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Abstract. In the study of integrable systems of ODE's arising from a Lax pair with
a parameter, the constants of the motion occur as spectral curves. The specific
curves depend upon the representation of the Lie algebra. In this paper a Galois
theory of spectral curves is given that classifies the spectral curves from an
integrable system. The spectral curves correspond to conjugacy classes of certain
subgroups of the Weyl group for the Lie algebra. The theory is illustrated with the
periodic Toda lattice.

Introduction

One mechanism for producing constants of the motion for completely integrable
systems is the Lax pairing. The idea introduced by Peter Lax was to express

dA
systems of differential equations in the form — = \_A, B~\. For finite dimensional

at
systems the following desirable situation often occurs:
1. A and B lie in a Lie algebra g,
2. A and B are functions of time t and rational functions of a parameter s where s is

a coordinate on an algebraic curve P.

For each representation p of g, the characteristic polynomial of p(A) defines
a curve by the equation 0 = det (pA(s, t) — z). It is a consequence of the Lax form
of the differential equation for A that {(s, z) | 0 = det (pA(s, i) — z)} is independent
of time for any representation p. The curves defined by 0 = det (pA(s, t) — z) are in
general reducible and the irreducible components of these various curves are called
spectral curves. These curves are equipped with projections to P via the s coordi-
nate. This arrangement has been used by many mathematicians to examine
completely integrable systems, e.g., van Moerbeke and Mumford [vMM]; Adler
and van Moerbeke [AvMl, 2]; McDaniel [Me]; Kanev [K]; Griffiths [G];
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Bobenko, Reyman and Semenov-Tian-Shansky [BRS]; Zakharov and Mikhailov
[ZM]. A spectral curve is important not only as providing the constants of the
motion of a completely integrable system, but also because the flow of the system
often linearizes on the Jacobi variety of the curve. Moreover the results of this
paper suggest that given a matrix Lax equation with a parameter, an underlying
Lie algebra could be revealed via its Weyl group from the Galois theory of the
spectral curve.

This paper provides a Galois theory for the family of spectral curves with their
projections that arise as constants of the motion from a Lax equation with
a parameter. The main result (Theorems 13 and 15) is that the spectral curves for
a given initial condition can be indexed by certain subgroups of the Weyl group.
This paper treats the spectral curves themselves. It does not deal with the question
of linearization on the Jacobians of the spectral curves as in [G] and [K]. Such
questions will be dealt with in the sequel.

The method of proof is to construct large spectral varieties Eλ which sit over the
Lie algebras themselves (whereas a spectral curve sits over the parameter space).
The spectral curves are then irreducible components of the pullbacks of

The spectral varieties have both a Lie theoretic description via the adjoint map and
a more concrete description as eigenvalue covers. The key lemma is Lemma
3 displaying an isomorphism between these two descriptions, which leads to
a Galois theory for the spectral varieties in terms of conjugacy classes of parbolic
subgroups of the Weyl group (Theorem 4). This theory is pulled back to the
spectral curves (Theorem 13) and applied to the periodic Toda lattice (Proposition
20) as a specific example.

The paper proceeds as follows. After the notation is established, the section
spectral varieties contains the basic construction of a spectral variety. The following
section classification of the spectral varieties contains the classification theorem of
spectral varieties. This section examines spectral varieties from a purely Lie
algebraic viewpoint. In stabilizers of weights, an analysis for the infinite families of
algebras as well as types G2 and F 4 is given. The classification of the spectral
varieties is related to subdiagrams of the various Dynkin diagrams. The section
spectral curves relates spectral curves to spectral varieties and the classification
theorem for spectral curves is given (Theorem 13). It is a corollary that a Lax
equation with an initial condition is associated to only finitely many spectral
curves. The final section, the Toda lattice, contains the detailed example of the Toda
lattice for the infinite families of algebras. The Galois theory for spectral curves is
studied for generic initial conditions. The Galois group of the splitting field of the
defining polynomial of the spectral curve over the field of meromorphic functions
on the Riemann sphere is shown to be the Weyl group for a generic initial
condition. This gives a minor correction to [AvMl].

In [AvMl] and [AvM2], Adler and van Moerbeke use the Kostant-
Adler-Symes theorem [AvMl, p. 282] and the van Moerbeke-Mumford lineariz-
ation process [vMM] to examine several completely integrable systems via spec-
tral curves with P the Riemann sphere. They conclude that the spectral curves are
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related by algebraic correspondences. This paper can be viewed as an extension of
that result.

The authors are grateful to William Adkins for a discussion concerning the
relevant analytic geometry and to Mark Adler for reading a preliminary version of
this paper.

Notation

The following common notation is used throughout this paper. The letter g denotes
a complex simple Lie algebra. A Cartan subalgebra is fixed and denoted ϊ). The
corresponding connected Lie groups are denoted G and H respectively. The adjoint
group may be taken as G, but the particular connected Lie group which is used is
not consequential as this paper is concerned with G/H rather than G or H individ-
ually. Let NH and CH denote respectively the normalizer and the centralizer of the
maximal torus H in G. Since g is simple, CH = H. The Weyl group Wis the quotient
group NH/CH, which acts on ί) by nCH-h = Aάnh. Weights for the pair (g, ί)) are
denoted by λ or by λ and γ if two of them are under discussion.

The subsets of regular elements of 9 and i) are denoted respectively by g* and I)*.
One convenient characterization of the regular elements of g is as those elements
which are contained in a unique Cartan subalgebra. Other elements either lie in no
Cartan subalgebra or in infinitely many of them. A different characterization shows
that the regular elements form a quasiaffine variety within either g or ί). Form the
characteristic polynomial dεt (ad x — z) of the Lie algebra g. When expanded in
powers of z, there is a lowest coefficient which does not vanish identically. The
regular elements are those x for which this coefficient is non-zero. Since these
coefficients are polynomials in x e g, the regular elements are the complement of
the zero set of a polynomial. This paper looks at branched covers over g which
are unbranched over g*. The portion of a cover E which lies over g* will be
denoted £* .

Spectral Varieties (Eigenvalue Covers)

This section presents the spectral varieties in concrete guise; namely, a spectral
variety is an irreducible component of the variety defined by the characteristic
polynomial of a matrix representation of a Lie algebra.

Definition. Let p be a finite dimensional irreducible representation of g. Define
Sp a g x C to be the variety defined by the equation det(p(x) — z) = 0.

Since g is isomorphic to CN as a complex vector space and p is linear,
det(p(x) — z) is a polynomial for any representation. The variety Sp is in general
reducible and decomposes via the dominant weights. These pieces are independent
of the representation in that they depend only on the weights.

Proposition 1. For each dominant weight λ there is a polynomial pλ(x, z) such that if
p is any finite dimensional representation and the multiplicity of the weight λ in p is mλ

then

where λ runs through the dominant weights.
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Proof. For each x e g let x = xs + xn be its decomposition into commuting
semisimple and nilpotent parts. Let ί) be the Cartan subalgebra in terms of which
the weights are defined. The element xs is in some Cartan subalgebra so there is
a geG such that Ad^x seI). Let

Px(x,z)= Π (y(Aά9χs) - z),
γeW-λ

where W λ denotes the orbit of the weight λ under the action of the Weyl group.
This expression for pλ(x, z) does not depend on the choice oig since the ambiguity
is up to conjugation by an element of the Weyl group. Since xs and x have the same
eigenvalues with multiplicities, det(p(x) — z) = det(p(x s) — z) and det(p(x) — z) =
Γ L (Pλ(x> z)Tλ' It remains to see that p λ(x, z) is a polynomial. This can be shown by
using induction on the partial ordering of the weights by levels. For a dominant
weight λ, let pλ be the irreducible representation with highest weight λ. In pλ the
weight λ occurs with multiplicity one and the other weights lie in strictly lower
levels. If λ is a fundamental dominant weight then pχ(x, z) = det(p λ(x) — z) so
pλ(x, z) is a polynomial. Now suppose λ is any dominant weight and that pγ(x, z) is
a polynomial for all dominant weights y at a lower level than λ. Then,
det(p λ(x) — z) = Πy<>ι(Py(χ' z))my p χ{x, z) s o Pλ(x, z) is a rational function. Since
it takes finite values, it is a polynomial. |

Definition. Let Eλ be the variety defined by pλ(x, z) = 0.

These varieties are irreducible for each dominant weight λ. This will be proven
below. Each variety Eλ comes equipped with a projection pr: Eλ -> g induced by
g x C -> g. Denote the inverse image of the regular elements g* by Eλ%.

The variety Eλ is in general singular. The normalization of a variety X will be
denoted^X -> X. By composing pr: Eλ -> g with normalization one obtains a mor-
phism Eλ -* g which will generally also be denoted pr but for the purposes of this
paragraph will be denoted pr. The regular elements g* in g form a Zariski open set
so pr~ 1 (g # ) = Eλ^ a Eλ is also a Zariski open set. Since normalization is a local

process pr " x (g*) ^ pr ~x (g^) so Eλ^ unambiguously denotes a certain Zariski open

subset of Eλ. It will be shown subsequently that Eλ% is a covering space of g*.
The varieties Eλ are the main objects of study. These are the varieties which

yield spectral curves. If A: C -> g is a matrix in a parameter s then the pullback of
Eλ along A, A*(Eλ) gives rise to the spectral curves (see the section titled spectral
curves).

Classification of the Spectral Varieties

The bridge between the various spectral varieties is the covering space described
below. Since the Cartan subgroup H is a closed subgroup of G, both G and G/H are
smooth quasiprojective varieties [HI, p. 80]. The space G/H x f)# is also a smooth
quasiprojective variety.

Lemma 2. Let π : G/H x ί)* -• g* be given by π(gH, h) = kάgh.

(a) π is α morphism.
(b) π: G/// x ϊ)* -• g* is ί/ze projection map of a regular covering space with group of

translations W. The action of W is given by (nCH)'(gH, h) = (gn~1{H, Aάnh).
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Proof, (a) The map π is well-defined since Adgh>h = AdgAdh>h and Adh>h = h for
h! e H. The map Ad: G x f) -• g is a polynomial map. Since it is constant on cosets of
H x 0, it factors through G/iί x I) by a unique morphism in accordance with the
universal mapping property of quotients [HI, p. 83]. Since A d " 1 ^ ) = G/H x I)*,
π is the restriction of the morphism Ad to the Zariski open set G/H x ί)#. It follows
that π is a morphism.

(b) Let ϊ^actonG/t fx f )* by (nCH)-(gH,h) = (gn'1 H, Adnh) No element in
W except eCH has a fixed point since gn~1H = gH implies neH = CH. Since
G/H x ί)* is a Hausdorff space (in the manifold topology) and W is a finite group
acting without fixed points, Wacts properly discontinuously on G/H x ί)^. There-
fore G/H x ί)* -• G//f x ί ) * / ^ is a regular covering space with group of covering
translations W. The map π factors through π': G/Hx\)JW^> $%. The map π' is
a continuous map of manifolds. It is one-to-one since Adgh = Ad^/z' implies
Ad^-i^'/ϊ'eϊ) and since h' is regular this implies g'1 g' eNH. The map πis onto since
every regular element is in a Cartan subalgebra and all the Cartan subalgebras are
conjugate. The map π' is therefore a homeomorphism and so (b) follows. |

Let λ be a weight. Define πλ: G/H x ί)* -> ϋ ^ by πλ(gH, h) = (Ad /̂z, Λ(/z)). Since
Ad is a polynomial and A is linear, πλ is a morphism. The variety G/H x ^ is
a smooth (and hence normal) variety, so πλ lifts to a unique morphism π Λ :
G/H x I)* -• £ λ ϊ | s . Let SΛ = {nCHe JF| λ(AdΛft) = λ(h) for all Λel)} so that Sλ is the
stabilizer of λ under the action of W.

The morphism πA factors through G/H x f̂ /SΆ The factorization yields a mor-
phism iλ: G/Hx\)*/Sλ^Eλ%. The morphism iλ lifts to an isomorphism ΐλ:
G/H x ί)^/Sλ -• Eλχ. This isomorphism connects the abstract construction of spec-
tral varieties with their concrete realizations as eigenvalue covers of g*.

Lemma 3. The following diagram is a commutative diagram ofmorphίsms which are
covering space projections.

G/Hx\)JS

The morphism πλ is a regular covering space projection and the morphism ΐλ is an
isomorphism.

Proof. Let U cz Eλ be the Zariski open subset obtained by removing the pre-image
of the zero of the discriminant of pχ{x> z) and the singular set from Eλ. The
discriminant vanishes at all those x e g such that p(z) = pλ(x, z) has a multiple root.
Note that U is non-empty since its image in g is dense. Consider the morphism
iλ\irHu)' iλ1{U) -• U. This map is clearly onto U. Iϊ(π(gH, h\ λ(h)) = (π(g'H, h'\
λ(h')) then by Lemma 2 there is an neNH such that nCH (gH, h) = (g H, h'). In
particular AAnh = W so λ(Adnh) = λ(h') = λ(h). Since h is not a member of the
discriminant of p λ , then nCHeSλ. The morphism iλ\ir^u) is a one-to-one onto
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morphism of smooth varieties and so is an isomorphism by the generalized
Riemann existence theorem [Hart, p. 442]. The morphism ΐλ is thus an isomor-
phism on an open set and finite-to-one elsewhere. Therefore by Zariski's main
theorem [Hart, p. 280] ιλ is an isomorphism.

The diagram is commutative directly from the definition of the maps. Since Ίλ is
an isomorphism and /Sλ yields a regular cover, πλ is a regular cover. The morphism
pr is a cover since j is a covering map. |

Theorem 4. The spectral varieties Eλ^ are classified as varieties with projections by
conjugacy classes^of stabilizers of weights in the Weyl group. That is there exists an
isomorphism f: Eλ^ -> Eγ* such that

^ E

commutes if and only if Sλ is conjugate to Sγ in W.

Proof Let J be the fundamental group π1(G/H x ί)*). By the generalized Riemann
existence theorem (proven in [GrRe] and discussed in [Hart, p. 442] or [M, pp. 40
and 118]) the algebraic covers of g* covered by G/H x I)* are classfied by conjugacy
classes of subgroups of π*( J) where conjugacy is in π^g*). This is the same as the
purely topological situation. Consider the exact sequence

The group π^g*) acts by conjugation on this sequence. If ca is conjugation by
a then

U U ϊcq{a)

0 -+ J

commutes. Now nι(Eλ^) a π^g^) and π^g*) acts on the collection of subse-
quences of (*)

by permuting these subsequences. Two stabilizer subgroups Sλ and Sγ are conju-
gate exactly when n^E^) and π^Ey*) are conjugate.

Note that n1(q^)/J = PFand neNH acts by taking the sequence of subgroups
to

0 - • J - • ^ ( E ( w . A ) s | t ) - • Sin.λ) -+ 0

since covering translations change the basepoint and conjugation is the change of
basepoint for the fundamental group. |

Remark. Breiskorn showed that the groups n^^/W) are generalizations of
Artin's braid group [B]. The groups π^g*) are also equal to these Breiskorn braid
groups [MS]. In particular, if g is of type An-X then π^g*) is Artin's braid group
and if g* is of type Bn or Cn then π^g*) is isomorphic to the braid group of the
annulus Bn(C - {0}) [MS].
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The covering spaces G/H x f)* -• Eλ^ are all regular covering spaces. However,
Eλ* -+ 9* is not.

Proposition 5. The covering space

is regular if and only if λ^ is a nonsίngular weight or the zero weight. If λ is
a nonsingular weight then £Λ ί | ί = G/H x ί)^.

Proof. If λ is nonsingular then Sλ is trivial. Thesejveights are precisely those that lie
in the interior of a Weyl chamber. Since Eλ% = G/H x l)*/Sλ by Lemma 3,

/ϊ
If λ is a singular weight then Sλ Φ 1 and by Theorem 4, it is enough to show that

Sλ is not normal in W. If we W then SΛ and Sw.λ are conjugate. So if Sλ is normal
then every weight in the orbit is stabilized by Sλ. Furthermore any linear combina-
tion of weights in the orbit is stabilized by Sλ. If the span of an orbit is all i) then Sλ

must be trivial. But the span of an orbit is always f) in a simple algebra as follows. If

D is an orbit, α e span I) and β is a root then α + —-—- β e spanT). So take any

β with (α, β) φ 0 then β e spanX). But the root lattice is irreducible for the simple
algebras and Wacts irreducibly (see [HI, 10.4]). Therefore the whole root lattice is
in spanX) and spanX) = ί). |

Corollary 6. Up to isomorphism there are only finitely many Eλ^for a given algebra
g. Up to birational equivalence there are only finitely many spectral varieties Eλ.

Proof The first statement follows from the theorem. Birational equivalence re-
quires an isomorphism only on a Zariski open subset [Hart, p. 26]. The subset
Eλ+ is open in Eλ. |

Corollary 7. The varieties Eλ are irreducible.

Proof This follows from the connectedness of the covering spaces Eλ% which
is apparent as they are quotients of the connected space G/H x g^. See [GR,
p. 116]. I

Stabilizers of Weights (Parabolic Subgroups of W)

Each spectral variety Eλήί is isomorphic to G/H x§*/Sλ for some weight λ. By
Theorem 4, two spectral varieties G/H x $JSλ and G/H x QjSγ are isomorphic as
covers of g* precisely when the stabilizers Sλ and Sy are conjugate subgroups of W.
In order to count the spectral varieties, a count of the conjugacy classes of
stabilizers of weights follows. The algebras E6,EΊ, and E8 are omitted.

Let α 1 ? α 2, . . . , αw be a basis of simple roots for g, and ωί9 ω2, . . . , ωn be the
dual basis of weights. Any weight λ may then be expressed as λ = £?= i h^>h where
λi = (cci9 λ). Let rjθ Wbe the reflection across the hyperplane orthogonal to α,. The
following standard results may be found in [BMP].
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Lemma 8.

1. If two weights lie in the same orbit of W, then their stabilizers are conjugate in W.
2. The W orbit of a weight contains precisely one weight in the closed Weyl chamber

{λ = γjλiωi\λi^0fori=\,...,n}.

3. If λ = Σ"=i ^ίωi and Λ ^ Ofor i = 1, . . . , n, its stabilizer Sλ is generated by the
set of reflections {rj\λj = 0}.

4. The subgroup generated by {r7- \jeJ}for J a {1, . . . ? n} is the Weyl group for the
full subdiagram of the Dynkin diagram for q obtained by deleting the nodes for j φ J.

The lemma shows that each conjugacy class may be represented by one or more
full subdiagrams of the Dynkin diagram of g. This gives an upper bound of 2"
conjugacy classes for an algebra of rank n.

The next step is to see when two subdiagrams represent the same conjugacy
class. When the simple roots for c; are of two different lengths, this is indicated by
marking (blackening) the nodes of the Dynkin diagram corresponding to the short
roots. This occurs for algebras of type B, C, F4, and G2. Two full subdiagrams of
the Dynkin diagram shall be considered isomorphic if there is a graph isomorphism
between them which respects the marking of the nodes.

Proposition 9. 7/g is a simple Lie algebra of type A, B, C, G 2, or F4 then the set of
conjugacy classes of stabilizers of weights is in one-to-one correspondence with the
isomorphism classes of full subdiagrams of the Dynkin diagram for g (where the
isomorphisms respect the length of the roots corresponding to nodes in the diagram).

Proof In each case the weight lattice is conveniently viewed as lying in a Euclidean
space equipped with an orthonormal basis {e j such that the Weyl group includes
the permutation group on the basis elements. Dynkin's convention for numbering
the nodes (simple roots) will be used [BMP].

type An. The weight lattice is generated by the sublattice of Zn + 1 where the
/ —1 - 1 \

coordinates sum to zero and the lattice point ί 1, -, . . . , I. The Weyl

group acts as the symmetric group Σn+1 on the basis vectors. The reflection r,
corresponding to node j is the permutation (jj + 1).

A full subdiagram of the Dynkin diagram yields a partition as follows. Imagine
the Dynkin diagram for type An to have two extra edges, one extending off each
end. A subdiagram is obtained by removing some of the nodes. View the missing
nodes as dividers, as pictured for n = 6 with nodes 1, 3, and 4 missing.

The partition of n + 1 obtained from this subdiagram has as parts the number of
edges in connected components of the picture. In the example
n + l = 7 = l + 2 + l + 3 . The full subdiagram corresponds to the subgroup
Σ2 x Σ3 « Σ1 x Σ2 x Σ1 x Σ3 cz Ση. The Σ2 associated to the second and third
edges permutes e2 and e 3, while the Σ3 associated to the last three edges permutes
e5,e6, and eΊ. In general isomorphism classes of subdiagrams of the Dynkin
diagram of type An correspond one-to-one with partitions M + l = p 1 + + p/c

which in turn correspond one-to-one with conjugacy classes of stabilizer subgroups
taking the form ΣPιx- -xΣPk. '
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type Bn. Tne weight lattice is spanned by Zn and (2, 2 , . . . , i) The Weyl group
acts as the semidirect product Z2xΣn by permuting the basis vectors and switch-
ing an arbitrary number of their signs. The reflections associated to the nodes are
the permutations r,- = (jj + l)for 1 Sj ^n — 1 and rn = (—l)n, switching the sign
on en. Associate to each full subdiagram a partition n = px + + pk by ignoring
node n (corresponding to the short root) and treating what remains as a sub-
diagram of the Λn-1 Dynkin diagram. Here pk is the number of edges in the
component adjacent to the double bond connecting node n. Then if node n is not
part of the given subdiagram, the subdiagram represents a conjugacy class
of stabilizers isomorphic to ΣPιx- - x l ^ , while if node n was included, the
subdiagram represents a conjugacy class of stabilizers isomorphic to
ΣPι x x ΣPk_ι x (Zp

2

kxΣPk). Since the sign switch rn = (— l)n is not conjugate to
any permutation in Σn, all these conjugacy classes are distinct.

tyPe Cfi The weight lattice ΊΓ with Weyl group Zn

2xΣn again acting as per-
mutations and arbitrary sign changes. The situation is the same as in the Bn case.

tyPe G2. The weight lattice consists of the sublattice of Z 3 perpendicular to
(1, 1, 1). The Weyl group is the direct product W = Z2 x £3 which acts by permut-
ing the basis vectors and multiplying them all simultaneously by + 1. The con-
jugacy classes of stabilizers are {e}, W, the class of Z 2 ' s inside the Σ 3 , and the class
of Z 2 ' s involving a permutation and multiplication by — 1. These correspond to the
full subdiagrams of the Dynkin diagram. The class of permutation only Z 2 ' s
corresponds to the single node associated to the shorter root.

type F4. The weight lattice is generated by Z 4 and ( 2, 2, i> 2) a n d is the same as
that for D4. The Weyl group is the full automorphism group of the D4 root system
Σ3 x (Z2XI4) . The Σ3 acts as the outer automorphisms. A hand check gives the
following 12 conjugacy classes of stabilizers: W9 {e}, Z2 (one short root), Z 2 (one
long root), Z 2 x Z 2 , Z\xΣ2, Σ3 (short), Σ3 (long), Z\xΣ4 (type B\ Z\χΣ4 (type
C), Σ3xΣ2, and Σ2 x Γ 3 , where Σ3 and Σ2 are associated to long and short roots in
one case and vice versa in the other. The Σ3 associated to the short roots may be
regarded as coming from the outer automorphisms of the D 4 root system. |

It turns out that two stabilizer subgroups may be abstractly isomorphic but not
conjugate in W. These subgroups are all Weyl groups of subdiagrams of the
Dynkin diagram and their structure only depends on the Coxeter graph, i.e. the
Dynkin diagram without markings for root lengths. For the algebras of Proposi-
tion 9 conjugacy was determined by the isomorphism class of the marked diagram.
For algebras of type Dn this is no longer true.

In order to correlate subdiagrams with conjugacy classes of stabilizers for type
DM, recall how subdiagrams for types An-1 or type Bn yield partitions of n. The
description of conjugacy classes of stabilizer subgroups for type Dn also uses an
associated partition.

Proposition 10. Let q be a simple Lie algebra of type Dn. Let T map the Dynkin
diagram of type Dn to the Dynkin diagram of type An-γ by identifying the two nodes
and their adjacent edges where the Dn diagram forks. For each full subdiagram D of
the Dn diagram, let p be the partition n — 1 = pγ + + pk obtained from T(D),
where pk counts the edges in the component attached to the node obtained by
identification. Let 00, 01, 10, 11 be a code indicating whether D includes nodes n — 1



136 A. McDaniel and L. Smolinsky

and n of the Dn diagram, e.g. 10 means node n — 1 included, node n deleted. The
conjugacy classes of stabilizer subgroups of W correspond with the following types of
data:

a) The empty graph corresponds to the (conjugacy class of the) subgroup {e}.
b) (p, pk, 11) corresponds to the conjugacy class of subgroups isomorphic to

c) (p9 10) and ( p , 01) correspond to at most two conjugacy classes of subgroups
isomorphic to ΣPί x x ΣPk. The two conjugacy classes are distinct if and only if
p is an even partition.

Observe in cases b) and c) that pk > 1, while case a) covers the partition whose only
parts are Γs.

Proof.

type Dn (n ̂  3). The weight lattice is generated by Z" and ( ^ , . . . , J). The Weyl
group acts as the semidirect product Zn

2~* xΣn by permuting the basis vectors and
switching an even number of their signs. The reflections r,- are the permutations

r. = (jj + 1) for l^j^n-l and rn = (n- 1, w)(— ! ) „ _ ! ( — l) n which switches
en-ι and en and multiplies both by — 1.

The Weyl group for Dn may be regarded as a normal subgroup of index
2 contained in Z2xΣn, the Weyl group for Bn. The stabilizers of weights for the
type Dn are thus intersections of stabilizers for type Bn with Zn

2~
1xΣn. Each

conjugacy class for type Bn yields either one or two conjugacy classes of type Dn.
The partition associated to a subdiagram amounts to partitioning the coordinates
of a weight according to equality up to sign. If an even number of sign changes can
be made so that the coordinates in each equivalence class are all equal, then the
conjugacy class of the stabilizer has the form ΣPί x x ΣPk or
ΣPι x x ΣPkι x (ZfyxΣpJ as in type B. When the partition n = pγ + + pn

has only even terms, it is not in general possible to align the signs in the equivalence
classes by an even number of sign changes. Using (— l)w and the Weyl group of type
Dn the signs of the coordinates in the equivalence classes can be aligned. In this case
the stabilizer of the weight is, up to conjugacy, (— l) n (ΣPι x x ΣPk) (— 1)Λ which
is abstractly isomorphic but not conjugate to ΣPi x x ΣPk c Σn c Zn

2~
1xΣn =

W. In this case isomorphic subdiagrams do not always give conjugate stabilizers;
the choice of a branch in the fork of the Dn diagram matters. Moreover the
subdiagram of type A3 containing both branches corresponds to Z2xΣ3 which is
abstractly isomorphic but not conjugate of Γ 4 . |

The characterizations of the conjugacy classes of stabilizers tell how many there
are.

Corollary 11. Let P(n) be the set of partitions of n and p(n) its cardinality. The
number of conjugacy classes of stabilizer subgroups of the Weyl group for the simple
Lie algebras of types A, B, C, D, G2, and F4 are as follows:

1. An p(n + 1),
2. Bn or Cn p(n) + ΣPeP(n) (# of distinct parts of P)9

3. Dn £peP(«) (f of distinct parts Φ 1 o/F) + p(n) + (# of even partitions
ofn),

4. G2 4,
5. f4 12.
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Spectral Curves

Many completely integrable systems can be written in the form

d A , Λ r , x , n

(**) ~~r~ (5> t) = \_A(s, ί), Bis, t)\ ,
dt

where A and B are functions of time t and an algebraic spectral parameter s and
take their values in a finite dimensional Lie algebra. In the papers of Adler and van
Moerbeke [AvMl,2] are a number of examples involving a rational parameter.
These include the periodic Toda lattice and its generalizations to all the simple Lie
algebras. In the paper of Krichever [Kr] the p-function Calogero system is written
in the Lax form with an elliptic parameter.

The flows of these equations can be viewed as follows. Let A be a time
dependent map from a parameter space P (which is an algebraic curve in the
examples) to a Lie algebra g, i.e., A: P x R -* g. A should be thought of as the
solution to (**). For a representation p, let X(P,t) be the curve X(Pit) = {(p9z)e
P x CI det (pA(p, t) — z) = 0} and X(Ptt) the desingularized curve. These curves are
independent of time t if they arise from a Lax equation and are hence determined
by their conditions, A( —, 0): P -+ g.

X

ϊ
P -> Q^> matrices

Let X be an irreducible component of X(P,ty Such a curve is called a spectralj:urve.
A flow is then obtained in the space of line bundles over the spectral curve X. This
flow is obtained by observing the evolution of the eigenvector line bundle over X as
a function of time. Although X depends on the representation p, of which there
are countably many, there are only finitely many spectral curves associated to A
(Corollary 14).

Lemma 12. Suppose P is an irreducible algebraic curve and A: P -> g is an algebraic
initial condition with lm(A) n g* φ 0. Let P* = A"1^), then

1. P% = P-finite set of points.
2. The spectral curves are irreducible components of the pullbacks of

Eλ

ϊ

Proof The image of P in g is an irreducible algebraic curve and since the singular
set is also algebraic, I m ( ^ ) n singular set is algebraic. If Im (A) n singular set is
a curve then it is all of lm(A) but that would contradict the condition
lm(A) n g* =f= 0. Therefore lm(A) n singular set is a finite set of points. So P* is
P minus a finite set. Recall that Sp = {(x, z)|det(p((x) - z) = 0}. The variety
X(P,t) is precisely the pullback of Sp along A( — 9t)9
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The variety Sp decomposes into the irreducible varieties Eλ by Proposition 1 and
Corollary 7. The pullbacks of

are algebraic curves Yλ which comprise X(P,t) Each spectral curve X is an
irreducible component of X(P,t) for some p and so of Yλ. |

Suppose P is as in Lemma 12. Let BW be the classifying space for principal
W-bundles and let EWbε the universal cover of BW. Principal W-bundles over
a space T(including regular PP-covering spaces) are given as pullbacks of EWalong
maps T^BW, bundles corresponding to homotopy classes of maps. Since
G/H x f)* -• g* is a regular W-covεr it can be given as ε*(EW) = G/H x f)* for some
map ε : Qx -+ BW. The following theorem gives the classification of spectral curves.

Theorem 13. Suppose P is an irreducible algebraic curve and A: P -• g is an alge-
braic map with lm(Λ) ng^ φ 0. Let M be the image of π^P^) under (ε°,4)*:
^i(P*) -+W.Ifλ is a weight let Sλcz Wbe its stablizer and Mλ = Sλn M. Then

(1) There is a one to one correspondence between spectral curves with their
projections, X —• P9 and conjugacy classes of the subgroups Mλ in M.

(2) // XM -» P is the spectral curve corresponding to the trivial subgroup of
M then the others arise as quotients XM/Mλ -> P.

Proof. Let Ϋ+ be the pullback A*(G/Hx\)*) so that Ϋ+ -+P* is a principal W-
bundle. Let ee Ϋ% so W-eisa. fiber and let X* be the component of Y* containing
e. Since Im (ε ° A)% = M, X* -^ P% is a regular M-cover. Since the action of W is
transitive on any fiber of Ϋ%, Ϋ* is isomorphic as a variety to | W/M | copies of X*.

Suppose wx e and w2 e are in the same fiber. They are in the same component
if and only if w2 * w1 e M, i.e., wι and w2 representjthe same left coset in W/M. The
subgroup of Wthat preserves the component w X^ is wMw~1. By Lemma 12 and
Theorem 4, the spectral curves arise from components of YJSλ. The components
of ΫJSλ correspond to the double cosets Sλ\ W/M. Let X be a component and take
a w E W such that the image of w e under Ϋ* -> F * / ^ is in X. The curve X is
w ί ^ w M w ' M S J . But w ^/(wMw- 1 n ί S λ )^J? ; ί : /Mnvv- 1 5 A w = X ; i ί/Mn ίS y

= XJMy ϊory = w~1 λ. Parts (1) and (2) follow. |

Corollary 14. // P is α closed irreducible algebraic curve and A: P —• g z's an
algebraic initial condition with Im(,4)n g* + 0 then A has only finitely many
spectral curves.

Suppose Y -• 7 -• 7 is a sequence of algebraic covers with Y^> Y a regular
G-cover. There is then a subgroup H ^ G with Γ ^ F a regular /ί-cover. Let Ff,
Fy and F y denote the field of meromorphic functions on the given variety. These
can all be considered as subfields of Ff via pγ and p2

oPi It is then a standard
result ( [F] page 57) that Gal(Ff, F y ) = G and Gal(Ff, F y ) = //. If # is normal in
G then Gal(F y , Fγ) = G/H.

Theorem 15. Suppose XM -• P is the spectral curve corresponding to the trivial
subgroup ofM and FP -> FXM is the induced embedding of the function fields. Then the
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Galois group Gal(FχM, FP) is M and the subfield fixed by Mλ is the function field of
the spectral curve XM/Mλ -• P.

This theorem sets up a one to one correspondence between spectral curves and
fixed fields arising from stabilizers. It is just a reinterpretation of Theorem 13.

Proposition 16. Let qMtλ(s, z) = \\yeM.λ (y(Ad^(s) s e m i _ s i m p l e )) - z) for (s9z)
e P x C. Then qMί λ is irreduicble and the normalization of the curve defined by
q.M,λ(s,z) = 0 is isomorphic to XM/Mλ.

Proof Recall from Proposition 1 that pλ(x, z) = Y\ysW.λ{y{kάg{xsem{.s-imple)) - z\
where xeg. The variety Eλ is defined by pλ(x, z) = 0. By the construction of the
pullback in Lemma 12, Ϋλ% = {(s, x, z)ePx g x C\A(s) = x and Pλ{x, z) = 0}.
The polynomial pλ(A(s), z) factors as

pλ(A(s), z) = [ ] Π mcλ (Ad, (Λ(s) s e m i _ s i m p l e )) - z),
ceM\W/Sλ meM/Mc.λ

where c and m each run through a set of coset representatives. The factorization
may be rewritten as pλ(A(s), z) = Y\ceM\W/S Q.M,C-X{A(S),Z). The factorization is
a rephrasing of the decomposition of Yλ* = Y*/Sλ into connected components as
discussed in the proof of Theorem 13. As each qMyC.λ defines a connected curve, it is
irreducible. By the proof of Theorem 13, the desingularization of the curve defined
by qM,c λ = 0 is XM/Mc.λ. |

In the special cases M = W or Sλ = {e}, the curves defined by qM,cλ are
isomorphic to each other, i.e. they don't depend on c.

Proposition 17. The splitting field of pλ(A(s), z)for λ Φ 0 is independent of λ up to
isomorphism of field extensions of FP.

Proof. Let λ and y be two non-zero weights of g. Let s0 be a value in the parameter
space P such that pλ{s0, z) and pγ(s0, z) have only simple roots in z. These roots are
meromorphic functions of s in a neighborhood of s0. The polynomials pλ and py

with coefficients in the function field FP split in the field of germs of meromorphic
functions at s0. In particular the splitting field of pλ is FP({rw.λ \we W/Sλ}\ where
rw.λ is the germ of the function w-λ(Adg(s) (>4(s))semi_simple), appearing in the
formula for pλ in Proposition 1. Here g(s)eG is independent of λ. The weights w λ
span I)* and in fact γ is a rational linear combination of {w λ). Hence the germs
rw.y which generate the splitting field FP({rw.γ}) lie in the field FP({rw.λ}). The
argument is symmetric in λ and γ so the two splitting fields are equal. |

lϊ (ε°A)% is onto W (i.e., M = W) then the spectral curves correspond to the
conjugacy classes of the stabilizers of weights, Sλ. This is the expected situation (it is
generic for the examples) although not the exclusive situation. For example, if
lm(A) a ί) then X = P is the only spectral curve. Now consider the case M = W.
Here the curves Xλ = XM/Mλ are defined by pλ(A(s), z). The function field Fx. is
isomorphic to C(s, z)/(pλ(A(s), z)).

Corollary 18. Suppose M = W.

1. pλ(A(s), z) is irreducible over FP.
2. IfSλ is a normal subgroup of W then Sλ = {e} or W.
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Proof. The first statement follows from pλ(A(s\ z) = qw,χ{^ z\
If λ Φ 0 and Sλ is normal in J^then Xλ% -• P% is regular (i.e. FP a Fx is Galois)

and so Fx is the splitting field of pλ(A(s), z). By Proposition 17, FXw = Fx and
Sλ = {e} (Theorem 15). |

The construction of the monodromy group and the criterion below will be
useful for some particular examples. If peP% then π ^ P * ) acts (on the right) on the
set p " 1 ^ ) - Furthermore, p~1(p) = pήιπ1(X^)\πί(P:i:) as a π^PJ-module. This is
the monodromy representation of π ^ P * ) . Let X* be an irreducible component^
A*(G/H x ϊ)*). The image of π1 (P#) in Aut (p'1 (p)) is the monodromy group. IΪX*
is a regular cover then the monodromy group is isomorphic to the group of
covering translations.

Proposition \9. Suppose XM* ~^ P* is a regular cover with group of translations
M and that X* = XM*I'J far J c M. IfN is the largest subgroup ofJ which is normal
in M then the monodromy group for X^ -> P% is M/N.

The following is the criterion that will be used in the next section.

Criterion. lf%γ (P*) acts by | W\ distinct permutations on the monodromy for any one
spectral curve then M = W and ( ε 0 ^ ) * is onto W.

Proof of Proposition 19. If α e π ^ P * ) then α acts in the automorphisms of a fiber
via path lifting. So the monodromy representation / : π ^ P * ) -• Aut(p~1(p)) fac-
tors through M since any path lifts above X* to XM* Let K be the kernel of/ For
an α e π i ( P # ) , oceK if and only if every lift of α to X* is a loop, i.e., βocβ'1 eπ1(X^)
for all βeπ^P^). Therefore K is the largest normal subgroup of π ^ P * ) contained
in Ki(X%). The nesting of the subgroups π1(A'Msk) a K cz π1(Xή:) a π ^ P * ) yields

/π1(XMJ = M9 π1(X*)/π1(XMJ = J and K/π1{XM*) = N. Therefore
^ πi(P # )/X which is isomorphic to the image of/ Note that XM*/N is the

smallest regular cover of P* over X,,.. |

The Toda Lattice

This section examines a collection of specific integrable systems, the periodic Toda
lattices. It is shown that for generic initial conditions the criterion developed in the
previous section applies, giving a one-to-one correspondence between the spectral
curves for such an initial condition and the conjugacy classes of parabolic sub-
groups of the Weyl group of an underlying Lie algebra. This classification is the
same as that given in Theorem 4 for the eigenvalue covers of g* (i.e. for spectral
varieties).

The generalized periodic Toda lattice is a system of Hamiltonian equations that
in canonical coordinates ql9 . . . , qn, p 1 ? . . . , pn is

dqt _ dH dpi _ dH

dt dpt dt dqi '

The Hamiltonian function is given by
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This Hamiltonian depends on the underlying Lie algebra g. The position
q = (<h, , Qn) and the momentum p = (pu . . . , pn) are viewed as elements of
a fixed Cartan subalgebra ί). The entries qt and pi are their coordinates in the
epsilon basis (see [BMP, table 2] or [H2, pp. 64-65]). In the cases of the algebras
An and G2 the Cartan subalgebra consists of those elements (q1, . . , qn) such that
Σ qt = 0, rather than the whole space spanned by the epsilon basis. If the equations
are interpreted as the motion of a system of particles, this restriction amounts to
reducing the Hamiltonian system by normalizing the center of mass to the origin.
The E6 and EΊ root systems are viewed as subsystems of the E8 root system in the
epsilon basis. The set 77 consists of a simple basis 77 of the roots of g with respect to
ί) along with the negative of the highest root relative to this simple basis. The
pairing (q, α) is just duality as the roots lie in ϊ)*, the dual of ί).

The Toda lattice, both periodic and non-periodic (replace 77 by 77 in the
formula for 77) for the algebra of type An was devised by M. Toda to provide
a tractable mathematical model of vibrations in a nonlinear lattice. His purpose
was to shed some light on numerical experiments which displayed unexpected
periodicity in the partition of energy among linear modes and later experiments
displaying soliton behavior in nonlinear lattices (see Toda's book [T]). These Toda
lattices of type A have the mechanical interpretation of one dimensional lattices of
particles with a directed exponential interaction between nearest neighbors. A Lax
equation for the Toda lattice of type An was found by Flaschka. The generalized
periodic Toda lattices, i.e. for arbitrary simple Lie algebras, and their Lax equation
versions were found by Bogoyavlensky [Bo], although without a spectral para-
meter. Their complete integrability is proven in [AvMl]. Many other people have
studied these equations (see the survey article [OP]).

The periodic Toda lattice may be expressed in the Lax form A — [A, B~\ with
a spectral parameter s by taking

A = p + X *<*«> (£α + £_α) + e^Ω) (s-'En + sE-Ω) ,
aeΠ

B=Σ e(q x)(Ex - E-a) + e^i-s-'Ea + s£_Ω).
aeΠ

Here 77 is a basis of the simple roots and Ω is the highest root, so77 = 77u{ — Ω}.
The vectors Ea are the members of a Chevalley basis belonging to the root spaces
corresponding to the roots α. The position q and the momentum p are elements of
t). The Lax equation works out to be equivalent to the Hamiltonian formulation
since the difference of any two roots in 77 is not a root. In the explicit matrices given
below the variable p will be represented by entries b1,b2, . . . and the expressions

e(q,«) wjjj j-jg r ep resented by the entries α l 5 a2, . . . .

For each finite dimensional representation p of the underlying Lie algebra g the
characteristic polynomial det(p(A(s)) — z) is invariant under the flow of the
equations. The spectral curves are the normalized irreducible components of the
curves defined by the equations det(p(A(s)) — z) = 0 for the various representa-
tions p.

The spectral curves depend on the initial conditions for the differential equa-
tions. The following proposition describes the family of spectral curves obtained
from a fixed initial condition. The description is not valid for every initial condi-
tion, but holds for a generic set of initial conditions. The type G2 case can, in fact, be
viewed as a non-generic case for initial conditions in the algebra of type B3. By
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a generic set of initial conditions is meant, for each algebra considered, a Zariski
open subset of the initial conditions where the set of initial conditions is viewed as
lying in CN for some N by means of the coordinates {ai9 foj mentioned above and
appearing in the explicit matrices given in the proof of the proposition.

Proposition 20. Let © be the set of spectral curves for the generalized Toda lattice
equations of type A, B, C, D, or G2 and a fixed initial condition. Regard two spectral
curves in S as the same if there is an isomorphism between them commuting with their
projections onto the parameter space (the Riemann sphere, P). The following results
hold for a generic set of initial conditions.

a) The members of S are in one-to-one correspondence with the conjugacy classes of
parabolic subgroups of the Weyl group belonging to the simple Lie algebra of type
corresponding to the equations.

b) The members of S are precisely the pullbacks Xλ of the eigenvalue covers Eλ

ί I
P ^ 9

where the map P —• g sends s to A(s) at t = 0.

c) Let p be a faithful irreducible representation of the underlying Lie algebra g and
A be a generic initial condition. Let K be the splitting field of a nontrivial
irreducible factor of the characteristic polynomial det(p(^4(s)) — z) as a poly-
nomial in z with coefficients in C(s). Then the Galois group Gal(K, C(s)) is
isomorphic to the Weyl group for g.

Proof. The bulk of the proof consists of a case by case analysis proving that
(ε° A)^: π i (P # ) -» WΊs an epimorphism using the criterion following Proposition
19. It then follows that M = W. Part a) is then a special case of Theorem 13. Part
b) is the construction in Lemma 12 and Proposition 16. Part c) follows from
Theorem 15 and Corollary 18. The criterion will be applied to specific spectral
curves for generic initial conditions. The specific spectral curve arises from the
highest weight of the lowest dimensional faithful representation of g, the classical
representation when g is An,Bn,Cn or Dn. Hence if λ is the^ lowest nonzero
dominant weight and p is the classical representation then Sp = Eλ in the notation
from the section spectral varieties. The spectral curves Xλ -> P all arise from
pλ(A(s\ z) = 0 and the parameter space P is the Riemann sphere. The matrices
displayed are taken from [AvMl].

Now consider the case where g is of type An- λ. In the classical representation of
sl(n, C) the matrix A in the Lax equation A = [A, B~\ takes the tridiagonal form

A=

a2

\ans an-1 bn
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The center of mass is normalized to zero so £ bt = 0 and Y\ at = 1.
The characteristic polynomial p(s, z) = det (̂ L(s) — z) takes the form

(-l)"(z" + cn-2z
n'2 + + C l z + c 0 + τ ) ,

where c 0, . . . , cn-2 are complex numbers (functions of the phase variables {ah bt }
which are constants of the motion) and τ= — (s + s" 1 ). Generic initial conditions
imply generic coefficients cf in the characteristic polynomial for 4̂ [vM, The-
orem 2.1]. The following lemma is proven in [Me].

Lemma. For generic coefficients c0, . . . , c n _ 2 e C , the Riemann surface X defined by
0 = p(τ, z) = zn + cM_2z"~2 + + c0 + τ /ιαs the following properties:

(a) 77z£ projection h: X -> P /zαs branch points at oo am/ n — 1 additional points in P.
Winding once around oo 6 P cyclically permutes the n sheets ofX over P. Winding
once around one of the other branch points switches a pair of sheets of X.

(b) The image o / π ^ P — branch points) in the group of permutations of the sheets of
X is the full permutation group Σn. In other words, the Galois group of the
splitting field of p(τ, z) over the field C(τ) is Σn.

Part (b) says the monodromy group is Σn. If τ is replaced by — (s + s" 1), the
consequence is to have two copies of the branch points in the lemma, and so the
monodromy group is still Σn. This gives the result for type An-X.

The case of the algebras of type Bn, i.e. so(2n + 1, C), is handled similarly. As
described in [AvMl] in the classical representation the matrix A in the Lax
equation is given by

a2

On-ί

A= an-γ bn an

an 0 -an

-an -bn - α π - i

san + 1 -an-! \ —ax

^ — san + 1 ~ax —b1 ^

Due to the symmetry of the matrix, the characteristic polynomial is invariant
under the changes z-+ — z. Since this polynomial has odd degree, it takes the
form p(s, z) = det(A — z) = zq(s9 z2). Moreover, by inspection, the spectral
parameter s appears only in the constant term which takes the form
c 0 + (— l)" + 1 (s + s~1)(2a1b1a2

ιai al\ Hence the polynomial defining the
spectral curve has the form

where τ is a constant times s + s" 1. Again the constants c t are generic when the
initial condition A(0) is generic, since for a given value of s, the matrix may be
arbitrarily close to a diagonal matrix in ί). The roots of g(z2) as a polynomial over
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C(s) may be used to label the sheets of a dissection of the curve as a covering. For
a fixed s the roots r l 5 r 2, . . . rn, —ru — r2, . . , —rn form a fiber over 5 on which
the monodromy group acts.

The monodromy group is the image of (ε 0 ^!)*. From the previous case this
group maps onto Σn by the map squaring z. Also winding around one of the two
branch points where the constant coefficient of q(z2) vanishes interchanges one
pair {ri9 — r j and leaves the rest of the sheets unchanged. These actions generate
the whole group Z2xΣn, showing that it is the monodromy group of the cover.

The case of the algebras of type Cn is almost the same as for type Bn. Again, as
described in [AvMl] the matrix A in the Lax equation is

A =

b2 a2

a2 ''.

-K
- α Λ -

Λ-2

s 1an+1

The characteristic polynomial takes the form

p(s9 z) = q(s, z2) = z2n + cn-γz
2n-2

c0 + τ

where τ = (s + 5~ 1)(f] a2) and the constants c{ are generic. From here the argu-
ment proceeds as for type Bn.

For type Dn, the matrix for A in the classical representation is

A =

b2 a2

a2

san +

-san

- s 1an + 1
~Λ

s~1an+ί

an-ι -an

an-i h 0 an

-an 0 -bn -aH.1

an -an-ί -bn-! -an-2

J
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The charabteristic polynomial takes the form

p(s9z) = q(s,z2) = z2n + cn-iz2n-2 + + 0^* + τz 2 + c0 ,

where τ = 4(s + s~1)( — l)n~1(a2 . . . an-2)
2(a1an-ianan + ι) and again the con-

stants Ci are generic.
Label the sheets of the Riemann surface defined by p(τ, z) = 0 as a cover of

the τ-sphere by r 1 ? r 2 , . . . , rn, —r l s —r2, . . . , — rn. The cover has branch points
above τ = oo and above n other points. Label the sheets by their signs and sub-
scripts. Then winding once around oo induces the permutation (1,-1)
(2, 3, . . . , n, — 2, — 3, . . . , — ή) for a convenient choice of labels. Winding once
around any of the other n branch points yields a permutation in the conjugacy class
within the group W = Zn

2~
ιχΣn of signed permutations of the form (i,j) ( —i, —j)

where i φ ±j. By relabeling the sheets if necessary, one of these permutations may
be taken to be (1,2) (— 1, —2) without changing the name for the permutation at oo.

Let G denote the group generated by the permutations induced by winding
around the branch points, i.e. the monodromy group to be calculated. Each of the
generators lies in Z2~

1xΣn. It is sufficient to show that the two permutations
σ =_ (1, - 1 ) (2, 3, . . . , n, - 2 , - 3 , . . . , -n) and v = (1, 2) ( - 1, - 2 ) generate
Z2

 ίxΣn. First observe that the elements σkvσ k generate the permutation group
of the symbols {1, 2, —3, 4, —5, . . . ,—n} for n odd, and at least this group for
n even. The group ZYιxΣn is contained in an exact sequence

{e} -+ Z\~1 -> ZY 'xΣn ^Σn^ {e}

which contains the exact sequence of groups

The map from G to Σn is onto, so it suffices to show that the kernel Ker is all of
Z 2 ~ x . As a Σn module Z 2 ~ 1 is generated by any element other than ± the identity.
If n is odd then σn~γ acts as (— 1, 1, 1, . . . , 1) and represents a nontrivial member
of Ker. If n is even, then σ itself is not in the permutation group of
{1, 2, — 3, 4, — 5, . . .} and so represents a nontrivial element of Ker. This shows
that G = ZY1xΣn, the Weyl group for type Dn. This clarifies the discussion in
[AvM, p. 281] where it is incorrectly stated that generic coefficients can be treated
as indeterminates giving the impression that the Bn and Dn cases would have the
same Galois group.

Lastly, the case of G2 is interesting as it can be viewed as an example of
non-generic initial conditions for B3. If the initial condition were viewed as a map
into B3 then M does not equal the Weyl group of B3. However as a map into G 2,
M is the Weyl group of G 2. After reversing time and exchanging s and s" 1, the
matrix for A is realized in [AvMl] as the following special case of the type B3

matrix.

l—bγ —b2 — ax s~1a3 \

' —CL\ —bι —a2 — s~lri *

-a2 -b2

A= - Jlaγ

J2ax b2 a2

sa3 a2 bι

— sa3 aγ
I
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The characteristic polynomial of this matrix, after dividing by z, has the form
p(s, z) = z2(z2 — Cγ)2 + c0 + τ, where τ is a constant times s + s" 1. The constant
Cι is a2 + 3αf + b2 + a2 + b2 + bxb2. The other constants are rather, long expres-
sions.

The curve defined by the vanishing of the characteristic polynomial forms
a Riemann surface of six sheets covering the τ-sphere. The sheets may be designated
7*1, ?*2, r3, — r l 5 — r2, — r3, where rx + r2 + r3 = 0 as functions of τ. There are three
branch points oo, 0, and τ= — c0 — 4/27 d. Winding once about oo induces the
permutation (1, —2, 3, — 1, 2, —3). Again the r's are suppressed in the notation.
Winding once about 0 induces the permutation (1, — 1) (2, — 2) (3, — 3). This differs
from the generic situation for type B3. Finally winding about the remaining branch
point yields the permutation (1, 2), (—1, —2) for a suitable labelling of the sheets.
This last winding cannot interchange, say, 1 and — 2 because it must preserve the
relationship that r1 + r2 + r 3 = 0. These three permutations generate the dihedral
group of order 12, i.e. the Weyl group for G2.

The collapse in symmetry from type B3 to type G2 may be viewed geometrically.
The Weyl group for type B3 is the symmetry group of the octahedron. When the
axes of the octahedron are pushed into a coplanar position (because the roots of the
characteristic polynomial become linearly dependent), the symmetry group is
reduced to that of a hexagon, which is the Weyl group for type G2. |

The paper concludes with a description of the spectral curves for the periodic
Toda lattice of type A39 i.e. s/(4, C) or equivalently so(6, C). In [Me] two of the
spectral curves for the Toda lattice of type A3 are discussed in detail. A correspond-
ence is exhibited betweeen them and the mappings it induces on homology and on
holomorphic differentials are given very explicitly. The entire family of spectral
curves and their coverings of one another forms a lattice as pictured.

genus 31

genus 13

genus 3 genus 5

Riemann sphere

These curves may be labelled by either Dynkin diagrams, partitions of 4, or
subgroups of the Weyl group Σ4. Here is a table.

genus

31
13
5
3
0 O-

partition

1 + 1 + 1 + 1
1 + 1 + 2

2 + 2
3 + 1

4

subgroup of Σ4

{e}
Σ2

y s/Y
Δ2 XΔ2Σ3

Σ* ι
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The generέ of the curves are computed using a formula from [Me, pp. 55-56]. The

degrees of the coverings can be read off from the orders of the corresponding

subgroups. The ramification index of each covering is readily computed using the

Riemann-Hurwitz formula.

covering

31 ̂  13
13-^5
13^3

3-^0

degree

2
2
3
6
4

ramification index

12
8

12
20
12

The spectral curves in the lattice are, of course, actually isomorphism classes of

spectral curves. However, if the specific curves of genera 3 and 5 of [Me, Sect. 6] are

taken, one gets an embedding (genus 13) -• (genus 3) x (genus 5) and one can check

by considering the corresponding stabilizer subgroups that the genus 13 curve

embedded this way is the graph of the correspondence between the genus 3 and the

genus 5 curves which is analyzed in detail in [Me, Sect. 6].
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