect. 4.

We emphasize that in spite of (2.39), one-loop modular invariance continues to
require that the individual terms \AK\2, \BK\2, and \CK\2 appear together in our
partition functions Zκ in the combinations given in (2.29), (2.32), and (2.35). As in
the superstring, one-loop modular invariance not only guarantees multi-loop
modular invariance, but is also required for the internal consistency of the theory.
In fact, since (2.39) is the reflection of spacetime supersymmetry in the fractional-
superstring spectrum, such cancellations must be distinguished from those due to
"internal" (GSO-like) projections which act between states with the same statistics
and which thereby actually remove physical states from the theory.

Given that these partition functions Zκ vanish, we now turn to an examination
of the individual terms within each Zκ. In particular, since this vanishing is
a reflection of spacetime supersymmetry, we focus on determining the spacetime
statistics of the particles contributing to each of the terms in Zκ.

Let us first recall the well-understood K — 2 case. In the K = 2 superstring
partition function (where we are restricting ourselves to the left-moving holomor-
phic sector only), we have seen that the expression A2 is proportional to A ~1 / 2 J,
and it is well-known that within this factor J"1 / 2J the terms zJ~1 / 2(53

4 - Θ4

4)
represent the contributions from spacetime bosonic states (i.e., from the worldsheet
Neveu-Schwarz sector). Likewise, the remaining term A~1/2Θ2

4 within Δ~1/2J
represents the contributions from spacetime fermionic states (i.e., from the world-
sheet Ramond sector). Using the relations (2.22) between the Jacobi ^-functions
and the string functions, we see that the fermionic Ramond sector contributes only
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to the term (c{)8 within A2, while the remaining terms within A2 receive contribu-
tions from only the bosonic Neveu-Schwarz sector. Having thus distinguished
these contributions in terms of the K = 2 string functions, we can now easily
discern which of the worldsheet Z2 "parafermion" primary fields φj

m are respon-
sible for bosonic or fermionic statistics: since the character of each field φj

m is ηclln,
we see that the parafermion fields giving rise to spacetime fermionic states are
< / > ± ι / 2 , while those giving rise to spacetime bosonic states are φj

m with quantum
number m = 0. Thus, in light-cone gauge, spacetime bosons will have vertex
operators proportional to

* ~ Π (ΦSo) > (2 4°)
i = l

where 7 j = 0 or 1, and spacetime fermions will have vertex operators proportional
to

F - Π (</>mί2) , (2.41)
i = l

where mt = ± 1/2. Note that we are suppressing the contributions to the vertex
operators from the worldsheet bosons Xμ. Since the worldsheet bosons give rise
only to states with spacetime bosonic statistics, this suppression does not affect the
identification of the statistics of vertex operators. Similarly, any of the above
parafermion primary fields φj

m may be replaced by one of its descendant fields
without altering the statistics.

It is straightforward to demonstrate that the above vertex operator assignments
satisfy a number of self-consistency checks. First, we can recall the correspondence
between the Z2 parafermion fields and the free fermion fields of the Ising model

*, Φ1-!2ιi2 = σ*; (2.42)

here ψ is the Majorana fermion field and σ and σ f are the spin fields. These
worldsheet spin fields and their descendants create the (Ramond) spacetime fer-
mionic states from the vacuum, and the Majorana and identity fields similarly
create the (Neveu-Schwarz) spacetime bosonic states. This is therefore consistent
with the above vertex-operator assignments. More compellingly, we can check that
the Z2 parafermion algebra itself reproduces the correct spin-statistics selection
rules. Recall that according to the fusion rules (2.4), the m-quantum number of the
parafermion field is additive. From this and the field identifications (2.3), it follows
that our vertex operators (2.40) and (2.41) satisfy the following selection rules under
fusion:

FxF^B,

FxB->F ,

BxB-^B . (2.43)

This is, of course, in accordance with the required spin-statistics connection.
These considerations can easily be generalized to the K > 2 cases: here the

analogues of (2.40) and (2.41) are

B~Dγ\ (Φ& and F ~Dγ\ (φiίκ/4) , (2.44)
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and from the equivalences (2.3) and the fusion rules (2.4) we see that the selection
rules (2.43) are again satisfied.

This identification of the spacetime spin and statistics of fractional-superstring
states is compatible with the Aκ parts of the partition functions Zκ given above, for
each term within each Aκ can readily be identified as the contribution from either
a spacetime bosonic state or a spacetime fermionic state. It is therefore straightfor-
ward to decompose each Aκ into two pieces (just as was done for the K = 2 Jacobi
factor J), writing

Aκ = A"κ-Af

κ, (2.45)

where Ab

κ (respectively Af

κ) contains the terms in which all string functions are of
the form c'0 (respectively cl

κ/2):

K = 2: A\ = 8(cg)7(Cg) + 56(cg)5 (c2

0)
3 + 56(cg)3 (eg)5 + 8(c8)(c§)7 ,

K = 4: A\ = 4(c°0 + c4,)3^2,) - 4(c2,)4 ,

Λ{ EE 4(c2)4 - 32(c4.)3(c2.) ,

K = 8: A\ = 2(c°0 + cSMc2, + eg) - 2(c%)2 ,

A{ = 2(4)2 - 8(ct)(C|) ,

K = 16: A\6 = cl + c^-cl,

A{6 = c| - 2c|4 . (2.46)

This separation of terms is also consistent with our previous observations. First,
the term we identified as containing a massless vector particle in (2.24) is of the form
Πi(co)> m agreement with the form of the boson vertex operators given in (2.44);
note that it appears with a positive sign in Ab

κ. Next, we observe that according to
the above identification, massless fermions must correspond to the first term in the
g-expansion of

(cκκ',2

2)
16/κ ~ g°(l + . . . ) ; (2.47)

fortunately this term is present within each of our expressions A-&, and indeed it can
be shown [2] that the physical-state conditions on the massless state in (2.47) yield
the massless Dirac equation. The Fermi statistics carried by these spacetime
spinorial states is reflected in the negative sign with which this term appears in each
Aκ (or the positive sign within each Af

κ\ and in fact the coefficient for this term in
each case gives precisely the counting of physical states necessary for a Majorana
and/or Weyl fermion in the critical spacetime dimension Dc of the fractional
superstring. Furthermore, note that this left-moving spin- 1/2 massless fermionic
state in (2.47) can be tensored with the right-moving spin-1 massless bosonic state
in (2.24) (and vice versa) to form a massless spin-3/2 gravitino. Consistency would
then require that the closed fractional-superstring spectrum exhibit an N = 2
spacetime supersymmetry. The vanishing of each AK,BK, and Cκ (or the equality of
their respective bosonic and fermionic parts) is indeed consistent with this con-
clusion.

One new feature for K > 2 is the presence of additional terms within Ab

κ and
Af

κ which appear with the "wrong" signs (i.e., negative signs within the individual
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pieces Ab

κ and A&). Although these flipped signs might initially seem to contradict
our identification of the statistics of states, it turns out that the expressions Af

κ as
defined in (2.46) satisfy the following identities:

(2-48)

These new identities will be proven in Sect. 4. Note that since Aκ = Ab

κ — Af

κ = 0,
the bosonic terms Ab

κ also have the above ^-expansions. Since (2.48) implies that
the coefficients in the ^-expansions of each Ab

κ and Af

κ are all positive, we are led to
view the minus signs in Ab

κ and Af

κ as "internal" projections (or cancellations) of
degrees of freedom in the fractional superstrings. Furthermore, the pattern inherent
in this series of identities (matching smoothly as it does onto the well-understood
K = 2 case) also suggests that our statistics identification is indeed correct.

From the definitions of η and $2, Eqs. (2.11) and (2.21) respectively, it follows
that

-V'1"1' '
where c\ is a level K = 2 string function. Thus the identities (2.48) can be viewed as
relating the K > 2 parafermion characters (string functions) to K = 2 fermion
characters (Jacobi ^-functions), and indeed these identities are just some of the
identities in our [_K, 2] series. The full set is collected in Sect. 3.

One immediate consequence of (2.48) is that the level-by-level counting of
physical degrees of freedom in each of the fermionic A £ sectors in the fractional
superstring is identical to that of the Ramond sector of the usual superstring, except
with spacetime dimension Dc = 2 + 16/K instead of 10. At first glance, this obser-
vation might seem to imply that the Aκ spectrum of the fractional superstring can
itself be equivalently described by the worldsheet Majorana-fermion and free-
boson theories of the ordinary (K = 2) superstring, without any need for world-
sheet parafermions. Indeed, the spectrum of the spacetime fermionic sectors Af

κ of
the fractional superstring can be generated by Dc — 2 = 16/K pairs of free world-
sheet bosons Xμ and worldsheet Ramond fermions ψμ, as (2.48) and (2.49) jointly
suggest, and this is of course simply the operator content of the Ramond sector in
ordinary superstring theory. However, consider the counting of the spacetime
bosonic states (Neveu-Schwarz sector) for the superstring

K = 2: A\=- [(eg + cl)8 - (eg - eg)8] = 8 ( 3 ~ 4 ) . (2.50)
2 \ 16ηL J

Here ^/93/η and ^/ S4/η are the characters of worldsheet Majorana fermions
obeying Neveu-Schwarz boundary conditions, and it is for this reason that we
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have written $3

4 — $4

4 rather than $2

4 in (2.50). From (2.48), then, we can write the
K > 2 generalizations of (2.50) as

Q 4 Q 4 \ l / 2
#λ ~ #4. \

<93

4-

I6η12

f Ά

K = 8: At = 2
ίβη12

(2.51)

The right sides of (2.51) cannot be interpreted as the characters of any tensor
products of bosons and Majorana fermions because of the presence of the frac-
tional exponents for K > 2. Therefore, an attempted description of the Aκ part of
the fractional-superstring spectrum in terms of worldsheet bosons and fermions
fails, and indeed it is only the introduction of parafermions on the worldsheet which
allows us to generate the bosonic-sector partition functions given in (2.51).

Thus far we have focused exclusively on the Aκ sectors of the fractional
superstrings, and we have seen that obtaining the desired fractional exponents in
(2.51) (i.e., reducing the critical dimension from Dc = 10 to Dc = 2 + 16/K) is
achieved through the introduction of parafermions on the string worldsheet. There
is, however, a price that must be paid. Let us now rewrite the entire expression
AK = Ab

κ — Af

κ in terms of Jacobi 5-functions: using (2.51) for Ab

κ, and using (2.48)
and (2.49) jointly for Af

κ, we find

Aκ oc A~llκ{(&3

4 - V)2/* - U2S/K} , (2.52)

where A = η24. Thus, we see that only for K = 2 is Aκ by itself modular-invariant;
for K > 2 we find that Aκ does not close into itself under S, but rather requires the
introduction of additional sectors (such as those giving rise to Bκ and Cκ) in order
to achieve modular-invariant partition functions. This is the underlying reason
why these additional expressions appeared naturally in our partition functions Zκ.
Since these new sectors contain only massive states (i.e., states with masses at the
Planck scale), we consider their introduction a small price to pay for the ability to
decrease the critical spacetime dimension in string theory. Furthermore, we have
seen that these additional expressions Bκ and Cκ also vanish as functions of q, and
therefore the introduction of these additional sectors preserves the spacetime
supersymmetry at all mass levels of the theory.

These additional sectors, however, seem to contain much of the spacetime
physics which is intrinsically new to fractional superstrings. To see this, let us
consider the spacetime statistics of the states appearing in these sectors. The fields
corresponding to terms in the Bκ sector are themselves products of parafermion
fields, half of which have quantum number m — 0 and half of which have quantum
number m = K/4. Therefore, according to our previous discussion, their vertex
operators will have the following form in light-cone gauge:

QB~ Ό (ΦWίκ,J (2-53)

According to (2.44), these states are therefore neither fermions nor bosons in Dc

spacetime dimensions. A similar situation exists for the Cκ sectors. These sectors
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consist of terms of the form Πi(c^/4 ) [where we recall the identities (2.15)], and in
light-cone gauge these naturally correspond to vertex operators of the form

Qc~DΠ(ΦJiκ/s). (2.54)
ι = l

Once again, such states cannot be interpreted as bosons or fermions in Dc space-
time dimensions.

In order to gain some insight into the properties of these states, we can calculate
the fusion rules that these additional vertex operators QB and Qc satisfy. It turns
out that these rules depend on the level K of the fractional superstring, since the
number of parafermion fields within each vertex operator depends on the critical
dimension Dc (and hence on K}. For the K = 4 superstring, we have only the A4

and B4 sectors: the A4 sector can be decomposed into bosonic and fermionic pieces
satisfying the algebra (2.43), as we have seen, and the B4 sector introduces the
additional vertex-operator fusion rules:

QB x B -» QB ,

QB x QB -> B or F or QB . (2.55)

These selection rules are therefore suggestive of "spin-quarter" statistics for B4-
sector particles, since the fusing of two identical £4-sector particles can result in an
/44-sector fermion. Similarly, for the K = 8 superstring, we have three sectors: A8,
£8, and C8. While the As sector again leads to the fusion rules (2.43), the B8 sector
now introduces the (slightly modified) fusion rules:

QBxQB-*Bor F , (2.56)

and the C8 sector introduces the additional rules:

Qc x Qc -> B or F or QB . (2.57)

Once again, therefore, the βg-sector fusion rules suggest "spin-quarter" statistics,
and the C8-sector rules seem to indicate "spin-eighth" statistics. For the K = 16
string, on the other hand, there are only an Alβ and a C16 sector. In this case the
vertex operators contain only one parafermion field, and while the A16 sector again
leads to (2.43), the C16 sector now yields the fusion rules:

QcxQc->BorF . (2.58)

Thus in this instance it is the C16 sector which seems to suggest "spin-quarter"
statistics.
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Even though this discussion has focused on only the left-moving sectors of the
fractional superstrings, these considerations indicate that it is likely that the Bκ and
Cκ sectors break the usual spin-statistics connection in the critical dimension. (This
is not necessarily true of the K = 16 string, since fractional statistics are allowed in
three spacetime dimensions.) This means that, for the fractional superstrings to be
consistent, either Lorentz invariance, quantum mechanics, or locality must be
broken in some way in the critical dimension.

An important point following from all of these fusion rules is that the tree-level
scattering of particles in the Aκ sector can involve only other fields in the Aκ sector
as intermediate states. Since only the Aκ sectors contain the massless states, we see
that the Bκ and Cκ sectors make no contribution to the semi-classical low-energy
physics of the fractional superstrings. Therefore, since Lorentz invariance and the
spin-statistics connection appear to hold in the Aκ sector, the semi-classical
low-energy physics predicted by the fractional superstrings will indeed be the
familiar Yang-Mills and gravity theories (plus corrections proportional to powers
of the string tension, as in the usual superstring). At the string loop level, however,
fields in the Bκ or Cκ sectors can contribute to the scattering amplitudes of the
massless particles in the Aκ sector. Thus, it is only the quantum effects of the
fractional superstring which render the massless (i.e., potentially observable) phys-
ics inconsistent with the traditional spin-statistics connection. Since the lowest-
lying states in the Bκ and Cκ sectors have masses at the Planck scale, we expect the
quantum corrections to the massless-sector gravity and Yang-Mills theories to be
suppressed by factors of the Planck mass relative to the low-energy scale (at least
for sufficiently weak string coupling).

These violations of the spin-statistics connection, though potentially weak, may
nevertheless be important qualitative signals of stringy behavior. Indeed, there are
many possible mechanisms through which these Bκ and Cκ sectors might lead to
violations of the usual spin-statistics relation. First, as mentioned above, the
spin-statistics connection can be invalidated by sacrificing locality. Since strings are
extended objects, it is possible that the massive states in the Bκ and Cκ sectors
correspond to extended states that cannot be interpreted as elementary particles.
Indeed, the possibility of exotic statistics due to the extended nature of strings has
been discussed in Ref. [12]. This proposal relies on the non-trivial nature of the
motion group in string-configuration space in four spacetime dimensions. Another
possibility is that the states in the Bκ and Cκ sectors are soliton-like objects,
extended objects formed from the ^-sector fields. The slow fall-off of massless
scalar or vector fields could allow the violation of the usual statistics selection rules,
similar to what occurs in monopole-fermion systems [13].

On the other hand, the spin-statistics theorem can be avoided at the expense of
Lorentz invariance. Lorentz invariance is a symmetry known to hold only at
distances much larger than the Planck scale. As we have seen, these fractional
superstring theories lead to a breaking of Lorentz invariance only at the Planck
scale and only at the quantum loop level. Such a breaking may actually exist, and
simply not be observable experimentally at the present time.

Alternatively, even if the massive-sector breaking of Lorentz invariance in the
critical dimension Dc is strong even at low energies, a lower-dimensional Lorentz
invariance might still survive. In this scenario, the spacetime symmetry group of the
Bκ and Cκ sectors would have a D-dimensional Lorentz subgroup with D < Dc,
providing a mechanism for spontaneously compactifying from the critical dimen-
sion Dc down to D dimensions. Let us see explicitly how this might occur [8]. Recall
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the form of the £x-sector vertex operators given in (2.53). While we have seen that
these states cannot be interpreted as either bosons or fermions in Dc spacetime
dimensions, they may well have bosonic or fermionic interpretations in spacetime
dimensions D < Dc. For example, a bosonic interpretation for QB is possible if the
parafermion fields with quantum number m = 0 within (2.53) are viewed as the
(fractional) superpartners of the D < Dc worldsheet coordinate bosons, with the
remaining m φ 0 parafermion fields viewed as part of an "internal" worldsheet
theory resulting from spacetime compactification. In fact, it is shown in Ref. [8]
that a theory fully consistent with Lorentz invariance and the spin-statistics
connection is possible for the K = 4 and K = 8 cases if the spacetime dimensions
are compactified respectively to D = 4 and D = 3. Furthermore, such a compactifi-
cation scheme in the K = 4 case may also permit the construction of four-
dimensional fractional-superstring models containing chiral spacetime fermions
[8].

It is therefore evident that there is much potentially new physics to be dis-
covered within fractional superstring theory, whether a possible Planck-scale
breakdown of Lorentz invariance, the appearance of exotic statistics due to the
extended (non-local) nature of strings, or a "self-compactification" required for
internal consistency. While the interpretations of many of these effects have yet to
be resolved, the important point is that fractional superstrings offer a unique and
concrete framework in which to explore these issues.

3. List of New String-Function Identities

In this section we gather together all of the new string-function identities to be
proven in Sect. 4. As discussed in the Introduction, we refer to an identity as
a [X1? X2] identity if it relates string functions cl

n of level K^ to string functions of
level K2. Recall that the level K = 1 string function is equivalent to the Dedekind
//-function, and that the level K = 2 string functions are equivalent to the Jacobi
ι9rfunctions [these relations are given in (2.20) and (2.22)]. If we define the level
K = 0 function c$ = 0, then our new identities come in three distinct series: these
are the [K, 0], [K, 1], and [X, 2] series, for K = 2,4, 8, and 16. These identities are
listed below.

3.1. First Series: The [K, 0] Identities. This series of identities generalizes the
famous Jacobi "supersymmetry" identity on fermion characters:

j = £3

4 - S2

4 - V = 0 . (3.1)

In terms of K — 2 string functions, (3.1) is equivalent to

A2 Ξ 8(cg)7(cg) + 56(c°0)
5(c2

0)
3 + 56(cg)3(cg)5 + 8(c°0)(c2

0)
Ί - 8(c})8

= ί-A~ί'2J = 0, (3.2)

where A = η24. The Jacobi identity (3.1) can therefore be regarded as the [2, 0]
special case, and the analogous [K, 0] Jacobi-like "supersymmetry" identities
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for the parafermion characters at higher levels K are as follows. For K = 4, we
define

A4 = 4(c°0 + 4)3(c§) - 4(cg)4 - 4(c2)4 + 32(c2)(c4)3 ,

B4 = 8(cg + c3)(cg)(cf)2 + 4(c°0 + ct)2(c2

2)(c4

2) - 4(c2.)2 (c2)2 , (3.3)

and for K = 8, we define

Aβ = 2(c°0 + c8

0)(c2

0 + eg) - 2(d)2 - 2(d)2

B8 Ξ 4(cg + cS)(c4) + 4(c§ + cg)(c2) -

C8 = 4(ci + c!)(c! + eg) - 4(c4)2 . (3.4)

Similarly, for K = 16, we define

A16 = eg + cj4 - eg - c| + 2c|4 ,

C16 = cl + c}4 - cj . (3.5)

Then each of these expressions also vanishes as a function of q:

AZ — ^4 = B$ = ^8 = -^8 = Cg = AI$ = Cig = 0 . (3.6)

These new "Jacobi-like" identities therefore form the [X, 0] series. Note that while
the Jacobi identity is the unique such identity for K = 2, for each level K > 2 there
are in fact several independent Jacobi-like [_K, 0] identities.

3.2. Second Series: The [K, 2] Identities. This series of identities relates the Zκ

parafermion characters to the ordinary fermion characters, and are the higher-K
analogues of the K = 2 "identities" Δ ' 1/2 θ, 4 = Δ ~ 1/2 5f

4 for ί = 2, 3, 4.
For K = 4, we define the following quantities:

Ξ 4c2,(C

2

2)
3 -

. . . ) , (3.7)

where dj, Ξ cj, + c^~'. Note that A\- A{ = A4. Then our [4, 2] identities, which
contain the [4, 0] Jacobi-like identities A4 = B4 = 0 as a subset, are as follows:

A\ = θ2

2/η6 ,

A{ = d2

2/η6 ,

(3.8)
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As a consequence of (3.8), we have

(A\ + A{ )2 - 16C4D4 = 4A ~ l/2J = 0 . (3.9)

Similarly, for K = 8, we define

(3.10)

Once again A\ — A{ = As. Then our [8, 2] identities, which contain the [8, 0]
Jacobi-like identities A8 = Bs = C8 = 0 as a subset, are as follows:

= &2/η3 ,

F 8 = (&3 + &4)/η3 (3.11)

As a consequence of (3.11), we have

(£8 + F8)
4 - (Es - F8)

4 - 16μ| + Af

s)
B = A-1/2J = Q. (3.12)

Similarly, for K = 16, we define the five quantities:

-d8

2 = q-1/16(l + . . . ) ; (3.13)
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here too A\6 — A{6 = A16. Then our [16, 2] identities, which likewise contain the
[16, 0] Jacobi-like identities A16 = C16 = 0 as a subset, are as follows:

, (3.14)

where on the right sides of these equations the string functions are at level K = 2. As
a consequence of (3.14), we have

(£16 + F16)
8 - (£16 - F16)

8 - 1 μ*16 + Λ{6)
8 = Λ -1/2 J = 0 . (3.15)

The identities (3.14) are in fact quite remarkable, for they are linear relations
indicating that the differences of certain K = 16 string functions are nothing but
the K = 2 string functions. The full consequences of these relations between the Z2

fermionic characters and the Z16 parafermionic characters are yet to be explored.

3.3. Third Series: The [X, 1] Identities. This new series of identities generalizes the
^-function identity

Θ23ι$4 = 2η3 (3.16)

to levels K > 2, thereby relating the parafermion characters cl

n to the boson
character η.

This series of identities actually starts at K = 1, where we have the relation
(2.20):

ηc%= I . (3.17)

For K = 2, as mentioned, we have the identity

Θ23334 = 2η\ (3.18)

which can be written in terms of the K = 2 string functions as

f/ 3 β 2 = l , (3.19)
where

(3.20)

[Thus (3.19) is in fact equivalent to the square root of (3.18), and thereby contains
the extra information about the sign of the square root.] Equations (3.17) and (3.19)
are the first two identities in our [K, 1] series, each of the form ηPΣ(c)P = 1 f°Γ

some power p. The corresponding [K, 1] identities for K > 2 are as follows. For
K = 4, we have

η2Q4 = l, (3.21)
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where

Q4 = (eg + c4

0)c2

2 - 1c\c\ , (3.22)

and for K = 8, we have

η3Qs = 1 , (3.23)

where

(3.24)

Note that this expression for Q8 can be rewritten in a variety of forms due to the
[8, 0] Jacobi-like identities AB = Bs = C8 = 0. Similarly, for K = 16, we define the
string-function combinations dl

n = cl

n + c%~1. Then our corresponding [16,1]

l, (3.25)

where 2ζ)16 is the following quantity:

- 2άlά\ti? - SdUldl + 3d°0d
6

6d
6

6 + 2d°0d
162d1

6

6 - dldldl

This expression for Q16 can also be rewritten in many different forms by using the
[16,0] Jacobi-like identities AΪ6 = C16 = 0. Thus, defining Qί = eg = η'1 for
K = 1, we have

O^ = O—OO—O=O (3 27)

3.4. Comments on Other Identities. As indicated in the Introduction, these [X, 0],
[K, 1], and [X, 2] identities are undoubtedly only some of the general [X l5 K2]
identities which exist. Of course, implicit in the above identities are [J£l5£2]
relations which do not involve the K = 1 or K = 2 string functions; for example, we
have the identities (3.9), (3.12), (3.15), and (3.27), as well as additional identities such
as

± (C4 ± D4) = (E8 ± F8)
2 = (£16 ± F16)

4 ,

l- (Al + A{}2 = (C8 + D8)
4 + (£16 - F16)

8 ,

(βι6)
6 = \ (A\ + A{)(F8

2 - £8

2)(β4)
6 . (3.28)

However, these identities are not independent of those in the three preceding series.
We also point out that there can exist several distinct series of a given ^K1, K2~\

type. For example, although the above three series are all of the form

Σ(cκ=κl)
p = Σ(cκ=κ2Y, (3.29)
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where p is an arbitrary power, there also exist more general "mixed" identities of
the form

Σ {(CK-K^CK-K^} = Σ {(cκ^Y(cκ^κ2)
q} (330)

which cannot be rewritten in the form (3.29) and which are indeed independent of
all such identities. For example, consider the following three mixed identities
involving the K = 2 and K = 4 string functions (where we have distinguished the
two sets of string functions by writing the K = 2 string functions in terms of the
Jacobi ^-functions):

- 34

2) = [ - 4(d°0)
2dtdi - (^)3rfi] S2

2 .

(3.31)

While the first of these identities follows directly from (3.8), the remaining two are
in fact new identities independent of any presented thus far.

It thus appears that there are many unexpected identities involving string
functions at different levels K, implying a rich set of relations between the charac-
ters of different Zκ parafermions (and suggesting various as-yet-undiscovered
relationships between the different Zκ parafermion theories themselves). In Sect.
4 we will prove the identities in our three series, and discuss how others, such as
those in (3.31), might be obtained.

4. Proofs of the Identities

In this section we prove the series of identities listed in Sect. 3. We will find that the
proofs of the new K > 2 cases exactly mirror the traditional proofs for the known
K = 2 special cases, thus demonstrating that each series of identities shares the
same underlying mathematical basis. Our proofs make use of some fundamental
and powerful results from the theory of modular functions, suitably generalized so
as to be appropriate for the K > 2 cases. In the first part of this section, therefore,
we provide a review of these results from modular function theory, ultimately
quoting a theorem upon which our proofs rest. The second part of this section then
contains the proofs of our identities. We have kept our discussion sufficiently
general throughout in the hope that methods of obtaining and proving additional
[X1? K2~] identities will become self-evident.

4.1. Results from Modular Function Theory. We first provide a review of those
aspects of modular function theory which will be relevant for the proofs of our
identities. For more details, we refer the reader to any of the standard modular
function theory references [14-16]; in particular, our approach is based upon those
of Refs. [14] and [15].

The homogeneous modular group is Γ = SL(2, Z), the group formed by the set
of 2 x 2 matrices with integer entries and unit determinant under matrix multiplica-
tion. The inhomogeneous modular group Γ (the so-called "modular group") is the
quotient group Γ = PSL(2, Z) = Γ/{ ± 1}>the subgroup of Γ in which every matrix



New Jacobi-like Identities for Zκ Parafermion Characters 493

Aεf is identified with the matrix —A. We shall need to consider various
subgroups of Γ. Three series of subgroups of Γ may be defined as follows:

Γ0(ΛΓ):

N
where = signifies equality modulo N. We thus see that the elements of Γ(ΛΓ),

/I 0\ /I *\ /* *
Γ 1 ( N ) , and Γ 0 ( N ) are respectively of the forms I , I 1, and I

modulo JV (where the asterisk indicates the absence of any defining relation), and
therefore Γ(N) c Γ^N) c Γ0(ΛO c= Γ for ΛΓ > 1. For AT = 1 these groups each
equal Γ. Such groups are called congruence subgroups of Γ, with Γ(N) called the
principal congruence subgroups; in general a congruence subgroup Γ' c= Γ is said
to be of level N if Γ(N) c Γ'. (This level Λ/" bears no relation to the Kac-Moody
level K.) Only the principal congruence subgroups Γ(JV) are normal subgroups of
Γ, and in fact this series of subgroups will concern us the most. Note that Γ(N) is
isomorphic to Γ/SL(2, ZN)9 where ZN is the set of integers modulo N. In particular,
SL(2, Z t) « {1} since all elements of SL(2, Z) are, modulo 1, isomorphic to the
identity.

Each of the congruence subgroups Γ; in (4.1) has finite index in Γ:

[Γ:Γ'] ΞdimΓ/Γ'< oo , (4.2)

and straightforward number-theoretic arguments [14, 15] yield the values:

p\N

H
p\N

p\N

where the products are taken over all primes p > 1 dividing N and where

1 for N = 1, 2

1/2 for N > 2 . (4.4)

These factors of εN in (4.3) reflect the fact that 1 = — 1 for N = 1, 2, but not for

N > 2. From (4.3), therefore, we find

ί 1 for N = 1

[Γ:Γ(N)] = |ό for N = 2 (4.5)

24 for N = 4 .
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For any congruence subgroups Γ' with finite index in Γ, we can identify two
generators y^eΓ' ( i = l , 2) and a set of coset representatives α/eF
(j = 1, . . . , [Γ: Γ']). The y f are generators in the sense that every element of Γ' can
be written as a "word" in yl and y2 The set of coset representatives (also called
a transversal) contains one element from each coset of Γ/Γ'; therefore only one of
these coset representatives is in Γ' itself, and we are free to choose this representat-
ive to be a! = 1. At level N = 1, we have only the full modular group Γ: its two
generators are

*•(? -.') - -(; o
and its sole "coset" representative is of course a1 = 1. At higher levels there are
more possibilities. At levels N = 2 and N = 4, for example, we find the following
generators and transversals for the principal congruence subgroups:

Γ(2): generators: T2,ST~2S

transversal: (1, S, Γ, ST9 TS, T~ *ST}

Γ(4): generators: Γ4, ST4S

transversal: [X, T2X, ST2SX, T2ST2SX}

where X = {l,S,T9 ST9 TS, TST} , (4.7)

whereas for the Γ0 subgroups we find:1

Γ0(2): generators: Γ, ST2S

transversal: {1, S, ST}

Γ0 (4): generators: T,ST~4S

transversal: (1, S, ST, ST2, ST\ ST2S} . (4.8)

Note that Γ0(N) and ΓΊ(N) contain Γfor all JV; therefore one of the generators of
these groups is always T. This is not the case for the principal subgroups Γ(N),
which contain Γonly for N = 1. As we shall see, we will be primarily interested in
those subgroups for which T is not a generator.

The modular group Γ is isomorphic to the set of linear-fractional transforma-
tions

at -f- b
τ -> -, ad — be = 1, α, fe, c, d e Z , (4.9)

cτ -f a

of τ e H (where H is the complex upper half-plane); indeed, we can identify the

transformation (4.9) with the group element ( I e Γ. A fundamental domain
\c dj

2F = ̂ [Γ] for Γ, therefore, is a set of points τeH such that no two are related by
a transformation of the form (4.9). It is conventional to choose this domain to be

1 These are actually right transversals (representatives of right cosets). For the Γ(N) subgroups
the right and left transversals coincide because Γ(N) is a normal subgroup of Γ for every N
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contiguous and symmetric about the τ2 axis (where τ1 and τ2 are respectively the
real and imaginary parts of τ):

= τeC |τ 2 > 0, |T l | ̂  , |τ| ^ 1 . (4.10)

A fundamental domain «^"[Γ'] corresponding to any subgroup Γ' c Γ must
therefore be larger than [̂Γ], and is in fact the totality of points obtained by
acting upon each point in J^[Γ] with each of the coset representatives (including
l )of Γ':

^[Γ']Ξ

[\J^[Γ]. (4.11)
j = ι

One typically chooses the transversal {α7 } in such a way that with the choice (4.10),
the domain ^"[Γ'] in (4.11) is contiguous.

There are certain points in the complex upper half-plane H which are called
cusp points: these are the point τ^ = (0, oo) = ioo, along with the set Q (i.e.,
the points with τ2 = 0 and rational values of τ t). We shall need to distinguish
those cusp points which are Γ'-inequivalent for a given congruence subgroup
Γ' c Γ (i.e., those cusp points not related by a transformation in Γ'). At level
N = 1 the only congruence subgroup is Γ itself, and indeed it is a simple matter
to see that all of the cusp points are in the same Γ-equivalence class. The set
of Γ-inequivalent cusp points therefore contains only one element, and the typical
choice TOO is consistent with the choice of fundamental domain (4.10). Given this
choice, it follows that at any higher level N > 1, all Γ'-inequivalent cusps for
Γ' c Γ must be in the set {a^^} where {αί5 / = ! , . . . , [Γ: Γ']} is the transversal
of Γ' in Γ. Such points α^ for i > 1 are all eQ. However, even the points
in this restricted set are not necessarily Γ'-inequivalent: in general two such points
α Too and α/r^ are Γ'-inequivalent if and only if there does not exist an integer
n such that α/ Γ

l lαI

:~1eΓ'. It turns out, for example, that for Γ' = Γ0(p) with
p a prime number there are only two Γ'-inequivalent cusp points (0 and Ό, while
for Γ1 = Γ0(p2) there are p + 1 such cusps points: 0, T^, and — l/(rp) for
r = 1, . . . , p — 1. A listing of the Γ'-inequivalent cusp points for the congruence
subgroups at levels N = 2 and N = 4 which will be relevant to our later discussion
is as follows:

Γ
0
(2): cusps: 0, τ^

 :

Γ
0
 (4): cusps: 0,1̂ ,

Γ(2): cusps: 0,1̂ ,

-1/2,

-1 ,

Γ(4): cusps: 0, τ^ - 1, - 1/2, 1, 3/2, 2 . (4.12)

Such points are called cusp points of Γ' because in each case fundamental domains
J^[Γr] can be chosen whose shapes are cusp-like at each of these points (and
"cusp"-like at τ^).

We can now rigorously define modular functions, modular forms, and cusp
forms with respect to these general groups Γ' ^ Γ. First we consider the full
modular group Γ (i.e., level N = 1). A modular function of weight fe e 2Z with respect
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to Γ is defined to be a function /(τ) satisfying two conditions. First, it must have an
expansion in powers of q = exp {2πίτ } of the form

/(τ) = Σ *»«" > (4 13)
neZ

where there exists an m e Z such that an = 0 for all n < m (i.e., there can be at most
finitely many non-zero values of an with n < 0). This condition therefore ensures
that /(τ) is meromorphic at τ = τ^ (i.e., q = 0). Second, /(τ) must satisfy

f(yτ) = (cτ + d)kf(τ) (4.14)

for all y ΞΞ I )eΓ and τe#. It is convenient to define the stroke operator [α]
\c dj

for any α ΞΞ ( )eSL(2, Z): this operator [α] transforms a modular function
V c d/

/ of weight k to /[α], where

(/M)(τ) = (cτ + J)- fc/(ατ). (4.15)

With this notation, then, (4.14) becomes the requirement that

=/ for a l ly eΓ, (4.16)

and it is clear that any function / invariant under the two Γ-generators [5] and
[Γ] therefore satisfies (4.16). Note that the set of modular functions of a given
weight k forms a complex vector space, and that the product of two modular
functions of weights /q and k2 respectively is a modular function of weight kl + /c2.

Any such modular function / which additionally satisfies an = 0 for all n < 0 in
(4.13) is said to be a modular form with respect to Γ. Modular forms are therefore
holomorphic (rather than merely meromorphic) at τ — τ^, remaining finite at
q = 0. If in fact a0 = 0 as well, so that the modular form / actually vanishes at
q = 0, then / is called a cusp form. The complex vector spaces of modular forms and
cusp forms of weight k with respect to Γ are respectively denoted Mfc[Γ] and
Sk[Γ];

It is straightforward to generalize these definitions to congruence subgroups at
higher levels N > 1. For any such subgroup Γ', a modular function / of weight
/ce2Z with respect to Γ' must again satisfy two conditions. The natural generaliza-
tion of (4.16) is the requirement that

/[y]=/ f o r a l l y e Γ ' , (4.17)

and once again it is sufficient to demonstrate that f [ y { ] =f for the two generators
ji of Γ' in order to demonstrate (4.17). The generalization of (4.13), on the other
hand, is a bit more subtle. Equation (4.13) was the requirement that / be meromor-
phic at q = 0 (i.e., at τ = τ^, the cusp point of Γ). For subgroups Γ' at higher levels
N > 1, we therefore analogously require that / be meromorphic at each of the
Γ'-inequivalent cusp points of Γ'. This meromorphicity is not determined by
evaluating /(τ) as τ approaches each of these cusp points, however; in fact, since
each of these additional cusp points is eQ, we have \q\ = 1 at these points and
therefore a straightforward ^-expansion of / does not converge. Instead, meromor-
phicity at the cusps is defined as follows. We have seen that this set of Γ'-
inequivalent cusp points can be written as {αfT^}, where these o^ are among (but
not necessarily all of) the coset representatives of Γ' in Γ. Let s denote the set of
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these αf (hence s is a subset of the transversal). The analogue of (4.13) is therefore the
requirement that for each αf e s, we can perform a ^-expansion

/[<**]= Σ <VΛ (4-18)
neZ/N

where, as before, there exists an m e Z/N such that an = 0 for all n < m. Note that
n and m can now take values in the larger set Z/N (rather than Z itself). Also note
that for i > 1 we have oCiφΓ', so (4.18) is in general quite stringent.

It is clear that at level N = 1, (4.18) reduces to (4.13), for in this case
s = {oci} = {!}. For N > 1, the i = 1 case of (4.18) implies meromorphicity at τ^,
and the i > 1 cases imply meromorphicity at each of the remaining Γ'-inequivalent
cusps e Q. Note that (4.18) is in fact sufficient to imply that / is actually meromor-
phic at all of the cusp points of Γ'.

Once again, if indeed an = 0 for all n < 0 and each αf e s (so that / is holomor-
phic at each Γ'-cusp, remaining finite), then / is deemed a modular form of weight
k with respect to Γ'. If additionally a0 = 0 for each αf e s (so that / vanishes at each
cusp), then / is a cusp form with respect to Γ'. The complex vector spaces of such
weight-fc modular forms and cusp forms are denoted Mfc[Γ'] and Sk\_Γ'~\ respec-
tively; note that Mfc[Γ] £ Mk[Γ'] for all Γ' c Γ, as well as the property
Mfcl[Γ']M,2[Γ']c:Mfel+fc2[Γ'].

We are now in a position to state the fundamental theorem [15] upon which the
proofs of our identities rest.

Theorem. Let Γf <Ξ Γ be any level- N > 1 congruence subgroup of the modular group
Γ, and let Mfc[Γ'] denote the space of modular forms of weight fce2Z with respect to
Γ'. Then the sizes of such spaces depend on k as follows:

• dimMfc[Γ'] = Ofor all k < 0.
• dimMfc[Γ'] = lfork = Q.
• For k > 0 a general formula exists as well. Although we will not require these

k > 0 results for the proofs of our specific identities, we include the following
two special cases which are likely to be useful in proving additional [K l5 K2]
identities'.
• For level N — 1 (i.e., Γ' = Γ), we have

, f°r/ = 2 , (4.19)
+ 1 otherwise v '

where [x] is the greatest integer < x9 and = signifies equality modulo 12.
• For the principal congruence subgroups Γ(N) at levels N > 1, we have

instead:

~ [Γ: Γ(ΛO] , (4.20)

where the index [Γ: Γ(N)~] is given in (4.3).

Thus, for example, in our cases of interest this theorem tells us that for Γ' = Γ
we have

for / c < 0 or / c - 2 .
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whereas for Γ' = Γ(N) we have

0 for all N > 1, k < 0

for all N > 1, fc = 0
dimMfc[Γ(ΛO] - < (4.22)L V ; N 1 f * for N = 2,k>0

for AT = 4, fe> 0 .

These dimensions are important, for they tell us the number of "basis" modular
forms in terms of which any modular form of weight k can be expressed as
a polynomial. For example, since dimMo[Γ'] = 1 for all congruence subgroups
Γ' c Γ, and since /= 1 is a valid Γ '-modular form of weight k = 0, all Γ '-modular
forms of weight k = 0 must be constants:

M0[Γ7] = C , (4.23)

where C is the space of complex numbers. Similarly, since dimM/c[Γ/] = 0 for all
fc < 0, all Γ '-modular forms of negative weight must vanish identically:

/6MJk[Γ']=>/=0 f o r a l l / c < 0 . (4.24)

Likewise, for k — 4, 6, 8, 10, or 14, we see that all /εMΛ[Γ] must be multiples of
a single function Ek; these "basis functions" Ek(τ) form the so-called Eisenstein
series [14-16].

Finally, we remark that equally powerful results can be obtained for the spaces
of cusp forms Sfc[Γ'], as well as for the cases when k is odd (and in fact
half-integral). However, the above results will be sufficient for the proofs of our
series of identities.

4.2. Proofs of the Identities. Given the theorem presented in the last subsection, it
is relatively straightforward to prove each of the series of identities listed in Sect. 3.
The basic idea of each proof is the same: we demonstrate that our string-function
expressions are modular forms of a given weight with respect to an appropriate
congruence subgroup Γ' ^ Γ, whereupon the theorem allows us to conclude the
claimed identity. The primary subtleties involve properly formulating the identities
and identifying the relevant congruence subgroups.

Since all of our identities involve combinations of the Dedekind ?/-function, the
Jacobi $Γfunctions, and the string functions cl

n9 let us first recall how these
functions transform under the modular group. Under Γ, their respective trans-
formation rules take the forms:

η(τ + 1) = aη(τ) ,

^τ+l) = ΣαyS/τ),
j

cl

n(τ + 1) = α'ci(τ) (4.25)

(where α, α', and αy indicate various phases and mixing matrices), while under S we
have

Σ βln«'Cn>(τ) (4-26)
Γ,ιΓ
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(where again the /Γs represent various phases and mixing matrices). Thus, we see
that even though these functions themselves are not invariant under S and Γ, they
each transform covariantly under the modular group, filling out (in the case of fy
and cl

n) representations of the modular group with dimensions greater than 1.
Furthermore, we see from (4.25) and (4.26) that the ^/-function and the ^-functions
transform with positive modular weight k = 1/2, while the string functions
cl

n transform with negative modular weight k — — 1/2.
Given these observations, it is straightforward to determine the modular

weights of each of our identities listed in Sect. 3. For the first series of identities, we
see that each expression Aκ, Bκ, or Cκ contains 16 /K string-function factors;
indeed, each of these identities takes the general form

Σ(c)16/* = 0. (4.27)

Thus, for any Kac-Moody level K, the level-X identity in the first series has
modular weight fc = — 8/K. Similarly, the second series of identities involves
combinations of all three of our functions (η, 9, and c); however, for each level K,
the level-K identity always takes the general form

\s/κ

=0. (4.28)

from which it follows once again that the level-K identity in this series has modular
weight k = — 8/K. A similar situation exists for the third series as well: each of these
identities takes the general form

η*ΣW=l (4.29)

for some integer power p, and therefore for any K these identities have modular
weight fc = 0.

Hence it is clear that all of these identities can be made to follow from the
theorem given in the last subsection, provided each can be rewritten in such
a manner that their left sides are modular forms of appropriate weight fc with
respect to a congruence subgroup Γ' £ Γ.

First Series-the \_K, 0] Identities. We begin by proving the K = 2 identity A2 = 0,
as given in Sect. 3. This is of course the famous Jacobi ^-function identity, and our
subsequent proofs will be generalizations of this proof. Recall that A2 can be
rewritten in terms of θ and η functions as ^zl~1/2J, where A = η24 and
J = <93

4 - 92

4 ~ #44 Thus it is clear that A2 has modular weight fc = -8/K
= — 4, and since ./42[S] = A2[Ί"] = A2, we see that A2 is a modular function with
respect to the full modular group Γ. It is also straightforward to check that A2 is
tachyon-free: by this we mean that in a ^-expansion

A2 = Σ^q" (4.30)
n

we find an = 0 for all n < 0. It then follows that A2eM-4[Γ], whereupon the
theorem in the last subsection gives the result A2 = 0. Note that since
A2 = 2Δ~ 1/2 J, and since it is easy to check that A ~ l/2 Φ 0, this result implies the
Jacobi identity J = 0. Note that it would have been more difficult to prove this
latter identity directly, for even though the dimension of M2[Γ] is zero, J itself is
not invariant under S and T (indeed, one finds J[S] = J[Γ] = — J). The extra
factor of zl~1 / 2, which appears naturally in the definition of A2, absorbs this
unwanted minus sign and leads to the simple proof A2 = 0.
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Let us now proceed to the K = 4 case: we wish to prove A4 = B4 = 0. Unlike
the K = 2 case, A4 and B4 are not each invariant under the stroke operators [S]
and [Γ]; rather, they together fill out a ίwo-dimensional representation of Γ:

3 \(A4

-l/2j\B4

(4.31)

and we wish to prove that A4 and B4 individually vanish. This is the reason it is
necessary to consider the congruence subgroups Γ' a Γ.

Let us first prove A4 = 0. It is clear that A4 is not modular-invariant under [5],
so the full modular group Γ cannot be the relevant group in this case. Instead, let us
consider Γ0(2). From the mixing matrices (4.31) we have A4[T~\ = A4, as well as

= *ίπQ44 + 354Vs]

= (eίπ)2A4 = A4. (4.32)

The second equality follows from the fact that A4 and B4 are both invariant under
Γ2; note also that in general /[α/?] = (/[α]) [/?]. Thus, the first condition (4.17)
for A4 to be a Γ0(2) modular form is satisfied: A4 is invariant under all y e Γ0(2). We
now must show that the second condition (4.18) is satisfied as well. We see from
(4.12) that for Γ' = Γ0(2) there are only two Γ'-independent cusp points, τ^ and 0,
and therefore the transversal subset s is only {1, S}. It is clear that ^44[1] = A4 has
a ^-expansion of the proper form (4.18) (with m = 0), and similarly we see that
[̂S] = eiπ(^A4 + 3B4) also has a g-expansion of the proper form (with m = 0,

since both A4 and B4 are tachyon-free). It therefore follows that A*eM_2[Γ0(2)]?

whereupon we obtain the identity A4 = 0.
Note that there are indeed other ways we might have obtained this result. For

instance, let us consider the congruence subgroup Γ' = Γ0(4). It is straightforward
to check that A4 is invariant under both generators [Γ4] and [SΓ~4S], and for
this congruence subgroup the cusp points are τ^, 0, and —1/2. We have already
shown that A4 has the proper behavior at the first two of these cusp points; let us

therefore focus on the third. Note that —1/2 = αr^, where α = ( leΓ.
2 -3,

We therefore must examine A4[α]. Since it turns out that α = ST2ST~1, we have

= (eί«)M4[Γ-1] = X 4 . (4.33)

Therefore A4 has the same behavior at the cusp point —1/2 as it does at T^,
and since A4 is tachyon-free (i.e., since A4 remains finite at τ^), we find
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^44eM_2[Γo(4)]. This again implies the conclusion A4 = 0. In fact, one can
similarly demonstrate that ^4eM_2[Γ(2)] and ^44eM_2[Γ(4)], each of which
leads as well to this result.

Having proven A4 = 0, we find that there are two ways to prove B4 = 0. The
first is indirect but simpler: since

^ A4 + 3£4 J = 0 , (4.34)

we must have B4 = 0. A more direct method (not relying on the identity A4 = 0)
is to construct an independent proof along the above lines. Note that since B4 is
not invariant under [Γ], we cannot consider any subgroups for which T is
a generator; we are therefore restricted to consideration of the principal congruence
subgroups Γ(N). It is straightforward to demonstrate that jB4eM_2[F(ΛO],
where N is either 2 or 4, and therefore B4 = 0. In fact, B4 is a cusp form with respect
to these groups Γ(N)9 since B4 a priori has a q-expansion of the form qh(l + . . .)
where h > 0.

Let us now collect together the essential ingredients in these proofs, in order
to frame a general argument. First, the set of string-function expressions
{AK,BK9 . . .} must be closed under [5] and [Γ], forming a multi-dimensional
representation Rκ of the modular group Γ; furthermore, a congruence subgroup
Γ' e Γ must be identified such that each member of the representation Rκ is
itself invariant under the generators of Γ' (i.e., each member must separately
comprise a one-dimGnsional representation of Γ'). Second, this entire representa-
tion Rκ must transform under the modular group with negative even modular
weight fe. Third, all members of Rκ must have ^-expansions with finitely
many non-zero coefficients an with n < 0. This third condition is needed in order
to insure that each element eRK is meromorphic at all of the cusp points of
Γ', for any one member of Rκ will be meromorphic at all the cusp points of Γ' if and
only if all the members of Rκ are meromorphic at the one cusp point τ^ (because
the set s always contains at least 1 and S). These three conditions then guarantee
that each string-function expression in the representation Rκ is itself a modular
function with respect to Γ'. If each member of the representation is also tachyon-
free, then each is a modular form with respect to Γ' and hence must vanish
identically.

Let us now see how to apply this general argument to the K = 8 case as we
attempt to prove As = B8 = C8 = 0. The mixing matrices of these expressions
under the stroke operators [5] and [Γ] are as follows:

(4.35)

There are immediately two problems. First, we see that this K = 8 representation
has an odd modular weight k = — &/K = — 1; our theorem applies only to the cases
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k E 2Z. Second, no member of this representation is invariant under any of the
congruence subgroups: for example, under Γ0(4) we find ^48[Γ] = ^s but

= (e^2)2As=-As. (4.36)

There are two ways to solve these difficulties. One possibility is to extend the
theorem presented in Sect. 4.1 to apply to odd k and modular functions with
so-called multiplier systems (i.e., phases such as the unwanted sign appearing
above). Such extensions can indeed be made; in this relatively simple case, for
example, we can instead choose to prove the modified identities A8/ηβ =
B8/η6 — C8/η6 = 0. These modified identities would then have modular weight
k = — 2, and the extra ^/-functions absorb the unwanted sign. A simpler approach,
however, (and one which generalizes more easily to other situations) is to prove
instead the identities (A8)

2 = (B8)
2 — (C8)

2 = 0, for such identities also have an
even modular weight k = — 2 and simultaneously avoid such unwanted signs. (We
are essentially enlarging our K = 8 representation: R8 -> R'8 = R8 (x) R8.) If these
quadratic identities can be proven for all τ, then of course the linear results
A8 = B8 — C8 = 0 immediately follow. To prove these quadratic identities, we
follow the procedure outlined above: either choice Γ' = Γ0(4) or Γ(4) suffices for
proving (A8)

2 — 0, and Γ(4) suffices for independently proving (B8)
2 = 0 and

(C8)
2 = 0. It is of course possible to deduce B8 = C8 = 0 from the result As = 0 as

we did for the K = 4 case: in the present case the analogue of (4.34) is

Λ8 [S] = e^2A8 + β + c = 0, (4.37)

and this implies the weaker result B8 + 2C8 = 0. However, B8 ~ q1/2(l + . . .) and
Cs ~ <?3/4(l + . . . ) » where inside the parentheses all ^-exponents are integral.
Therefore, Bs and C8 must each vanish separately. Note that in this K = 8 case we
are compelled to consider congruence subgroups of levels JVe4Z only. This occurs
because the K = 8 representation includes a sector C8 with quarter-integer powers
of q. Since in general the generators of Γ(N) are of the form TN and ST±NS, the
choice N = 4 is the smallest level N for which each element in the K = 8 repres-
entation R8 is Γ(ΛO-invariant.

The same procedure applies for the K = 16 case as well; here we wish to prove
-4 16 — C16 = 0, and the relevant mixing matrices are as follows:

1 2 4 16

2,72 V I -'<.

(4.38)

Once again we find that we must enlarge our representation

#16 -> R'lβ = #16 ® #16 ® #16 ® #16 (4.39)
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and prove instead the identities (A16)
4 = (C16)

4 = 0; similarly, we must choose the
level N = 4 due to the presence of the C16 sector in R16. As usual, the subgroup
Γ(4) suffices in general for proving that each member of #'16 vanishes, and we can
instead make the choice Γ0(4) in the case of the A16 sector (which is invariant under
T). Once again the proof that any one member of R16 vanishes is sufficient to prove
that all vanish, provided each has a different eigenvalue under T. Note that instead
of enlarging the representation as in (4.39), it would also have been possible in this
case to divide our original representation by η3; however, this would have necessi-
tated constructing a proof using congruence subgroups of level N = 8.

Second Series - the [X, 2] Identities. The second series of identities is closely
related to the first and in fact contains the first series as a subset. Recall that for
each Kac-Moody level Ke{2, 4, 8, 16}, there exists a string-function expression
Aκ ~ tf°(l -K . .) which, according to the first series of identities, vanishes ident-
ically. In this second series of identities we show that the separate bosonic and
fermionic pieces of Aκ (denoted Ab

κ and Af

κ respectively) can each be written in
terms of Jacobi ^-functions; these ^-function expressions for Ab

κ and Af

κ are of
course equal, since Aκ = Ab

κ — Af

κ = 0. As a by-product, we also obtain additional
string-function expressions {C κ , Dκ, . . .} which can be easily expressed in terms of
Jacobi 5-functions as well.

Let us first consider the K = 4 identities in this series, as given in (3.8): here we
have separated A4 into its separate bosonic and fermionic contributions A4 and
A{ as in (3.7). While we know that A4 and B4 together fill out a two-dimensional
representation of the modular group with weight k= — 2, we find that the indi-
vidual pieces A4 and A{ do not close separately into only themselves and B4.
Rather, in order to construct a representation of Γ containing A\ and A{ as
separate members, we must introduce the two additional string-function expres-
sions C4 and D4 defined in (3.7). Together, the set {Ab

4, A{, B4) C4, D4} indeed fills
out a complete representation Rc with weight fe = — 2; each member of Rc trans-
forms as an eigenfunction under [Γ]:

Λί

\ C * /W /
and under [S] they close into each other:

/!
0

0

0

\0

0

1

0

0

0

0

0

-1

0

0

0

0

0

ί

0

°\/Λ
0

0

0 ί

Λί
54

C4

-ί/W

(4.40)

C4

W

/
—

—

\

1

1

1

1

1

-1

1

-1

-1

1

6

-6

-2

0

0

-4

-4

0

2

2

4

4

0

2

2

\

/

Aί

W

(4.41)

As a check, note that these matrices indeed contain the (A4, B4) mixing matrices
(4.31) as the appropriate submatrices.
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Unlike the previous representations we have considered, not all members of this
representation Rc individually vanish, for while all are modular functions with
respect to an appropriate Γ' c Γ, not all are modular forms. Since the quantity D4

is not tachyon-free, it clearly has the wrong behavior at the cusp point τ = τ^;
furthermore, since the [5]-transforms of A\, Af

4, C4, and D4 each separately
involve D4, each of these quantities has incorrect (i.e., tachy onic) behavior at the Γ'
cusp point τ = 0. Indeed, only B4 and the difference A4 = A4 — A{ are free of this
tachy onic behavior at both cusp points τ = τ^ and τ = 0, so of the five quantities in
the above representation Rc only B4 is itself a proper Γ'-modular form. Therefore,
in order to construct identities for these five individual quantities, it is necessary to
build a new representation involving them in such a manner that each member is
a tachyon-free modular form.

It turns out that this is not hard to do. As we have seen in (4.25) and (4.26), the
$- and ^/-functions fill out valid representations of the modular group, and indeed
the three quantities {η~6$22, η~6$32,η~6$4.2} fill out such a representation with
modular weight fe = — 2. Let us take various linear combinations of these quantit-
ies, promoting them to the "five"-dimensional representation

1 / $3 + $4 \ )
(4.42)

Written this way, this five-dimensional representation R9 with weight k = — 2
has two very important properties. First, its mixing matrices under [S] and [Γ]
are (or can be chosen to be) the same as those in (4.40) and (4.41) for Rc; indeed,
in this respect the two representations Rc and #,9 transform identically. More
importantly, however, it is easy to verify that the tachyonίc terms within the fifth
member of the ^-function representation R$ are the same as those of the fifth
member D4 of the string-function representation Rc; additionally, all of the other
members of #,9 are themselves tachyon-free. Therefore, subtracting the two repres-
entations, i.e.,

R = Rc — R$ —

- θ2

2/η6

B4
(4.43)

yields a five-dimensional representation R in which each member is tachyon-
free. It is then a straightforward matter to demonstrate that each member
of this new representation R is indeed a modular form with respect to a congru-
ence subgroup Γ' c= Γ of level JVe4Z (e.g., each member is eM_2[Γ(4)]),
whereupon it follows that each vanishes identically. This, then, establishes the
identities (3.8).

Note that the existence of such identities relies on the existence of a ^-function
representation R9 with the desired modular weight fe, the desired transformation
matrices [S] and [Γ], and the required tachy onic behaviors of its members. Such
a representation does not always exist. It is indeed fortuitous, however, that such
representations do exist for each value of K, yielding all of the identities in this
second series.
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The derivations of the other identities in this series proceed in analogous
fashion. For the K = 8 case, we find that A\ and A{ are members of the six-
dimensional representation Rc = {Ab

8,A{,B8,C8,E8,F8} [where these six quant-
ities are defined in (3.4) and (3.10)]; under [S1] and [Γ] quantities mix as follows:

/A*\
B8

Cs

w

/ 1

eίπ/2

4

_ J

2

2

-1

\ I

-1

1

-2

-2

-1

1

1

-1

2

_2

0

0

2

_2

-4

0

0

0

-4

-4

0

0

2

2

4\ fΛl\

4 \

0

0

2 I

Λi '

#8

C8

£

2/ W

(4.44)

and

rM
£8

C8

\F8

8/

[Γ]

/I 0 0 0 0 0 \

0 1 0 0 0 0

0 0 - 1 0 0 0

0 0 0 -ί 0 0

0 0 0 0 β3πί/4 0

\ 0 0 0 0 0 β~π ί / 4/

l*\
B8

C8

Us /

\pj

(4.45)

These matrices of course contain the (A8,B8, C8) mixing matrices (4.35) as the
appropriate submatrices, and these six quantities are again modular functions
rather than modular forms due to the presence of the tachyonic sixth quantity F8.
To compensate for this, we introduce the corresponding six-dimensional R& repres-
entation with weight k = — 1,

? Λ2
(4.46)

and construct the tachyon-free representation Rf = (Rc — R3)®(RC — R&). It can
be proven that each member of R' is a modular form of even weight k = — 2 with
respect to a congruence subgroups at level JVeSZ, whereupon the identities (3.11)
immediately follow.

The K = 16 case is similar. Here the expressions A\6 and A{6 are members of
the five-dimensional representation Rc = {Ab

ί69A{69Cί69Eί69Fί6} [where these
five quantities are defined in (3.13)]; under [S] and [Γ] these quantities mix as
follows:

A{6

C16

E16

\Fj

2J2

2

2

2

0

0

— 9 9^ z/

-2 2

0 0

W

(4.47)
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Cl6
m-

/I 0 0 0 0 \

0 1 0 0 0

0 0 -i 0 0

0 0 0 e7πί/8 0

\ 0 0 0 0 e-""8/

M?6\

Ί{ 6 \

Cl6 (4.48)

These matrices of course contain the (A16, C16) mixing matrices (4.38) as the
appropriate submatrices. Once again we find that only the fifth quantity F16 is
tachyonic, and again there exists an appropriate compensating five-dimensional R9

representation:

1

Γ.ol ,,1 A n2 x,0\ //i /iQ\
— | C j ? C ι 5 U , C Q ^ C Q J 5 .̂H I/j

where in the second line the string functions are at level K = 2. This representation
#,9 transforms under [S] and [Γ] with the same mixing matrices as jRc; in
particular under [S] the X = 2 string functions satisfy

(4.50)

Since only CQ is tachyonic (and in fact has the same tachyonic terms as F16), the
entire representation R = Rc — R$ is tachyon-free. The identities (3.14) then follow
by building the tensor-product representation R' = R®R®R®R and consider-
ing congruence subgroups with levels NelβZ.

Third Series - the [K, 1] Identities. This series of identities is actually the simplest
to prove. Recall that the Dedekind ^/-function satisfies

fί[S] = e-'π/V

and that each identity in this series is of the form

ηpQκ= 1 ,

n (4.51)

(4.52)

where p is a given power and Qκ is a sum of terms each containing p factors of
level-K string functions. Since in each case Qκ satisfies

e~^2QK , (4.53)

(4.54)

and since in each case the product ηpQκ is tachyon-free, it follows that

Overall normalizations have been chosen in each case such that this constant is
always 1. Note that this proof yields the familiar ^-function identity ι9253l94 = 2η3
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in the K = 2 special case, and just as easily yields its higher K > 2 string-function
generalizations. Thus, we see once again how all of our series of identities provide
the natural generalizations of their known K = 2 special cases.
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Note added in proof. We recently became aware of Ref. [17], and would like to briefly relate some
of our fractΐonal-superstring results in Sect. 2.2 to theirs. The authors of Ref. [17] attempted to
contruct, from the bosonic string, string theories in lower dimensions by arbitrarily introducing
non-integer modings for some of the 24 transverse bosonic fields Xμ, thereby effectively prevent-
ing the interpretation of the affected worldsheet fields as spacetime coordinates. They found that
spacetime Lorentz anomalies could be avoided only in the cases for which the resulting spacetime
dimension was equal to 26, 10, 6, 4, or 3; moreover, they observed that the partition functions of
their theories were essentially equal to those of our ^-sectors in Eq. (2.48), except with the
parameter q replaced by the rescaled parameter q112 (implying a rescaling of the energies in the
theory). They found, however, that this superstring-like sector could not be the only sector of their
theory, and remarked that additional sectors of their theory having different spacetime dimen-
sions appeared to be necessary. Our approach, starting from an underlying parafermionic
worldsheet theory, is undoubtedly quite different, yet we see in Eq. (2.48) that the fractional-
superstring "internal projections" appear to reduce the ^.-sectors of our strings to superstring-like
sectors resembling theirs (but without any rescaling of energies). Presumably, then, our new B-
and C-sectors play the role of the additional sectors anticipated in Ref. [17], yet also have possible
interpretations in the same number of spacetime dimensions as the ^4-sectors. Such interpretations
for the B- and C-sectors are discussed in more detail in Refs. [18] and [19].
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