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Abstract. This paper addresses the theory of quasiclassical resonances for
Schrodinger operators with potentials smooth outside some possible local singu-
larities. We introduce the notion of quasiresonance similar to that of quasimode,
but incorporating a condition revealing its scattering nature, and describe its space—
time behaviour. The definition is given in terms of the original Schrédinger operator
and uses a description of its frequency set. The result on the space-time behaviour
justifies the intuitive picture of resonances as metastable states or “bound states
with finite life-times.” We demonstrate how quasiresonances arise in several natural
situations.

1. Introduction

The quantum resonance is one of the central notions in Modern Physics. However,
its mathematical understanding is still at a preliminary stage. The formal definition
of the resonance in terms of the poles of a meromorphic continuation of the
S-matrix or in terms of bumps in the scattering cross section, given in Physics, is
hard to study. In Mathematical Physics the resonances are defined as complex
eigenvalues of quantum Hamiltonians deformed by complex canonical transfor-
mations. This approach was developed in successive degrees of generality in
[Ag—Co, Ba—Co, Si2, S1, Hul, Cy, He-S;j2]. One knows that both definitions yield
the same object for two-body potentials (see for example [Bal, Ge-Mal]) and in
some cases for N-body potentials (see [Ba2, Ha, De, S3]). Both definitions require
analytic (either in the coordinate or momentum representation) potentials, use
more complicated objects than original Hamiltonians and are not accessible for
phase—space analysis ([He—Sj2] uses a phase—space analysis but not in the original
phase—space).
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The purpose of this paper is two-fold. First, we introduce the notion of
quasiresonance. This notion is given directly in terms of the original quantum
Hamiltonian, it is similar to that of a quasimode except that the square integrabi-
lity is replaced by a condition pertaining to the propagation nature of the resonance.
As in the case of quasimodes the main idea behind our definition is to neglect from
the very beginning certain “inessential terms.” As our analysis and examples show
such an approach saves much of an effort. It allows to formulate the problem in
terms of the Hamiltonians themselves and with natural restrictions on the potentials.
Next we break up the unitary invariance of the conventional spectral theory by
fixing a bounded region where the corresponding metastable will live for some time
and an exterior region into which it will eventually escape.

Secondly, we describe the space-time behaviour of resonances corresponding
to the intuitive picture of resonances as metastable states or “bound states with
finite life-times” (see [Sk1, Sk2, Sk3, O, Hu2] for earlier results in this direction
and [Sil] for a review). This result is an easy consequence of our definition. It
determines the region in the phase-space in which the resonance states are
essentially localized and their rate of escape from this region.

In this paper we deal with the quasiclassical regime which provides an additional
structure necessary to define the resonance. We relate the notion of resonance to
propagation of quasiclassical frequency set. The negligible terms are those of O(h*),
where h is a quasiclassical parameter (the Planck constant divided by 2x). Descrip-
tion of singularities modulo exponentially small terms would require analytic
potentials and results on propagation of “analytic singularities.” It is left out of
this paper.

As an example we demonstrate that equilibrium points and hyperbolic orbits
of the underlying classical system produce quasiresonances and compute the latter.
These computations are rather standard exercises, in the second case it is analogous
to the derivation of the Bohr—Sommerfeld quantization rules. The results coincide,
of course, with earlier results of [Ge-Sj, Sj, B-C—-D] which were also given modulo
O(h*) but whose derivations were rather involved.

In this paper we consider the Schrodinger operator

P,= —h*A+ V(%)

acting on L2(R") with the quasiclassical parameter h. The quasiresonance states
are defined as distributions u, solving the Schrodinger equation:

P,u, — E(h)u, = 0 mod O(h*) (1.1)

microlocally in some open set 2 of phase space. Here E(h) is called a quasi-
resonance and we assume that E(h)— Ag.g when h—0.

In order to distinguish between incoming and outgoing resonances, we require
that the quasiresonant state u,, has singularities (i.e. frequency set, see Definition 3.1)
only in a closed subset of phase space called the outgoing tail (see Definition 2.3).
Let p(x, &) = £2 + V(x) be the classical Hamiltonian function. The outgoing tail is
the set of points (x, &) in p~!(4,) such that the classical trajectory starting from
(%, &) does not go to infinity for negative times. In particular a quasiresonant state
cannot have singularities at points (x,£) which are trapped for positive times
without being also trapped for negative times. We construct quasiresonant states
and quasiresonances in all the cases where for dilation-analytic potentials true
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resonances have been computed in the semiclassical limit. Namely we consider in
Sect. 4 quasiresonant states generated by a closed hyperbolic trajectory (treated
in [Ge-Sj]), and by a potential maximum (treated in [B—C-D]), [Sj]). Moreover
if for example one considers a two-body Hamiltonian with a dilation-analytic
potential, then it is easy to show that a resonant function is a quasiresonant state.

To construct metastable states out of quasiresonant states, we cut them of
in a bounded region of phase space by applying a pseudodifferential operator
x(x,hD,), where x(x,&) is a smooth cutoff function. Then our main result can
be described as follows (see Theorem 3.7):

e itPrhy(x hD Yuy = e~ EOhy (. hD Yy + 7oi(2) + 7o (2), (1.2)

where r(¢t) has a norm O(h*) uniformly for t =0 and r,,(f) is an outgoing
function in the sense that:

0(h®)
ey

Here yo(x) is a suitable cutoff function. One also gets a sharper estimate on
Tou(t) (see Theorem 3.8) which essentially shows that r,,(f) propagates out with
a velocity bounded from below. These estimates hold true provided Im E(h) is
not O(h®). We then study time decay in a situation where this condition is not
satisfied, namely the well known shape resonances. In this case we need to assume
that the potential is two-body and dilation-analytic. It is then well known (see for
example [C-D-K-§, He-S§;j2, Hi-Si],) that the width I"(h) of the shape resonances
is O(e™25"), where S, is some Agmon distance and O(a) means O,(ae**) for any e.
Then if u, is a resonant function associated with a resonance E(h) we have the
following time decay estimate:

| X0 )o@l = (1.3)

e-itph/hX(x9 th)uh = e_itE(h)/hX(xa th)uh + rout(t) + roo(t)’ (14)
where:
7 (0l = 05" + 5«;—2&%(%@ - e-'“"’/“)) (15)
uniformly for ¢ =0 and r,,(t) is an outgoing function in the sense that:
I 20(X)rou(®) || = O(h™e ™S (e~ T™h 4 (1)~ ) (1.6)

uniformly for ¢ = 0. (See Theorem 4.3). The estimate on r () shows that our result
is meaningful as long as ¢ is less than Ce ™ */*I"(h) for some ¢, > 0. This difference
between resonances created by tunneling and others may come from the fact that
the decoupling between the decaying part of the metastable state and the outgoing
part is caused here by ellipticity instead of propagation.

Let us now say a word about the techniques used in this paper. The crucial
point is the dependence in t of the constants arising for example in (1.3), (1.5).
For example using a very simple argument of propagation of frequency set for
solutions of pseudodifferential equations one gets that for finite time ¢ one has
Il 20 (X)rou(®) | = O,(h*™), but without nice control on the size of O,.

In order to have good estimates with respect to parameter ¢, we use the method
of propagation observables introduced by Sigal-Soffer in [S-S]. An important



284 C. Gérard and 1. M. Sigal

intermediate result is a semiclassical version of the propagation estimate of [S—S]
(see Theorem 6.1). The essential idea (familiar also in partial differential equations)
is to construct an operator F, such that the Heisenberg derivative D,F =
0,F +ih~'[P,, F] is positive. The point is that one constructs F, essentially as a
function y(A/t) for some self adjoint operator 4 and some cutoff function y. It
seems that these operators are not in general pseudodifferential operators since
the operators A4 used (typically 4 = (x-hD, + hD,-x)) are not elliptic.

However there are two tools which allow to use this kind of operators almost
as if they were pseudodifferential operators. The first one is a commutator
expansion lemma whose use in this field is due to Sigal-Soffer (see Proposition 5.1)
and the second a localization lemma (see Proposition 5.2) which is used to compose
these operators with pseudodifferential cutoffs. We think that these methods could
be of interest in other semiclassical problems.

The paper is organized as follows. In Sect.2, we introduce the class of
Hamiltonians we are going to consider in this paper and we give some examples.
In Sect. 3, we introduce the definition of quasiresonance states and prove the
main results of this paper, namely Theorems 3.7 and 3.8, using results from
Sects. 5, 6, 7. Section 4 is devoted to the construction of quasiresonant states created
by a closed trajectory of hyperbolic type and by a potential maximum (barrier
top resonances). We also study time decay of cutoffs of resonant states for the
shape resonance problem. We assume here that the potential is two-body and
dilation-analytic (see Theorem 4.3). In Sect. 6 we prove a semiclassical version of
the abstract propagation estimate of Sigal-Soffer and apply it to our class of
Hamiltonians. Finally in Sect. 7, we prove minimal velocity estimates in the spirit
of Sigal-Soffer. Some auxiliary results are given in the Appendix.

Notations. In all the paper, we will denote by H*(£2), the usual Sobolev space of
order s on an open set 2€R”, and by ||-|| the L2 norm on R". For given hamiltonian
H and vector u, we will denote by (4) the (time-dependent) expectation value of
A given by {(Ae™"Hy, ¢ iy,

2. Hamiltonians and Escape Functions

In this section we introduce the class of Hamiltonians which will be studied in
this paper. We also recall some geometric consequences of the existence of suitable
escape functions. In all the paper, we will denote the function (1 + x2)*/2 by {x ).

2.A. Hypotheses on the Hamiltonian. We will consider semiclassical Schrodinger
operators P,= — h*A + V(x), on L*(IR"), where the potential V = V, + V, satisfies
the following conditions:

(H.1i): V, is a compactly supported multiplicative potential such that V, is
A bounded with relative bound strictly less than one.

(H.1ii): V, is a smooth real potential satisfying some symbol type estimates.

To describe these estimates in a compact form, we will use the framework
of the Weyl calculus for which we refer to the book of Hérmander [Ho]. Let
dx(dx) be a metric on R". We require that V, belongs to the symbol class S(1,g,),
i.. that V, satisfy the following estimates:

k
VkENa sup [V(k)(xﬁtl"'wtk)[l—[gx(ti)_llz écka
t;T*R") 1
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where V® is the k'™ differential of V. We will denote by p = &2 + V,(x) the symbol
of —h?A +V,, which is the regular part of P,. The symbol p belongs to the
symbol class S({ &>?,g), where g is the metric on T*(R") defined by:

¢y
&H>?

To have a good symbolic calculus in the class S({¢)2,g), we will make the
following hypotheses on g,:
(H.2): g, is slowly varying i.e.:

Je and C such that if g,(x — y) <, then VdxeRR",C™ 'g,(dx) < g,(dx) < Cg,(dx),

gx,eldx, d8) = + g(dx).

(H.3): g, is o-temperate which in our case is equivalent to:
3C,N such that VteR"g,(r) < Cg,(t)({x — yD"),

(H4): g.(dx) < (dx)* and g,(x) < 1.
As an immediate consequence of hypotheses (H.1) and (H.2), we see that P, is
self-adjoint with domain H*(R").

2.B. Hypotheses on the Escape Function. As we mentioned in the Introduction, in
order to define resonances near a given energy level A, one needs to have some
control on the behaviour of the Hamiltonian near infinity. In semiclassical
problems, this control can be obtained by making hypotheses on the classical
Hamiltonian near infinity. We formulate these hypotheses by introducing an escape
function and the so-called non-trapping condition. This notion of escape function
was first introduced in the context of semiclassical resonances by Helffer and
Sjostrand (see [He—Sj2]). We start by introducing the following definition:

Definition 2.1. An energy interval I is called non-trapping for p if ¥(x,&ep™*(I),
one has: exp tH ,(x,£)— oo when t tends either to + co or to — co. Here H, denotes
the Hamiltonian vector field of p.

Our first hypothesis is a condition ensuring that the classical Hamiltonian p
has no trapped trajectories near infinity. So we ask that there exist a function
G(x, &) in C*(T*(R") called an escape function such that:

(H.5): Gis of the form G = (x, &) + r(x, &), where r belongs to the symbol class
51, 9)-

(H.6): there exists an energy interval I such that:

H,G2C, on p '(I)n{|x|=R} for Cy>0,R>»1.

(H.7): there exist a real function WeCgJ(IR") such that I is non-trapping for
pi=p+W.
Let us now recall for later use two results proven in [Ge—Sj] and [ Ge—Ma2].

Proposition 2.2. i) Under hypotheses (H.5), (H.6) there exists a function
roeCy (T*(IR") such that:

H(G+re)20 on p ()

il) Under hypotheses (H.6), if I is non-trapping for p, then there exists a function
r€Cy(T*(IR") such that if G, = G +ry, one has:

H,G;2C, on p~'(I) for Cy>0. 2.1
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We consider now the trapped part of the phase—space. We recall a geometric
definition from [Ge-Sj, Appendix].

Definition 2.3. The outgoing (respectively incoming) tail I",. for an energy interval
I is the set

{(x,&)ep™(I)|exptH (x,£)$ o0, t = F 0},
The trapped set is defined as K=1, 1T _.
Note that from the existence of G(x, &), we know that K is a compact setin p~ !(I).
2.C. Examples. We now give some examples of potentials satisfying our hypotheses.
Example 1: Two-body Potentials. These are potentials for which:
D2V (x)] < C,{x) =p=lel for p>0, acN" 2:2)

Then V =V, + V, satisfies the hypotheses (H) with the escape function G(x, &)=<{x, &)
on any bounded interval I included in IR*.

Example 2: N-body Potentials. These are potentials whose behaviour at infinity
varies depending on the direction. Let V=0 and V =V, be given by:
V(x)=Y, V().
aed

Here &/ is a set labeling a family of vector subspaces X“ and n° are orthogonal
projections on X° Assume that each potential V, satisfies the estimates (2.2) on
X Then V satisfies the hypotheses (H) with an escape function G = {x, &) + r(x, &)
for some function reS(1,g) on a bounded energy interval I, if I is non-trapping
for all classical subhamiltonians. We refer to the Appendix 1 for a description of
the metric g and for detailed proofs.

3. Resonances and Metastable States

In this section we shall introduce the definition of quasiresonance states and quasi-
resonances for Hamiltonian considered in Sect. 2. These quasiresonant states are
analogues of the well-known quasimodes in situations where discrete spectrum
appears. We will then prove time decay estimates for the quantum evolution of
these states which exhibit their metastable behaviour. Finally as an illustration of
the influence of trapped trajectories for the classical system, we prove some
propagation estimates for the non-trapping case.

3.A. The Frequency Set. To formulate the notion of a quasiresonance state, we
will first recall the definition of the frequency set of an h-dependent distribution
(see Guillemin—Sternberg [Gu-St]).

Definition 3.1. Let u(x, h)eD'(R") be a distribution such that for any open set L2,
there exist NoeN with [|u(x, h)|| - nyg, = O(h™°). Then a point (x,, &) in T*[R")
is said not to belong the frequency set of u, denoted by FS,u, if there exists a cutoff
Sunction x(x, &) with y(xq,&o) # 0 and:

I 2(x, kD )u || = O(h*).



Space-Time Picture of Semiclassical Resonances 287

We now recall the fundamental result of propagation of FS,u (see [Ro]).

Theorem 3.2. Let p(x, &) be a real symbol in S(m,dx? + d&?) with a weight m, such
that dp #0. Then FSu\FS,(p(x, hD,)u) is a union of integral curves of H,.

A consequence of Theorem 3.2 adapted to our problem is:

Corollary 3.3. Let V be smooth and real. Let uo(x,h) be an L? function with
lltg |2 = O(h~ M) for some NoeN. Then if u, = e *Pr'*y,, one has:

(xo,fo)EFsh“o had (xn ét)EFSh“n
where (x,, &,) = exp tH (xo, &o)-

3.B. Quasiresonance States. We now introduce the definition of quasiresonances
states. We consider a semiclassical Schrodinger Hamiltonian P, = —h?A + V(x),
where V satisfies the hypotheses (H) of Sect. 2. It follows from Hypothesis (H.5)
that there exists constants ¢, and R such that H,G=¢c, on p~(I)n{|x| 2 R},
where I is a given energy interval and R can be chosen such that the support of
the singular potential V; is included in {|x| < R —1}.

Definition 3.4. An h-dependent distribution u,(x)e H(R") is called a quasiresonance
state associated with the quasiresonance E(h) if :

i) VRO g 1, iN Such that ” Uy ”H'"({leéko)) = O(h_N).
ii) There exists a compact set K, = R" such that || u,| Lo 2 1-
iii) (P, — E(h))u, = O(h*) in L2 _(R".

loc

iv) u, is outgoing near infinity i.e.: there exists C, and R, such that:
FSu,np~ (D) {1x] 2 Ro} < {(x, &) G(x, &) 2 Co}.
v) E(h)— Aq, for some Ag€l.
Let us first make some comments on this definition.

Remark 1. Tt follows easily from iii) and v) that FSu,n{|x| = R} cp~(4,), if R is
chosen such that supp V< {|x| <R —1}.

Remark 2. If the frequency set of u, does not intersect the singular support of V;
(which means that the singularities of the potential have no influence on the
quasiresonance state), one can replace condition iv) by simpler conditions. This
remark is expanded in the next proposition.

Proposition 3.5. Let u, be a quasiresonant state. Then u,, the following properties:
VC,>03R, suchthat FSu,n{|x|=R;}c{(x,&)|G(x,&)=C,}. 3.1)

If moreover FSu,singsupp V= &, then the condition iv) is equivalent to any of
the following conditions:

iv') FSu,c I,
iv") for some Cy>» 1 FSu,n{(x,¢)|G(x,{) < —C,}=.

For the proof of Proposition 3.5, we refer to Appendix 3, Lemma C.1.

Remark 3. From Definition 3.4, it is clear that if E(h) is a quasiresonance, Im E(h)
is defined only modulo O(h™). In Sect. 4 we will see that under stronger hypotheses
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one can get also time decay estimates in the case of shape resonances where
Im E(h) = O(e ™) for some constant C.

3.C. Time Decay for Quasiresonance States. Our goal in this subsection is to prove
time decay results from the evolution of a quasiresonant state u,,. In order to apply
e Prh to y, we first need to cut u, microlocally in a bounded region of phase
space to turn it into an L? function. The cutoff region has to be large enough in
order to eliminate the influence of the singular part of the potential and of the
possible existence of trapped trajectories in a compact region of p~*(I). So we
start by picking up a cutoff function in a convenient way and by introducing some
notations. Let:
C,=1+ sup G.

suppWnp; '(D)

Here W(x) is the modifying potential (see (H.7)) such that I is non-trapping for
p1 =p+ W. We take then a cutoff function y(x, {)eCg(T*(R") such that:

supp Vx = {(x,O)l1x| 2 R, }, (3.2
where R, is large enough such that supp V,usupp W < {|x| £ R, — 1} and such
that (3.1) holds with the constant C, chosen above. Let now introduce a definition:

Definition 3.6. A cutoff function yo(x)eCg(R") is adapted to (Cy,Ry,1), if the
following condition is fulfilled:

for any (x,&) such that G(x,£)= Cy, |x|ZRy, and p,(x,¢)€l,

one has:
nx(exp thl(x’ é))qtsupp XO’ for t ; 0

It is easy to see using the fact that I is non trapping for p, and Proposition 2.2
that one can find cutoffs adapted to (C,, R,,I) with arbitrary large supports by
taking R, large enough.

The following Theorem is our main result on time decay:

Theorem 3.7. Let u, be a quasiresonant state with quasiresonance E(h) and let us
denote by a (h)=h~'Im E(h) the inverse of the lifetime of the quasiresonance E(h).
Then if y(x, &) is a cutoff function as above we have:

e "Prihy(x, hD Yy = e~ *E@hy(x, hD Juy, + r o (t, h) + 1o, (2, h)

where:
i) 7,(t, h) has an L* norm of size O(h®)a™*(1 — e~**) uniformly for t = 0.
ii) if xo is an adapted cutoff, r_,(t, h) satisfies the estimate:

1 2o(ronts )| = O(hw)( N e) uniformly for 120

1
alt)®
Let us make some comments on this theorem.

Remark 4. If |Im E(h)| = Ch™® for some N, = 0, then the estimates i), ii) become:
0(h>)
@

Folt,h) = 0(h®),  xo(X)rey(t, h) =
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The estimate ii) captures the outgoing nature of r_ (t,h). To describe more
precisely this outgoing behavior we prove the following result:

Theorem 3.8. There exist v>0, ¢c>0, To =1 such that for any 0 <a <1 we can
write:
ot W) =T1,(t,h) + 1o, (8, h)
with r, and r, , satisfying:
i) if a(h) = 0,(1), then:
Ira(t, )| = O(e™*=(1 + a(h) ™ 13(1 —e™<*)"/2))
uniformly for he]0,1],t= T,
ii) if a(h)— co when h—0, then:
I7(t, h) Il = O(a(h)~ e~ =)

uniformly for he0,1], t = T,.

e8]

i) [ x(Ix| S vat)ry,, (th)] = (ZY:O) uniformly for he]0,1], t = T,.

Proof of Theorem 3.7. we have:
e~ HPR= By (x, hD

t

= x(x,hDu, — ih™* [ e SEn"EWIK(Pp, _ E(h))y(x, hD)u,ds
0
t

= X(x, th)uh - lh_ ! I e_iS(Ph—E(h))/hX(x, th)(Ph - E(h))uhds
0

t
—ih™! (e WP EWYRP, Ty, ds.
0

From Definition 3.4, it follows that y(x,hD,)(P,— E(h))u, =r, ,(h) has a norm
O(h>).
Also ih™'[P,, x(x,hD,)] is a p.d.o. supported in {|x| = R,}, (see (3.1)) so

ih_ 1[Ph’ X(x, th)]uh = "ao,z(h) + Xoug(x’ tha h)uh’

where r,, , has an L? norm O(h*) and x_,(x, &, h) is supported in an outgoing
region {(x,&)|G(x,&)=C,,|x|ZR;} by Definition 3.4iv). On the support of
Xou» Un Satisfies (—h*A + V,(x) + W(x) — E(h))u, = O(h®), since W and V, vanish in
{Ix|=R,}. Using then the functional calculus of Helffer—Robert [He-Ro],
generalized to non-conformal metrics in [Gel], we easily get that:

X(Pr, 1 ) Xowttn = Xouthn + Or2(h®),

where x(4) is a cutoff function supported in I. We also have by combining Proposi-
tion 5.4 and Theorem 7.3:

&P ity = €SPt + O(H)
= e_isph’I/hX(Ph,l)Xomuh + O(h™).
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Here x(A)is a cutoff function supported in I and equal to 1 near 4. Finally we get:
e i'Ph/hX(x, th)uh =€ N itE(h)/hX(x’ th)uh

t
— [ =B Mg =isPuithy(p, )y yds
0
t .
+J'e—1(t—s)5(")/hrw(s)d5,
0

where | r,(s)|| = O(h*) uniformly in s.
The integral of the last term is bounded by:

O(h®)a~ (1 —e™*)

uniformly in ¢, which proves i).
To prove the Theorem, we just have to establish the desired estimates on:

t
rout(t) =je—;(z~s)E<h)/he—:sP;.,x/hx(ph’l)Xoutuhds_
0

If yo(x) is as in the statement of the Theorem 3.7, we have:

—is O(hoo)
 xo(x)e Ph’I/hX(Ph,l)Xout = s>
This follows from Theorem 7.2 and from Egorov’s Theorem for small s. This gives:

t hN
I X0 o () | < f e~ €7 INmEDIAC, ——ds
0 <)

for any NelN. Then it suffices to apply Proposition B.1 in Appendix 2 to prove

ii), which completes the proof of the theorem. []
Proof of Theorem 3.8. We write r_(t) = r,(t) + r,,, ,(t) where:

at
ry(t) = [ e T OEO TP R Ay (Py )y o indS,
0

t
rout,a(t) = J‘ e —z(t—s)E(h)/he —lsPh,l/hx(Ph,l )Xoutuhds'
at

Let us first estimate |[r,(¢)|: the computation is rejected to the Appendix. By
Proposition B.2, we get:
—if a(h) = 0,(1):

70l £ Ce™ =91 + (@)~ '2(1 — e~ C™)1/2)
—if a(h) » oo when h—0:
[r )l < Ca™le™ (™2,
out,o(t): by Theorem 7.2 we get that:
lx(1x] < vat)e " 5Prity(Py Vxoutinll < Cyh¥<sd 7V,

uniformly for s > at.

Let us now consider r
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Then we get immediately that:

o(h*)

)*

Ilx(lx] £ var)r,, (O =

’

which completes the proof of Theorem 3.8. [

3.D. Propagation Estimates Near a Non-Trapping Energy Level. We consider in
this subsection an Hamiltonian.

Py= —h?A+ V(x)

satisfying the conditions of Sect. 2 with V=0, and an energy interval I such that
I is non-trapping for p(x,&)=¢&*+ V(x). We denote by x;(1)eCP(R) a cutoff
function supported in I so that Corollary 6.5 and Theorem 7.2 hold with the
energy cutoff x,(P,). Then we have the following result:

Theorem 3.9. Let xo(x,£)eCy(T*R") be a cutoff function. Then there exist § >0
and a time Ty = T(x,) such that:

for 12 Toll x(1x] < 8t)e™ /"y, (P)ox, hD.) | = 0<<}:>°°)'

The important part in this estimate is of course the factor O(h®).

Proof. The proof will be an easy application of Theorem 7.2 and Egorov’s theorem
(see [Ro]).

We first take another cutoff function x,(4) with yx;(4)x(4) = x,(4) and ¥, is
supported in I. Then using the functional calculus (see [He—Ro], [Gel]) we get
that:

XZ(Ph) = Xps(xs th, h) + Roo(h)’

where y,(x,hD,, h) is a pseudodifferential operator with total symbol supported
in p~*(I), and R_(h) has a norm O(h*) between any weighted Sobolev spaces
H? So

Cx ke

Xl(Ph)XO(x9 th) = Xl(Ph)Xps(xa th; h)XO(xa h’ Dx) + Rao(h)xo(x9 th)
Since y,,, ; = R (M)xo(x, hD,) satisfies the estimates iii) of Proposition 6.4, we have:
. . h®
(%] S vt + D)e Py = Nx(1x] S vt + D)e™ Py (Py)tgus | = 0(@)
by Theorem 7.2.

We consider now y,(x, hD,, h)xo(x, hD,) which is a pseudodifferential operator
supported in p~(I). By Egorov’s theorem (see [Ro]) we get:

e Pulh o, hD ., B)xo(x, hD,) = x,(x, hD, h)e*P+",
where y,(x, hD,, h) is a p.d.o. with essential support in

exp tH , (supp x,s(x, &, h)xo(x, £)).

Since I is non-trapping, we can choose T = T(x,) such that yr(x,hD,,h) has
essential support in a region {(x, £)|G(x, ) = C,}, where C; > 1, and G is the escape
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function modified as in Proposition 2.2 Hence we can apply Theorem 7.2 with
Xout = Xr(%, BD,, h) for t = T, which proves Theorem 3.9. [J

4. Examples

In this section, we will give examples of quasiresonance states and of quasireso-
nances. We first show that for dilation analytic two-body potentials, exact
resonance states are quasiresonance states in the sense of Definition 3.4. We will
then construct quasiresonances states and quasiresonances in situations where one
has shown the existence of true resonances, at least for two-body dilation analytic
potentials. Namely we will study the cases when the set of trapped trajectories in
P~ (%o), Knp~1(4,) is either a closed hyperbolic trajectory (see [Ge-Sj]) or an
unstable equilibrium point. This last case occurs for example when V, has a
non-degenerate maximum (see [Sj], [B-C-D]). Although we make these construc-
tions for smooth potentials, it is clear that one can admit a compactly supported
singular potential, as long as the frequency set of the quasiresonances we construct
does not intersect with its singular support. Finally we will treat under stronger
hypotheses the case of the shape resonances, where the methods of Sect. 3 no longer

apply.

4.A. Dilation Analytic Potentials. We assume now that P, is a 2-body Hamiltonian
and that V,(x) is dilation analytic in a sector {xeC"||Im x| < e{(Rex)}. Then one
can define resonances near I with I c R* by the method of complex canonical
transformations developped in successive degrees of generality by Aguilar—Combes
[Ag—Co], Balslev—Combes [Ba—Co], Sigal [S1] Hunziker [Hul] (see Combes—
Duclos—Klein—Seiler [C-D-K-S], Briet—Combes—Duclos [B-C-D], Hislop-
Sigal [Hi-Si], Sigal [ 2] for semiclassical versions) and Helffer—Sjostrand [He—S;2].

In this last approach, resonant functions are distributions in some Hilbert
spaces denoted by H(A,g, m) of Sobolev type with microlocal exponential weights.
Then it is very easy to see, using for example the characterization of frequency set
through F.B.I. transforms (see Martinez [Ma]) that a resonant function is also a
quasiresonance state since it has no frequency set in {(x, £)|G(x,&) < —C,} for
C, > 1 (see also Remark 2).

4.B. Quasiresonances Generated by a Closed Hyperbolic Trajectory. This situation
was studied by Gérard—Sjostrand [Ge-Sj] for dilation analytic potentials. We put
ourselves under the hypotheses of Sect. 2 and fix an energy level 4,. The energy
interval we consider will be of the form I =[1, — ¢, 4o + ¢] for ¢ small enough. We
assume that the set of trapped trajectories in p~!(4,) is a closed trajectory y° of
hyperbolic type, i.e. the eigenvalues of the linearized Poincaré map are not of
modulus 1.

We first fix some notations. For A close to i, we denote by y* the (unique)
closed trajectory of H, in p~*(4). y* is still hyperbolic for A near 4, and we denote
by 6,(A),...,0,_(A) the eigenvalues of modulus > 1 of the Poincaré map P* of y2.

To completely specify P, we fix in p~'(4) a symplectic manifold IT* of
codimension 2 in T*R" which is transverse to H, at y*n IT* = p* Then we take
P* to be the first return map in IT* and P* is a symplectic map for the symplectic

structure on IT*. We denote by A 1(—) the stable outgoing (incoming) Lagrangian



Space-Time Picture of Semiclassical Resonances 293

manifold of y*. A% is tangent at p* to the space generated by H, and the eigenvectars
of D,.P* with eigenvalues 6,(1) 1<i<n—1.

We denote by I'4 the manifold A4 ~ IT# which is still Lagrangian in IT* and
invariant under P%.

For acIN""!, we denote by N(x) the number of BelN""! such that
6(4)~# = 6(1)~* We denote by o the Maslov index of y°, by C(4) = [ £dx the action
along 7%, and by T(A4) = C’(4) the period of y*.

Then we have:

Proposition 4.1. For any aelN""!, there exist aN(a) x N(x) matrix

M(A,z,h) = Y M(A, ),
0

n—1
where M(4,z) has the eigenvalue 0(2)™* [ ] |0:(A)|~*/2€'T®= with multiplicity N(a)
such that: !

i) A+ hz is a quasiresonance if
det (e’“Wiheimal M (], 2z, h) — 1) =0,

ii) the quasiresonant state u, associated with E(h)= A+ hz is a Lagrangian
distribution living on A% .

Remark 4. As in [Ge-Sj] one shows easily that:
n—1 n—1
ImE, (h)= (Log( IT16:0)1~ 1/2> — Y o;Log 0,-(,1)> T(A)~*h+ o(h)
1

ReE,(h)=1+T@A) 'h <a§ + 2km — C(A)/h) + o(h),

where keZ is such that 2kn — C(A)/h = O(1).
Proof. The construction of quasiresonant states will be separated in three steps:
Step 1. We find quantization conditions to have a solution u, of:

P,u, — (A + zh)u, = O(h*) 4.1)

microlocally near y°. Here z=0,(1) and P, could be any pseudodifferential
operator p(x, hD,, h). Instead of directly constructing u, as a Lagrangian distribution
on A%, we reduce (4.1) to construction of solutions of

KA(Z)U,, = Uh + O(hOO) (4.2)

microlocally near p*, where v, lives on IT* and K,(z) is the “quantized Poincaré
map.”

We first choose a canonical transformation y, which sends p* to (0,0), IT* on
{xl =¢4 =0}, ri on {il =0}a Ir'* on {xl = 0}’ where x = (x,x"), £ =(&1, &) (see
[Ge-Sj, Sect. 2]). Since H, is transversal to IT*, we can also assume (possibly after

exchanging x, and &,) that (%”(0, 0) # 0 in the new coordinates. x, is defined near
1
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p* and we extend it arbitrarily in a large region of T*R". We quantize y; by a
Fourier integral operator T, and consider everything after conjugation by T,.

In these new symplectic coordinates we can construct an operator M,(z) such
that if v, is defined microlocally near (0,0) in IT, u, = M,(z)v, solves:

{(P,,, 1+ — E)u, = O(h®) microlocally near y*

Upley=0 =V

4.3)

Here P, ;= T,P,T; ', and E; = 1 + zh. We will see below that the existence of u,
solution to (4.1) is equivalent to the existence of a solution to (4.3) which is univalued
under the operation of “moving one loop around y*.”

M ,(z)v, can be constructed near x, =0 as a Fourier integral operator:
M;,1(@)v, = Qmh) ™" "1 [ S Cr T Mg (x, ', 2, ), (y)dy d,

where S, solves the Hamilton—Jacobi equation:

(4.9)

where p, is the symbol of P, ;, and:
a).(x5 "l, z, h) = Z a}.,j(x9 '7,9 Z)hja
0

with a, ; solving the transport equations.

Equation (4.4) can be solved near x; =0 since H,, is transversal to IT* at p*.
The global construction of M,(z)v, as a Lagrangian distribution amounts to
construction of the Lagrangian manifold A, ,. which is the image of {¢' = 7'} under
the H, flow in p~!(4).

Let us write the global construction of M ,(z)v, as:

N

M, (2)v, = 21: M, {(2)vy,

where M, /(z)v, is a Lagrangian distribution solution to (4.3) near some point p, ;
on %, and M, x(z)v, lives near p*.

The M, ;(z)v, patch together as a global solution to (4.3) except for M; y(z)v,
and M, ;(z)v,. The quantization condition for the existence of a solution to (4.1)
is that M; y(2)v, = M, 1(2)v, + O(h™). Since M, y(z)v, and M, ,(z)v, solve (4.1)
locally near p*, they coincide (modulo O(h®)) if and only if:

M n(@)04ls, =0 = 04+ O(h®) near (0,0). 4.5)
We will denote by K,(z) the operator:
v M §(2)vp 5, = 0

acting on D'(R" ') and defined microlocally near (0, 0).
Let us now describe K ,(z) in more details. K,(z) is a F.I.O. associated with the

4 0 ) in the new

canonical transformation P2. Since D ,.P* is of the form ( 0 (A,
A
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coordinates, where A, is a matrix with eigenvalues 6,(1), K,(z) can be written as:
K;v,=Q2nh)™"* 1fei(Mxl’"')—y""’)/hk;.(x/: n',z, W, (y)dy' dn',
where
@', 1) = 92(0,0)+ A7 1x"n' + O(I(x', 1)),

kX', z,h) = Y kg j(x', 1, )R
0

We will now compute ¢,(0,0) and k, ((0,0, z).
By Hamilton-Jacobi theory we know that:

9;(0,0)=C(}) = j; ¢dx.

Note that C'(1) = T,, where T, is the period of y*.

To compute k; 4(0,0,z), we have to take into account the transport equation
and the Maslov bundle on A, ,. If we consider again M, ; near x; = 0 (fixing ' = 0)
and compute the principal symbol m; of M, ; as a half density, we get:

m; = a,(x,0,z)|dx|'/? with a,(0,0,z)=1,

since A;, can be parametrized by x near x; =0. It is well known (see [HO,
Theorem 25.2.4]) that the principal symbol m, of M, satisfies:

ngml_ izm;.=0

(remember that the subprincipal symbol of a Schrédinger operator vanishes). Here
Zy,m, denotes the Lie derivative of m,.
So if we denote by @* the flow of H, on A, 4, one has:

(‘pTl)*m;.,N =m; X e'Te,

where m, ; is the principal symbol of M, ;.
At (0,0), m, y is equal to k; (0,0, z)|dx|'/*> (modulo the Maslov factor).
According to [Ge-Sj, Sect. 2] the differential of @7 restricted to A, o =A, +

is of the form Lo SO:

A
k;(0,0, 2)|det A, |12 dx |V = e*iT=|dx|1/2,

modulo the Maslov factor.
If we take into account this factor we finally get:

k;(0,0,2) = T |det A,|~ V/2ei/*
where o is the Maslov index of y°. We will denote |det A,;|~'/2 by b,. This completes
Step 1.

Step 2. We will describe the quantization conditions for (4.5). A similar problem
(with no dependence on 1) has been treated in [ Ge2], so we will be quite sketchy.

If we replace K,(z) by its linearization K,(z) at (0,0), i.e. we replace ¢, by
C(A)+ A;'x' ', and k;, o(x', 7', 2, h) by k; 0(0,0,z) we see that:

IZ;_(Z)U,, — eic‘”/"ldetAll - 1/2eiT1z+ina/4vh(A; lxr).
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The eigenvectors of v,—v,(A4; 'x') are polynomials with eigenvalues
0()* =0, --0,_,(H~*"*

for «cIN"~ 1, So the quantization condition corresponding to K (z)v = v is:
n—1

C(A) = (2kn — 6/4n)h + iLogb;h — T(A)zh —ih Y a;Log6;(4)
1

for keZ. This can be inverted since T(4) # 0. The quantization conditions for K ,(z)
can now be found by perturbation following the arguments of [Ge2]. One gets the
quantization conditions given in Proposition 4.1. One also gets that v, solution
of (4.2) is a Lagrangian distribution living on I'% .

Step 3. We extend globally the solutions of (4.1). If v, is the solution of (4.2),
u,= M,(z(h))v, is a Lagrangian distribution living on A%, which satisfies
Pyu, — (A + z(h))u, = O(h*) near »°.

Since y* is the only trapped trajectory on p~ (1), we can extend u, to any open
neighborhood of A% in such a way that it still solves Pu, — (4 + z(h))u, = O(h*)
in this neighborhood. To solve Schrodinger equation everywhere, it suffices to
replace u, by y(P,)u,, where x(4) is supported near A, and to use the functional
calculus of [He-Ro]. This completes the proof of Proposition 4.1. [

4.C. Quasiresonances Generated by a Potential Maximum. This situation was studied
by Sjostrand [Sj], Briet—Combes—Duclos [B—C—D] for dilation analytic potentials.
As in subsection 4.B, we take I =[1, —¢, 4o +¢], for 1,eR and ¢ small enough
and we assume that V satisfies the conditions of Sect. 2.

We assume that the set of trapped trajectories in p~!(4,) is a point (x,,0) where
V(xo0) = 4o, Vi,V =0, V'(x,) is negative definite. If the eigenvalues of V' at x, are
denoted by 4;, 1 <j < n, the eigenvalues of the linearized matrix F, of H, at (x,,0)
are the +2(—4)"?=+pu;, 1<j<n

For aeIN” we denote by N(ax) the number of felN" with o-u = B-u, where
u=(y,..., 1, We denote by A, the stable outgoing manifold of (x,,0) (see
[A-M]). Then we have:

Proposition 4.2. For aeN" there exist a N(x) x N(x) matrix F(z,h)= Y F;(z)l’,
n 0

1
where F (z) has the eigenvalue — i) <a i+ 5) W — z with multiplicity N(«), such that:
1

i) Ay + zh is a quasiresonance if : det(F(z,h)) =0
i) the quasiresonant state u, associated to E (h) = Ao, + zh is a Lagrangian distri-
bution living on A .

Proof. By the stable manifold theorem (see [A—M]) there exist two Lagrangian
manifolds A, tangent at (x,,0) to the span of eigenspaces of F, with positive
(respectively negative) eigenvalues, which are H, invariant. By a change of symplectic
coordinates we can locally send (x,,0) to (0,0), A, to {& =0}, and A_ to {x =0}.
If T is a F.1.O. associated with this change of coordinates, and P = TP, T~ !, we
have:

P =p(x,hD,) + hp _,(x,hD,) + O(h?),
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with p(x, &) = (B(x, {)x, £ >, where B(0,0) has the eigenvalues u,,...,u,. We will
use also the subprincipal symbol of P, defined as:

P &) = P16, &) + %Zax,ag,p(x, )

Since at double characteristic points the subprincipal symbol is invariant under

i n
conjugation by Fourier integral operators, we see that j_,(0,0) = — EZyj.
1

We can write:

P= Y x%a,,(x,hD,)(hD.Y +ha_,(x,hD,) + h*a_, + ---.
lal, 18] =1

To compute a_, (0, 0) we still use the invariance of the subprincipal symbol and get:

a_,(0,0)+ % Y 0,,0¢,5(0,0) = 6,4(P)(0,0) =0
ji=1

. n

i

soa_,= —Ez,uj.
1

Now as in Helffer—Sjostrand ([He-Sj1] Proof of Theorem 3.7) we introduce
the linearized operator:

Po= Y x%a,40,0)(hD,Y + ha_,(0,0)
lal=18l=1

and the space S7;; of formal symbols of the form:
u(x,h) =Y uj(x)h~"*i, jelN/2,
0

where u; = O(|x|*~27+),

h™1'P, sends S™¥ into itself and h™'(P — P,) sends ST} into ST:A*1.

Now the eigenvalues of h‘lﬁo are the —iZ(aj+%>uj, acIN" with eigen-
vectors x*. 1

The quantization condition can now be obtained exactly as in [He-Sjl,
Theorem 3.7] or [He, Chap. 2]. It is also clear from the proof that the quasiresonant
states are Lagrangian distributions living on A .. One can extend the quasiresonant
states to any neighborhood of A, since (x,,0) is the only trapped point in
p Y[Ao — & Ao + €]) for ¢ small enough. The proof can then be completed as in
Proposition 4.1. [

4.D. Quasiresonant States for Shape Resonances. We will now construct states
exhibiting a time-decay behavior in a situation where shape resonances appear.
It is known that in this case Im E(h) is of size O(h*), so this type of resonances
need a separate treatment.

In this subsection we will assume that V(x) is a 2-body potential which is
dilation analytic in a sector {|xeC"||Imx|=<A(Rex)}. We assume that I is of
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the form [Ao —¢, 4o +¢], for ¢ small enough. Here 4,>0, and there exists a
connected open set O < IR” and a compact set % < O such that:

V<4 in% V>lyinO\%, V<2l,in 0.

We also assume that there are no trapped trajectories in p~!(4,) outside O.

This situation has been considered in [C-D-K-S, He-S§j2, Hi~Si]. One proves
the existence of resonances due to tunneling through the potential barrier O\%,
which are close to the real eigenvalues of a model Dirichlet problem, with an error
of size O(e ™ 2°/), where S, is the distance between % and O° for the Agmon metric
max(V — Ay,0)dx? and O(a) means O,(e~25°*¥/*) for any 1> 0.

For simplicity we will consider a case where one can obtain lower bounds (and
even asymptotic expansions) on the widths of these resonances, i.e. upper bounds
on their lifetimes. We will assume as in [He-S;j2, Sect. 10] that:

U ={xo}, where V"(xq)>0.

We will consider a resonance E(h) close to an eigenvalue E,(h) of P, with Dirichlet
boundary conditions in My = By(%,S, —n), with E,(h)— 1, when h—0. Here
By(%, S, — n) is the ball around % of radius S, — 5 for the Agmon metric and n « 1.
(see [He-Sj2], Theorems 10.8, 10.12). We assume that Ey(h) is asymptotically
simple (see [He—Sj2], Theorem 10.7) and denote by u, the unique (modulo constant
factor) resonant function associated with E(h).

We can choose for example u, to be the eigenprojection (for the complex dilated
Hamiltonian) of a normalized Dirichlet eigenfunction of P, for E,(h) (see [He-Sj2,
Sect. 9]).

Then we know from [He-Sj2, Théoréme 10.14] that:

I'(h)= —ImE(h) 2 Coh*'?e~25" for h small enough.

To formulate our result we fix a cutoff function y,(x)eCg(R") equal to 1 in a
neighborhood of O and another cutoff function x,(x) such that no classical
trajectories for H, in p~!(4,) starting from supp Vy, reach supp y, for positive
times. It is important to notice that y, can for example be supported in the

island O.
Then we have:

Theorem 4.3. With the notations above, we have:
e Py oy = e T EO Ry gy + rou(t) + 74 (0),

where

h
i) r,(t) has a norm O(e~5*) 4+ O(e™25%/") — (1 — e ~*TH),
ii) r,,(?) satisfies the estimate: I'(h)

1
L out = O huo —So/h —tlr/h
X1 (X)roul®) | = O(h*e )(e +——<t>,,>

uniformly for t 2 0.
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Proof. Let us denote by (1) a cutoff function supported in [Ey(h) — 4, Eq(h) + A],
equal to 1 in [Eq(h) — 4/2, Eo(h) + 4/2]. We first remark that:
Xotn = X(Pu)xotn + O(e ™). (4.6)
Indeed we have:
(Py = Eo(W)xottn = [Py, xo]un + Oe™**")xou,
which gives for ze C\R:
(Py—2)" " oty = (Eo(h) — 2) ™ ' xottp — (Eo(h) — 2) ™ *(Py — 2) ™ * [Py, X0ty
—(Eo(h) — 2)~1(Py — 2) "1 Oe ™ 25y oy, @7

Plugging (4.7) into formula (5.10) in Sect. 5 used to define y(P,)xou, and using that
[Py, x0]u, = O(e~5*) (see [He-Sj2, Théoréme 10.10]) we get directly (4.6).
Now as in the proof of Theorem 3.7, we get:

Py (Py)Xotn = €~ "M y(Py)xothy

t
— (i) TPy (POTP yoTuyds.  (48)
0

e

For 6 >0, 6 « 1, let us denote by W,,(x)gC;?((')') a positive cutoff furiction supported
in By(%,d) such that V + W;> 4, in O. Let us put P, ; = P, + W; and forget the
6 dependence of P, ; for the moment. We claim that:

(X(Py) = X(Py,1)) [Py, xo] = Ole ™). (4.9)
To see this, we use formula (5.10) in Sect. 5 and get:

(X(Pn) = x(Ph,1))[Phs 201 =i£azi(z)(z —Py) Wz — Ph,x)_l[Pm Xoldz A dz.

Then (4.9) follows directly from Agmon-type estimates on (z — P, ;)™ (see for
example [He-Sj2, Lemma 9.4]).
We use now formula (7.12) in Sect. 7 and get:

e'"P"/"x(P,,,l)[P,,, Xol= e_w""/hX(Ph,l)[Pm Xo]
t
—(im~! Ie_i('_sw"/h Wae-isph’l/hX(Pm)[Pm Xolds.
)
If we write:

OE,

Wie P ihy(Py 1) [Py Xo] = Ie—‘th(}“)Wo [Pha Xold4,

where % is the spectral function of P, , we get again by Agmon-type estimates:

| Wae™ sy (Py, 1) [Py, 201 Il = O(e™").
Integrating by parts in A we also get:

i . . 0’E,
% Wie™ “Prilby(Py, 1)[Py, xo] = fe ™" W.s( (i)— + X(l) ) [Ph xo1dA. (4.10)
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We now use that:
@
0A*
where R, (A +i0) are the boundary values of the resolvent of P, ;.
We can then prove Agmon-type estimates for the kernel of R, (4 + i0)? in the

same way as for the kernel of R, (4 + i0).
So (4.10) gives:

. ~( 1 _
| Wse™sPm1lhy(Py ) [Py, 2011l = O (—e s°”‘).
{(s)

= LRy + 107 — R, — i0),
2in

Integrating by parts in 4 once more and using the same type of estimates we get that:

. ~ 1 _
| Wse™5Fm1hy(Py 1) [Py, X011l = O (Zs?e s°/">,

From this we get finally:
t

PRy (P, ) yotty = € EOy(P,) oty — (ih) = e~ IE®MH
X\ER)X
0
h

-e‘i‘P""/hX(Ph.l)[Ph’ Yolugds + a(e—ZSO/h) 0

(1 _ e—tr(h)/h).

Let us put now
t
Tout(t) = — (ih)™ ! je—i(t—S)E(h)/he_isp"”/hX(Ph,1)[Ph, Xolunds.
0
Since A, is non-trapping for p= &2+ V + W;, we can apply Theorem 7.2 and
Egorov’s Theorem to get that:
O(h*)
(s>

To obtain (4.11) we need to take the support of x(4) sufficiently small depending
on 4, and use that p = p outside O.

s Ce)e ™ Pty (Py, 1) [Pys X011l = (@.11)

1

{s)"
2, Proposition B.1, and we get the desired estimate on || y,(x)r.(t)|. O

t
So it just remains to estimate e~/ ds. This is done in Appendix
(1]

5. Expansion of Commutators and Localization

5.A. Expansion of Commutators. In this subsection we generalize the commutator
expansion lemma of [S—S] to functions of operators which satisfy symbol-type
estimates. We also prove a localization lemma for a function of a (selfadjoint)
pseudodifferential operator. These two tools will allow us to work with functions
of pseudodifferential operators as if they were themselves pseudodifferential operators
(which is not clear if the pseudodifferential operators considered are not elliptic,
as for example 2h(x-D, + D, x)).
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We consider first a function F(x) in the symbol class S™(R), i.e.:
|0FF(0)] < C,{t>™ 7, noeR.

Let H and A be two selfadjoint operators on a Hilbert space #, such that for
any kelN, ad%(H) is bounded. Here ad ,(B) = [B, A]. In particular H is bounded.
From this it follows easily that H and ad¥(H) are bounded on D((| 4| + 1)*) for
integer o and then for any « by interpolation. We will prove the following Proposition:

Proposition 5.1. The commutator [H, F(A)] originally defined on D((|A| + 1)) can
be expanded as:

n—1

[H F(A)]= ) %F“"(A)ad’;(H)+R,,(A,H,F),
k=1K:

where R (A, H, F) is bounded on # with a norm bounded by C,||ad’,(H)|, for n>ny + 1,
and for a constant C, depending only on a finite number of seminorms of F in S™(R).

Proof. We write F=(x2+1)"g=fg, with no—2n,=—1—¢ &>0. Then
geS~ 1 ¢(R), from which it follows that VnelN, s"j(s)eL*(R), and hence also
s"g(s)e L' (R).

Hence we can apply to g(A) the result of [S—S, Lemma 1.1]. We will write:

[H, (A + 1)"g(4)] = [H,(A* + 1)"1g(A) + (4* + )" [H,g(4)]. (5.1

It is straightforward to show by induction on the degree of f, that if f(s) is a

polynomial of degree n,, one has:
no (k)

[H, f(H]= kZ —kT(A)ad'Z(H)-

=1

So
2m (k)

[H,(A*+1)"]g(4) = ) 7(A)ad',‘,(H)g(A)-
k=1 K!

We apply now [S-S, Lemma 1.1] to H= ad%(H) (since H is either selfadjoint or
antiselfadjoint). We get:

2m M-1 f(n) g(k) f(n)

[H, (42 + 1)"g(D]= Y Y —(A)= = (A)ady " (H) + = (4)Ry(4, ad}(H), 9).
n=1 k=0 HN: k! n!
(5.2)
The second term in the r.h.s. of (5.1) is:
M-1 (k)
3 SAT Aadi(H) + [AR(A H. ) (53)
=1 .
Let us take in (5.2) M = M(n)such that n + M(n) = M, > 1. We get from (5.2), (5.3):
2ny Mo—-1-n p@n) (k)
HFAT= Y Y L)% (a)ady™(H) + Ry,
n=0 k=0 n: k!
n+k=1
Mo—1 (k)
=y Y97 padk(H) + Ry,
k=1 k!



302 C. Gérard and I. M. Sigal

by the binomial formula. It remains to estimate R, .
Let us first consider a term of the type:

+

SRy, (A 2d(H),9) = | f™(A)e*K,(s)ds, (5-4)

where
K (s)=4(s)[duy -+ [ dup,_ e Auro-nadMo(H)e'uMo-n
0 0
(see [S-S, Egs. (1.12), (L10)).
We use now that f®(4)= ) c,;A" Let us consider one term of (5.4) with

k=0
f™(A) replaced by A*, k <2n, —n. We get:
+ o 1 a k
L= | (‘.—> €K, (s)ds, (5.5)
“w \i0s

where the integral converges in norm in £(D((| 4| + 1)), #).

Since K,(s) has a norm in £(D((| 4| + 1)*), D((| 4| + 1)¥)) bounded by C,|g(s)|s*° ™"
we can integrate by parts once.

Then we have:

¢
0Ky (s)= Y, 0}9(s)0(sMem 7Y,
11=0
where O( ) means in norm in ZL(D((|A| + 1)*), D((| 4] + 1))).

We use now that sM°~"*1=¢5714(s) is the Fourier transform of DMo~"*1~(it)/14()
which is in §7*"~Mo~(1+e(R),

Since | < 2n, — n, by taking M, > 2n,, s™°~"*%17¢9%14(s) is the Fourier trans-
form of a term in S ™! ~¥(R), so tends to zero at infinity faster than any power. So
we can integrate by parts k times in (5.5) and we get that I, , has a norm bounded
by Cu, lad?e(H)||

Here C),, depends only on a finite number of seminorms of F(s) in S™(R).
This completes the proof of the proposition. []

5.B. A Localization Result. We now prove a localization result for functions of
pseudodifferential operators. We consider a real function A(x, £) in some symbol
class S(my, go) for some o-temperate metric g, and some g,-temperate weight my,.
We assume that A(x, hD,) is essentially selfadjoint on S(R") and denote by A(x, hD,)
its unique selfadjoint extension.

We have the following result:

Proposition 5.2. Let x,(x,£)eCg(T*R") and such that on supp y, one has:
CoS A(x,§) = C;.
Let f(2)eS°(R) such that:
f(A)=0 for Co—eySA<C,+¢gy & >0.
Then
Sf(A(x, hD,))x,(x, hD,) has a norm O(h*).
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Proof. Let y(4) be a cutoff function supported in [C, — &,/2, C, + &,/2], equal to
1in[Cy — €o/3, C, + €0/3]. Then y(A4)f(A) = 0, so it suffices to show that y, (x, hD,) —
x(A)x1(x, hD,) = O(h*™). Let us now take a function A4,(x, £) such that:

A = A in a neighborhood of supp x;, (5.6)
€ €

Comg SMSCit, (5.7)

A,(x, &) is constant at infinity. (5.8)

We denote by A(x,hD,) its Weyl quantization which is a bounded operator
by (5.8).
By (5.7) we get that for k small enough:

c, —8—3"g A,(x,hD,) < C, +%°.

So y(A4,)=1 and we are left with the proof of:

(x(41) — 2(A))x1(x, hD,) = O(h*).
This is proven in Lemma 5.3 below, which will complete the proof of the
proposition. [
Lemma 5.3. Let y, be as in Proposition 5.2 and y as in the proof of Proposition 5.2.
Then:

(x(41) — x(A)x1(x, hD,) = O(h>).

Proof. We use a formula for functional calculus due to Helffer—Sj6strand [He—Sj3].
We denote by 7(z) an almost analytic extension of y(4), i.e. a smooth function on
€ such that

0:%(z) = O(|Im z|®). (5.9
Moreover we can take j(z) with compactt support in C.
Then one can prove (see [He—Sj3]) that:
1(A) = [ 8;7()(z — A)'dz A dz. (5.10)
2n ¢

The integral in (5.10) converges in norm by (5.9).
Using that (z—A) ! —(z—A4,) '=(@z—A4)"Y(4—-A4,)(z—A4,)" ", we get by
(5.10):

(x(A) — x(A))x: = igjazi(z ~ A A-AYe—A)  pdzndz. (5.11)

Then we have:
(A—A)z—A4) ' =A-A)ui—A4)"
+(A-A)z—A) ALl —A4)7 (5.12)
By pseudodifferential calculus (A — A4,)x; has a norm O(h*) and [4,,x,] has a
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norm O(h) so (x(4) — x(41))x1 = O(h) using that || (B — 2) ™" | #(s.p@y = O((Im2)~*)
for any selfadjoint operator B on a Hilbert space #.
We use now that:

(A—A)z—4 l[AlaXIJ(Z_ 1)_1
=(A—A1)[A1,x1](z— ) +(A_Al)(z*'Al)_l[Al’[Al’Xl]](Z“Al)_l-

Again by pseudodifferential calculus (4 — A;)[A4,,x;] has a norm O(h®) and
[A4:,[A1,x1]1] a norm O(h?) so [x(A) — x(A4,)1x; = O(h?). Iterating this argument
in the obvious way gives the Lemma. []

5.C. A Result on Functional Calculus for Singular Potentials. In this subsection,
we consider a Schrodinger operator satisfying the hypotheses of Sect. 2. We will
show that outside the singular support of V, for a smooth cutoff function fe C3(R),
the operator f(P,) given by the functional calculus is a pseudodifferential operator
modulo some error of size O(h*). This result is summarized in the next proposition:

Proposition 5.4. Let y,(x,£)eCF(T*(R")) such that V, is smooth on support of x,.
Let us take a smooth potential V, satisfying the same hypotheses as V,, such that
V, = V(x) + V,(x) on support of xo(x,&). Thenif P, , = —h*A, + V,, for any smooth
cutoff function yeCg(R), we have:

(X(Ph,1) — Xx(Pu)xo(x, hD,) = Oga(h*),
where Oy. means an estimate in £(L?, H?).

Proof. Without loss of generality, we can replace singsupp V, by supp V. Let us
take another smooth cutoff function y,(x)e Cg (R"), such that:

21(x)x0(x; &) = Xo(x, &),

and V; = V(x) + V,(x) on support of x,(x). Since x,(x)xo(x, hD,) = xo(x, hD,) + O(h®)
by pseudodifferential calculus, it suffices to show that:

(x(Ph,1) — x(Pp)x1(x) = Op2(h™).
To do this we use formula (5.10) to represent y(P,). One has:
ﬁx(Z)
~I

—P,)"tdz A dz.
Here j(z) is as in (5.10) an almost analytic extension of y(1) with compact support
in €. This formula gives:
Z _ -
(x(Pp) — x(Pr,1))x2 (x )— P I ﬂ(( —Py)7 —(z—Pyy) xdz adz. (5.13)
Then we have:
(=P ' —E—=Py) 1=~ Py) "1 (Py— Py 1)z — Pn,1)_1X1
=(@z—Py) ' Wiz— Ph,l)_1X19

where W=V, + V,— V, is supported where y; = 0. Then we have:

h
W(z— P, 1) 11=W(Ez—P,) [Ph,qu](Z—Ph,l)—l=O<(Imz)2>'
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This can be iterated since [Py ;, ;1= x2(x)[ P4 1, X1], Where x, is another cutoff
with Wy, =0. This way we get finally a term in the integrand of (5.13) of norm
between L? and H? equal to O(h"(Imz)~ ") for any N, which completes the proof
of the proposition since ;7(z) = O(Imz)®. []

6. Semiclassical Propagation Estimates

In this section we prove a semiclassical version of the propagation estimates of
Sigal-Soffer [S-S]. Since we will later apply it to different types of conjugate
operators, we will prove the propagation estimates in an abstract setting.

We consider a self adjoint operator H on an Hilbert space ## with domain
D(H). H is supposed to depend on the Planck constant h. Actually the only place
where h will appear will be in the size of the multicommutators. We consider also
a commutative family A4(t) of unbounded h-dependent self adjoint operators with
a common domain D satisfying the following properties: for a cutoff function
Xo(4)eCg (R) we denote by H; the bounded operator y,(H)H. We fix another
cutoff function x,(4) such that y,x; = 1.

We denote by DA(t) the Heisenberg derivative of A(t) w.r.t. Hy, i.e.

DA(f) = ih~‘[H,, A(t)] + ‘fi—’: 6.1)

and by (a~d"‘4)(H) the multicommutator h~*[[H, A]--- A]. With these notations we
ask that A(t) satisfies:

(H.2.i) A(¢) is norm differentiable with ‘fi—f uniformly bounded in t.

(H.2.ii) x;(H)DA(t)x,(H) = Cox2(H) for some C, > 0.
(H.2.iii) adf‘m)(H) are uniformly bounded in ¢ and h.

(H.2.iv) — commutes with A.

This last assumption is not necessary and can be replaced by control on the multi-

~ dA
commutators ad’jw,<— .
dt

As in [S-S], we set A(O)=A and t=t+ 1.
We will consider the propagation observables

O, = ,(1) = —(—A(z))*F(A—“—)g —s),

T

where F(£) stands for a smoothed-out characteristic function of £ with F’' <0.
We also fix a bounded operator y,,, such that:

D,(0)x,(H)ou is bounded with norm O(h®) for any aeN. 6.2)

Later on g,,, will be a pseudodifferential cutoff with support in an outgoing region.
We will prove the following theorem, which for k=1 is an extension of
Theorems 2.3-2.5 in [S-S].
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Theorem 6.1. Under the hypotheses (H.2), Vo, Yue #, we have:

+ 0

) | <OXOe™ " ypuue” " ypuddt < Cyh"|ul|> VNeN,
0
i) || @ (t)e™ "M youull < CyhN[ull VNEN, uniformly in t 20,

A() —itHh N : :

ili) [|[F| —< —¢ e My u| < < N |ull VNeNN, uniformly in t = 0.
T

We start by fixing some notations. A(t)

We will denote by F; any operator of the form f5(A(z), t)F (—— < e), where

f5(4, t) belongs to the symbol class S’(IR ;) uniformly in t. If f; is such that f5(4,t) =
C ()%, we will denote f5(A(t),t)F ( ¢ ) £> by F;. We will denote by G the
operator F ( U ) 8/2) and put

o 0% 49, _
T dt

(A(t) 1),

where @,(4,t)= —(— A)*F (% < - s).

We take a vector u in # and denote by , the vector e “#1/*y (H)y o . If B
is an observable, we denote by (B) the expectation value {By,,¥,>. We first
prove the following lemma:

Lemma 6.2. For e <Ny+1,0<f, 0< ' <1, we have:
(D®,) z Col 1 (H)F;_ 11 (H)> + R,
where

No M

IRISCy 3 ¥ K T Fomim gl 1 Fp- |

k=2/¢=0

No
+Cy Y BEMPTMEDUE, g Yol
:1;/221+ 1
+C, kgl R F = 1y2)-k+ g Wel | F =132 g Vel
Gy 2 DR 2 E g o
+ C RV = Mt DIGY || 1Yol
We will follow closely the proof of [S—S]. The proofiis divided in several steps.

Step 1: in Step 1 we compute D®,. We start by computing d,®,. Since 1=t + 1,
we have:

do, ,dA aA(t) A0 . dA
=0 (=) ( : >>‘D“d 6.3)
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Let us now compute ih~'[H,, @,]. Since @, = @,G, we have:
ih"'[H,,®,]=ih"'[H,,®,]G+ih"'®,[H,,G]

Using the commutator expansion of Proposition 5.1, we get:
No

ih"'[H,,®,]=ih"'®,[H, A1+ Y F,_,h*"'(ad,)*(H,)+ih™ 'Ry, (A, H,, D,)
k=2
6.4
for Ny = sup(2, o).
Applying again the commutator expansion to [H,, G], and using that:
FAES —e)GPAL —¢/2)=0 for k=1,
we get:
ih—l(ba[Hl’G] =ih_l(paRNo+l(AaH1’G)' (65)
From (6.3)...(6.5), we get:
No
Dd)a g @;DA([) + Z Fa—khk_ l(évdA)k(Hl)G + h~ lRN0+ I(A’ Hl’ (Da)G
k=2
+ h~ ! ¢aRNo+ l(A7 Hls G) (66)

To complete Step 1 we will estimate the size of the remainder terms. We have:
[<h™ ' Ryg 4 1(A, Hy, @)G )| S h ™ [ Ryg i (A, Hy, @) G | 1o
= O(h"or*~ N D) |Gy, | 1Yo . (6.7)

. - . ~ A
This follows from Proposition 5.1 with A replaced by A =— if one recalls that

1 T
D4, t)=(—A)“F<—§ —e).
T
Similarly we have:
[{@,h™ Ry, +1(4, Hy, G))|

=< @h " Ryy+1(A, Hy, G, ¥, )|
=[<{(—=A@®)°" Ryy 4 1(4, Hy, G, (— AW®) " VDD, ).

Again by Proposition 5.1 we have |h~'(— A(t))¥* 'Ry, +,(4, H;, G) || = O(h"°) and
since « — Ny — 1 <0, we have:

I(=A@®)" P @y, || = 0@*~ M+ V)| Gy, |.
So the remainder terms in (6.6) have expectation values bounded by
A R AN

Step 2. We estimate the terms F,_,(ad ,)*(H,)G. We will use the trick of Sigal-
Soffer of commuting (— A(t))’G through (ad 4,))*(H,), but in our case we need to
take f > 1. We write:

Fa—k(fdA(:))k(HJG = Fa—k( - A)_ﬂ( - A)ﬁG(gdA(:))k(H1 )G
= Fa—k—ﬂ(gdA(t))k(Hl)Fﬂ + Fy_y—s[Fps (adA(t))k(Hl)] G.
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We use again Proposition 5.1 to expand [Fj, (ad ,))*(H,)], but this time by putting
the functions of A(t) to the right. (This follows directly from Proposition 5.1 by
taking adjoints.)

We get:

M
[Fp, (@d ) (H1)1= Y, h(ad ) (H )F o + O(RM* 1P~ M+ 1) (6.8)
=1
So we finally have:

M
def A~ — ~.
Sk=hk_1Fa—k(adA(t))k(H1)G= Z H*e lFa-k—ﬁ(adA(t))k+((H1)Fﬂ—/+Rl.k’ (6.9)
=0

where
(Ryu) =0 M= MDY IF, el 1ol (6.10)
Step 3. We symmetrize the term @, DA(t), and use the positivity of DA(t). Since
A
D (A1) = C(l)“"F(—é —e), we write:
T

D' DA()G = F(:_ 1)/ZDA(t)F(:_ 1y2 + Fa=12[F @-1)2» DA)]G.
Using also that
(O, DAWMG) =11 (H)P,DA([t)Gy(H)>,

we get:
(P, DAMG)

= Fu-12x1(H)DA@) (H)F (o 1y2 > + {[x1(H), F (o= 121 DAW®)F (o - 1,21 (H) )

+ {F - 1y2X1 (H)DA@) [x 1 (H), F (- 1)21) + <x1 (H)[F (o 1y2, DA®)1G 1 (H) )
= (F o 12 X1 (H)DA@) ) (H)F - 1)2) + <K ) + (K> + {K3).

Let us first compute K.
We have:

Ky =[x1(H), F o 1y21(— A(t))ﬂIGDA(t)F(a— y2(— A@®)™F xy(H)
+ D0 (H), Fp— 1y210(— A@Y'G, DA()]F - 1y2(— A@®) ¥ xy(H)
— Ki 4K 6.1

Let us start by computing [F 2, x;(H)]: again by Proposition 5.1, we get:
[No/2]+ 1

[F(a—l)/Z’Xl(H)] = Z F((a—1)/2)—khk(a~dA(t))k(X1(H))
1
+ O(h[N°/2l+21:(“_ 1)/2‘([N0/2]+2)). (6.12)

-1
In (6.12) we use that a——< No/2. In (6.11), we take ' <1 and use (see [S-S,
Lemma A.2]), that:

[— At G, DA()] = O(h).
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From (6.12) we get:
{No/2]+1
— k
K= kZl WF (- 1y2)-k+ ' BiF (@@-1y2)-p
+ hINo/21* 24~ 1/2=WNo/21=2 R\ F (6.13)
where B, and Ry, are bounded operators, uniformly in 4 and ¢. Similarly we get:
[No/2}+1
k+1
Kiz= Y, H*'Fo1yn-1BeF@-12-p
1
+ h[No/Z] +2+ lr(a- 1)/2 —=[No/2]- zRNoF(a— 1y2- (6 14)

This completes the computation of K,. K, can be estimated exactly as K. Let
us now consider K;:

K3 = x1(H)F 4 1)2[F @~ 1)2, DA[t) ]Gy, (H)
= x1(H)F o 1)2(— A) 7% (— AP [F - 1)2, DA(t)1Gy (H).

Expanding again the commutator [F,_,),, DA(t)], we get:

[No/21+1

K3 = Z XI(H)hkF((a-1)/2)—ﬂ’BkF((¢-1)/2)—k+p’
1

+ hiNo/21+2p(a=1)/2=[No/2]= zRNoF(a— 12> (6.15)

where as above B, and Ry, are uniformly bounded in h and ¢. This completes Step 3.

Step 4. In Step 4, we establish a bound from below on {D@®, ), which is the key
estimate.
We first remark that:

Fu—1)221(HIDA@)x (H)F o 1)2 2 COF(a—l)/ZXf(H)F(u—l)/Z by ii).
Then we write:
F(a—x)/:Xf(H)F(a—n/z = 1 (H)F,_ 1 x:1(H) + [F(a— 1)/2;X1(H)]XI(H)F(1—1)/2
+ XI(H)F(u—l)/Z[Xl(H)’ F(a—l)/z]- (6.16)

The two commutator terms can be easily estimated as K.
Putting together (6.6), (6.7), (6.9), (6.10), (6.13), (6.14), (6.15), we finally get:

(D®,> 2 Co{xs(H)F;_ 11 (H)) — CHYer* =N D Gy, | [| o |

No M
—CY Y HH Y F gl | Fao g,

k=2/¢=0

No
—C Y WM MEONE sl 1ol
k=2

[No/2]+1

—C ¥ HlIF@-1v2-k+pV¥ill | Fa-ryz-pl
k=1

— CHNWI* 2 V2012 F | .

This completes the proof of the lemma. []
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Proof of Theorem 6.1. We will prove the theorem by induction on . Our induction
hypothesis will be:

IF3 ¥ellp2wy=O(H"?) for d<(n—1)2, n<N,.

H.N
(H:No) { IF5 ¥l po@n = O(™?) for é<nj2, n< No.
Let us start by proving (H.I).

We take a < 1, and use Lemma 6.2 with = =0. Using thata —k < — 1 for k=2,
we have | F,_ .|| = O(Ta—k) l¥oll, and also || F, - 1)/2)—k¢: | = 02k Yoll.
This gives:

IR llsan = O(h).

Using that{D®, >, = % {®D,>,and that @, is a negative operator, we get as in [S—S]:

T

I<F+ Wl dt =S P(TWr Yr) = — < POWo,¥0) + O(h).

Since || @,(0)y, || = O(h®) by (6.2), this proves (H.I).

We assume now that (H.N,) holds and prove (H.N, + 1). The only thing to
do is to estimate || R, |11 )-

The terms in R, w1ll be estimated either by Cauchy-Schwarz inequality in ¢
or by L*(dt)— L‘(dt) estimates. Let us consider successively the different terms:
(recall that we take o < Ny + 1)

1

a) term  hNo/21* 27~ 1)/2 = [Noj21 =2 ol I F(a—l)/z'//r [: since %‘ <Ny/2,
7@~ D2=WNoi21=2 g in L1(dt). By (H.No), | F - 1y2V: | <@y = O(h™°'?), which gives a
term with norm in L'(dt) bounded by ChMe*!,

b) term AYoz*~NeF V| Gy, || o |I:

Rore WD Gy || [[§ro || = h¥or=~ ot D=2 122Gy, || |1y, .

Since #0912 L2(dr) and %Gy, | < C| Fy 0| using that | Fo9: 2y =
O(h), we get a term with L'(dt) norm bounded by ChNo*!

C) tel‘m h ”F«a 1)/2)—k+p’ 'P: " ”F«a_l)/z) -p wt " we take ﬂ’ = %. Then Since
a<No+1,wehave:a 1—ﬂ’< ° __ an * No—2(k—1) 1.

2 2 2 2

Using the induction hypothesis and Cauchy—Schwarz inequality, we get an
L'(dt) norm bounded by Ch* x hNo/2pNo/2=k+1 — CpNo+1,

‘d) term B**7 | Fyo o g, | | Fp- .|l for k22, £20: since k=2, we have

Ny— 1
andf—7¢< 0

“k
a—k<No-1.Takingﬁ=°‘T,wehavea—k—ﬂ<N

By the induction hypothesis and Cauchy—Schwarz inequality, we get an L!(dt)
norm bounded by hNo/2ZpNei2pk+¢=1 — O(pNo*1) since k = 2.

e) term BT MA~ MO F )l 1Yo |l: we take M > B so that o# M+ De L1(dy).
Then if f = 2=

k No—1 . . .
,one has « —k — f < —2—" 50 by induction hypothesis we get:

| Fy—i—pW¥s ll Loiary < ChN*%. Taking M large enough gives again an L'(df) norm
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bounded by Ch**!. So we have proved:
IRl gy = O(A™*1). (6.17)

By the same argument as above we get:
T
Co [ CFL Yl dt = (DL TWp > < — (@O0, o) + O(KY ™).
0

This implies (H.N, + 1) using again (6.2).

A(t
40 < —a) we get the rest of the theorem. [J
T

Using now that F, > et*F

We will now apply the abstract Theorem 6.1 to Schrodinger operators with
smooth potentials.

We consider P,= —h?A+ V(x), where V(x) is a potential satisfying the
hypotheses in Sect. 2. We assume that I is an energy interval which is non-trapping
for p = &2 + V(x), so that there exist a modification G, (x, £) of the escape function
G such that the estimate (2.1) in Proposition 2.2 holds. For simplicity of notations
we will still denote by G this new escape function. We take A(t) = G(x, hD,) — bt,
where b will be chosen later. We will first state the following Mourre estimate
which can be proven as in [Gel, Proposition 4.1], [Wa, Proposition 3.2].

Proposition 6.3. Let P, = —h>A + V(x), where V(x) is a smooth potential satisfying
the hypotheses in Sect. 2 with V,= 0, such that the energy interval I is non-trapping
for p=E% 4+ V(x). Then if x,(A) is a cutoff function supported in I, there exists some
Co >0 such that the following Mourre estimate holds for h small enough:

X2(Pw) [Py, iG] x2(Py) 2 Co"Xz(Ph)z- (6.18)

We take then 0 < b < C,. As noted in the beginning of the section, we will have
to replace P, by P, ; = xo(P4)P,, Where xo(4) is a large cutoff function equal to 1
near I.

Finally we take a cutoff function y ,(x, £) supported in

{(x, OeT*R")|p(x,Oel, G(x,§) = C,} for C,>0.

We denote by g, the operator y,,(x,hD,). We start by proving a proposition
which shows that we can apply Theorem 6.1 (recall that P, ; = xo(P,)P, for some
large cutoff function y,):

Proposition 6.4. i) (2d 4.,)*(P},,) is bounded uniformly in h.
i) x1(Pp)[Pn,1,iA121(Py) 2(Co — E)th(Ph) for any £> 0, for h < h(e).
iii) (— A(0))*F(A@0) < (b — &))x1(Pw)Xou is bounded with norm O(h®).

Proof. Let us first prove i). As in Sect. 5, we use the following formula to define
Py, 1 = xo(Py)Py: if K(x) = x)0(x) we denote by K(z) an almost analytic extension
of K(x) which can be taken with compact support. Then we have:

i (0K } )
Py, =££-5z:(z)(z —P,) Ydz A dZ.
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Then:
h™[P, A(1)]

=h"[P,,;,G] =Lj'a—lf(z)(z— P,) " h™'[P,,G](z— P,) 'dz A dZ
2n ¢ 0z

- é ] %_’zf(z)(z — P,) Py +)h" (P, +i) [P, Gz — P) 'dz A dZ. (6.19)

Since h™ (P, +i)" '[P, G] is bounded and ||(z — P;) ™' || ¢z2.2 = O(|Imz| 1)
we get that h~ '[P, , A(t)] is bounded uniformly in h.

Using (6.19) to write h~2[[P, ;, A(1)]A(t)] gives that (ad 4,))*(P,,,) is bounded
uniformly in h. The general case follows by induction, using that (adg)*(P,) is
bounded uniformly in h from H%(X) into L*(X).

Let us now prove ii).

We have:

X1(P) [Py, 1,141 %1 (Py) = X1 (Pp)Xo(Pw) [Py, iG1x1(Ph) + x1(Pw) [xo(P4), iGIPsx 1 (Py).
By (6.18), the first term is bigger than Coh,, (P;)*. Let us consider the second term.

We first take a function F,(4), constant at + co such that if P, = F,(P,), one
has: xo(P,) = xo(P})- Let us check that [G,P,]=0(h) and [[G,P,], P;]= O(h?).
The fact that [G, P;] = O(h) follows from i), by noticing that one can take an

. .= oF
almost analytic extension F,(z) of F,(x) such that — has compact support.
Since P, commutes with (z— P,)™", we have: z

(06, P, Pl == [ Z3e — Py 1[[G, P,1, P1(z - Py)~tdz A d.
2n¢ 0z

Now:
- i aFl -1 -1 -
—I—_'(Z_Ph) [Py, [G, P,]1(z — Py) ™ "dz A dz.
2n ¢ 0z
Since (P, +i)” '[Py, [G,P,]1(P,+i)"* has a norm O(h?), [[G,P,], P,] and
[[G, P,], P,] have also norms O(h?). Then we can apply Proposition 5.1 to expand
[x0(P4),iG] to order 1. The first term is yo(P,)[P,,iG] which gives 0 by left
multiplication with y,(P,). The remainder term is O(h?). So this gives ii), for h
small enough.

Let us now prove iii). We write

G*F(G £ b — )1 (Pu)Youw = G ™™™ * T 'F(G £ b — )G ' 11 (Pu)ou-

Using the functional calculus of Helffer—Robert [He—Ro] adapted to non-conformal
metrics in [Gel], we get that for any N:

XI(Ph) = Xps(x’ th) + RN(h)9

where x,,(x, hD,) is a pseudodifferential operator with total symbol equal to 1 near
SUpp x,,.(%, &) and Ry(h) has an operator norm O(h") between any weighted Sobolev
spaces HY .

[[G, Py, P,]=
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This gives that modulo error terms of norm O(hY), G!* 'y, (P,)y,,, is @ pseudo-
differential operator with total symbol supported in {(x, £)|G(x, £) = C, }. Then by
applying Proposition 5.2, we get that F(G <b—¢)G™*!y,(P,),, has a norm
O(h™). This completes the proof of proposition. []

We are now able to apply Theorem 6.1 to M. So we get:
Corollary 6.5. Let P,, b and G be as Proposition 6.4. Then one has:

‘ F<G(x, tth)

S Cyh"t>™Y VYNeNN.

-b< 8>e‘“‘°""'x1(Ph)xomu

7. Minimal Velocity Bounds

In this section we prove minimal velocity bounds in the semiclassical limit by
adapting the arguments of [S-S]. We assume that P,= —h%A, + V(x) is a
Schrédinger operator with potential V satisfying the hypotheses of Sect. 2 with
V,=0 and the Mourre estimate (6.18).

We denote by G, the propagation observable

2
G,= —(bt* — xz)“/2F<x—2 < v2>.
T

We take v> <b < C,, where C, is the constant in (6.18). We denote by A4, the
generator of dilations $h(x-D, + D,-x).
We first prove a lemma which extends [S-S, Lemma 3.2]:

Lemma7.1. 3T, such that one has for t 2 T,:
DG, 2 6t(—G,_;) + Ry, + O(h*{t)~ =),
where (R, ,) satisfies:
<R, 3 < Cht*~2 ]| o)1 2
Proof. We have:

ih
ih™'[P,,G,] = 2G.x-hD, + %AG,,

4G,
alx*

where G, =
So:

ih
ih™1[P},G,1=2G, Ao + ’5 AG, —2hG.,.

Since G, = 0, we have:
’r__ 2
Gu - (F(a/Z)— 1) ’

where we will denote by F; an operator of the form ¢° x K,,(SEZ, t), where K (s, t)
T

is a bounded function supported in {seR|s < v}.
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With this notation, we get:
th™ [Py, G] = 2F () 1 AoF )~ 1 + Ry (7.1)

where R, , is a multiplication operator of the form ht*~ 2K0<9—>. By Hypothesis
T

(H.5) and Proposition 2.2, we know that G(x,hD,)= A, + R,, where R, is a
bounded operator, and we get:

ih™ '[Py Go1=2F 3 1GF g2y + Roy + 2F 3y RoF - (7.2)
Now we use that:
G
GgatF<?ga>+GF(G§O)
which gives:
ih™'[Py,G,] = 2atG, + R, , + 2F 42)-1RoF 42~y + Ry ,+ Ry, (7.3)

where:
G
Rlya=2atF(a/2)_1F ?__<__a F(a/2)—1’

Ry =2F ) GF(GZO)F 5 ;.
We can rewrite R, , as:
Ry, =2F 5 GF(G< —01)F 5y +2F 5, GF(=0t S GSO0)F, 5,
= ﬁz,a + §3,a'

We have: .
I<R3,a>| = I(F(a/z)—1GF(_6‘r =G= O)F(a/z)—ﬂ//n U]

<267 F - 1t (7.4)
Using (7.4) and the fact that R, is bounded, we get:
ih™ '[Py, G, 1= 2~ 20)tF,_,+ Ry, +R, ,+R,,, for t=2T, (15)

In the next step we will estimate the terms R, , and ﬁz,a. Let us begin with R ,.
We have:

G G G
F(a/Z)—lF(?§a>F(u/2)—l = Fa_2F<;§a> + F(a/Z)—l|:F<;§a)’F(a/2)—l:|‘

It is straightforward using pseudodifferential calculus and hypothesis (H.5) to check
that (QdG)k<Ka<@, t))ris bounded uniformly in h and t.
T

Applying then the commutator expansion, we get:

G e W G
[F<_§a),F(a,2)_1:|=t‘“/2’ ' ; (—l)k?(adc)k(Ka)F(k(*éa)

T T
hN
(a/2)—1
+ta 0<‘C—N_>.
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From this we obtain:

<R1,a> = (Rl,a!//t’ l//t) = <F<g = a)!pt’ Fa-zllft)

F<9 < a)w,
T

+ O PN |12, (7.6)
Let us now estimate R, ,. We have:

F2-1GF(G £ —0v)F 5, =F,_,GF(G < —d7)
+ F 51 [GF(G £ —61),F ,yp,_y 1 (1.7)
The second term in the r.h.s. of (7.7) is equal to:
t* 2K, [GF(G £ —61),K,].

N
+20@ 1 hhk IF a2y - 1 ¥l
1

Expanding the commutator gives:

N G hN
[GF(G < —61),K,]=Y h{—1)! "‘(aTdG)"(Ka)F‘l")<— < —5> + O(TN_1>.
1 T

G .
Here we write GF(G £ — 61) = rF1<—>, where F,(s) = sF(s £ — ). From this we
get: t
(Ry,> =1""*(GF(G £ — 6, K,

(Ss-s ),

S B
Using the estimates of Theorem 6.1 with A(t) = G, we get finally that:
[KRy I +ICR, DI < Cyh™Cey™ N (7.8)

N
+ Y Ho@* =17k l!l K.
1

dG
To complete the proof of the lemma, we just have to compute d_ta As in [S-S],

we have:
X

dG, S '
0 = abtG,_, — 2(bt* — x?) /21_3(—F)<1:2 §v2>

2 abtG,_,+ 2=
T

(bt — |x )2

Since also G;=§(—Ga_2)— g F', we get for t = T:

3 (bt* — | x|

DG,26t(~G,_,)+- L (=F)+ Ry, + 0" t)™™),
T T

which proves the lemma. [J
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We now prove the analog of [S—S, Theorem 3.1]. We use the notations of the
end of Sect. 6.
We ask moreover that the cutoff function y,,,(x, £) is supported in

{xeR"||x| 2 v(To+ 1) + &},
where T, is the time in Lemma 7.1.

Theorem 7.2. Let x(4), x,,(x, hD,) be as in Proposition 6.4. Then for t 2 T,, one
has:

(x| < vt + 1))e ™ Py (P)xuull < Cyh"<t) " ul  VNeN.

Proof. Similarly to Theorem 6.1, the proof is done by considering the observable
G, and by induction on «. Lemma 7.1 and negativity of the observable G, gives:

T
- <Ga(T)>T + 61‘!‘ t< - Ga—Z./’ts .//t>dt
< ~{Gy(To)>1, + Cyh" + Ch ]: (72| Gy, | dt. (7.9)
To

By the pseudodifferential calculus, we have
(1] = v(To + 1)x1(Pa)Xou Il = O(h%)
SO
(G(To)>1, = O(h™).
For a < 1, (7.9) yields:

+ oo
| <G, |?dt <Ch V6 <0

To
Vi 2 Ty | GoW, I < Ch Vo < 1.

The last estimate follows from:

G, 2 C{)*G,.
Let us check by induction on N that one has:
+ o0
| PN GoylIPdt < Cyh™ VO< N —1, (7.10)
To
Vi2 T, (| God,l|> S Cyh® V6 <N. (7.11)

Assume that (7.10), (7.11) hold for N = N,. Using (7.9) for « < Ny, + 1, and (7.10)
for 6 <Ny —1 to estimate the r.h.s. of (7.9) gives immediately (7.10), (7.11) for
This completes the proof of the theorem. [

For use in Sect. 3, we will now consider the case of an Hamiltonian satisfying the
hypotheses (H) of Sect. 2. From hypothesis (H.6), there are no trapped trajectories
on p~!(I) near infinity, but we assume that there may exist trapped trajectories
near the origin. In other words the semiclassical Mourre estimate (6.18) does not
hold. By hypothesis (H.7), there exists a C3 function W such thatif p, =p+ W, I
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is non-trapping for p,. We put P, , = P, + W—u,. By Proposition 2.2, one can
modify the escape function G in a compact set of T*(R") such that H, G = ¢, on
p; '(I). We will still denote by G this new modified escape function.

Let us denote by x,,(x, £)eCy(T*R") a cutoff function supported in

{(x,9)IG(x,£) 2 C, + 1,1x| 2 Ry},
where R; is large enough such that supp V, < {|x| < R, — 1} and:
C,= sup G(x,9).

xesupp W usuppVs, p1(x,el
The following remark will be used in the proof of Theorem 7.3 below:
Remark 5. Since H,,G = c, on p; '(I), we get that:
Y(x, £)esupp 1o, hl (I),vt 2 0, one has: n,(exptH, (x, &))¢supp W usupp V.
Then we havelthe following result:
Theorem 7.3. Let x(1) be a cutoff function supported in p~'(I). Then:
XY (6, D) = 1(Py1)e ™ Py, (x,hD,) + Roo ()
where:
R gr2cxyy = O(h®) uniformly in teR ™.

Proof. We use the following standard formula:

t
e_itph/h = e-itP;.,x/h _ (ih)-l j‘e—i(t—s)Ph/h(W _ Vs)e_isp"‘llhds. (712)
0

Let us take another cutoff function y,(4) supported in p~1(I) with y(4)x,(4) = x(4).
Using the functional calculus ([He-Ro], [Gel]), Proposition 5.4, and the fact that
Xout i supported away from the support of V, we get that:

XI(Ph)Xout = Zout(xs th, h) + Roo(h)s (713)

where ,,,(x,hD,, h) is a pseudodifferential operator with total symbol supported
in supp x,,," P~ '(I), and R (h) has an operator norm O(h®). From this we get:

x(Py)e” iy = X(Pr)e ™ Py (Ph) X oue
= x(Py)e "Prihg (¢, hD,, h) + R ,(t, h), (7.14)

where R (t, h) has an operator norm O(h*®) uniformly in h.
By the same argument, using that on supp f,,,(x, &, h) pis equal to p,, we have:

A(Pp)e P T (X hD, B) = x(Py)e ™ Py y(Py 1) T ou% hDxs ) + R (8, h).  (7.15)
Here y,(4) is another function equal to 1 on I. Using (7.12) we get:
X(P;.)e"i“’”/"xou, = X(Ph)e_itph"/hX2(Ph,1))Zom

t
_ (lh)— 1 J'e—i(l—s)P;./hX(Ph)(W_ Vs)e—isPh,llh
0

“X2(Pp,1) X oueds + O(h®). (7.16)
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Let us consider now y(P,)(W— V)™ *Prt" v (Py )T sur-
We first remark that by Egorov’s theorem (see [Ro]) and using the Remark 5,
we get:

1PV — Ve 5Pty (Py )T | = OL(). (7.17)
So we only have to consider what happens for s = 5., s, > 1. We have:
x(Pp)(W — Vs)e_isr""“Xz(Ph,l)fom
= X(PR)(W — V)F(G £ b<{s))xa(Py1)e” " 7oy,
+ X(PY(W = V) xa(Py,)F(G Z b{s))e™ "1

=1,(8) + 1,(s).
Using Corollary 6.5 applied to P, ; and the fact that Vis P,-bounded, we get that:
1L, = Oh*) for s=s,. (7.18)
(s>

Let us consider now I,(s). We write:
(MU PHW = V) xa(Py,1)F(G 2 b<s))
= (PR )(W = V)x2(Py,1)(G + ))"F (G Z b<{s))<sHV(G +1) " VF(G 2 b{s)).
Here F,(4) is a cutoff function such that F, F = F. One first notices that:
I<s>™MG + i)™ F(G 2 b{s))|| £ Cy. (7.19)

Then we use that ¥, and W are compactly supported multiplicative potentials.
We take a cutoff function y,(x)eCg(R”) such that (W — V) =(W — V)y,. So we
have:

XPW — V)x2(Py, )(G + i) F (G 2 b{s))
= 2P (W =V )x0(X)%2(Py,)(G + )" F (G Z b<{s)).

Then x(P,)(W — V) is a bounded operator and yo(x)x,(Py,1)(G + i) is (modulo a
term of norm O(h™)), a pseudodifferential operator with symbol supported in a
region where |G(x,£)| < C; +&y. Let x,(4) be a cutoff function equal to 1 near
[—Ci—&,Ci+g]
Then using Proposition 5.2, we get that:
20(¥)22(Py,1)(G + (1 = 1,(G)) = O(h).

So:
APYW = V)xa(Py 1 (G + i)V F (G 2 b<{sD)

= 1(P)(W = Vxo()x2(Pn,1)(G + i) 11 (G)F (G Z b<5>) + O(h*) = O(h*)
for s = s with b{sy> 2 2(C, + &).
Using (7.19) we get:
O(h™)

16 ="

for s=>s,. (7.20)
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Using (7.16), (7.17)---(7.20) we get:
AP Py e = X(Pe ™ Pty (Py )Ry + O(R®).
Using again Remark 5 and Corollary 6.5, we get:
X(Ph)e_itp""/th(Ph,l)fom =x(P)F(Ix| 2 C+ 50)3—iwh‘l/hh(Ph,l)Zout + O(h™).

Here C is such that supp(W+ V) = {|x| £ C} and ¢, is small enough. Then by
Proposition 5.4 we have:

X(P)F(1x| 2 C + &) = x(Py, 1 )F(|x| 2 C + &) + O(h™).
So:
A(Pre ™y = X(Pr )F(1x] 2 C + go)e ™ Priy ) (Py 1 )i oue + O(R®)
=e PPy ) ow + O%).

(Here and above the remainders O(h®) are uniform in teR*). But again by
Proposition 5.4, 7., = x1(Pp)Xou + Oh®) (see (7.13)) = x;(Py,1)yn. + O(h%) so:

x(Pp)e Py o= APy )~y 4+ O(h®),
which is the desired result. [

A. Appendix 1

In this section, we prove that generalized many-body Schrodinger operators satisfy
the hypotheses (H), as indicated in Example 2, Sect. 2.

We first review the definition of generalized many-body Schrodinger operators
introduced by Agmon [Ag]. One considers a finite dimensional real vector space X
with a positive definite quadratic form, and a finite family {X,}, aeA4 of linear

vector subspaces of X closed under intersection and obeying () X,= {0} and
aed

Xe{X,}. One denotes by X“ the space X, by n%,n, the orthogonal projections
on X* and X,.
On .« one puts a partial ordering by saying that b  a if X = X* With this order-

1
ing one gets that X,___ = {0}. Let as before D, = — 9, and let {x) = (1 + g(x, x))"/%.
i

One defines a many-body Schrodinger operator by:
Ph = g’(th’ th) + V(X),

where: V(x)= Y, V,(n°x) and ¢’ is the dual quadratic form of g.
aesd
We assume that V,eC*(X% R) satisfies:

H.1) [D3V,(WISCyy™?71 for p>0, aeclN™X,

From now on we can as well assume that (X,g) is R" with the usual metric
and P, = —h%A+ V(x). We will denote by p(x, ) = £2 + Ux) the symbol of P,.

The generalization of regular many-body Schrodinger operators introduced
above allows for example to add k-body forces or exterior fields without changing
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the nature of the problem. The many-body structure of the potential energy term
is most naturally described by the use of the following metric on T*(X):

%7 (n"dx)?
dx,d

9x,eldx, d) = oS + Z TR
Let us denote it by g for simplicity. Then with the definitions of Sect. 2, we get
that p(x, £) is in the symbol class S({¢ )2, g). To describe the behaviour of a classical
many-body system near infinity, one has to consider its subhamiltonians, which
are defined as follows:
for acl, a+#a we set:

P E) = (92 + T Vi) = (92 + Vo),

bca

max?

The energy levels which are trapping for a subhamiltonian are the exact classical
analogs of the thresholds for the quantum Hamiltonian P,. We have the following
proposition, which was proven for in the case of three-particle Hamiltonians by
Gérard [Gel] and in the general case by Wang [Wa].

Proposition A.1. Let p(x, ) be a classical many-body Hamiltonian and let I c R an
energy interval which is non-trapping for all p°, a # a,,,,, and such that 0¢lI.

Then there exist a function G(x,£)eC®(T*(IR") and constants Cq,C,,&, such
that:

H,G(x,&2ZCo>0 on p '(Dn{lx|2C,).
G =x&+1(x,8)

where r(x,£)eS(<£>™ %, g).
If I is also non-trapping for p, then one has moreover:

HpG(xaé)gC0>0 on p_l(I)

Note that the condition 0¢1 is equivalent to I non-trapping for p,_, (x, &) = &2
Finally we prove that one can modify the potential ¥V(x) on a compact set to
make I non-trapping, so that p satisfies hypothesis (H.7).

Lemma A.2. Let p(x, £) a many-body classical Hamiltonian and I an energy interval
such that I is non-trapping for all p°, a # a,,,,. Let G(x, &) be the escape function of
Proposition A.1. Then there exists a function W(x)e C3(X) such that if p=p+ W
one has:

H;G2C, on p~YI).

Proof. By a covering argument, it suffices to consider the case when [ is a small
neighborhood of an energy level A,. We choose a function yeCy(R™*) with ¥’ <0,
such that y(s)=1for 0<s<1/2, x(2/3)=1/2, y(s)=0 for s = 1.

We will choose W(x) = C, Icil) for some constants C,, C, to be chosen later.
2
Recall that given any ¢ >0, the escape function G can be chosen such that

H,G 2 —¢ everywhere (see [Wa, Theorem 2.2]) and that G=x-{+r, with
reS(<&>~ ", g).
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2
We first notice that if |ﬁ—/10|§%1, one has |x|g§C2, as soon as
C, 2 Cy(4o, V,¢;), since in {s < 2/3} one has y(s) = 1/2.
We also know that H,G = Cyin|p — 4| S &1, and | x| 2 Co. If | x| = (1 — £0)C3, &0

depending only on¢g,,andif|§ — A| £ %1, onehas|p— | <¢&;,50 H,G = C,. Also:

C 0
C2 Cz C2 |x| 66 2
if we take C,/C, large enough.
So it remains to consider the region:

2
|ﬁ—u§%‘, and $C;S|x|S(1—20)Cs.

C
——i|x|x'(' '>>cle2(so>
c,

Since H,G = —e, with ¢ small fixed, by taking C, > C,(Cy, 4,V ¢), and C_' large
enough we get:

In this region we have:

C 2
H62 22 in [p—i1S, JCisSIxlS(-e)Ca

This completes the proof of the lemma. []

B. Appendix 2

In this section we collect some technical computations. In the statement of the first
proposition we use the notations of the proof of Theorem 3.7.

Proposition B.1. Let us put a (h) = I'(h)/h. Then one has:

t O(hao)e—(t—s)ads _ O(hm)< 1 N e_at)
ait)"

K,(a,t)= g Gy

uniformly for h< ¢, and t 2 0.

Proof. We have to estimate:

t ,as

o=

ds

uniformly for 0 <h < ¢, and for t = 0.
Let us consider different cases:

Case A: t 2 C, for some C, > 1. Then:

t t as t
I,C,[e"ds+ C, [ —ds < a~ (e — 1) + C, | e*s™"ds.
0 1 lsln C
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Let us denote by J, the last integral. We have:
at es
J,=a"" | —ds.
{ s"

We consider now different subcases:

Case A.1: Cy' <a<C, for some Cy > 0.
Let s, be such that for s = s, one has:

(s7"e’y =s " —ns " les 2 L.

We can write:

at Sn at
[ es7ds= [ e's™"ds+ [ e's™"ds.

aC, aC, Sn

C. Gérard and I. M. Sigal

(B.1)

Since a is bounded below, we can always assume that aC, = s,, by taking C, large
enough, so we just have to consider the last integral. By (B.1) it is bounded by:

C.((at)""e* — C,).
So we get that:

et — 1

L(a,t) <
So finally using that C; ' <a < C,, we get:

Kya0)< 0(h°°)<%>.
a

Case A.2: a=o0,(1). We have again to compute J,. We have to consider two

subcases:

Case A.2i):. at<s,.
Then we have:

at
J,£Ca [sTMds S C
a

So we get finally:

Cia __ —at
K, (a1 < O(hw)e'“*(e ‘) +¢ <

tn—l =

a
since at < s, and a~}(¢°** — 1) is bounded.
Case A.2ii). at = s,. Then:

at
J,=Ca "1 [ efsTds.

Sn

By (B.1), the last integral is bounded by C,(at)™"e™. So we get finally:

K,(at) = 0(h°°)<% + C,,e“‘)
a

C,

at
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Case A.3: a~ ! =o4(1).
Then for h small enough J, can be estimated using (B.1) since a = s,,, and we get:

Cia __
K, (a0 < O(h°°)<e""(e ! ) + Q)
a at"

Let us now consider the case when t is bounded.

Case B: t < C, for some C, > 1. Then:

t

K, (a,1) S C,0(h™)[e* s < C,a™'(1—e™™).

0

Since t £ C,, we get that:
Kifas 209,
a

It is now straightforward to check that in all cases K, is bounded by:

o) e <)

which completes the proof of the Proposition. []

We now give a computation used in the proof of Theorem 3.8. As above we
denote by a(h) the width I"(h)/h. We use the notations in the proof of Theorem 3.8.

Proposition B.2. If a(k) = 0,(1) then:
[ra(6) ]| € Ce™®A~9(1 4 o~ 12(1 — e~ *)1/2),
If a(h)™! = 0)(1) then:
[r ()| £ Ca le @19,

Proof. The estimate on J(t,h) = ||r,(t)| when a! is o0,(1) is obvious. Let us now
consider the case when a = 0,(1) and for simplicity of notations replace P, , by
P,. We write: J(t, h)? = e~ 2*I(t, h), where:

at at
I(t, h) — j'ds j‘ ds/(e—ls(P;.-E)/hX(Ph)Xomuh,e~1s (Ph_E)/hX(Ph)Xomuh)'
0o o
Let us put Re E = E,,. Then:
(e 5P B Py gyt €~ ™Y (P ) g )
= 0O Bt ).
We put s+ s'=0 and s — s’ =¢". Then:
16, h) = /2] [ e (e~ " F (P o) gty i) d’,
2
where (2 is the region drawn on Fig. 1.

Let g, be a time such that no trajectory starting from supp ,,, is still in supp x,,,,
for t 2 6. Let us first assume that at = 6,. Then by the results of Sect. 7, we know
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-
T -
@
0'0 -
Q
Q, . 2 Q)
o, T 2T —a,| /2T o
-0
Q
-T 4
Fig. 1.

that for s = g, one has:
, h*®
—it(Pn—Eo/h.,2 —
X ™ E A (P Ko | = 0<—<z>w>'

Accordingly we cut 2 in four pieces as shown in Fig. 1.
Let us now compute the various integrals.

Integral on £2,: We integrate first in ¢’ and get an integral which is O(h*) by the
previous remark. Then the integral in o gives a term which is O(h®)(a ~*e?* — 1).

Integral on ,: The integral is not better than O(1), so we get a term equal to:
O(a" 1)(ea(2at—so) _ easo)‘

Integral on 25: We integrate first in ¢’ and get a term which is O(c). Then the
integral in o gives: O(a™'(e®° — 1)).

Integral on ,: We integrate first in ¢’ and get a term O(2at — o). Then the integral
in o gives a term which is:

O(a— leZaar(l _ e—aso))‘

Let us now estimate e~ 2%I(t, h). If we denote by A, the term coming from the
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integral on £2;, we see that A, can be absorbed into 4, and we get:
Az = O(a— 1)(e—a(so+2t(1 —-a) __ ea(so—ZI))’
A3 =0(a" e 2% (e™ — 1),
A4 = O(a— l)e—Zat(l —a)(l _ e—aso)'

We will now find a simpler upper bound by considering separately the two cases
C, < a for some constant C; and a = 0,(1).

Case 1: Then one gets easily that for t > T, J(t, h)? is O(a™le™ 201 ~9),

Case 2. : We use that if a = 0,(1) then a™ (1 — e**9) is 0,(1). We find that A, for
i=1,3,4 are O(e” 2! ~9), For A, we get:
A2 é Ca—le—Zax(l —a)(le—aso _ 1| + |1 _ ea(so-at)l).

By the previous remark this completes the proof of the proposition. [J

C. Appendix 3

In this section, we will prove Proposition 3.5. We will prove the following lemma,
which implies directly Proposition 3.5.

Lemma C.1. Let u, be a quasiresonant state. Then u,, satisfies the following properties:
i) VC,>03R; suchthat FSu,n{|x|ZR,}<{(x,¢)|G(x,&)=C,}.
If moreover:
FSu,nsingsupp V,= & (C1

then the following properties hold:

i) FSu,<p~'(I),

iii) FSu,,CF+ <> VCl > 1, FSuhﬁ{G(x,§)§ —C1}=g,

iv) FSu,n{Ix|2R} = {G(x,&)2C,}=FSu,n{|x|2R} =T,

v) FSu,cI', < VR21, FSuy,n{|x|ZR}cT,.
Proof. Proof of i). Let (xq,&0)eFSu,n{|x| = R,}, for some R; =1. We choose
some Ry 21 such that H,G 2 ¢, in {|x| 2 Ro}np~'(I) and ¥,=0in {|x| = R,}.
Then we know that for — T, <t <0, where T, =¢y,(R; — Ry)- @:(xo,&,) stays in
{Ix| Z Ro}, and hence in FSu, by Theorem 3.2. So we have G(¢r,(xo,&o)) = Co,
by Definition 3.4. Since H,G=c, along the trajectory, we get that

G(xg,&p) = Co + coeo(R; — Ry). This can be made bigger than C, by choosing R,
big enough, which proves i).

Proof of ii): Let (xq,&0)eT*R")NFSu,. If xoesuppV,, then (xq,&,)¢FSu, by
hypothesis (C.1). If x,¢supp V;, then u, solves:

(—h*A+V — E(h))u, = O(h®) (C.2)

microlocally near (xo,&,), and E(h)— 4, with Ayel, so by ellipticity one has
(%0, Eo)ep ™ 1(1).
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Proof of iii): =>:This follows from the fact that 3C, such that I, = {G(x,£)= —C,}
(see [Ge-Sj, Appendix]).

<:Let (xg,&0)eT*R") N FSu,. If xqesupp V,, then (x,,¢&,)¢FSu, by hypo-
thesis (C.1). So we can assume that x,¢supp V;, and (x,, &,)ep ~ (I) by ii). Suppose
that (x,, 2,‘0)¢F . Since outside the set of trapped trajectories K, dp is non-zero, and
since I', is H, invariant, dp is non-zero along the whole H, trajectory starting
from (xo, &o)- We consider two different cases:

Case 1: There exists a minimal time T such that 7 ¢1(xo, &;)esupp V,. We will
then say that (x,, &,) is a point of type 1. Then by hypothesis (C.1), we know that
1 +e(X0, Eo)¢ FSuy, for € small enough. Since uy, solves (C.2) along the H, trajectory
between @, (xo,&) and (xq,&,), we can apply Theorem 3.2 and get that

(x0, o) ¢ FSuy,

Case 2: The H, trajectory starting backwards from (x,,&,) does not meet
supp V,. We will then say that (x,, &) is a point of type 2. Then since (xq, &o)¢ 1 4,
we get easily that G(¢,(x,, &o)) > — co when t - — co. Applying again Theorem 3.2,
we get that if (x,,&,)eFSu, then there exists some points in FSu,n{G < —C,}
for C, = 1, which gives a contradiction.

Proof of iv): Let (xo,&o)€FSu,n{|x| = R} and (xo, &o)¢ 1. If (xo, &) is a point of
type 1, then (x4, &)¢ FSu, by the same argument as above. If (xq, &;) is of type 2,
then since (xq, &o)¢ 1 4, one knows that @,(xq, &) = 00, G(¢(xq, £g)) = — 0, When
t— —o0. By the same argument as in the proof of iii), we get that there would
exist a point @,(xq, £o)eFSu, N {(x, &)||x| = R, G(x, &) = C,, for any R, C,. This gives
a contradiction and proves iv).

Proof of v): = is obvious. To prove <, it suffices as above to consider a point
(%0, £o)EFSu, of type 2 which does not belong tol".. Since (xo)¢I ., we know
that ¢,(xq, o) = co when ¢ — — oco. Using Theorem 3.2 and the fact that I', is H,
invariant, we get a contradiction. This completes the proof of the lemma. []
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