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Abstract. We study the Lebesgue measure of gaps and spectra, of ergodic Jacobi
matrices. We show that: \σ\A\ -\-\G\ > υ, where: σ is the spectrum, G is the union of
the gaps, A is the set of energies where the Lyaponov exponent vanishes and υ is an
appropriate seminorm of the potential. We also study in more detail periodic Jacobi
matrices, and obtain a lower bound and large coupling asymptotics for the measure
of the spectrum. We apply the results of the periodic case, to limit periodic Jacobi
matrices, and obtain sufficient conditions for \G\ > v and for |σ| > 0.

1. Introduction

In this paper, we study the Lebesgue measure of gaps and spectra, of one dimensional
ergodic Jacobi matrices. These are families of operators Hω on 12(Z), defined by:

Hω = H0 + Vω, (Hou) (n) = u(n + 1) + u(n - 1), (Vωu) (n) = Vω(n)u(n),

where Vω is a (real) stationary bounded ergodic potential, that is: we consider a prob-
ability measure space (i?, φ ) , a measure preserving invertible ergodic transformation
T, and a bounded measurable real-valued function /, and define: Vω(n) = f(Tnω).

For such a family {Vω}, it is known [3] that there is a subset σ of R such that
σω = Sptc(Hω) = σ for a.e. ω, and that the Lyaponov exponent η(E) exists for
every E e R. We denote: A = {E \ j(E) = 0}, and G = [minσ,maxσ]\σ, so that
G is the union of all the gaps in σ. For each ω we define:

υω = sup Vω(ή) — inf Vω(n).
n n

Since υω is T invariant, we have: vω = E(υω) = υ for a.e. ω, where E( ) denotes an
integral over ω.

Subclasses of ergodic potentials, that we discuss in more detail, are: periodic poten-
tials and limit periodic potentials. For these classes we consider individual potentials
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V = {V(n)} and denote: Hv = Ho + V, σ = Spec (Hv), v = sup V(n) - inf V(ή),
n n

A and G as before. A potential V is called periodic with period p (p-positive integer),
if V(n + p) = V(n) for all n. It is called limit periodic, if it is a uniform limit of
periodic potentials, i.e. if there is a sequence {V^} of periodic potentials such that:
W — Vm\\ —• 0 as m —> oo. It is a fundamental fact that if F is periodic then: σ is
identical to A, and it is also identical to the set of all real E's for which the equation:

u(n + 1) + u(n — 1) + V(ri)u{ri) — Eu(ri) (1.1)

has a bounded solution. In this case σ is known to consist of p bands (closed intervals),
separated by p — 1 gaps (some of which may be absent).

The problem of estimating the measure of the spectrum was studied by several
authors [1, 8-10] for Harper's equation (Vω(ri) = λcos(2παn + α;)). Deift and Simon
[4] have obtained the general result (for ergodic potentials): \A\ < 4, and that the
equality holds if and only if the potential is a constant.

In this paper, we prove for general ergodic potentials:

Theorem 1.
\σ\A\ + \G\>υ,

where \ | denotes Lebesgue measure.

Remark. By Ishii-Pastur-Kotani Theorem [3], the essential closure of A, is the a.c.
part of σ, and thus we have: \σ\A\ = |σ| — \A\ . Since:

maxσ — minσ < 4 + v , (1.2)

Theorem 1 implies:

\A\ = \σ\ — \σ\A\ — maxσ — minσ — \G\ — \σ\A\ < 4,

which is the Deift-Simon result. Therefore, Theorem 1 is related to this result, but
stronger.

For periodic potentials, we prove:

Theorem l.IfV is periodic, with period p, then:

, , 4
|σ| > — .

Theorem 3. Let V be a periodic potential, and let η be a positive "coupling constant,"
then for the potential ηV, in the limit η —>• oo:

where m is defined by:

m = min{d(n)} ,

d(n) = max{ j - k | j > k, V(j) = V(k) = V(n), V(l) φ V(n)

(m is the minimum of the distances {d(n)}, where d(n) is the maximal distance along
the potential, between two potential points that have the same value ofV(n)).

And for limit periodic potentials, we prove:

Theorem 4. Let V be a (limit periodic) potential, C and a positive numbers, and let
{Kn} be a sequence of periodic potentials, with periods: pm —>• oo, then:
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(i) if \\V>- Vm\ < Cp^ι+Oί) for all m, then: \G\ > v and therefore \σ\ < 4.
(ii) if \\V - Vrn\\ < Cm-apm+ι for a\\ m > t n e n : | σ | > o.

It should be pointed that our proof of Theorem 1 makes use of ideas used by
Craig [2], to prove the existence of certain trace formulas. Craig considers continuous
Schrodinger operators of the form:

d2

(1.3)

on L2(R), and it should not be hard to derive from his work an analog of Theorem
1 for the continuous case. Namely: let Hω be defined by (1.3), with Vω continuous
bounded stationary ergodic potential, then:

\σ\A\ + \G\>\v, (1.4)

where σ, A, G, and υ are defined analogously to the discrete case (note the factor \
on the right side, which does not exist in the discrete case). It is also worth pointing
out the existence of some asymptotic results for the bandwidth of continuous periodic
Schrodinger operators, which are related to Theorem 3 (see [12]).

In Sect. 2 we review some standard results of the theory of periodic Jacobi matrices,
and we prove Theorem 1 for the case of periodic potentials. In Sect. 3 we prove
Theorem 2, and in Sect. 4 we prove Theorem 3. In Sect. 5 we prove Theorem 4, and
finally, in Sect. 6 we prove Theorem 1 for the general ergodic case.

It is a pleasure to thank Prof. J. Avron for suggesting this work, and for endless
hours of useful discussions.

2. Periodic Jacobi Matrices: A Review

For every periodic potential V, with period p, and for every k G R, I G Z, define:

Aι(k) Ξ

-1) i
1 V(l + 2) 1

1

V e i k p

( V(l + 2) 1

\

\

1
V(l+p)J

then:

Proposition 2.1. (i) E G σ if and only if Eq. (1.1) has a solution {u(n}} obeying:

ik (2.1)

for all n, and some real k.
(ii) The p eigenvalues of Aι(k) are independent of I, and:

(2.2)
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(iii) For every I, the p — 1 eigenvalues ofAj are simple.
(iv) The eigenvalues of Aι(k) are at most doubly degenerate, and if a given eigen-

value of Aι(k) is degenerate then it is also an eigenvalue of A^.
(v) For every I and k, the eigenvalues ofΆf separate the eigenvalues ofAι(k). That

is:
Eι(k) < EϊΛ < E2(k) < Efi2 < . . . < E^p_x < Ep(k).

(vi) The characteristic polynomial of Aι(k) obeys:

det(z - Aι(k)) = Δ(z) - 2cos/cp, (2.3)

where Δ(z) is a polynomial with real coefficients, independent ofk and I.
(vii) σ is the set of all real E's,for which \Δ(E)\ < 2. It is made of p bands, such

that on each band Δ(E) is either increasing or decreasing.
(viii) For every I, the eigenvalues of Aj lie between the bands of σ. That is: they lie
either in band edges or inside gaps in σ, and there is one eigenvalue of A^ between
every two bands.

Proof, (i) This is the well known Floquet's theorem (also known as Bloch's theorem).
For proof see [11].

(ii) If {u(n)} is a solution of Eq. (1.1), obeying (2.1), then (u(l + 1), . . . , u(l +
p))τ is an eigenvector of Aι(k), and E is the corresponding eigenvalue. Similarly
any eigenvector of Aι(k) determines a solution of Eq. (1.1), that obeys (2.1) for the
appropriate k. This shows that eigenvalues of Aι(k) are independent of I, and from
(i) we obtain (2.2).

(iii) Simplicity of eigenvalues holds [5] for any real tridiagonal matrix ( α ^ ) of
order n, obeying α^+iαi+i^ > 0 for i = 1, . . . , n — 1.

(iv) Define:

(2.4)
JK J~ det(*-A z (fc)) '

and let {|n)}^=1 be the standard basis of Cp, {En}^=ι the eigenvalues of Aι(k) and
{\En)Yn=χ the corresponding normalized eigenvectors, then we have (using Dirac
notation):

En) (En\

π = l
Z-En n = l

\(l\En)\-
z-En

(2.5)

According to (2.5) f(z) has only simple poles. Since the eigenvalues of Aι are simple,
we obtain statement (iv).

(v) It is enough to show that for each pair of consecutive eigenvalues of Aι(k):
Ej < Ej+\, there is an eigenvalue E~ of A[, such that: Ej < E~ < Ej+\. We
consider 3 cases:
a) Suppose (1 | En) = 0 for n = j or n = j + 1, then En is also an eigenvalue of
Af with the eigenvector: ((2 | En),..., (p \ En))τ.
b) Suppose Ej = Ej+\, then according to statement (iv), Ej is also an eigenvalue of

c) Suppose Ej < Ej+\ and (1 | En) Φ 0 for n = j and n = j + 1, then according
to (2.5), f(z) has poles at Ej and Ej+ι, and a zero at some point on the real axis
between Ej and Ej+\. This zero is an eigenvalue of Aj.

(vi) (2.3) is obtained by "expanding" the determinant: det(z - Aι(k)) in minors,
starting with the first line. That Δ(z) is independent of /, follows from (ii).
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(vii) This statement easily follows from (ii), (iv), and (vi).

(viii) Since the band edges are eigenvalues of Aι(0) and AΛ — I, this statement

easily follows from (v), (vi), and (vii). D

Remarks.

a) Proposition 2.1 is a version of "Floquet's theory" for periodic Jacobi matrices. See
e.g. [11].
b) Solutions of Eq. (1.1), obeying (2.1), are called: Block wave solutions, and the
corresponding A 's are called: Block wave numbers. From statement (vi), it is enough

Γ 1Γ 7Γ1
to consider k in the interval 0, - , and this is assumed throughout the rest of this

L Pi
paper.
c) Since eigenvalues of Aι(k) are independent of I, we denote them as {En(k)}
without any reference to /. Throughout the paper, we sometimes refer to Aι(k) without
saying anything about I. This should be understood in the sense of "pick some /". As
can be seen from statement (vi), each En(k) is a strongly monotone C°° function of

Γ 7Γ1
k, from the interval 0, — onto the n t h band of σ.

L P\
d) Δ(E) defined by statement (vi), is called the Discriminant.
e) Eigenvectors of Af, are solutions of Eq. (1.1) on the "interval" {i+1, Z+2, . . . , 1+
p + 1} with Dirichlet boundary conditions, and the corresponding eigenvalues are
known in the literature (see e.g. [11]) as Auxiliary spectra.

To conclude this section, we show how Proposition 2.1 leads to a simple proof
of Theorem 1, for the periodic case. Namely, we prove that if V is periodic then:
\G\>υ.
Proof. For every /, denote by {Efn}ζlι the increasingly ordered eigenvalues of Aj',
then according to statement (viii) of Proposition 2.1, for every I and m:

p-l

\G\ > Σ \Eίn ~ E^n\ > |Tr(Λ") " Tr(A-)| = \V(m + 1) - V(l + 1)|. (2.6)

Since this holds for every I and m, we obtain:

\G\>υ. D (2.7)

3. Proof of Theorem 2

Proof. Let / be some integer. For every real number x, define:

/(I _j_ i) + x i e-*f

1 V(l + 2) 1

1 '•. '••

e*5 1 F(/+p)/
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For the characteristic polynomial of B(x), we have:

det(z-B(x)) = del (z-Aι (γ))-xdet(z-A[) = Δ(z)-xdet(z--A[). (3.1)

Since the value of the discriminant Δ(E) runs between 2 and —2 on each band of σ,
it is seen from (3.1) that if x is such that:

\xdet(E-Af)\ <2 (3.2)

for every E G [min σ, maxσ] then Spec (£(£)) C σ and B(x) has one eigenvalue
inside each band of σ. Obviously, the same holds for B(—x) and it follows [similarly
to (2.6)] that for such x:

\σ\ > |Tr(J3(a;)) - Tr(B(-x))\ = 2\x\. (3.3)

We have:

p-l / p-l \P-1

- A[)\ = U\E- EfJ < -—r Σ \E ~ Eΰn\ , (3.4)
n=l \ ^ n=l /

and from the fact that {Efn} c [minσ,maxσ] C [-2+min{V(n)}, 2+max{F(n)}]
we have for every E G [minσ,maxσ]:

p-i r p-i p-i >j

X) \E - EfJ < max ̂  I minσ - E^n\^ | maxσ - E^n\ \
n=\ I n=\ n=l J

= max{-(p - 1) min σ + Tr (yip, (p-l) max σ - Tr G4Z~)}

< ( p - l ) ( 2 + v). (3.5)

From (3.4) and (3.5) we obtain:

|det(JS-i4p|<(2 + v)P-1, (3.6)

and thus (3.2) with

_ 2
X~ (2 + v)P~ι

holds for every E e [minσ,maxσ]. From (3.3) the theorem now follows. D

Remark. The above proof is essentially "global" in the sense that it proves Theorem
2 for the total measure of the spectrum, without providing equivalent information on
the width of individual bands. It is worth pointing out that a "local" result, which is
almost as strong, also holds, and this can be seen as follows:

From Proposition 2.1, we have on the n t h band of σ:

(3.7)

from which we obtain by differentiation:

dEn(k) -2psinkp

dk A'(En(k)) '
(3.8)
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dΔ(E)

353

where Δ'(E) =
dE

. Since Δ'(E) is a polynomial of degree p — 1, whose zeroes

separate the eigenvalues of Aι(k), it can be shown, using similar considerations to
(3.4) and (3.5), that for E G [minσ,maxσ]:

\Δ'(E)\ < p

Thus, we obtain from (3.8):

P-
(2 + v)] < pe(2 +

J

dEn(k)

dk

2 sin kp

e(2 + V)P-

Since the width of the n t h band is given by: /
o

I band I of every band in σ:

dEn(k)

dk

I band I
4/e

p(2

(3.9)

(3.10)

dk , we obtain for the width

(3.11)

4. Proof of Theorem 3

/ π
L e m m a 4 . 1 . L<?ί n be in {I, ..., p},k in I 0, — n(fc) be the n t h eigenvalue

V /
of A[(k) and {un(k,m)}<^=_oo a corresponding normalized Bloch wave solution of
Eq.(lA), then for every integer m:

dEn(k)

dk
= 2plm [un(k, , m + 1)],

where * denotes complex conjugation.

Remark. The correspondence and normalization of the Bloch wave solution are by
the fact that: |^(fc)) = (un(k, I + 1), . . . , un(k, I +p))τ is a normalized eigenvector
of Aι(k), that corresponds to the eigenvalue En(k).

Proof. Let δk be a "small" variation of k9 and δEn(k) the corresponding variation of
En(k). To first order in δk, we have: Aι(k -h δk) = Aι(k) + 5A/(fc) , where:

... 0 _e-ikp ,

δAι(k) = ίpδk 0 (4.1)

Since fc G ( 0, — J, En{k) is nondegenerate (Proposition 2.1), and therefore to first

order in δk we have:

(4.2)

= ipδk[-e-ikpun(k, I + p)u*n(k, I + 1)

+ eikpun(k,l+l)u*(k,l+p)].
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Using: un(k, l+p) = eιkpun(k, /), we obtain from (4.2):

^ ^ = 2plm [un{h, 0<(Λ, I + 1)],
ak

and since / can be chosen at will, the lemma is proven. D

Proof of Theorem 3. Denote: λ = —, then the equation:
V

λu(n + 1) + λu(n - 1) + V(n)u(n) = Eu(n), (4.3)

has the same Bloch wave solutions of Eq. (1.1) with the potential ηV, and the matrix:

λ Xe~ikp \
Z + 2) λ

λ

\ Xeikp X V(l+p)J

(4.4)

has the same eigenvectors of the matrix Aχ{k) for the potential ηV. In the limit λ —> 0
(77 -^ CXD) these eigenvectors (and thus the Bloch wave solutions) can be obtained from
perturbation theory, by defining:

A0(k) =

/ 0
1

\eikp

Bι =

1
0 1

1 " .

2)

v

1
0 /

(4.5)

and considering XAo(k) as a perturbation of Bι.
We consider at first, the case of a potential which is nondegenerate along one

period, so that: V(i) Φ V(j) for i φ j , i,j G {/ + 1, . . . , / + p}. In this case, eigen-
values of Bι are nondegenerate, and the corresponding normalized eigenvectors are
the standard basis {|n)}^=1 of Cp. For each n, an eigenvector of Aι(λ, k) correspond-
ing to |n), and to the eigenvalue V(l + n) of Bι, is given by: Pn(l, fc, λ) |n), where
Pn(l, fc, λ) is the spectral projection given by [6]:

, k)Γιdz. (4.6)

This eigenvector is "almost normalized" in the sense that: | |P n(i, k, X) \n)\\ = 1+O(λ),
and we have:

(z - At(\, k)Γι = (z-Bι- XA0(k)Γι

= {z- BtΓ
ι + λ(z - BtΓ1 A0(k) (z -

... + λn(z - BιΓι[Ao(k) (z - BιΓι] (4.7)
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Since (z — B{) ] is diagonal with exactly one entry that has a singularity inside the
circle: \z — V(l + ή)\ = ε, and since Ao(k) only couple "nearest neighbors" (where p
is considered a neighbor of 1), we see from (4.6) and (4.7) that the projection matrix
Pn(/, &, λ) has exactly one (diagonal) O(l) entry, surrounded by "nearest neighbors"
that are O(λ), surrounded by next near neighbors that are O(λ2), and so on. The O(l)
"center" of Pn(i, fc, λ) is the n t h diagonal entry, and thus the eigenvector Pn(/, fc, λ) |n)
has one 0(1) term, with two 0(λ) "nearest neighbors," two 0(X2) next near neighbors
and so on. The corresponding normalized Bloch wave solution has a "profile" of the
form:

. . . , 0(λ 2 ), 0(λ), 0(1), 0(λ), 0(λ 2 ), . . . , O(λ2), O(λ), O(l), 0(λ), 0(λ 2 ), . . . . (4.8)

The terms that are O(l) in such a solution, are a distance p apart, and in the middle

between them there are two neighboring terms that are either both O(λ~2~) (if p is

odd), or 0(λ2) and O(λ2 - 1 ) (if p is even).

(4.9)

From Lemma 4.1, we obtain for every n and k £ 0, —

dfc
min , ra) , m

and since all Bloch wave solutions have a "profile" of the form (4.8), we conclude
that for every n and k:

dEn(k)

Since:

we obtain from (4.10):

dk

σ =
1 = 1 Q

dEn(k)
dk

dk,

\σ\=0(ηι-p),

(4.10)

(4.11)

(4.12)

which proves the theorem for the case of a potential with no degeneracies along its
period.

Next, we consider a potential with one double degeneracy along its period, so that:
V(i) Φ V(j) for i φ j , i, j £ {/ + 1, . . . , / + p}9 except for some i0 ^ j 0 such that
V(io) = V(jo). We define:

= max{\io-jo\,p- Ho - (4.13)

so that d is the same as d(io) [or d(jo)] defined in the theorem. Clearly, for all bands
that arise from nondegenerate values of the potential, the proof of the nondegenerate
case still holds, and the width of such bands is O(ηι~p). For the two bands that arise
from V(io) and V(jo), the effect of the degeneracy is obtained as follows:

Let n = io — I or n = jo — I, then Pn(Z, k, λ) defined by (4.6) is now a two
dimensional projection. Since (z — Bι)~ι now has two entries having singularities
inside the circle: \z — V(l + n)\ = ε, Pn(Z, fc, λ) has two corresponding "centers" of
diagonal O(l) entries at n = io ~ I and at n — jo — I. Normalized eigenvectors of
Aι(X, k) corresponding to the eigenvalue V(io) — V(jo) of Bι, are given by:

- Pn(i,fe,λ)(αβ |io - I> + bs\j0 -I)), s = 1,2 (4.14)
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where as and bs are solutions of:

ctsiΨs Mo - I) + b s ( φ s \jo-l) = l, a a { φ t No - 0 + MV>* I jo - 0 = 0 (4.15)

with:
_ Γ 1 5 - 2

"" I 2 s = 1.

Since αs and &s are both (in general) 0(1), the corresponding Bloch wave solutions
have "profiles" similar to (4.8), but with two terms that are 0(1) along each period.
The maximum distance between such O(l) terms is d, and thus (4.9) implies that the
width of both bands is 0(ηι~d) . The total measure of σ has the order of magnitude
of the widest bands, and therefore we obtain:

\σ\=O(ηι~d), (4.16)

which proves the theorem for the case of one double degeneracy along the period of
the potential.

From here, it should be quite clear how the general case is obtained. For an s-
fold degenerate eigenvalue of Bι, the s-dimensional projection Pn(Z,fc,λ) will have
s "centers" of diagonal 0(1) entries, and the corresponding Bloch wave solutions
will have s 0(1) terms along each period. Some careful observation shows that the
definition of m in the theorem is such that the width of the widest possible bands
will be 0(ηι~πι), from which the theorem follows.

5. Proof of Theorem 4

(i) Denote by G m the union of the gaps in Spec (Ho + Vm) = σm, and:

Vm = max Vm(n) - min Vm(ri).
n n

For each gap in σm, with measure |gap| larger than 2Cp~^b

ι+Oί) , there is a correspond-
ing gap in σ with measure larger than |gap| - 2Cp^ι+Oί) . Since there are at most
pm - 1 gaps in σm, we have:

|G| > \Gm\ - 2C(pm - l )p" ( 1 + α ) . (5.1)

Since (Theorem 1) \Gm\ > vm and υm > v - 2Cp^ι+α\ we obtain from (5.1):

\G\>v-2CPm

α (5.2)

for all m. In the limit m —> oo, we have: p^* —> 0, and thus statement (i) follows
from (5.2) and (1.2).
(ii) We can obviously assume pm < Pm+ι for all m. Denote by {(\2j-i,λ2j)}(jLι the

gaps in σ, ordered by decreasing measure, that is: |(λ2j-i, Mj)\ > iC^ +i, ^ + 2 ) ! for
00

all j. For each m, define: rm = Σ \(X2j-ι,λ2j)\, then |G| - rm is the measure of
j=Pm

the pm — 1 widest gaps in σ. Using the same argument that lead to (5.1), we obtain
for all m:

| G | - r m > | G r o | - α r o , (5.3)

and similarly:
\Gm\ > \G\ - rm - αm , (5.4)
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where: a^ = 2C(pm — l)m~aPrn+i. Since α m , r m —> 0 as m —» oo, (5.3) and (5.4)
imply: | G m | —» |G|. For every m < Z, we have:

/ z

IG.I-IG^H^ £ 4C(pa - l)(j - D " ^ , (5.5)
j =m+l

and by taking Z —» oo in (5.5), we obtain:

\Gm\-\G\\< ^ ^ ( p j - D O ' - l Γ ^ Ξ ί m , (5.6)
j=m+l

from which follows:

|σ| = maxσ - minσ - |G|

> maxσ - minσ - \Gm\ - δm

= max σ — max σm + min σ m — min σ + |σ m | — δm

>\am\-2Cm-ap^ -6^. (5.7)

According to Theorem 2, we have:

( 5 8 )

and since: v^ < v + 2Cra-αp™ < t; + 2C, (5.7) and (5.8) imply:

A °°

j=m+l

for all m. Since we assume: pm < Pm+i for all m, the negative term on the right in
(5.9), converges to zero as m —• oc "faster" than the positive term. Thus, for some
m, the right-hand side of (5.9) is positive, and we obtain: |σ| > 0. D

6. Proof of Theorem 1

For each ω, define:

C W = ((* - Hωyι)nrn, (6.1)

then:

Lemma 6.1. F<9r ̂ vβrj pα/r α;, n, α^J <3 closed curve Γ around σω:

d

Proof. Since:

^2,{Z- Hω)nk9km(Z) = δnm , (6.2)

we have for each n:

- Vω(n -

1,

= 0,

= 0.

(6.3)

(6.4)

(6.5)



358 Y. Last

By isolating g%+ιtn(z) from (6.4), and g%_ι n(z) from (6.5), substituting in (6.3) and
then isolating fl^ύ), we obtain:

- Vω(n) -
1 1

z-Vω(n+l) z-Vω(n-

x 1 +
— Vω(n — 1) ' z — Vω(n +

Since, for large \z\, g^mi^) — O(\z\~ι), (6.6) can be written as:

1

- Vω(ή)

1 . ^ . 1 1 — ^

^ 2 , n ( ^ ) | • (6-6)

(6.7)

and by differentiating the logarithm of g%n(z), we obtain in the limit \z\ —> oo:

(6.8)

By considering a circular curve Γ around the origin (Γ = {Reιθ \ 0 < θ < 2π}),
with radius R —> oo, the contribution of the O(|^|~2) term to the integral is seen to
vanish, and thus:

• (6.9)

Proof of Theorem 1. Let Γ be a rectangular curve, that surrounds σω at a distance ε
from each side of the real axis, and a distance δ from each edge of σω, then from
Lemma 6.1 we have:

where:

-Vω(n) = ±-. j> z £

rmnσω—δ—iε maxσω+δ—iε — δ+iε

(6.11)

Γ minσ ω — δ+iε rmnσω—δ—iε maxσω~\-δ—iε maxσω-\-δ-\-tε

The first and third terms of (6.11), are easily seen to vanish in the limit ε —> 0. Since
g%n(z) obeys:

dμn(E), (6.12)

where μn is a positive measure supported on σω, we have for every real x, and ε > 0:
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Thus, the1 second and fourth terms in (6.11) have the same imaginary parts (the real
parts of those two terms cancel each other), and we obtain:

maxσω+δ—iε

-Vω(n) = lim - / Im \z -^ (in (£n(*) - i ̂ )] dz . (6.14)

minσω—δ—iε

Since g^n{z) is Herglotz, it is known (see [7] and references therein), that the limit:

lim g^n(x-iε) = g^n(x-i0), (6.15)
ε->0+

exists (and is finite and non-zero) for a.e. x e R. Therefore, integrating (6.14) by
parts leads to:

i r +δ

-Vω(n) = -x\m \\ng^n{x - ίO) - i -
π L Z

max σω +<5

- ^ J lm\\ng%n(x-i0)-i^~\dx. (6.16)

From (6.12), it is clear that g%n(x — iO) is negative for x < minσ^ and positive for
x > maxσω. Therefore, by letting δ —> 0 in (6.16), we obtain:

Vω(ri) = \ (maxσω + minσ^) + \ SG(n,ω) + \ Sσ(n,ω), (6.17)

where:

i SG(n,ω) = i I Im ln<n(z - iO) - i | dx ,

Gω (6.18)

- S σ ( n , CJ) = — / I m In diΛx — iO) — i —
2 π J I 2

From (6.17), we have for every m and n:

Vω(n) - Vω(m) = \ (SG(n, ω) - SG(m, ω)) + \ (5σ(n, ώ) - Sσ(m, ώ)), (6.19)

and therefore:

\Vω(n) - Vω(m)\ < \ \SG(n,ω) - SG(m,ω)\ + \ \Sσ(n,ω) - Sσ(m,ω)\ . (6.20)

Simon [7], had shown that for every n, for a.e. ω: Reg%n(x — ίO) = 0 for a.e. x G A.
Since gnn(z) i s Herglotz, we also have: g%n(x — iO) Φ 0 for a.e. x e R. Thus, for
every n, for a.e. ω, we have: Im []ng%n(x — iO) — i f ] = 0 for a.e. x £ A. Since also:
|Im [lng%n(x — iO) — i j]\ < j , we obtain for every n, for a.e. ω:

\Sσ(n,ω)\<\σω\A\, (6.21)

and similarly:

\SG(n,ω)<\Gω\. (6.22)

Equations (6.20), (6.21), and (6.22), imply that for a.e. ω, for every m and n:

K\A\ + \Gω\ > \Vω{n) - Vω(m)\, (6.23)

and thus, for a.e. ω:
\σω\A\ + \Gω\ >vω, (6.24)

from which the theorem follows. D
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