A Family of Metrics on the Moduli Space of $\mathbf{C P}^{2}$ Instantons

Lutz Habermann

FB Mathematik, Humboldt-Universität-Berlin, PF 1297, Unter den Linden 6, O-1086 Berlin, FRG

Received October 15, 1991; in revised form April 1992

Abstract

A family of Riemannian metrics on the moduli space of irreducible selfdual connections of instanton number $k=1$ over $\mathbf{C P}{ }^{2}$ is considered. We find explicit formulas for these metrics and deduce conclusions concerning the geometry of the instanton space.

1. Introduction

Let \mathscr{N}^{+}be the space of gauge equivalence classes of irreducible self-dual connections on a principal $S U(2)$-bundle P over a Riemannian 4-manifold M. Define a Riemannian metric g^{s} on \mathscr{N}^{+}for $s \geq 0$ by

$$
\left(g^{s}\right)_{[Z]}\left(u_{1}, u_{2}\right)=\left(\left(1+s \Delta_{Z}\right) u_{1}\left(1+s \Delta_{Z}\right) u_{2}\right),
$$

where $[Z] \in \mathscr{N}^{+}$and (,) denotes the L^{2}-product. Then g^{0} is the usual L^{2}-metric, whereas g^{s} is induced by a strong Riemannian metric on the orbit space of all irreducible connections on P for $s>0$.

Results concerning the L^{2}-metric g^{0} when M is the standard 4 -sphere S^{4} and the instanton number $k(P)$ is 1 were obtained by several authors (see [5, 8, 10]). In particular, it was shown that
(i) $\left(\mathscr{N}^{+}, g^{0}\right)$ is incomplete and has finite diameter and volume.
(ii) The completion of $\left(\mathscr{N}^{+}, g^{0}\right)$ differs from \mathscr{N}^{+}by a set diffeomorphic to S^{4}.

Groisser and Parker generalized these results and established some other general properties of g^{0} under certain topological assumptions on M and P (cf. [9]).

In [2] we examined the family $\left\{g^{s}\right\}_{s \geq 0}$ in the S^{4} example. We showed that $\left(\mathscr{N}^{+}, g^{s}\right)$ is complete and has infinite diameter and volume for $s>0$.

In the present paper we will be concerned with the case that M is $\mathbf{C P}^{2}$ and $k(P)=1$. Then the moduli space \mathscr{N} of self-dual connections is topologically a cone
on $\mathbf{C P}^{2}$, where \mathscr{N}^{+}is the complement of the vertex of this cone (cf. [4]). In [7] Groisser gave a non-twistorial derivation of the formulas for the $\mathbf{C P}^{2}$ instantons to express the L^{2}-metric g^{0} explicitly. We use this to obtain formulas for the metrics g^{s}. Among others we deduce for $s>0$ that
(i) The completion of $\left(\mathscr{N}^{+}, g^{s}\right)$ is \mathscr{N}.
(ii) The diameter and the volume of $\left(\mathscr{N}^{+}, g^{s}\right)$ are infinite.

2. Preliminaries and Notations

Fix a principal G-bundle $P \rightarrow M$ over a closed, oriented Riemannian 4-manifold M, where G is a compact, connected, semisimple Lie group with Lie algebra g. Denote by \mathscr{C}^{+}the space of irreducible L_{2}^{2}-connections on P. The tangent space to \mathscr{C}^{+}at a connection Z is the space $L_{2}^{2}\left(\Omega^{1}(\operatorname{Ad} P)\right)$ of 1 -forms on M with values in the bundle Ad $P=P \times_{\text {Ad }} \mathbf{g}$. Thus, a family $\left\{g^{s}\right\}_{s \geq 0}$ of Riemannian metrics on \mathscr{C}^{+}is defined by

$$
\left(g^{s}\right)_{Z}\left(u_{1}, u_{2}\right)=\left(\left(1+s \Delta_{Z}\right) u_{1},\left(1+s \Delta_{Z}\right) u_{2}\right)
$$

for $Z \in \mathscr{C}^{+}$and $u_{1}, u_{2} \in L_{2}^{2}\left(\Omega^{1}(\operatorname{Ad} P)\right)$, where $($,$) denotes the usual L^{2}$-product and $\Delta_{Z}=d_{Z}^{*} d_{Z}+d_{Z} d_{Z}^{*}$ the Laplacian associated with Z (cf. [1]). Recall that g^{0} is the (weak) L^{2}-metric, whereas g^{s} is a strong Riemannian metric for $s>0$.

Now the group \mathscr{G} of gauge transformations of P which lie in L_{3}^{2} acts on \mathscr{C}^{+}such that $\mathscr{O}^{+}=\mathscr{C}^{+} / \mathscr{G}$ is a Hilbert manifold (cf. [6]). Identifying the tangent space to \mathscr{O}^{+}at the equivalence class $[\mathrm{Z}]$ of a connection Z with the kernel of the operator

$$
d_{Z}^{*}: L_{2}^{2}\left(\Omega^{1}(\operatorname{Ad} P)\right) \rightarrow L_{1}^{2}\left(\Omega^{0}(\operatorname{Ad} P)\right),
$$

the restrictions of $\left(g^{s}\right)_{Z}$ to $\operatorname{ker} d_{Z}^{*}$ yield Riemannian metrics on \mathscr{C}^{+}which we will also denote by g^{s}.

Another metric tensor on \mathscr{I}^{+}which was suggested to be considered is described by

$$
\hat{g}_{Z}\left(u_{1}, u_{2}\right)=\left(d_{Z} u_{1}, d_{Z} u_{2}\right) \quad \text { for } \quad u_{1}, u_{2} \in \operatorname{ker} d_{Z}^{*}
$$

(cf. [11]). We remark that the notation metric is not quite correct here since in general \hat{g} may be degenerate.

With respect to each of these metrics a connected group K of isometries on M acts by

$$
([Z], k) \in \mathscr{M b}^{+} \times K \mapsto\left[\tilde{k}^{*} Z\right] \in \mathscr{M}^{+}
$$

where the automorphism \tilde{k} of P projects down to k, isometrically on \mathscr{M}^{+}.
Let \mathscr{N} be the space of gauge equivalence classes of self-dual connections on P, and let $\mathscr{N}^{+} \subset \mathscr{N}$ denote the subspace of classes of irreducible connections. Suppose that the Riemannian metric on M is such that \mathscr{N}^{+}is a (finite dimensional) submanifold of $\mathscr{L b}^{+}$. We will identify the tangent space to \mathscr{N}^{+}at a point [Z] with the kernel of the Laplacian

$$
\Delta_{Z}^{-}=d_{Z} d_{Z}^{*}+2 d_{Z}^{*} p_{-} d_{Z}: L_{2}^{2}\left(\Omega^{1}(\operatorname{Ad} P)\right) \rightarrow L^{2}\left(\Omega^{1}(\operatorname{Ad} P)\right)
$$

where p_{-}is the orthogonal projection onto the space of anti-self-dual 2-forms. Then the metrics g^{s} and \hat{g} restricted to \mathscr{N}^{+}are given by restrictions of $\left(g^{s}\right)_{Z}$ and \hat{g}_{Z} to $\operatorname{ker} \Delta_{Z}^{-}$for irreducible self-dual connections Z. Note that, using

$$
\Delta_{Z}^{-} u=\Delta_{Z} u+*\left[F^{Z}, u\right]
$$

for every 1-form u and self-dual connection Z with curvature form F^{Z} (cf. [2]), we obtain

$$
\left(g^{s}\right)_{Z}\left(u_{1}, u_{2}\right)=\left(u_{1}-s *\left[F^{Z}, u_{1}\right], u_{2}-s *\left[F^{Z}, u_{2}\right]\right)
$$

and

$$
\hat{g}_{Z}\left(u_{1}, u_{2}\right)=\left(u_{1}, \Delta_{Z} u_{2}\right)=-\left(u_{1}, *\left[F^{Z}, u_{2}\right]\right)
$$

for $u_{1}, u_{2} \in \operatorname{ker} \Delta_{Z}^{-}$.

3. The Calculation of the Riemannian Metrics

In this section we describe the metrics g^{s} and \hat{g} on the moduli space \mathscr{N}^{+}for the case that M is the complex projective space $\mathbf{C} \mathbf{P}^{2}$ with the Fubini-Study metric g_{0} and P the principal $S U(2)$-bundle with instanton number 1. For this reason we fix local coordinates $z_{1}=T_{1} / T_{0}, z_{2}=T_{2} / T_{0}$ on $U_{0}=\left\{\left[T_{0}: T_{1}: T_{2}\right] \in \mathbf{C P}^{2} \mid T_{0} \neq 0\right\}$. In these coordinates the metric on $\mathbf{C P}{ }^{2}$ becomes

$$
g_{0}=\left(2 D^{2}\right)^{-1}\left(D \delta_{j k}-\overline{z_{j}} z_{k}\right) d z_{j} d \overline{z_{k}}
$$

with

$$
D=1+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}
$$

On the Lie algebra $\mathbf{s u}(2)$ of $S U(2)$ we consider the Ad-invariant inner product determined by

$$
\langle A, B\rangle=-\operatorname{Tr}(A B)
$$

For the sake of convenience we will identify a matrix $\left(\begin{array}{rr}a_{1} & a_{2} \\ -\overline{a_{2}} & -a_{1}\end{array}\right)$ in $\mathbf{s u}(2)$ with the vector $\left(a_{1}, a_{2}\right)$. Then the inner product on $\mathbf{s u}(2)$ becomes

$$
\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=-2 \operatorname{Re}\left(a_{1} b_{1}-a_{2} \overline{\bar{b}_{2}}\right) .
$$

Let Q be the Hopf bundle, i.e. the $U(1)$-principal bundle $S^{5} \subset \mathbf{C}^{3}$ with $U(1)$-action

$$
\left(\left(T_{0}, T_{1}, T_{2}\right), \lambda\right) \in S^{5} \times U(1) \mapsto\left(T_{0} \lambda, T_{1} \lambda, T_{2} \lambda\right) \in S^{5}
$$

and projection

$$
\left(T_{0}, T_{1}, T_{2}\right) \in S^{5} \mapsto\left[T_{0}: T_{1}: T_{2}\right] \in \mathbf{C P}^{2}
$$

Then the bundle P under consideration is the associated $S U(2)$-bundle $Q \times{ }_{\varrho} S U(2)$ by means of the representation

$$
\varrho: U(1) \rightarrow S U(2) \quad \varrho(\lambda)=\left(\begin{array}{cc}
\bar{\lambda} & 0 \\
0 & \lambda .
\end{array}\right) .
$$

In the sequel we will identify forms on P with their local expressions relative to the local section

$$
s: U_{0} \rightarrow P, \quad s\left(z_{1}, z_{2}\right)=\left[\frac{1}{\sqrt{D}}\left(1, z_{1}, z_{2}\right), 1\right]
$$

We now recall the parametrization of the space \mathscr{N} constructed in [7]. Denote by Z^{0} the reducible self-dual connection on P induced by the connection

$$
Z=\frac{1}{2}\left(\overline{T_{j}} d T_{j}-T_{j} d \overline{T_{j}}\right)
$$

on Q. Let the 1 -form $\eta \in \Omega^{1}(\operatorname{Ad} P)$ be determined by

$$
\eta=\frac{1}{D}(0, \phi)
$$

where

$$
\phi=z_{1} d z_{2}-z_{2} d z_{1}
$$

Note that η lies in the formal tangent space ker $\Delta_{Z^{0}}^{-}$to \mathscr{N} at $\left[Z^{0}\right]$. For $t \in[0,1)$ let f_{t} be the automorphism of P induced by

$$
\left(T_{0}, T_{1}, T_{2}\right) \in Q \mapsto \frac{\left(\sqrt{1-t^{2}} T_{0}, T_{1}, T_{2}\right)}{\left\|\left(\sqrt{1-t^{2}} T_{0}, T_{1}, T_{2}\right)\right\|} \in Q
$$

and set

$$
Z^{t}=f_{t}^{*}\left(Z^{0}+t \eta\right)
$$

Applying $s \circ h_{t}=f_{t} \circ s$ for

$$
h_{t}: U_{0} \rightarrow U_{0}, \quad h_{t}\left(z_{1}, z_{2}\right)=\frac{1}{\sqrt{1-t^{2}}}\left(z_{1}, z_{2}\right)
$$

one verifies that

$$
Z^{t}=\frac{1}{D-t^{2}}\left(\frac{1}{2}(\bar{\partial} D-\partial D), t \phi\right)
$$

and

$$
F^{t}=2 \frac{1-t^{2}}{\left(D-t^{2}\right)^{2}}\left(-i D^{2} w, t d z_{1} \wedge d z_{2}\right)
$$

where ω is the Kähler form on $\mathbf{C P}{ }^{2}$ and F^{t} denotes the curvature form of Z^{t}. Now consider the $S U(3)$-action on \mathscr{N} corresponding to the usual action of $S U(3)$ on $\mathbf{C P}^{2}$. Then it holds
Proposition 3.1. (i) \mathscr{N} is the disjoint union of the orbits $\left[Z^{t}\right] \cdot S U(3)$ with $t \in[0,1)$. (ii) \mathscr{N} differs from \mathscr{N}^{+}by the orbit $\left[Z^{0}\right] \cdot S U(3)=\left\{\left[Z^{0}\right]\right\}$.
(iii) Each orbit $\left[Z^{t}\right] \cdot S U(3)$ with $t \in(0,1)$ is the homogeneous space $\mathbf{C P}^{2}=$ $S U(3) / S(U(1) \times U(2))$.

In particular, Proposition 3.1 yields a foliation $\mathscr{N}^{+}=(0,1) \times \mathbf{C P}^{2}$. Further, setting

$$
X^{t}=\frac{d}{d t}\left[Z^{t}\right] \quad \text { and } \quad Y^{t}=\frac{d}{d s}\left[Z^{t}\right] \cdot \exp \left(s Y_{\mu_{1}, \mu_{2}}\right)
$$

where

$$
Y_{\mu_{1}, \mu_{2}}=\left(\begin{array}{ccc}
0 & \mu_{1} & \mu_{2} \\
-\overline{\mu_{1}} & 0 & 0 \\
-\overline{\mu_{2}} & 0 & 0
\end{array}\right) \in \mathbf{s u}(3) \text { for any } \quad\left(\mu_{1}, \mu_{2}\right) \in S^{3} \subset \mathbf{C}^{2}
$$

we have

$$
X^{t}=\frac{1}{\left(D-t^{2}\right)^{2}}\left(t(\bar{\partial} D-\partial D),\left(D+t^{2}\right) \phi\right)
$$

and

$$
Y^{t}=\hat{Y}^{t}-d_{Z^{t}} W^{t}
$$

with

$$
\begin{aligned}
\hat{Y}^{t}= & \frac{t}{\left(D-t^{2}\right)^{2}}\left(\operatorname{tiIm}\left\{-2 \operatorname{Re}\left(B_{1}\right) \partial D+\left(D-t^{2}\right) d B_{1}\right\}\right. \\
& \left.2 t^{2} \operatorname{Re}\left(B_{1}\right) \phi-\left(D-t^{2}\right) d B_{2}\right) \\
W^{t}= & \frac{t^{2}}{\left(3-t^{2}\right)\left(D-t^{2}\right)}\left(-\left(1+t^{2}\right) \operatorname{iIm}\left(B_{1}\right), 2 t B_{2}\right)
\end{aligned}
$$

and

$$
B_{1}=\mu_{1} z_{1}+\mu_{2} z_{2}, \quad B_{2}=-\overline{\mu_{2}} z_{1}+\overline{\mu_{1}} z_{2}
$$

(cf. [7]). Using these facts, we are able to compute the metrics on \mathscr{N}^{+}.
Proposition 3.2. In terms of the parametrization $\mathscr{N}^{+}=(0,1) \times \mathbf{C P}^{2}$ the Riemannian metric $g^{s}, s \geq 0$, is given by

$$
g^{s}=f^{s}(t) d t^{2}+h^{s}(t) g_{0}
$$

with

$$
f^{s}(t)=g^{s}\left(X^{t}, X^{t}\right) \quad \text { and } \quad h^{s}(t)=g^{s}\left(Y^{t}, Y^{t}\right)
$$

Proof. We regard $\left(\mathbf{C P}^{2}, g_{0}\right)$ as the Riemannian symmetric space $S U(3) / S(U(1) \times$ $U(2)$) together with the inner product

$$
\left\langle Y_{1}, Y_{2}\right\rangle=-\frac{1}{2} \operatorname{Tr}\left(Y_{1} Y_{2}\right)
$$

on the Lie algebra su(3). Since the vector $Y_{\mu_{1}, \mu_{2}}$ lies in the orthogonal complement to $\mathbf{s}(\mathbf{u}(1) \times \mathbf{u}(2))$ in $\mathbf{s u}(3)$ and has unit length, the metric g^{s} restricted to the orbit $\left[Z^{t}\right] \cdot S U(3)=\mathbf{C P}{ }^{2}$ is $g^{s}\left(Y^{t}, Y^{t}\right) \cdot g_{0}$. On the other hand, observing that \hat{Y}^{t} and W^{t} are odd with respect to $\left(z_{1}, z_{2}\right)$, whereas the forms Z^{t}, F^{t}, and X^{t} are even, we get

$$
g^{s}\left(X^{t}, Y^{t}\right)=0
$$

Proposition 3.3. It holds

$$
f^{s}(t)=4 \pi^{2}\left\{f_{1}(t)+s f_{2}(t)+s^{2} f_{3}(t)\right\}
$$

and

$$
h^{s}(t)=4 \pi^{2}\left\{h_{1}(t)+s h_{2}(t)+s^{2} h_{3}(t)\right\},
$$

where

$$
\begin{aligned}
& f_{1}(t)=2\left\{\frac{4-3 t^{2}}{t^{4}\left(1-t^{2}\right)}+\frac{4-t^{2}}{t^{6}} \log \left(1-t^{2}\right)\right\} \\
& f_{2}(t)=\frac{8}{15} \cdot \frac{5+t^{4}}{\left(1-t^{2}\right)^{2}}, \\
& f_{3}(t)=\frac{8}{105} \cdot \frac{70-70 t^{2}+91 t^{4}-56 t^{6}+13 t^{8}}{\left(1-t^{2}\right)^{3}}
\end{aligned}
$$

and

$$
\begin{aligned}
& h_{1}(t)=-\left\{\frac{6-9 t^{2}+t^{4}}{t^{2}\left(3-t^{2}\right)}+\frac{6\left(1-t^{2}\right)^{2}}{t^{4}\left(3-t^{2}\right)} \log \left(1-t^{2}\right)\right\} \\
& h_{2}(t)=\frac{12}{5} \cdot \frac{t^{2}\left(10-5 t^{2}+5 t^{4}-3 t^{6}+t^{8}\right)}{\left(1-t^{2}\right)\left(3-t^{2}\right)^{2}} \\
& h_{3}(t)=\frac{4}{105} \cdot \frac{t^{2}\left(1260-1260 t^{2}+2128 t^{4}-2037 t^{6}+1230 t^{8}-425 t^{10}+64 t^{12}\right)}{\left(1-t^{2}\right)^{2}\left(3-t^{2}\right)^{2}}
\end{aligned}
$$

Proof. Set

$$
\begin{aligned}
& 4 \pi^{2} f_{1}(t)=\left\|X^{t}\right\|^{2} \\
& 2 \pi^{2} f_{2}(t)=-\left(X^{t}, *\left[F^{t}, X^{t}\right]\right) \\
& 4 \pi^{2} f_{3}(t)=\left\|*\left[F^{t}, X^{t}\right]\right\|^{2}
\end{aligned}
$$

and, analogously,

$$
\begin{aligned}
4 \pi^{2} h_{1}(t)= & \left\|Y^{t}\right\|^{2}=\left\|\hat{Y}^{t}\right\|^{2}-2\left(\hat{Y}^{t}, d_{Z^{t}} W^{t}\right)+\left\|d_{Z^{t}} W^{t}\right\|^{2} \\
2 \pi^{2} h_{2}(t)= & -\left(Y^{t}, *\left[F^{t}, Y^{t}\right]\right)=-\left(\hat{Y}^{t}, *\left[F^{t}, \hat{Y}^{t}\right]\right)+2\left(\hat{Y}^{t}, *\left[F^{t}, d_{Z^{t}} W^{t}\right]\right) \\
& -\left(d_{Z^{t}} W^{t}, *\left[F^{t}, d_{Z^{t}} W^{t}\right]\right) \\
4 \pi^{2} h_{3}(t)= & \left\|*\left[F^{t}, Y^{t}\right]\right\|^{2}=\left\|*\left[F^{t}, \hat{Y}^{t}\right]\right\|^{2} \\
& -2\left(*\left[F^{t}, \hat{Y}^{t}\right], *\left[F^{t}, d_{Z^{t}} W^{t}\right]\right)+\| *\left[F^{t}, d_{Z^{t}} W^{t} \|^{2} .\right.
\end{aligned}
$$

Here $\left\|\|\right.$ denotes the L^{2}-norm. The functions f_{1} and h_{1} were computed in [7]. The expressions for the other functions are obtained in a similar way after checking that

$$
\begin{aligned}
*\left[F^{t}, X^{t}\right]= & -4 \cdot \frac{\left(1-t^{2}\right) D}{\left.\left(D-t^{2}\right)^{4}\right)}\left(t\left(D+t^{2}\right)(\bar{\partial} D-\partial D), D\left(D+3 t^{2}\right) \phi\right) \\
d_{Z^{t}} W^{t}= & \frac{t^{2}}{\left(3-t^{2}\right)\left(D-t^{2}\right)^{2}} \\
& \times\left(\operatorname{iIm}\left\{\left(1+t^{2}\right)\left[2 \operatorname{iIm}\left(B_{1}\right) \partial D-\left(D-t^{2}\right) d B_{1}\right]-4 t^{2} \overline{B_{2}} \phi\right\}\right. \\
& \left.-2 t\left\{2 B_{2} \partial D-\left(1+t^{2}\right) \operatorname{iIm}\left(B_{1}\right) \phi-\left(D-t^{2}\right) d B_{2}\right\}\right) \\
*\left[F^{t}, \hat{Y}^{t}\right]= & \frac{4 t\left(1-t^{2}\right) D}{\left(D-t^{2}\right)^{4}}\left(2 t \operatorname{i\operatorname {Im}\{ 2t^{2}\operatorname {Re}(B_{1})\partial D+(D-t^{2})(\overline {B_{2}}\phi -dB_{1})\} }\right. \\
& \left.-4 t^{2} \operatorname{Re}\left(B_{1}\right) D \phi+t^{2}\left(D-t^{2}\right) \overline{B_{1}} \phi+\left(D+t^{2}\right)\left(D-t^{2}\right) d B_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
*\left[F^{t}, d_{Z^{t}} W^{t}\right]= & -4 \cdot \frac{t^{3}\left(1-t^{2}\right) D}{\left(3-t^{2}\right)\left(D-t^{2}\right)^{4}} \\
& \times\left(4 t \operatorname{i\operatorname {Im}\{ (1+t^{2})\operatorname {im}(B_{1})\partial D-(D+t^{2})\overline {B_{2}}\phi -(D-t^{2})dB_{1}\} }\right. \\
& -4\left(D+t^{2}\right) B_{2} \partial D+\left(1+t^{2}\right)\left[4 D \operatorname{iIm}\left(B_{1}\right)+\left(D-t^{2}\right) \overline{B_{1}}\right] \phi \\
& \left.+\left(D-t^{2}\right)\left(2 D+1+t^{2}\right) d B_{2}\right)
\end{aligned}
$$

applying

$$
[\phi, \psi]=2\left(-\operatorname{iIm}\left(\varphi_{2} \wedge \overline{\psi_{2}}\right), \varphi_{1} \wedge \psi_{2}-\varphi_{2} \wedge \psi_{1}\right)
$$

for $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in \Omega^{k}(\operatorname{Ad} P)$ and $\psi=\left(\psi_{1}, \psi_{2}\right) \in \Omega^{l}(\operatorname{Ad} P)$.
Clearly, our setting implies
Proposition 3.4. For the Riemannian metric \hat{g} on \mathscr{N}^{+}it holds that

$$
\hat{g}=2 \pi^{2}\left(f_{2}(t) d t^{2}+h_{2}(t) g_{0}\right)
$$

4. Conclusions

By a result of Groisser and Parker in a more general setting (cf. [9]) we know that $\left(\mathscr{N}^{+}, g^{0}\right)$ as a metric space is incomplete, where its completion \mathscr{N}_{0}^{+}is the disjoint union of \mathscr{N} and a set diffeomorphic to $\mathbf{C P}^{2}$. Furthermore, $\left(\mathscr{N}^{+}, g^{0}\right)$ has finite diameter and volume. Here we prove
Proposition 4.1. Let $s>0$. Then
(i) The completion $\mathscr{N}_{s}{ }^{+}$of \mathscr{N}^{+}with respect to g^{s} is \mathscr{N}.
(ii) The diameter and the volume of $\left(\mathscr{N}^{+}, g^{s}\right)$ are infinite.

Proof. The assertions are immediate consequences of
Lemma 4.2. (i) Let $l^{s}(r)$ be the length of the curve

$$
t \in(0, r) \mapsto\left[Z^{t}\right] \in \mathscr{N}^{+}
$$

with respect to g^{s} for $0<r \leq 1$ and $s>0$. Then $l^{s}(r)$ is finite for $r<1$ and infinite for $r=1$.
(ii) For $s>0$ it holds

$$
\lim _{t \rightarrow 0} h^{s}(t)=\infty
$$

Proof. (i) For $0<r<1$ the functions f_{1}, f_{2}, and f_{3} are bounded on the interval $(0, r)$. Thus, $l^{s}(r)<\infty$. On the other hand,

$$
\begin{aligned}
l^{s}(1) \geq 2 \pi \int_{0}^{1} \sqrt{s f_{2}(t)} d t & =4 \pi \sqrt{\frac{2 s}{15}} \int_{0}^{1} \frac{\sqrt{t^{2}+5}}{1-t^{2}} d t \\
& \geq 4 \pi \sqrt{\frac{2 s}{3}} \int_{0}^{1} \frac{d t}{1-t^{2}}=\infty
\end{aligned}
$$

(ii) This is obvious.

Remark. Clearly, a result similar to Proposition 4.1 holds for the Riemannian manifold $\left(\mathscr{N}^{+}, \hat{g}\right)$.

Computing Taylor series and using formulas relating the sectional curvature k^{s} of the warped product $\left(\mathscr{N}^{+}, g^{s}\right)$ to f^{s}, h^{s} and the sectional curvature k_{0} of $\left(\mathbf{C P}^{2}, g_{0}\right)$ (see e.g. [3]), one finds

Proposition 4.3. Let $s \geq 0$ and $t \rightarrow 0$. Then

$$
k^{s}\left(X, \frac{\partial}{\partial t}\right)=\frac{-1}{4 \pi^{2}} \cdot \frac{3\left(1+24 s+96 s^{2}\right)}{2(1+4 s)^{4}}+0\left(t^{2}\right)
$$

and

$$
\begin{aligned}
k^{s}(X, Y)= & \frac{3\left(k_{0}-1\right)}{4 \pi^{2}(1+4 s)^{2}} \cdot t^{-2} \\
& -\frac{5 k_{0}-2+\left(56 k_{0}+16\right) s+\left(160 k_{0}+128\right) s^{2}}{8 \pi^{2}(1+4 s)^{4}}+0\left(t^{2}\right)
\end{aligned}
$$

where X and Y are tangent vectors to $\mathbf{C P}^{2}$ and $k_{0}=k_{0}(X, Y)$.
Our last statement concerns the asymptotic behaviour of the metrics g^{s} near the equivalence class $\left[Z^{0}\right]$.
Proposition 4.4. Fix $s \geq 0$ and let l denote the length parameter of the curve

$$
t \in(0,1) \mapsto\left[Z^{t}\right] \in \mathscr{N}^{+}
$$

with respect to g^{s}. Then

$$
g^{s}=d l^{2}+\left[l^{2}+\frac{1}{8 \pi^{2}} \cdot \frac{1+24 s+96 s^{2}}{(1+4 s)^{4}} \cdot l^{4}+0\left(l^{6}\right)\right] g_{0}
$$

for $l \rightarrow 0$.
Proof. The result is obtained by a straightforward computation.

References

1. Asorey, M., Mitter, P.K.: Regularized, continuum Yang-Mills process and Feynman-Kac functional integral. Commun. Math. Phys. 80, 43-58 (1981)
2. Babadshanjan, F., Habermann, L.: A family of metrics on the moduli space of BPST-instantons. Ann. Global Anal. Geom. 9, 245-252 (1991)
3. Bérard, Bergery, L.: Sur de nouvelles variétés riemannienes d'Einstein. Publications de l'Institut Elie Cartan, Nancy, 4, 1-60 (1982)
4 Buchdal, N.P.: Instantons on CP ${ }^{2}$. J. Diff. Geom. 24, 19-52 (1986)
4. Doi, H., Matsumoto, Y., Matumoto, T.: An explicit formula of the metric on the moduli space of BPST-instantons over S^{4}, A Fête of Topology. New York: Academic Press 1987
5. Freed, D.S., Uhlenbeck, K.K.: Instantons and four-manifolds. Berlin Heidelberg New York: Springer 1984
6. Groisser, D.: The geometry of the moduli space of $\mathbf{C P}^{2}$ instantons. Invent. Math. 99, 393-409 (1990)
7. Groisser, D., Parker, T.H.: The Riemannian geometry of the Yang Mills moduli space. Commun. Math. Phys. 112, 663-689 (1987)
8. Groisser, D., Parker, T.H.: The geometry of the Yang-Mills moduli space for definite manifolds. J. Diff. Geom. 29, 499-544 (1989)
9. Habermann, L.: On the geometry of the space of $S p(1)$-instantons with Pontrjagin index 1 on the 4 -sphere. Ann. Global Anal. Geom. 6, 3-29 (1988)
10. Matumoto, T.: Three Riemannian metrics on the moduli space of BPST-instantons over S^{4}. Hiroshima Math. J. 19, 221-224 (1989)
