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Abstract. The purpose of this paper is to prove the existence of a new family of
non-self-dual finite-energy solutions to the Yang-Mills equations on Euclidean
four-space, with SU(2) as a gauge group. The approach is that of "equivariant
geometry:" attention is restricted to a special class of fields, those that satisfy a
certain kind of rotational symmetry, for which it is proved that (1) a solution to the
Yang-Mills equations exists among them; and (2) no solution to the self-duality
equations exists among them. The first assertion is proved by an application of the
direct method of the calculus of variations (existence and regularity of mini-
mizers), and the second assertion by studying the symmetry properties of the
linearized self-duality equations. The same technique yields a new family of non-
self-dual solutions on the complex projective plane.

Introduction

The Yang-Mills functional (or "energy") is defined on the space of connections on
the principal S£/(2)-bundle R4 x Si/ (2) on Euclidean four-space R4 by assigning
to a connection A the L2-norm of its curvature FA

where "*" is the Hodge duality operator on 2-forms on Euclidean R4. The
corresponding variational equations are the Yang-Mills equations

dA*FA = Q, (1)

where dA is the co variant exterior derivative associated with the connection A.
From the Bianchi identity, dAFA = Q, it follows that if A is (anti-)self-dual,

(" + " for self-dual, " — " for anti-self-dual), then it satisfies the Yang-Mills
equations.

We will be concerned in this paper only with finite-energy solutions to Eq. (1)
and (2). An example of a nontrivial (i.e. with nonvanishing curvature) finite-
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energy solution to the self-duality equations (2) (and hence to the Yang-Mills
equations (1)) is given by the formula

where x is a quaternionic variable on R4 ̂  1H, and we identify the Lie algebra of
SU(2) ^ Sp(ί) with the set of imaginary quaternions. In 1979, similar formulae
were discovered for all finite-energy self-dual and anti-self-dual connections on
Euclidean R4 (see Atiyah [2] for details).

It will be useful for us to replace R4 with its conformal compactifΐcation, the
standard four-sphere S4. By the conformal invariance of the Yang-Mills
equations and energy (this follows from the conformal invariance of the *
operator on 2-forms in four dimensions) solutions on the four-sphere give rise, via
stereographic projection, to finite-energy solutions on Euclidean space. The
converse, although not used in this paper, is also true, by a theorem of K.
Uhlenbeck: a finite-energy Yang-Mills connection on R4 can be "extended at
infinity," i.e., comes from a Yang-Mills connection on some principal bundle,
non-trivial in general, on S4. Finite-energy Yang-Mills theory on Euclidean R4 is
thus equivalent to Yang-Mills theory on S4. For example, Formula (3)
corresponds to the homogeneous connection on the quaternionic Hopf bundle
S7^S4.

As is well known, the space of connections on S4 breaks into countably many
connected components labeled by the second Chern number

'2 = 8^2 ^r(FAΛFA), (4)

and the self-dual and anti-self-dual connections in each component form the
absolute minima of the Yang-Mills functional [2].

Until recently, the only known finite-energy solutions to the Yang-Mills
equations were the self-dual and anti-self-dual solutions (hereafter, just "self-
dual" for simplicity). C. Taubes showed in [14] that all finite-energy Yang-Mills
solutions on Euclidean R^R^R3 with the 0(3) "spatial" symmetry are
necessarily self-dual. J. Bourguignon and B. Lawson have shown [7] that non-self-
dual solutions must be unstable (in the sense of having energy decreasing
perturbations) and C. Taubes gave also a lower bound on their Morse index [15].
T. Parker has shown [9] that R4 = (C2 with the t/(2)-symmetry admits non-self-
dual solutions provided the standard metric on R4 is appropriately perturbed.

In 1989, L. Sibner, R. Sibner, and K. Uhlenbeck published a proof for the
existence of some non-self-dual solutions on Euclidean R4 [13]. In their proof,
modeled on a previous proof of C. Taubes for the existence of non-self-dual
solutions to the Euclidean monopole equations, solutions arise as minmax
elements associated with loops of connections with a certain circle symmetry. Self-
dual solutions (called hyperbolic monopoles in this case) are excluded by
appropriate energy estimates.

In this paper we establish the existence of a new family of finite-energy non-
self-dual solutions (different from the ones in [13]) by restricting attention, as in
[13], to a class of symmetric connections, but with a rotational (SO (3)) symmetry
of a certain kind. For this symmetry, S4 is thought of as the unit sphere in the 5-
dimensional space consisting of real symmetric traceless 3 x 3 matrices with SO (3)
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Fig. 1. Non-minimal symmetric critical points of the Yang-Mills functional

acting by matrix conjugation. We first identify the connected components of the
space of symmetric connections, that is, connections on S4 which are invariant
under our SO (3) symmetry (there are infinitely many such components). We are
then able to exclude self-dual connections from most connected components by
showing that the self-duality equations, linearized at a symmetric solution, do not
possess the required symmetry; therefore, any symmetric solution to the Yang-
Mills equations is bound to be non-self-dual and so we look for a (symmetric)
minimum of the variational problem. This, we prove, exists as a limit of a
minimizing sequence of symmetric connections (see Fig. 1).

It is instructive to compare our method of proof with that of Sadun and Segert
in [12]. Both begin the same way, by characterizing the equivariant bundles with
the given SO (3) action on S4. Sadun and Segert then proceed by reducing the
Yang-Mills equations by the full symmetry group. This leads to a system of
ordinary differential equations on an interval with certain singularities at the
endpoints. (This ODE approach was initiated by Urakawa in [16], advanced by
Bor and Montgomery in [6] and completed by Sadun and Segert.) The main
technical difficulty with this approach concerns the behavior of possible solutions
near the singular endpoints and this involves a significant amount of work. In
contrast, our use of normal slices near singular orbits essentially reduces the Yang-
Mills equations to an elliptic PDE in two variables (maintaining a "residual"
symmetry coming from the isotropy group at a singular orbit), but now with no
singularities. This simplifies much of the analysis. Two other new features of our
work are (1) a simple method for excluding self-dual solutions out of our list of
equivariant solutions. This method is based on the Atiyah-Bott fixed-point
formula; and (2) our method easily generalizes to deal with a similar class of
equivariant solutions over CP2 (the complex projective plane with its standard
Fubini-Study metric. See Remark 4 at the end of Sect. 3). T. Parker has also
obtained recently results overlapping with the ones given here [10].

Following this introduction, Sect. 1 describes the SO (3)-action with which we
work and the lifts of the action to principal St/(2)-bundles. In Sect. 2 we prove
that each lift (there are infinitely many) admits Yang-Mills solutions, and in Sect. 3
we prove that most lifts do not admit self-dual solutions. The appendix contains
several simple facts of a general nature concerning the local structure of
equivariant bundles.
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1. A Family of Equivariant Bundles

In this section we introduce the geometric set-up in which we work. We first define
an action of the rotation group SO (3) on the four-sphere S4. We then look for
"lifts" of this action to principal SC/(2)-bundles oveivS4. The result (Proposi-
tion 1.4) is a family of bundles with an action of S0^ί) (the simply-connected
double-cover of SO (3)) covering the SO (3)-action on S4.

1.1. The SO (I)-Action on S4

The space of all 3 x 3 real symmetric traceless matrices is a 5-dimensional real
vector space ^R5. The rotation group SO (3) acts on this space by matrix
conjugation

xi +sxs'1, *eR5, seSO(3),

preserving the norm || x \\2 = tr (x2), so that the SO (3)-action on R5 restricts to an
action by isometries on the unit sphere S4 = {x\ \\ x \\ = 1} ci R5. We now list
some of the properties of this action.

Proposition 1.1. 1. The set of diagonal matrices in S4 of the form

C/λ, 0
Σ .= \ 0 λ2

(λo o
is a global section: every orbit of the SO (3)-action on S4 intersects Σ at precisely one
point.

2. Σ forms a πβ-arc of a great circle on S4, whose endpoints, denoted byσ+ and σ _,
are given by

/I 0 0 \ /2 0 0 \

σ +==— 0 1 0 , <7_==^ 0 -1 0
, „ „ 1/6\0 0 -2/ 1/6 \0 0 -I/
(see Fig. 2).

Proof. 1. By a well known fact of linear algebra, every symmetric matrix is
conjugate, by an orthogonal matrix, to a diagonal matrix, unique up to the order
of its diagonal elements.

2. The set of diagonal matrices in S4 is the intersection of a 2-dimensional
subspace in R5 with S4, and thus a great circle. The condition λ1^λ2'^ λ3 defines
a 60°-arc on this circle. D

Fig. 2. The global section Σ on S
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We recall that the stability group at a point x in S4 is, by definition, the set of
elements in SO (3) which fix x. The next proposition is obtained by a straightfor-
ward calculation.

Proposition 1.2. The stability groups along Σ are (see Fig. 3)
• at the endpoint σ+

0 N

0

at the endpoint σ_

0(2)-:=

at each interior point of the arcΣ

(7^1 0 0
Γ .= <{ 0 s2 0

(λθ 0 ε3,
D

0(2)

—

Fig. 3. The stability groups along Σ

In the next proposition we introduce a cover of S4 by two open sets.

Proposition 1.3. Let RP+ (respectively RP?J be the singular orbit through σ+

(respectively σ_), and let N+ ••= S4\RP^ (respectively ΛL := S4\JfίPl). Then N+

is a tubular neighborhood 0/RP+, i.e., it is SO (3)-diffeomorphic to an SO (3)-
homogeneous disk bundle over RP+. The analogous statement holds for N- .

Proof. The required diffeomorphism, say for N+, is given by the restriction of the
exponential map TS4^S4 to the π/3-disk bundle in the normal bundle of
RPJ. D

1.2. SO(5)'Equivariant Bundles on S4

Here we seek to extend, or "lift," the SΌ(3)-action on S4 to principal SU(2)-
bundles over S4. That is, we are looking for a principal St/(2)-bundle P -> S4

together with a subgroup of bundle automorphisms of P covering the given
SO (3)-action on S4.

Examples.

1. P = S4 x SU(2) with trivial action on the Sΐ/(2)-factor (the "trivial lift").

2. P = S4 x SU(2) with SO(3) (the simply connected double-cover of SO(3))
actin on Sί7(2) by left translations via the standard identification

^ SU(2).
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3. P = SΊ -> HP1 £ S'4 the quaternionic Hopf bundle, with SO(S) acting on
S*7 c: C4 via the 4-dimensional irreducible complex representation. It is easily
checked that the induced action on S4 is isomorphic to our SO (3)-action. There
are actually two isomorphisms; they differ by the antipodal map x i— > — x on S4. A
choice of one of them can be used to fix an orientation on our S4. We come to this
later in the section when we calculate Chern numbers.

We now explain how to obtain all possible lifts of the SO (3)-action on S4 to
action of the double-cover SCΓ(3) on a principal SC7(2)-bundle on S4.

Associated with a given lift P -> S4 are two integer invariants n+ and Λ _
defined as follows^Fpr each of the singular orbits R.P+ and RPί in S4, the
stability group = O (2) c SO (3) of a point on the orbit acts on the fiber above it.
Fixing a point on the fiber, the right action of the structure group SU(2) identifies
the fiber with S'£/(2) jtself, so that 6^2) acts by left translations through some
homomorghism λ: 0(2} -> SU(2). Restricting to the circle subgroup

O (2), we have (after possibly conjugating by some element in SU (2))

iθ f\

for some unique non-negative integer n. Furthermore, it is readily shown that n
must be either odd or 0 for it to come from a homomorphism of 0^2) (see the
proof of Proposition 1.4 below). In this way, with each lift of the SO (3)-action on
S'4 to a principal S'[/(2)-bundle, we associate a pair of integers n+ and n_ , positive
odd or 0, corresponding to the singular orbits Ί&P+ and RP:? respectively.

Examples. In the above three examples, (n + , n _ ) is (0, 0) for the first example (the
trivial lift), (1, 1) for the second example, and (3, 1) or (1,3) in the third example,
depending on the choice of identification with our S'4.

In the next proposition we show that the pair of integers ( Λ + , Λ _ ) uniquely
determines the associated lift.

Proposition 1.4. The above definition of the pair («+,«_) defines a one-to-one
correspondence between

(1) SO^)-isomorMsm classes of principal SU(2)-bundles P ̂  S4 with a non-
trivial action ofSO^ί) by bundle automorphisms covering the given SO (3)-action on
S4, and

(2) pairs («+,«_) of positive odd integers.

Proof. We use an equi variant version of the usual "clutching construction" for
principal bundles over a sphere. We cover S*4 with the two "hemispheres" N+ and
N_ (the tubular neighborhoods of the singular orbits RPί and RPί, see
Proposition 1.3), classify lifts P± -+N+ over each of the tubular nighborhoods
N+ , and "glue" equivariantly over the intersection N+ n 7V_ via an equi variant
isomorphism P+ \N+nN_ -> P- \N+^N- (over the identity on N+ nΛL). The lifts
over each of the tubular neighborhoods N+ and 7V_ are classified, up to an S&ffi-
isomorphism, by the conjugacy class of the holonomy representation λ:
(Tζί)^>SU(2) at a point on the corresponding singular orbit, (see Appendix A.2).
A short calculation shows that these conjugacy classes are given by the following
list of representatives:
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1. The unique extension (up to conjugacy) of the homomorphism (5), where n is
an odd positive integer.

2. The trivial homomorphism O(Ί) -> {1} c SU(2).

3. The determinant homomorphism 6~(2) -* O(2) -̂ -> {± 1} c £[7(2).

(The last two are the extensions of the n = 0 case in (5)).
An S(J(3)-equivariant "glueing" of P+ and P_ over Λ/+ n 7V_ is given by a Γ-

equivariant isomorphism between P+ and P_ over the normal slice
Σ0 -.= ^\{σ+, σ_} = Σ n 7V+ n 7V_ (see Proposition 1.1 and 1.2 for the definitions
of Σ and /"), i.e., a mapZΌ-> SU(2) which conjugates λ+\Γ and λ _ | Γ . This
restricts λ+ and λ_ to be both of either the first or second type in the list above.
Furthermore, in the first case (n+ and w _ are odd) the "glueing" isomorphism is
unique up to a sign, which can be extended over say N+, hence we get a unique lift
(up to an S(573)-isomorphism); likewise in the second case (λ+ and λ- are trivial),
we get a unique lift, the trivial lift. D

We recall that principal St/(2)-bundles over S4 (without any equivariance
constraint) are classified topologically by an integer invariant [5]; this can be taken
as the second Chern number: by definition, the integral over S4 of the second Chern
class of the rank 2 vector bundle E — PxSv(2)&2 associated with the basic
representation of SU(2) (see Formula (4) in the Introduction).

We now wish to calculate the second Chern number of each of the bundles
constructed in the last proposition in terms of the integers n+ and n_ . To fix the
sign, we need to choose an orientation on our S4. One way to do it is by identifying
the Hopf bundle (c2 = — 1) with the (« + =3,ft_ = l) bundle (see the third example
at the beginning of the section). With this convention adopted, we have:

Proposition 1.5. The second Chern number of an SO(f)-Qquivariant bundle P of
type (n+, «_) in Proposition 1.4, is given by

c2 = "^. (6)

Proof. We use an integration formula for equivariant Chern classes due to Atiyah
and Bott [4]. Restrict the SO (3)-action to a circle-subgroup in S01^)> saY Λe circle
subgroup (the identity component) of 0^2) + , the stabilizer of σ+ (see Proposition
1.2). The fixed point set of this circle-action consists of two points, σ+ and its
antipodal — σ+ . The integration formula in [4] gives

„ '
oπ

where X+ e End (C2) is the generator of the circle-action in the fiber of £Όver the
fixed point ±σ+ eS4, and e+ is the (signed) product of the weights of the circle-
action on S4 linearized at ± σ+ . The circle-action on R5 is given by the weights of
the 5-dimensional representation; these are 0, ±2, +4. Restricted to S4, the
weights at each of the fixed points are ±2, ±4. This determines e+ up to a sign.
Now at σ+ the circle-action gives the standard orientation, at — σ+ the opposite
one, so e+ = ±8. Equation(5) implies

_ (2πin± 0 \
X±~( 0 -2πin±)
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so tτ(X±) = — 8π2«±. The stated formula for the second Chern number now
follows by substitution in Eq. (7). D

We have thus constructed a family of non-trivial SO^-equivariant SU(2)-
bundles indexed by a pair of positive odd integers (n+, rc_), where the second
Chern number is given by c2 = (n2. — n2+)/S.

2. Existence of Invariant Yang-Mills Solutions

Here we prove that each of the *Sδ73)-equivariant bundles constructed in the
previous section admits a Yang-Mills connection: It is a connection which
minimizes the Yang-Mills energy amongst all SO (3)-invariant (henceforth, simply
"invariant") connections on the bundle in question.

Theorem 2.1. For each of the S5^3)-equivariant bundles P -> S4 of Proposition 1.4,
the Yang-Mills functional, restricted to the set of invariant connections on P, attains
a minimum which is a smooth (C°°) solution to the Yang-Mills equations.

Proof. Let {At} be a minimizing sequence of invariant connections on P. That is,

lim YM(Ai) = inf (YM(A)\A is an invariant connection on P} .
ΐ->oo

We will show that such a sequence must be bounded (in the L\ Sobolev metric on
the space of connections on P, see Appendix A.4 for the definition). The rest
follows the standard argument of the "direct method of the calculus of
variations:" boundedness implies compactness (in the weak L^-topology), i.e. the
sequence has a weakly convergent subsequence, and since the Yang-Mills
functional is weakly lower-semicontinuous and the set of invariant connections
is weakly closed (as a norm-closed affine subspace of the space of L\-connections
on P), the limit connection is a minimizer and therefore a critical point of the
Yang-Mills functional restricted to the set of invariant connections (which is a
Hubert submanifold of the space of all L^-connections so it makes sense to speak
of critical points). But then, by the "principle of symmetric criticality" [11,
Theorem 5.4], it is a critical point of the Yang-Mills functional on the space of all
connections, i.e., a weak solution of the Yang-Mills equations, for which
regularity is by now standard [17, Corollary 1.4]. Alternatively, the last step
(regularity) can be easily proven here directly using the reduced Yang-Mills
equations for invariant connections (they form an elliptic system in our case. See
the remark after the proof of Lemma 2.3). The theorem thus follows from the
following proposition.

Proposition 2.2. A set of invariant connections on P, on which the Yang-Mills
functional is bounded, is bounded (in L\).

Remark. For general connections (not necessarily invariant) the proposition
holds (locally) provided the connections are allowed to be gauge transformed first
(see Uhlenbeck [17]). The invariance assumption here eliminates the need to make
a gauge transformation.

Proof of Proposition 2.2. Since the statement is local (see Appendix A.4), it is
enough to prove it for each of the tubular neighborhoods N+ and ΛL (defined in
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Proposition 1.3). In each such neighborhood1, all relevant data reduces to a slice,
i.e. a normal disk D at a point on the singular orbit ^SΌ(3)/O(2). Under this
"reduction to the slice," all SO (3)-equivariant data on a tubular neighborhood
reduces to O (2)-equivariant data on the slice D, where the relevant estimates
become rather simple in our case. The proof proceeds in two steps:

1. Representation theory: Break the connection and curvature forms into their
O (2)-irreducible components. All but 3 of the 12 components of the connection
form vanish.

2. Energy estimates: Show that the 3 remaining components of the connection
form are bounded (inLf) by the Yang-Mills energy (the L2-norm of the curvature).

Step 1. Restricted to the slice D, P has a standard O (2)-trivialization

with 0^2) acting diagonally, on D by the slice representation O^T) -> O (2), and on
SU(2) by left translations via the holonomy representation λ: ufy -> SU(2) (see
Appendix A.2). The holonomy representation λ is determined (up to conjugacy in
5(7(2)) by its weight, n, an odd positive integer (see Proposition 1.4). Correspond-
ingly, we have the O (2)-trivialization 2 ad P \ D ^ D x su (2) with O (2) acting on
su(2) by the composition of λ with the adjoint representation. Under the 0(2)-
action

and 1 2

where subscripts denote 0 (2)-weights, and 1R1 in (9) is the determinant
representation 0 (2) -> {± 1} c= R. The first summand in (8) is the tangent space
to the slice, and the second summand is the normal tangent space. Corresponding
to (8), the connection 1-form of an invariant connection on TV decomposes as (see
Appendix A.3)

A = u + φ9 (10)
where

and its curvature 2-form decomposes as

FA = Fα + daφ + ψ, (11)

where

and ψ is given below.

Lemma 2.3. 1. The values of a lie in IR1, and it has no radial part. That is,

α = aθ(r)dθ

in polar coordinates (r, θ) on D.

1 Since the proof is essentially identical for N+ and N_, we suppress throughout the subscripts +
or — for simplicity
2 Henceforth, we pass to O (2) = ^O(2)/{ ± 1} instead of the double cover 5^2), since we only deal
with ad P where {± 1} acts trivially
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2. The values of φ lie in R(

2

υ ® R(

2

} = R(

2 + υ 0 R(

2 _ υ.

3 L^ ^ ^ A, \φ = (φ+9φ.)

be the corresponding decomposition of φ. Then the term ψ in (11) is given by

Proof. The first and second parts are a consequence of the invariance of the values
of α and φ with respect to the stability group Γ <= O (2) at a generic point of D (all
points except the origin). The third part follows from the standard formula for the
curvature of an invariant connection (formula (20) in Appendix A.3). D

Remark. It follows immediately from the first part of the last lemma that rf*α = 0.
Adding this identity to the Yang-Mills equations for α and φ makes them into an
elliptic system; to see this it is enough to note that there are two equations, one
with the leading term d*£/α, the second with d*dφ. This gives us the regularity of
invariant solutions refered to just before the statement of Proposition 2.2.

Step 2. Here we are to bound the L2-norm of the components α and φ in Formula
(10) in terms of the Yang-Mills action: The first term in Formula (11) bounds α
(Lemma 2.4), the second term bounds φ, except in the case n = 1, where it only
bounds the φ+ component, and we use the third term ψ and α to bound φ_
(Lemma 2.5).

Lemma 2.4. Any O (2)-invariant 1-form ueΛl(D) without a radial component
satisfies the inequality (pointwise)

|α | ^ const \\doc\\L2(D).

Proof. Let Cr be the boundary circle of a disk Dr of radius r about the origin of D,
then by Stokes' theorem and the Cauchy-Schwartz inequality

2π|αθ(r)| =
Cr

Dr

1/2 / _ x 1/2

1 < const r
Dr

hence

00

r
^ const | |rfα||L2 ( J ) ). D

Lemma 2.5. φ satisfies the inequality (pointwise)

I φ |2 ̂  const (I dφ |2 + | ψ\2 + | α |2) + const.

Proof. The O (2)-equivariance of

</>±:/) ( 2 )^R 2

± 1 )

implies (using polar coordinates on D)
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where / denotes 90°-rotation in R2

π+i), hence

so if n Φ 1 we are done, otherwise only the φ+ component is bounded, and we use
the explicit form of ψ in Formula (12) to bound </>_ :

\φ-\2 = ψ + 4aθ+\φ+\2 + 1

since φ+ has already been bounded. D

3. Non-Existence of Invariant Self-Dual Solutions

Our purpose here is to prove that the S01ί)-Qqui variant bundles of Sect. 1, with
n+ and «_ greater than 1, do not admit self-dual or anti-self-dual connections.
Together with the existence result of the previous section, this completes the proof
of existence of Yang-Mills connections which are neither self-dual nor anti-self-
dual on all such bundles. We note, by the formula c2 = (n2- — π+)/8 of
Proposition 1.5, that this includes all bundles with second Chern number
c 2 φ ± l .

Theorem 3.1. Let P be an SO(ί)-equivariant principal SU(2)-bundle over S4 of
type ( f t+, f t_) , where n + = 3, 5, 7, . . . fi.e. we exclude those bundles where either
n + or n_ equals 1). Then there is no self-dual or anti-self-dual S0^)-inυarίant
connection on P.

Proof. Let A be an S<9(3)-invariant connection on P. We will first show that if
n_ > 1, then A cannot be self-dual. The approach is to study the SO (3)-action on
the space of solutions to the linearized self-duality equations at A.

We denote by Ωp the space of ad P- valued /7-forms on S4 (i.e. sections of
Ap® adP), and by Ω2 the ad P- valued anti-self-dual 2-forms. Associated to the
connection A on P, we have the co variant exterior derivative dA\ Ω

p -> Ωp+ 1, and
dA : Ω1 -> Ω2. is dA followed by the projection/?. = (1 — *)/2 on the anti-self-dual
part. If A is self-dual, then dA dA = /?_ FA = 0 and we get the so-called deformation
complex for the self-dual connection A

(13)

It is easy to verify that this complex is elliptic, hence its cohomology groups H* are
finite-dimensional real vector spaces. Furthermore, the SO (3)-invariance of A
implies that the maps dA and dA in the complex (13) commute with the SΌ(3)-
action3, so that the cohomology groups become SO (3)-representation spaces.
The deformation complex was introduced in [5, Sect. 6], where it was also proved
that for an irreducible connection A on a positively curved self-dual manifold
(such as S4) H2 = HQ = {0}. In our case, A cannot be reducible, as the following
lemma shows.

3 We can pass to SO(3) = S&(3)/{±1}, since the center {±1} c S&(3) acts trivially on the
bundles appearing in the deformation complex
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Lemma 3.2. The only S0^3)-equivariant bundles which admit a reducible self-dual
connection are those with n+ = n_ = 1 and n+ = n, = 0.

Proof. On S4, a reducible self-dual Sί/(2)-connection is flat (its curvature
vanishes). Over each of the singular orbits RP+ and RPί, the bundle admits an
invariant flat connection only if the derivative of the holonomy representation
λ^: 0^2) -> su(2) extends to a homomorphism Φ = λ^@ φ \sofy -> su(2) (see
Formula (20) in Appendix A.3). This happens exactly when either n+ = 0 (Φ = 0),
or n± = 1 (Φ is an isomorphism), corresponding to the obvious flat connections
in Examples 1 and 2 respectively in Sect. 1.2. D

We are now ready to calculate the character χ (H1) of the SO (3)-representation
H1, the remaining cohomology. For this, let us first fix a circle subgroup, say
Sl c= 0(2)+ (see Proposition 1.2). Restricted to S^,χ(Hl) is just a trigonometric
polynomial, but not an arbitrary one: if/(Rr) is the character of the irreducible
r-dimensional representation of 50(3), r = 1,3,5,..., then the coefficients mr

in the decomposition

must clearly be non-negative integers. We will now show that m1 = — 1 when
n_ > 1, so that A cannot be an SO (3)-invariant self-dual connection.

To calculate/ (7/1), we note that the fixed points of the S^action on S4, σ+ and
its antipodal — <j+, are clearly nondegenerate, so we can apply the fixed point
formula of Atiyah and Bott [3], which in our case reads (after taking into account
the vanishing of H2 and H°),

χ(Hί) = -v_-v+, (15)

where

<J± = det(/-L±).

Here, χ\, i = 0,1,2, denotes the character of the S ̂ representation on the fiber
over the fixed point ±σ+ in the z-th bundle of the deformation complex (13), and
L+ is the linearized action at the fixed point ±σ+eS4. The weights of the S1-
action at the fixed points for the various bundles involved are

σ+

-σ+

adP

0, ±n+

0, +«_

A1

±1, ±2

±1, +2

Λ2_

0, ±1

0, +3

We denote z = eiβ on S1, and calculate from the weight table

χ°± = 1 +£"*
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so that substitution in Formula (15) yields

where

The first factor in the first summand is — (z — z)2 (1 — z — z), the first factor in the
second summand is — (z — z)2, hence

χ (H1) = [(1 - z - z) (1 + z"- + z"-) + 1 + zn+ + zπ+]/(z1/2 - z1/2)2 .

The coefficient m1 in (14) can now be easily recovered by the Weyl integration
formula [1, Theorem 6.1]

L sι

which picks the constant term in the last integrand, giving

ro /ι- = ι
- 1 else

We have thus shown that if «_ > 1 then A cannot be an *S6R5)-invariant self-
dual connection. To show that if n + > 1 then A cannot be an S(573)-invariant anti-
self-dual connection, we can either repeat the argument above with the obvious
necessary modifications, or alternatively, use the fact that the antipodal
map x\-+ —xonS4 has an S(J(3)-equivariant lift which interchanges n+ and n_ .
Since it is orientation reversing on S4, it transforms an anti-self-dual connection
with n+ > 1 into a self-dual connection with n_ > 1, so we are reduced to the case
which has already been studied. This completes the proof. D

Remarks. 1. With some more effort, one can compute in the case n _ = 1 (for self-
dual connections)

2. In the case n_ = 1, the fact that m1 = 0 means that self-dual S(5l3)-invariant
connections, if they exist, are isolated. This is because the cohomology H1

represents the tangent space to the moduli space of self-dual connections, and mγ

is the dimension of tangent space within H1 to the space of invariant connections.
In the case («+,«_) = (3,1) (the Hopf bundle), the (unique) S(575)-invariant self-
dual connection is the only S&fy-invaήant self-dual connection, because it is
known that any other self-dual connection has a well-defined center (where the
curvature density attains its maximum), but the S£Γ(3)-action has no fixed point
on S4. Using the so-called ADHM construction, it is possible to show the
existence of a unique self-dual S(?(3)-invariant connection for all the («+,!)
bundles.

3. We do not know yet if there exist non-self-dual solutions with c2 = ± 1. If not,
one may ask if there is a sense in which any non-self-dual solution can be
decomposed into self-dual and anti-self-dual parts.
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4. Taking the standard action of SO (3) on C3 = R3 ® C, we obtain an SO (3)
action on the complex projective plane (CP2, for which we can look for non-self-
dual connections by the same method we used for S4. The details are very similar
to the S4 case so we give here only the conclusions. The lifts to principal SU(2)
bundles are classified by two non-negative integers («_,«+), where either both are
odd, or n_ = 0 and n+ is even. The second Chern number is given by (n2_ — «+)/4,
and non-self-dual connections occur for those lifts for which n+ ^ 3.

Appendix

Here we collect some simple useful facts of a general nature concerning the local
structure of a principal bundle with a compact group action4.

A.L Tubular Neighborhoods and the Slice Representation

Let M be a Riemannian manifold and S a compact Lie group acting on M by
isometrics. Let x be a point in M, and S - x the S-orbit through x. Then a small
enough invariant neighborhood TV of the orbit S x is a tubular neighborhood, i.e.,
a neighborhood of S x which is S-isomorphic to a homogeneous vector bundle
over S x. In fact, it is easy to see that for a sufficiently small ε > 0, the exponential
map restricted to the β-disk bundle in the normal bundle v (S - x) defines such an
isomorphism. The normal disk at x, / : DX<^>N (i.e., the exponential image of the
e-disk in the space vx (S - x) of normal vectors to S - x at x) is called a (normal) slice
at x, and the action of the stability group Sx ={seS\s x = x} on Dx is called
the slice representation. As a homogeneous bundle, N is S-isomorphic to the
associated bundle Dx -> S x Sχ Dx -> S/SX = S x. In other words, the slice repre-
sentation (Dx, Sx) is a complete invariant for the extension of the S-action from
S x to N. In what follows, we shall see other instances of "reduction" of S-
equivariant local data in a neighborhood of an orbit S x to 5^-equivariant data
on the slice Dv.

A.2. Equivariant Principal Bundles

Let P^N be an 5-equivariant principal G-bundle (i.e. the S-action on P
commutes with the G-action, and the projection P -> N is S-equivariant), where TV
is a tubular neighborhood of an orbit S x. The action of the stability group Sx on
the fiber Px over x is called the holonomy representation (at x). Fixing a point/? on
the fiber Px, the G-action identifies Px with G itself, so that Sx acts by left
translations via a homomorphism λ: Sx -> G, defined by s - (pg) = p(λ(s)g). The
holonomy representation is a complete invariant for extending (or "lifting") the S-
action from TV to P. To see this, we proceed in two steps: (1) lift over S - x; and (2)
extend over TV. Over S - x, P is a homogeneous bundle and so is canonically S-
isomorphic to the associated bundle Px -> S x Sχ Px -> S/SX = S x. Over TV, P is
S-isomorphic to the pull-back of the restriction P\s x^y the S-equivariant

4 Throughout this appendix, all group actions, functions, bundles etc., are assumed to be Cα

(infinitely differentiate)
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projection N -> S - x. This follows from the more general standard fact that 5-
homotopic maps define S-isomorphic bundles; we apply this to the projection
N -> S x d TV and the identity map TV -> TV, with the obvious homotopy along
geodesies normal to S - x. In particular, over the normal slice Dx, P has the
canonical S^-trivialization

P\Dχ*DxxPx9 (16)

with Sx acting diagonally on Dx by the slice representation, and on Px ^ G by left
translations via the holonomy representation λ: Sx -» G.

The group of S-equivariant automorphisms of P -> TV (diffeomorphisms of P,
over the identity on TV, which commute with the actions of both G and S) is
represented on the slice DX9 using (16), by 5x-equivariant maps Dx -» G; that is,
mapsD x->G λ, where Gλ •-= {ge G \gλ(s) = λ(s)g, for all seSx} is the centralizer
of λ in G. This is useful for 5-equivariant "glueing" of bundles over different
tubular neighborhoods.

A3. Invariant Connections

Let A be an S-invariant connection on an S-equivariant principal G-bundle
P -* TV, where TV is a tubular neighborhood of an orbit S - x with a normal slice /:
Dx<-* TV, The reduction of the connection A to the slice Dx consists of two pieces of
data. The first piece is simply the restriction α = i*A of A to i*P = P\Dχ. The
second piece, representing A in the normal directions to Dx, is somewhat lengthier
to describe. We associate with A an S-equivariant map Φ of the Lie algebra of S
into the space of sections of the adjoint bundle ad P = P x G g,

Φ:s-+Γ(adP),

defined as follows. If Xe*>, and X is the induces vector field on P, then we set
Φ(X) .= A(Ϋ). In other words, Φ(X) is the projection of X onto the vertical
bundle along the horizontal distribution defined by A. The G-invariance of X
together with the G-equivariance of A ensure that the vertical vector field A (X) is
G-equivariant, i.e. a section of ad P. The S-invariance of A implies the S-
equivariance of Φ. Here, S acts on s by the adjoint representation, and on ad P by
the action induced from P. Next, we fix a complement m to sx, the Lie algebra of
Sx; that is,

$ = sx®m (17)

is an AdSχ-invariant decomposition of s. For example, we can take the orthogonal
complement of sx with respect to an Ad-invariant inner product on s. The
restriction of Φ to m and Dx, denoted by φ, forms the second piece of data in the
reduction of the connection A to the slice Dx. Thus φ is an ^-invariant section of
ad(P|D χ)®m*.

The decomposition (17) induces a natural trivialization of the normal bundle,

v(Ac) = A c * m , (18)

as follows: we assign to a point yeDx and a vector Xe m the normal component of
the vector field X generated by Xaty. This is indeed an isomorphism: it is enough
to check that if the normal component of X vanishes at y e Dx then X = 0; indeed,
if Xis tangent to Dx at y, then the equivariance of the projection TV -> S - x implies
that X vanishes at x, hence Xe sx n m = {0}.
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The curvature FA is an 5-invariant section of A2 (TV) (x) ad P. In terms of the Sx-
decomposition TN\Dχ= TDx@v(Dx\ and the trivialization (18) of v(Dx),

Λ2(N) \Dχ = A2(DX) 0 Λ 1 (Ac) (x) m* 0 Λ 2 m*

and the corresponding decomposition of FA is

+ ψ, ' (19)

where FΛ is the curvature of the connection α, dΛ is the associated covariant
derivative, and ψ is given by the standard formula (see, for example, Proposition
11. 4 in Chapter II of [8])

2ψ(X, Y) = [ΦX,ΦY] - Φ[X, Y] X, Fern. (20)

We summarize the "reduction to the slice" in terms of the canonical
trivialization (16): A lift of the S-action is given by the holonomy representation λ:
Sx -> G. An S-invariant connection A is given by a pair (α, φ), where α is an Sx-
invariant g-valued 1-form on Dx and φ is an ^-invariant g (x) m* valued function
on Dx . The curvature FA is given by the triple (Fa, dΛφ, ψ), where Fα = doc + £ [α, α],
dΛφ = dφ + [α, φ], and ψ is given by Formula (20), where Φ = Φ0 0 φ, and Φ0:
Ac -» 9 ® s* is given by Φ0 (JSΓ) = α (X) + /I* (JSQ, ^e sx .

^4.4. Sobolev Spaces of Invariant Sections

Let [/ be an open set in Euclidean space. The Sobolev Lj-norm of a smooth
function /on (7 is defined by

2 \ l / 2
1/2 (21)

( || || stands for the ordinary L2-norm on [/). The set of functions in C°° (C7) with a
finite L2-norm forms a linear subspace, whose completion with respect to this
norm is a Hubert space denoted by L\(U).

Similarly, if E is a metric vector bundle with a connection A over a Riemannian
manifold M, the Lf-norm is defined on sections of Eby replacing the derivative d
in (21) with the covariant derivative dA . If another choice of connection A is made,
such that the difference α = A — AΈAl(U)® End (E) is bounded (for example,
if M is compact), then A gives an equivalent norm:

+\\dJ\\2=

+||^/||2) (22)

(|| || oo stands for the supremum-norm). Consequently, any two connections on E
define, locally (i.e. in some neighborhood of every given point in M), equivalent
Lf-norms.

Finally, suppose E -> Mis S-equivariant, i.e., Sacts by bundle automorphisms
preserving the connection and the metric on E and M. Let N be a tubular
neighborhood of an orbit S - x, and /: Dx^ N the normal slice at x (see Appen-
dix A.2). Clearly, an S-invariant section of E reduces, upon restriction, to an
^-invariant section on Dx. This reduction is compatible with the Lf-norm in
the following sense.
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Proposition A.I. Let E-^ M be an S-equivariant vector bundle. Then restricted to
the set of S-invariant sections of E over a tubular neighborhood N of an S-orbit
S - x ci M, the L\-norm is equivalent, locally, to the L\-norm over the normal slice at
x; more precisely, there exists a tubular neighborhood N' c Nanda constant c > 0,
such that for every S-invariant section f of E over N\

where i*fis the restriction of f to D'x = Dxn N'.

Proof. Let N' c TV be a tubular neighborhood of S x with a compact closure in TV
(such a neighborhood clearly exists). We first note that the statement in the
proposition is true with L\ replaced by L2, as it follows immediately from the
integration formula for an S-invariant function / on TV

where δ is a smooth positive function on Dx\ namely, the determinant of the
isomorphism (18) (up to a non-zero constant multiple).

For the L\ case, the statement follows from the fact that, restricted to S-
invariant sections, the difference between the covariant derivative dA on TV and the
covariant derivative d^A along the slice is "tensorial" (a zero-order operator)

so the boundedness of φ on TV' implies, as in (22), that the L\ (TV') norm, restricted
to S-invariant sections, is equivalent to the L\ (Dx) norm. D
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