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Abstract. We consider the Schrodinger operator P(h) for a polyatomic molecule in
the semiclassical limit where the mass ratio h* of electronic to nuclear mass tends
to zero. We obtain WK B-type expansions of eigenvalues and eigenfunctions of
P(h)to all orders in h. This allows to treat the splitting of the ground state energy of
a non-planar molecule. Our class of potentials covers the physical case of the
Coulomb interaction. We use methods of h-pseudodifferential operators with
operator valued symbols, which by use of appropriate coordinate changes in local
coordinate patches covering the classically accessible region become applicable
even to our class of singular potentials.

0. Introduction

Molecular systems are described by the many body Hamiltonian
P(h):=—h?4,+h*p(d,)+ Q(x),
Q(_x): - Ay+ V(xa y)+ W(X) )

where x e R" denotes the nuclear and y € IR? the electronic coordinate; p(0,) stands
for the isotopic term and Q is the electronic Hamiltonian. It is formally P(h=0).
The potential V denotes the electron-electron and nuclei-electron interaction and
the potential W the nuclei-nuclei interaction. They are typically of Coulomb type.
h? stands for the ratio of electronic and nuclear mass. The isotopic term p(d,) is of
second order in 0, and a result of the non-canonical coordinate system
traditionally used in this context: The so-called center of mass of the nuclei system.
It is not of the Jacobi type. Figure 1 shows the coordinates used for the case of 2
nuclei 4, B and 3 electrons a, b, c. CNM stands for center of mass of the nuclei and

Y=1, Y2 V3)-

(0.1)
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Fig. 1. The molecular coordinate system

The electronic Hamiltonian as well as the isotopic term commute with the
nuclear position operator x. This makes it possible to introduce the following
geometrical picture: Think of the molecular state space # as the space of square
integrable sections in the trivial fiber bundle R} x L*(IR2). In this picture the
operator P(h) decomposes into two terms. The first one (the nuclear kinetic energy)
acts in the base space. The second one (the isotopic term and the electronic
Hamiltonian) operates on the fiber only,

0= (:_g dx Q(x). 0.2)

Q(x) can be interpreted as the Hamiltonian for the electrons in the external field of
the nuclei positioned at x e RY. Its spectrum is typically discrete in the low energy
region and continuous above a threshold energy.

In molecular Hamiltonians there is a natural small and dimensionless
parameter: the mass ratio h2. It is typically of the order 10™%. This suggests a
perturbative computation of physically interesting quantities like the spectrum of
P(h) or scattering cross sections.

The main challenge in molecular physics in the twenties was to explain the
phenomenologically observed 3 scales in the spectra. Born and Oppenheimer —
after a futile attempt by Born and Heisenberg in the area before the Schrodinger
equation — solved the problem. In their seminal paper of 1927 [BO] they

developed a formal perturbation theory in k=\/fz and argued that the zeroth,
second and fourth order explains the qualitative picture of molecular spectra.
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Fig. 2. Discrete and essential spectrum of Q(x)

A

A mathematical justification of the Born-Oppenheimer method started to
develop much later. In 1981 the diatomic case with rotationally invariant
potentials could be treated using methods of functional analysis [CDS]. Some
years later, a discussion of the full asymptotic expansion in 4 was given by
Hagedorn [Hal, Ha2], using separation of variables and the method of multiple
scales. This was generalized to the case of many nuclei for smooth potentials only
[Ma2], where WKB-type expansions were given for non-radially symmetric
potentials supposed to admit nondegenerate point wells of the effective potential.
In this article we shall justify the Born-Oppenheimer expansion for polyatomic
molecules and a class of potentials which includes the physically interesting case of
Coulomb interactions. The method relies in an essential manner on a technique
introduced by Hunziker [Hu]. Hence, in some way, this work is a realization of
Remark 6 in the article by Hagedorn [Ha2].

The mathematical analysis of the Born-Oppenheimer method faces two main
obstacles which we want to describe now in general terms. They are related to the
semiclassical nature of the problem and in part to the main technical tool for
treating such problems: the pseudodifferential calculus.

In the classical setting the operator to be discussed is of the type —h?4+V,
where V is the multiplication operator by a smooth potential function. In the
molecular case the corresponding object is Q. Yet Q is neither a multiplication
operator nor smooth (the latter only for non-smooth potentials).

Since Q is really an operator and not just a potential function it becomes
necessary to use a pseudodifferential operator calculus with operator valued
symbols. Furthermore for the application of pseudodifferential operator techni-
ques, it is useful to translate the eigenvalue problem

P(h)yp(h)=A(R)p(h) 0.3)

by Grushin’s method into the problem of inverting a 2 x 2 matrix operator.
Let us describe the structure of this method in slightly more detail. Let I1(x) be
the spectral projection of Q(x) projecting onto the lowest N eigenvectors. Hence

M= | dxII(x) (0.4)
@

is a projection on the molecular state space 5. II is a natural object in the context
of the semiclassical limit since it is expected (and in certain cases even proved) that
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the spectrum and eigenfunctions of P are well approximated by the spectrum and
eigenfunctions of I1PII.
The Grushin operator is defined by

P—) i
%:[n o] (0.5)

and acts on # @I . i denotes the immersion [1# — . Its inverse is formally
given by

. [ R  nm-RwAPH
7 [17 —ITPR(2) A—F(}) ] (0.6)

where R(%) denotes the restriction of the resolvent II(P—7)~" to the range of
II=1—1I. F(2) is the Feshbach operator and defined by

F()=IPI—IPR()IIPII. 0.7)

On a formal level it is easily seen that the eigenvalue problem (0.3) is equivalent to
the generalized cigenvalue problem for F(/),

FO)p=2p. (0.8)

This program can be implemented in the framework of pseudodifferential
operators under appropriate conditions. In particular it is important that I1
defines a continuous trivial vector bundle over R’ (or at least over a convenient
open subset €2), which is smooth in x after conjugation by a unitary which
preserves the fiber structure. More explicitly, there exist global continuous sections
px), i=1,...,N such that

N
1(x) p(x) = L Pix) <pilx), 0(x))y, (0.9)

where the scalar product refers to the Hilbert space structure in the fiber. The local
smoothness refers to the existence of unitary operators U(x), defined locally in X,
acting on the fiber over x such that

Pix):=UX)pi(x) (0.10)

is smooth. This can be summarized by saying: There exists a differentiable
structure on the trivial continuous vector bundle defined by IT which turns it into a
smooth bundle. The origin of this structure is explained in the following
paragraph.

The second obstacle mentioned previously is the non-smoothness of Q. Let us
explain this looking at the following example. The electronic operator for an
electron in the field of two nuclei acting in the fiber xeIR% is given by

I D S
/2=yl X240 Ix]

The singularity in y is x-dependent. Hence differentiation of Q(x) gives rise to
singularities in y which are getting worse with increasing |o|:

1 1
2= T /2y

(0.11)

0(x)= — 4,

(0.12)

D30(x)~
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In the diatomic case with rotationally invariant potentials this problem could be
removed by a simple dilation technique [CDS]. In the general case this is much
more subtle. It can however be overcome by a technique introduced by Hunziker
[Hu] and is similar in spirit to the method used in the diatomic case: In each
coordinate patch w CIR%, P(h)is replaced by a unitarily conjugated operator, where
the unitary U(x) implements a diffeomorphism in y space so that the singularities
get x-independent. For geometrical reasons this diffefomorphism can only be
constructed locally in x-space. So a cutting and pasting procedure is needed.
Finally one heuristic word about the singularity introduced by the nuclear-

nuclear interaction é in the electronic Hamiltonian Q(x). Its presence is rather
harmless because of its repulsive nature (positivity). In the limit £ |0 the wave
functions are localized in x-space around minima of inf Sp(Q(x)). So they avoid any
point of nuclear collision.

Let us now come to an exposition of the structure of this article. In the first
section a framework is developed which is large enough to incorporate physically
interesting Hamiltonians. The main goal of this section is the construction of the
inverse of the Grushin N x N matrix operator as a pseudodifferential operator for
all Ain a certain energy range I. The energy range which is considered determines
the number N. The potentials are assumed to be Kato small, and W must be
positive as in the example just mentioned (Hypothesis 1). The function 4,(x)
=inf Sp(Q(x)) plays the role of an effective potential function which defines a
decomposition of R% into a classically allowed region ©Q and the classically
forbidden region R"™\Q (depending of course on the energy range I=[—o0,b)
considered, A~ }(I)C Q). Since most of the interesting phenomena happen in the
classically accessible region the relevant assumptions concern Q only. In
particular, for every x in a neighborhood of Q a difftomorphism F,:R’—R?
(locally in x) is defined such that V(x, -) is smooth in x as a map from H *(R?) to
L?*(IR®) after conjugation by F (Hypothesis 2). In Hypothesis 3 an assumption is
introduced which makes the reduction to the N x N Grushin matrix operator
possible.

As mentioned previously, to realize the Grushin operator as a pseudodifferent-
ial operator on a manifold, it is crucial to have the triviality of the vector bundle
defined by II, at least over the classically accessible region. This is ensured by
Hypothesis 4. Furthermore, since eigenfunctions are localized in the classically
allowed region, it is possible to replace the Grushin operator in the classically
forbidden region by a smooth one modulo a small controllable error. In fact we
replace Q by an operator Q°, which differs from Q in the classically forbidden part
of R% only. By an argument involving the Agmon inequalities for eigenfunctions of
P (see [A], and [HS1] for the semiclassical version) one can show that the
substitution of Q by Q@ does not change eigenvalues up to an exponentially small
term in A. It leads to the main result, the existence of the inverse of the Grushin
operator as a pseudodifferential operator (Theorem 1.2). As an application
(Proposition 1.5) it is shown that the operator P and the operator ITPII have the
same spectrum in a vicinity of o= 1nf Sp(Q(x)) of typical size h up to a correction
term of order h*2.

In the second section it is shown that for molecular Hamiltonians the
assumptions of the first chapter are met. So the results can be applied. The
eigenvalue problem for P can be replaced by the generalized one for the Feshbach
operator.



612 M. Klein, A. Martinez, R. Seiler, and X. P. Wang

In the third section the diatomic case is considered. It is shown that the first N
eigenfunctions possess asymptotic expansions in h of the WKB type.

In the fourth chapter the corresponding results are derived for a polyatomic
molecule in the ground state. A non-planar polyatomic molecule is shown to
display the Jahn-Teller effect, i.e. the minimal set of A,(x) in IR is disconnected.
The situation is therefore very close to a multiple well problem. In the last section
the eigenvalue splitting for this generalized multiple well problem is computed
along the lines of the article by Helffer and Sjostrand [HS1].

1. Reduction to an Effective Hamiltonian

We consider the Schrédinger operator
P=—h*A.+h*p(0,)+Q(x);  Q(x)=—4,+V(x,y)+W(x) (1.1)

on L*(R" x IR?), where p(0,) is a symmetric differential operator of degree 2 with
real coefficients and the potentials V(x,y), W(x) satisfy hypothesis (H1), (H2)
below.

In the physical application we have in mind we think of xeIR" as Jacobi
coordinates for the position of (m+ 1) nuclei in R? with the center of mass of all
nuclei and electrons removed and of y e R? as representing the configuration of g
electrons (measured from the center of mass of the nuclei alone). We shall see in
Sect. 2 that a typical molecular Schrodinger operator is of the form (1.1), where
V(x,y) contains the nucleon-electron and the electron-electron interaction, and
W (x) contains the nucleon-nucleon interaction.

In this section we shall show that, although ¥ and W in general possess
singularities, complete information on the low lying part of the spectrum Sp(P) is
contained in a certain h-admissible (i.e. pseudodifferential up to O(h*®)) operator
E _ ,(4), which is defined by constructing an inverse of an appropriate Grushin
problem for P. It is essential for this result that the nuclei-nuclei interaction W
is repulsive, and that after a suitable x-dependent change of coordinates the real
multiplication operator V(x, y) depends smoothly on x as an operator with fixed
singularities. More precisely, we assume (H1) and (H2) below.

(H1) ForallxeR" V(x, -)is 4,-bounded with relative bound a <1, uniformly in x,
and W20 is 4,-bounded with relative bound zero.

In particular, for h sufficiently small P is realized as a selfadjoint operator in
L?(IR"*?) with domain 2(P)=H?*(R"*?) which satisfies P> —y for some y>0
uniformly in h.

Remark 1.1. We assume W to be 4,.-bounded with relative bound zero only to
avoid technical domain questions unrelated to the problems considered here. In
fact, since W =0, we could roughly speaking treat any positive singularities of W
compatible with selfadjointness as long as W is smooth in a region € satisfying
(H3).

(H2) There exists a finite family of open sets (©2,);-, in IR” with compact closure
and an associated family of mappings F;e C*(Q; x R?; IR?) such that for all
xeQ, 1<j<r, F|x, ) is a difftomorphism of R?, which equals the identity
for |y| sufficiently large and satisfies

V(x,Fx,y)(— 4,4+ 1) e C*(Q; L(L}(R?))). (1.2)
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Furthermore
W(x)eC*(2;R). 1.3)

Next, for any M, we shall denote by 4,(x)=<...<1,(x) the M first values (not
necessarily eigenvalues) given by the Mini-Max principle for the semibounded
operator Q(x) on L*(IR2), i.e. its first M eigenvalues or possibly Inf Sp,.(Q(x)). Due
to possible positive singularities of W outside U£2; we allow co as a value of 4;. By
adding a constant we may assume lim-inf 1,(x)=0. We are interested in the

[x|~ e

spectrum of P in an interval I =(— oo, b] with 1,= Inf 1, <b <0, and we assume
R»
(H3) There exists an open set 2CC ) ; such that A7 (I)cCQ and
i=1
b< Inf Sp(Q(X)\{A1(%), ..., Ap(x)} for some M eN.
Q

To study just a small neighborhood of 1, it suffices to take M =1; however in order

to study a larger range I of energy we shall as well treat the case of several

electronic levels 4(x). Note, however, that for M = 1 the groundstate u,(x, -) of Q(x)

can be chosen positive for x € Q; thus it is globally defined as a continuous function

of x e Q. Since for M > 1 this may fail for the eigenfunctions of Q(x) associated with
A{x), j>1, we shall in addition assume

(H4) There exists a contractible open set  containing U Q; such that for xe (

the M real numbers Z,(x) = A,(x)— W(x), 1Si< M, are d1screte eigenvalues of
Q(x)— W(x), which are separated by a gap “from the rest of its spectrum.
Furthermore the orthogonal projection II(x) on the associated eigenspace
belongs to C(&, L(LX(R2)).
We remark that if P is a molecular Schrédinger operator as in (H mol) of Sect. 2,
the projection I1(x) is automatically C? in x as long as the gap condition in (H4) is
satisfied (see [CS]). Furthermore, by standard arguments it follows from (H2) that

U x)I(x)U; '(x)e C*(Q), L(LX(RY), H}(RD), (1.4)
where U (x) denotes the unitary transformation
(Ufx) @) (v)=@(F {x, y))|det 0, F {x, y)|'/? (1.5)

induced by Fx, -) on L*(IR2) for x€Q;. In fact, setting Qx)=U (x)Q(x)U; '(x),
showing (1.4) reduces to proving existence of
[Q(x)—A]171350/x) [Qfx)— 41" € L(L*(RY), H*(RY)) (1.6)

for xeQ;, «eIN" and 1 in the resolvent set of Q(x). This follows from (H2).

Since m view of (H2) Ufx) is bounded in H?*(R2), we get
[Q)(x)— A1 ' e L(LA(R2), H*(R)), and using (1.2) in (H2), (1.6) can be read off the
explicit formula

Q%)= —((8,G)"(x, F{x, )8, + H(x, y)* + V(x, F{x, y)) + W(x),  (1.7)

where G{x, -) denotes the inverse diffeomorphism of F(x, -), T stands for the
transposition, and

H(x,y)=|detd,F;|'*0,|det0,,G(x, y' =F(x, y)|"/*.
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The main point of (H4) is to assume @ contractible (which a priori could be
violated by eigenvalue crossing and absorption of eigenvalues into the essential
spectrum of Q(x)— W(x)).

Due to the homotopy property of vector bundles ([ BT, Hus]) this ensures that
the vector bundle E C Q2 x L*(IR?) over Q defined by II(x) is trivial. More precisely,
we have

Lemma 1.1. Assume H1-H4. Then there exist M functions u,(x, y)e C(Q, H H(IRD)),
I=1,...,M, such that Vxe ] Q;
=1

M

Hx)= 3 (-, “z(x)>yul(x)§ Cuy(x), uk(x)>y =0y, (1.8)

where {-, -, denotes the scalar product in Lz(le), and in addition the sections u,(x)
of E become smooth after the coordinate change induced by F, i.e.

Ujxulx, ) e C*(Q; HXRY)  (1sISM,15j<r). (1.9)

Furthermore, for all xeIR", there is an orthonormal set (with respect to the
L?-scalar-product ) of functions wy(x), ..., wy(x) in H*(R2) which coincides with the
u(x) for xe A7 Y(I)CCQ, satisfies (1.9) and

wi(x, -)e C*(R"Q, H*(RY)). (1.10)

Proof. The triviality of the vector bundle E induced by IT over Q is equivalent to the
existence of M continuous sections #,(x) of E which span the fiber Ran I1(x) at each
xe Q. Taking y e C3({zeR"*?,|z| < 1}) with | y(z)dz=1 we introduce the mollifier

o [ Z7EN g
M. flz)= [ & """y <—>f(2)d2-
Rn+p &
Setting H=H?*(R?) and letting 4 CIR" be a bounded open set, we claim that for
J€Co(4, H)
HMef_fHLw(A,H)_’O (el0). (1.11)
In fact it follows from Young’s inequality that
IM,| e @n iy, Loy S 1 (6> 0);
thus, in view of the Sobolev imbedding theorem and H{(A, H)nCo(A4, H) being
dense in Cy(4,H) for s> g it suffices to show (1.11) for fe Hy(4, H) with

convergence in | - || gs4, gy For s integer this is an immediate consequence of the
well known convergence in L*(A, L*(IR?)).

Thus, for ¢ sufficiently small, II(x) (M,i#)(x, ) span RanII(x) for xe|) Q;, and

by Gram-Schmidt we obtain from these functions an orthonormal basfs u(x) of
RanII(x). This basis clearly satisfies (1.8), and (1.9) follows from (1.4) since
U (x) (M) (x, -) € C*(Q;, H*(IR)). To modify the u(x) outside A '(I) we fix a
smooth partition of unity {, {, subordinate to @, R™ Ay '(I). Since u(x) is
continuous on the compact sct €2, we find for ecach ¢>0 a cover {B;}}- of Q by
small open sets, points x;€ B;, and a partition of unity y; subordinate to Bj, such
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that
<e, (xeQ). (1.12)
Lz(]Rg,’)

Choosing M orthonormal functions g, € H*(R?) in the orthogonal complement of
Span {u(x;); 1< I <M, 1<j< N} we set

Wilx) ={(x)u(x) + Lo(x) g -
Then it follows from (1.12) that
CWix), Wi(x) ), =0y + Ole), (1.13)
and orthonormalizing these functions (for ¢ sufficiently small) yields
W), o WagX)) = (B4 (%), .., Wpg) F12(x),  F(x)=({Wi(x), Wil(%)),)
which verifies all the assertions of the lemma. [

Next we fix { e CP(Q) with0<{ <1 and { =1 in a neighbourhood .# of A{ !(I) as
in the proof of Lemma 1.1 and set

)= 3, 19t

Qx)=—A4,+{(x) {V(x, )+ W(x)} . (1.14)
Then Q%x)=Q(x) on Ay }(I=(—o00,b]) and
0x)>b, (xeR™A7(I). (1.15)

In fact, for ¢ € H*(IR?) with | ¢| =1 we have
(O x) 9, 9> 2 L(x) <Q(X) @, > Zmin {{Q(x) @, 9,0} Zmin {4,(x),0},
proving (1.15). In particular, using (H3) and Lemma 1.1 this ensures that
O(x)Q"x)[I(x)—A>0, (iel,xeR"), (1.16)

where IT(x)=1—1II(x) and II(x) denotes the orthogonal projection on
Span {w,(x), ..., wp(x)}. This will be crucial for inverting the following Grushin
operator associated with P*= —h?4,+ Q%x)+ h*p(d,):

PP—1  w, ... owy
. 0 .. 0

p=| M . (1.17)
Cowydy 0 0

which is selfadjoint as an operator in L*R"*?)@® @ LA(R"~L*(R";

L*(R?)@CM)=:s#. Here w; denotes multiplication by w as an operator
from L?*(IR") to L*(IR"*?) and (-, wp, its adjoint.

Before stating the main result of this section, let us recall the following
notational convention: A family of bounded operators A(h) from H¥R", H,) to
L*IR" H,), where H,, H, are Hilbert spaces and he(0,h,] with h, sufficiently
small, is called h-admissible of order k, if for N sufficiently large

A(h)= Z h Op(aj(x, &)+ h"Ry(h),
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where Ry is uniformly bounded from L*(R"; H,) to L*IR"; H,) for 0<h<h,,
a;e C*(T*R"; Z(H,, H,)) with [|0%ax, £)||_g)(H1,H2)§Ca<§>k for all «eIN?" uni-
formly in (x, {)e T*R", and Op(aj(x, &) denotes the pseudodifferential operator
which for ¢ e CP(R", H,) is defined by the oscillatory integral

Op(aj(x, &) o =(2nh) ™" [ > a(x, ) p(x)dx'dE .
A slight generalization of the Calderon-Vaillancourt theorem then yields that
Op(a;) extends uniquely to a bounded map from HYR”", H,) to L>(R", H,) (see e.g.

[GMS, BK]).
We shall call the formal series

3 WafxH=alx. &),

which is uniquely determined by the h-admissible operator, the symbol a(A(h)) of
A(h). Composition of h-admissible operators A(h), B(h) induces the product of
symbols

(a#b)(x, &, h)=a(A(h) - B(h)
which by the usual symbolic calculus is given by [BK, GMS]

le|

(@#b)(x,&, )=} 0za(x, &, h)03b(x, &, hy, (1.18)

eNn l"aIOC!

assuming of course that the image of B matches the domain of 4.
We are now ready to state the main result of this section as

Theorem 1.2. Assume H1-H4. Let Q,CR" be open and disjoint from Q such that
{Q,}i-¢ cover R". Then the Grushin operator 2, is invertible for all Ael, and
mod O(h*) its inverse is given by

E=2"= ¥ U 16 (1.19)

M
where &; is an h-admissible operator which is bounded from L*(R"*")® @ H*(R")
k=1

M
to H*(R"*?)@® @ LAR"), y;€ C*(Q;) with supp y;CQ; and
k=1

U; 0
%J=|:OJ 1:|a

where U, acts on L*(R% x R?) according to (1.5) and U,=1.
E(A)  E.(A) } ) . . .
, E_ (A) is h-admissible, its prin-
PRVNINGY P
cipal symbol is the M x M matrix
B(x, &; 2)= M —(w(x), (E + Q) wix)),), 1Sk ISM, (1.20)

and we have Viel:

Furthermore, writing & = [

LeSp(PY) < 0eSp(E_ (7). (1.21)

Remark 1.2. 1) Without loss of generality we may assume that the set .# on which
{=1 satisfies hypothesis (H3) with Q replaced by .#. One may then use the
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arguments of [HS1] to show that both Sp(P) and Sp(P*) coincide in I =(— o0, b]
with the spectrum Sp(P_,) of the Dirichlet realization of P on .# up to O(e ") as
h]0, where 0< 6 <d(A[ '(I),0.#) and d denotes the distance in the Agmon metric
ds* =max {4,(x)—b,0} dx>.

This follows by combining a rough estimate on the number of eigenvalues of P
in [ with the Agmon type estimate

17 =" )l + et~ p|=0(1) as k|0 (e>0),

where d(x)=d(x,A{ }(I)) and ¢ is any eigenfunction of P, (or P or P in the
respective domain) with eigenvalue in I.

In order to study Sp(P)1 it thus suffices to study P%, which has the advantage of
leading to the Grushin problem (1.17) depending — at least after local coordinate
transformations — smoothly on x. If, for instance, Q(x) depends smoothly on x
globally in IR" [or does so after a finite number of coordinate changes as in (H2)],
then Theorem 1.2 remains true for the initial operator P replacing the smoothed
out operator P in (1.17).

ii) One could also have worked with f(P) instead of P*, where fe C*(R), f(4)=A
on(—oo,b], f=const on [, o) for some b’ > b. Then the operator E _ ,(4)in(1.21)
would have been replaced by a bounded operator E_,(4) which also is
h-admissible, but less pleasant to work with than E_ | (4). In particular, it does not
via its symbol connect in any obvious way with the WKB constructions of
Sect. 3.

iii) It follows from (1.20) that

B(x,&; A=4—E1—A(x),
where A(x) is a symmetric matrix satisfying A(x)> b1 for xe R™\A; '(J).

Proof. The idea of the proof is in localizing 2, by means of a partition of unity to
the coordinate patches Q;, where conjugation by %; yields a pseudodifferential
operator with a smooth operator valued symbol. Inverting its principal symbol
defines an approximate inverse which then can be corrected to yield 2, ! in the

form (1.19). We choose y;€ C5(Q)) for j=1, o€ C*(Q,) with Y xj=1 and set
j=0
Pi=Uj;PPUS 'y
=h2Xj(Dx+J(x9Y)Dy+K(x’ y))ZXj+hZij(ij)Xj""Xng'(x)Xja (122)

where
J(X, y) = (aij)T(xa y, = F](xa }’)) >
K(xs y) = |det aijl 1z Dxldet a,\:'G‘;'()C? y/ = Fj(x9 y))l 2 s
¥, =V, +Idetd,F |27, |det0,G (x, Y = F {x, )12,
Qi(x)=U(x)Q"x)U; '(x)

and G{x, -) is the inverse diffcomorphism of F (x, -). Clearly P; is selfadjoint in
L*(IR™*?) with domain containing 2(P) and semibounded from below uniformly in
h; in fact, we have P*> —y for some y>0, and thus

CPu,uy=<PU; yu, U yuy 2 =y llgul*2 — ull®.
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We shall now consider the localized Grushin operator
P,—ly; LWL e LW

2w
Po=Uy P 1= a :‘”>y . (123

ij< T WM,j>y
where w; ;=U,w,.
In view of (H2) and Lemma 1.1 2; is a pseudodifferential operator with
an  ZLH*R)QCY; L*(R"@CY)-valued symbol, bounded from
M M
H*R""@ @ LAR" to LAR"*?)@® @ H*(R"), and by (1.22) its h-principal
k=1 k=1

symbol is given by

&+ 05(x)— 4 Wi AX) o Wy fX)

<' s Wl,j(x)>y

pix, &)=} (x) =1;(x)pi(x.¢).  (1.24)

<y WM,j(x)>y

Using (1.16) one readily verifies that for all 21, (x,&)e T*Q}, p(x, &) is invertible
with inverse

X(x, &) Wy (%) Wiy, (%)

w0,
afx 9= : B S 2y)

w30,
X(x, &)= 1,0 (1,x) (22 + Q) )~ )~ ). (1.26)

where the M x M matrix B(x,{; 2) is given by (1.20) — independently of j! — and
H(x)=Ux)II(x)U; !(x) denotes the projection on the orthogonal complement of

Span {wy_{(x), ..., wy {x)}-
Setting

Qj—Xj OP(‘],'(X, f))Xp 0= _ZO %jﬂ IXJngOZ/ja (1.27)
=
one has

7,0= Z {%f 1g)ij%j‘*' [Z2 Xj] %j- 1Xij%j} . (1.28)

=
M

Note that Q; is bounded as a map from 2(Q;:=L*R""")@® @ H*R") to
k=1

M
HYR""® @ LAR")=%(#,) as follows by inspection of each matrix element of
k=1

Q;. Thus the composition 2,Q; is well defined as a bounded operator in 2(Q) (vice
versa Q;7; is bounded on Z(#,)), and we shall now apply the pseudodifferential
calculus for operator valued symbols separately to each matrix element of 2,0, to
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get that
P0;=1; +hy;R;, (1.29)

where y; ; € C*(22;) with y; ; =1 onsupp x;, supp x;,; C£2;, and R;is an h-admissible
operator which on 2(Q;) is uniformly bounded in h. In fact, with X(x, {) as in (1.26)
we have for m=0,1,2

[<EH™ ai, gX(x, Ol L(LA(RE), H2 - m(RD)) =C,, (1.30)

while a short calculation gives the principal symbol of R; as

a,,,(R,.)%él {X;}(x) [éiax,lg(x, &) Eduw,; 8 aaxin,,.]
EX(x,8) Ewiy .. gin,j]}
. .

0 (1.31)

+ 413000, 2,%) [
Thus R; o:=0p(0,(R)) is even bounded from LAR"*?)@ ké H'(R") to 2(Q)),
and one readily checks using the symbolic calculus that
R;=R; ,+hR; ,(h),
where the pseudodifferential operator R;,(h) is uniformly bounded from
LAR"; LXRY)OCY) = IA(R"*P)® k(—bél L*(R") to 2(Q;). This proves (1.29).

Since furthermore the pseudodifferential operator

hD, 0
|: 0 O:I XJ'QJ

is of the same type as the principal part R; , of R, the operator %[ 2, x;1%; ' 1;Q;

— corresponding to the second member on the rlght hand side of (1.28) - also is of

the form hx“R where §; ; and R have the same properties as y; ; and R;.
Redefining y; ; and R; we thus have

P2,0=1+h#, where A= Z”Zl . 1Ry (1.32)

j=

In order to compute 2, ! from a geometric series, we essentially have to compute a
change of local coordinates in the overlap regions 2,nQ, and use the fact that the
h-pseudodifferential operators R; are still pseudolocal in the base space R}. We
need

Lemma 1.3. For all ke N one has mod O(h*)
= .ZO %j—lxj,kAj,k%ij,kS (133)
I=

where x; € C*(Q)) equals 1 on suppy; .- (setting x;=x;0)s U supp x;,x CCQ;

and A;, is an h- admzsszble operator which is uniformly bounded in h on
2(Q)=LR""")® @ H*R?).
Proof of Lemma 1.3. It follows readily from (1.25) that

U)W (X)qilx, U U (x)=qfx,8)  (xeQ;nQ, 0=, 1<), (1.34)
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and similarly for j(x, £). Thus, using the symbolic calculus, one easily verifies that
R§Ifl+1):=%j)(j,k0’[l_1x1,IRI%IXI,I%j—IXj,k-iLl (0=j,I=r, keN) (1.35)

is h-admissible and uniformly bounded in A. This gives

r

R = ) {%j_IX} 1RR11%X1 2+% i, IR%%I /(j,1Xz,1Rz(1—XJg,2)%1X1,1,

J,1=0
(1.36)
where the last term is O(h*) since suppy; ; is disjoint from supp(1 —y7 ,).
We then obtain (1.33) by induction on k with
A= % RRY..RE,. O (1.37)

Iy, k=0

To complete the proof of Theorem 1.2, we derive from (1.32),
N
2;'=0 {1 + Y (—h)’ﬂ%"} + O(h")
k=1

r N
=Q {1 + j;o %j_lij< ; (—hY ;0. k)% } + O(h™) (1.38)

where 7;€ C*(Q2;) with supp ¥;CQ; equals 1 on U SUpP %j, -
Insertmg (1.27) on the right-hand side we have represented 2, ! in the form
(1.19), since y,4; (1 —7)=0(h*) and
Uy, ” X] i, WU X]%z_ 1)21

is h-admissible in view of (1.37) and (1.35). By construction, one has a natural
bijection between Ker(P—1) and Ker E_ (1), which completes the proof of
Theorem 1.2. O

In order to relate Theorem 1.2 to the WKB expansions of Sect. 3, it is
convenient to state separately a few consequences of Theorem 1.2 and its proof.
They essentially regard the behavior of & =2, ! under coordinate changes in the
overlap region Q;NQ,.

Corollary 1.4. For each y;e Cg(2Q)),
E=U;6U; 1,

is an h-admissible operator. Now fix x,€R". Letting I, = {j; x, € Q;}, we choose for
jel, cut-off functions y, y;€ C5(2;) with y, x;=1 near x, and y supported in the
interior of {y;=1}. Then

EPy =1+ 0h™)= ]x+(9(h°°), (1.39)

Zhere P; denotes the pseudodifferential operator Uy ;2; ‘U ' y;. In particular, we
ave

(@(E)#(P) (x. & ) =12 mr o 0m (1.40)

for all jel, and x sufficiently close to x,.



Born-Oppenheimer Expansion for Polyatomic Molecules 621

Proof. Since
g"j = z=zo Uiy~ 16U 1+ Oh>), (1.41)

one has to check that each individual term on the right-hand side of (1.41) is
h-admissible. This follows combining the representation of &; given by (1.38) with
(1.37) and the crucial result (1.35) on conjugation of all remainder terms R; ; by
A . Furthermore

PEx=Up P 1A 6UT A x = U AU wx+ U PA = XD EUT
(1.42)

and the same for g%x, which proves (1.39) in view of the disjoint support of (1 — x7)
and y.

Finally (1.40) follows from (1.39), since a(gj@jx) (x, ¢, h)=a(<?ﬂ'j) (x, &, h) for x
close to x,, if y=1 near x,. [

As the first application of Theorem 1.2, we shall prove that the eigenvalues of P
can be approximated by those of the effective Hamiltonian.

Proposition 1.5. Assume that the conditions of Theorem 1.2 are satisfied with
M =1. Let P(h) denote the Dirichlet realization of

— 124+ 24(x) + B2 (= A+ (@) us(x, -), us (X, ),y
over Q. Put I=(— oo, a(h)], where a(h)> A, is a function of h such that
a(h)LAo+ch and dist(a(h), Sp(Po(h)=c ™ 'h?,  for some c>0. (1.43)
Then for h>0 small enough there exists a bijection b:Sp(P)nI —Sp(P,)1such that
[b(A)—Al=0(h"?), VieSp(Ph)NI.

Proof. According to the Remark following Theorem 1.2, A€ Sp(P)nI if there is
u= A+ O(e”*) such that 0 e Sp(E _ , (1)). In addition the symbol of E _ , (4) can be
computed:

o(E_ (A)=4— {62 +<wylx, ) Q) wilx, ),

+ h2(<(~ Ax + p(ay))wl(x’ ')5 Wl(x’ )>y + lzj iigjcij(xa 6’ ’1)) +(9(h3)} s

(1.44)

where c;i(-, -; 4) is holomorphic in A€ and |05 .c;{x, &; )= c, (&)~ 2 Put F(4)
=J—E_,(4) and

F= —thx+ <Q§(X)W1(x, ')a Wl(x’ ')>y+h2<(_Ax+p(ay))W1(x’ '), wl(x’ )>y

Since Q%(x)= Q(x), w,(x, -) =u,(x, -) for x € Q, the eigenvalues of F in I are equal to
those of P, modulo an error of order O(e™**) for some ¢,>0. In addition, we
deduce from (1.44) that

F_<FW<F,, where F,=F+ch*(—h®4+h), for some c>1. (1.45)
Now if u is a normalized eigenfunction of F with eigenvalue E(h)eI, we have:
I(F + — Em)ul| < ch® + ch? | —h*Au| Sk +h? (A1) — Ao)ul -
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Here 7.(x)= <Q4(x)w1()~c), wy(x)). Let ¢(x) denote the Agmon distance of x to
{7, =1} in the metric (Z,(x)— A,)dx*. In the domain 4,(x) — o = ch'/?, we can then
easily estimate:

d(x)=0,h%*, for some 6,>0.

Consequently, by the exponential decay of the eigenfunctions,

IKZny—loﬁ4|§ch”2+—{ ) |ngy—zd2e-2“*9¢“vﬂél*@¢muﬁdx}“2

212 Ao+cht/2
<c'h'?.
This proves:
I(F . — E(m)ul <ch™>.

Similarly if v is a normalized eigenfunction of F, or F_ with eigenvalue E(h)e I, we
also have:

|(F—Em)oll <ch™?.

By the min-max principle and the above estimates, we deduce that for h>0 small
enough, F(2) and F have the same number of eigenvalues in I and there is a
bijection b, : Sp(F(1))nI—Sp(F)nI such that

|by(1) — i =CO(h*?) for  peSp(F(ANNI.

Let {v(A)} be the eigenvalues of F(/)in I arranged in increasing order. Asin [Ma2,
Sect. 4], we have:

ov;
RS j
5, W=0, V)
and for each j, the equation A=v(4) has exactly one solution in I. This ends the
proof of Proposition 1.5. [

2. Application to Molecular Schrodinger Operators

We shall now write x=(x, ..., x,,) €IR>" for the (Jacobi coordinates of) (m+1)-
nuclei in the center of mass frame; y=(y,, ..., y,) €IR?, p=3q, for the position of ¢
electrons, and consider a molecular potential of the form
V= X Wldpnht Y Tl
=p Si<j=p
m+1 (2 1)
Wx)= ¥ WillAix— Ax]),

where the constant 3 x 3m matrices A; of the form

m
Ax= kzl a; X, a; R

are due to the removal of the center of mass motion, and we assume that the 2-body
central potentials ¥;(|s]), V;(|s]), W;(ls|) are 4-compact in R> and verify (writing V/
for any of the V;; or V;;, and W for any W}))

ijs
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(H mol) ¥, We C*(R3\{0}), W=0 and for all ke N one has

® VO

sp VOIS0 T )

Furthermore we assume that the “isotopic operator” p(d,) in (1.1) commutes with

rotations in each ]Rij (this is the case in the physical situation, where it is generated
by removal of the center of mass motion).

We remark that the above assumption of rotational invariance covers the case
of physical potentials, but is not essential for our methods to work. We can obtain
the same type of results as long as the potential wells are nondegenerate.

We denote by ¥={xeR>"; 4 x=A4x for some i%j} the set of points
corresponding to collisions of the m+ 1 nuclei (which is a finite union of planes of
codimension 3), and we shall show that in R*"\% there exist local coordinate
transformations as in (H2).

For xo=(x9, ..., x9) e R¥\¥ fixed, there exist f;e CF(R? R) with f{4,x0) =0
(1=j, k=m+1), and we set

<Ci< . 2.2)

m+1
Fox,8)=s+ Y Afx—x0)f{s), (seR?* xeR®). (2.3)
i=1
This is similar to the transformation introduced by Hunziker [Hu]. For x in a
sufficiently small neighborhood @, of x, it verifies

F,(x,-) is a diffeomorphism of IR® which depends analytically on x,
F. (x,s)=s for |s| sufficiently large and

Fxo(x’ ij0)=ija (1 §]§m+1) (24)
In particular, the transformation
Fo(x,9):=(F (X ¥1)s o 0s Fxo(X%, 1)), (x€ 24, yeR?) 2.5)

is in C*(2,, xR?; IR?) and satisfies the estimate
VaeN*"3C,>0 VxeQ,, Vy,y' eR”:

1 / ! /
o V=YI=IFox y) = Folx, Y= Coly— 1,
0
03F o(x, ¥) = O:F o, ) = Caly =¥l
10:Fo(x, =Co, (o] 21). (2.6)

We shall use (2.6) to verify (1.2) in hypothesis (H2) which is the essential point in
applying the result of Sect. 1 to molecular Schrodinger operators of the form
(H mol). Note that V(x, Fy(x,y)) is a sum of terms of the form

a) WlAdx—Ax))e C*(R*\%),
b) ViAIF (%, y)— F (X, ) =8(x, ),
which verifies
10,81 S10UF (%, ¥)) = F o6, Y - 1VAIF %, y) — F %, y )| S const (1 + |g]),

where we have combined (2.6), boundedness of 0,(F,(x, y)) uniformly in y; and
2.2). '
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By induction this gives
105, IS C(1+glx,y)),  (xeN*" xeQ,, yeR?). 27
) ViflAix—F . (x, ) = Vil F X, Aixo) = F o (x, y)) = g(x, y)

which using the same arguments also verifies the estimate (2.7).

It follows from this estimate that V(x, Fy(x, y)) (—4,+1) "' e C*(Q,,, L*(R?));
thus hypothesis (H2) is verified in some small neighborhood of any point
xo, € R3™\@.

We shall now consider an interval I of energy values such that

A7 {(I)CIR3™ is compact and disjoint from & . (2.8)

Then A7 (I) can be covered by finitely many open sets Q;=Q,; of the above form. If
in addition the separation conditions (H3) (H4) on Sp(P) are satisfied, Theorem 1.2
is applicable and we have (with analogous notations):

Theorem 2.1. Assume (H mol), (H3) (H4). Then one has for Jel,

AeSp(PY) < 0eSp(E_ ., (2),

where E _ (/) is an h-admissible operator on (—D L*(R>™) which depends analytically

on A, with principal symbol given by (1.20). F urthermore for M =1, one can choose {
such that the scalar operator E _ (()) corresponding to the groundstate of Q(x) is
O(3)-invariant, i.e. denoting by

Upo(x)=¢@(R-x), R-x=(Rx,,..,Rx,), (xeR® (2.9)

the unitary operator on L*(R>™) representing the orthogonal matrix Re O(3), we
have

[E_.(4),Ug]=0. (2.10)
Proof. In view of Theorem 1.2, it remains to prove (2.10). We define by
Urp(x,y)=0(R-x,R-y), Uzo(y)=0(Ry)
two representations of O(3) on L*(IR®*™ x R3%) and L*(R39) respectively, and set

Uz ©
%‘[0 UJ‘

Since all potentials are radial, we deduce that
Uz'0(x)Upg=0Q(R™"-x), 2.11)

and in view of the nondegeneracy of the groundstate u,(x) of Q(x) we get from (2.11)
that

w(R-x, R-y)=u,(x,y), A(R-x)=4;(x). (2.12)

Choosing { and all cut-off functions in the proof of Lemma 1.1 O(3)-invariant (and
also the function g, € H*(IR?)), one gets w,(Rx, Ry)=w;(x, y) for all (x, y) e R3"*®
and R e 0(3).

It follows readily that 22, commutes with %, hence does & =2, !, and this gives
(2.10. O
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Remark 2.2. In the case M =1 assumption (H4) can be deleted in Theorem 2.1. In
fact, it then follows from (H3) that for x in some neighborhood .# of 17(I), 1,(x)
=InfSp(Q(x)) is a discrete eigenvalue. Since the range of the associated projection
II(x) is spanned by a positive function of yeR?, one readily gets a global
continuous section u,(x, -) trivializing the line bundle E induced by II(x) over .4,
regardless of the topology of .#. Modifying u,(x, -) as before we obtain a Grushin
problem of the form (1.17) and thus Theorem 2.1.

3. WKB Constructions for a Diatomic Molecule

In this section we shall consider WKB expansions for eigenfunctions and
eigenvalues of a diatomic molecule with g electrons near the bottom of the
potential well formed by the electronic groundstate u,(x, -) of the operator Q(x)
acting in L*(R?), p=34. Thus we assume (H mol) with m=1and (H3)for M =1 and
some interval I =(— oo, b] containing 1,= inf3 A1(%).

xeR

The set € of nuclear collisions then simply equals the origin {0} in IR* (with the
implicit condition 4, & A4,), and we assume that the bottom of the potential well
I'= 1] Y(A,) satisfies

(H5) I'={xeR?3; |x|=r, for some r,>0, and d?1,|>0,

where 0, denotes the radial derivative in IR 3. In view of (2.12) we shall denote (with
the usual abuse of notation) the constant value of 3?4, on I' also by 11(r,). We write
y(x) for the distance of xeR? to I' in the degenerate metric (1,(x)— 4)dx?, and
since 1 only depends on the radial variable r=|x|, one immediately sees that y is
C® in a neighborhood of I' of the form Q={x eR3;|x|eQ’}, where
Q' =(ro—¢, ro+e) for some ¢>0, and satisfies

FprP@)=4x)—1 (x€Q).

" We remark that the only obstruction to i being in C*(R3) is a possible absorption
of 1,(x) into Sp..(Q(x)) or A;(x)—c0.

Choosing Q sufficiently small, we may assume that (H3) holds on Q. Next we fix
some (arbitrarily large) C, >0 and denote by e, ..., ey, the eigenvalues in [0, Cy] of
the 1-dimensional harmonic oscillator

Hy,= _63 +341(ro) ("—ro)ZQ
i.e. ;j=1y"(ro)(2j+1). Then we first have the following formal result:
Theorem 3.1. Under the above assumptions (H mol), (H3), (HS) there are approxi-
mate eigenvalues A4(h) e R and approximate eigenfunctions w';™(h) € H*(Q x R?) such
that one has for je{1,...,No}, 1€{0,1,2,...}, m=—1,...,1 and h>O0 sufficiently
small

My~ do+eh+ ¥ AL KK, 3.1)
k=2
PO hyhm(x, ys Ry~ h ™™ {W§’,’6’(X)u1(x, y)+ k; whi(x, y)h 2} (3.2)

as h|0, where w5 e C*(Q), wii e HX(Q xIR?), m;eR, m; =7 and the asymptotic
expansion holds in H*(Q x IR?),

<W‘li’ m(h)a Wj'l"m,(h)>L2(ﬂ xRP) = 5.iy J"él, l'5m,m' + @(hoo) (33)
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and
le? P — 2R Ws " (h)| L2 x ey = O(B™) . (3.4)

The main idea of the proofis to use a simplified “formal” version of Theorem 2.1
to relate the construction of WKB functions for P modulo coordinate transform-
ations to the construction of the kernel of a formal pseudodifferential operator
E_ ,(2) which is naturally induced by the symbol of the h-admissible operator
E_ ,(A)in Theorem 2.1. This can then be accomplished asin [Ma2], and is actually
much simplified by the O(3)-invariance which leads to absence of half-integer
powers of h in the eigenvalue expansion (3.1).

Before turning to the proof of Theorem 3.1, we shall therefore recall some basic
facts on formal pseudodifferential operators with operator valued symbol. If Q is
an open set in R", H a Hilbert space and meR, we introduce the space

S™(Q, H)= {k;) B2 (x); s, € C2(Q, H)} (3.5)

of formal power series. For peC®(2,R) and ¥~ being a (sufficiently small)
neighborhood of 0 in R” we then set

Q¥ =% ={(x,)eQxC" {—iVyp(x)e 7V},
and
SUQ*; £(H, H,) = {k;) Kipi(x, €); p e CT(Q*; L(Hy, Hz))}, (3.6)

where H,, H, denote Hilbert spaces. For any symbol
a=a(x,& h)eS%Q*;, #(H,,H,)) one then defines an operator a(x,hD,,h) on
e vWhgm(Q H,) (which we shall call a formal pseudodifferential operator) by
setting for se S™(€2, H,),

a(x, D, h)(e™"™"s(x, h))
lol

= ¥k Y
acN» ilalOC!

0%a(x, iVip(x), h) 3%(s(x', h)e =™, _ ., (3.7)
where

K(%, X)) =p(x) = p(x) = (' —x) - Pp(x) = O(x —x?).
Formula (3.7) coincides with a formal stationary phase expansion, if the usual
(mathematical) quantization convention is used for a(x, hD,). We remark that as a

trivial consequence O(n)-invariance of the symbol, i.e. a(Rx, R, h)=a(x, &, h) for all
R € O(n), implies [a(x,hD,, h), Ug]=0. Next one verifies as in [Ma2] that

e"ha(x, D, h)e  *@s(x, h)e S™(Q, H,). (3.8)

Furthermore such operators can be composed if domain and range of the
operator-valued symbols match, and one has

a(x, hD., h) o b(x, hD,, h)=(a#b)(x,hD,, h)
with a#b given by the usual formula (1.18).
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Proof of Theorem 3.1. As in Sect. 2, we cover 2 by finitely many open sets ;= =Q,
containing the point x;€IR3, j=1,...,r, such that the transformation

j(x’ y)=(Fx,(xa yl)a sy ij(x .Vq)) ’ (x € Qj’ y e]RBq)
satisfies (H2); here F, is defined by (2.3).

We set
P—A u
P, = 1] 3.9
2 [<-,u1>y 0 (39)

U, 0
%= [ 0 1]

is a well defined unitary map on L*(Q;, (R?)@C). Using formula (1.22) one
readily sees that U; PU ! induces a formal pseudodifferential operator with
symbol pj(x, é)eSo( =.?(H 2(RP), L*(RP))), where Q* is defined as in (3.6) with
(x) being the Agmon d1stance hence 97 =UPU " is aformal PDO with symbol

| P4 uy (%)
@,(x,f,h)—[(” u ), O ] (3.10)

where u, {(x)=U (x)u,(x)e C*(Q; H*(IR?)).

We shall now relate the construction of an inverse é” @ ! to the construction
in the proof of Theorem 1.2. Without loss of generahty we may assume that the
cut-off function { equals 1 on the set Q considered here, and that w, =u, on Q. Then
2, given by (1.17) coincides with £, given by (3.9) on Q, and for any x, € Q; there is
x;€ C3'(2)) such that the symbol o(Z)) of %y, 2, U 1y, coincides with the symbol of
#;in some neighborhood of x,. F urthermore both ¢(#) and o(# ) are analytic in
ée C3; it follows readily from the symbolic calculus that 'the symbol of
é” =U;x;6%; ' x; extends analytically in £ to Q*.

Thus setting (S’(x & h)=0(8)(x, é h) for x close to x, and x; as above, we have
determined a unique symbol in S°( , P(H*(R?)®C, LZ(IR")®(E)) which in view
of (1.40) satisfies

and recall that

(P% &) (x, &, ) =1p@eec
E#2) (%, E D) =1meecs

for all (x, £)e QF. We remark that é’,(x, &, h) can of course be constructed directly
from (3.10), and since the calculus of formal PDO is completely local in x, this in
fact is easier than the construction in the proof of Theorem 1.2. Anyhow, writing

. [E E,;
ép.= A] I +J
! [E—.J' E—+,J:|

for the associated formal PDO, we have
E=nu; 8wt in QnQ, (3.12)
since 2, =AU *PUAL " ; it follows that
E_+,j=E_+,, in Q;nQ,

(3.11)
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and thus all E_, ;, j=1,...,r, patch together to define a global formal PDO

+(4) of class SO(Q* Z(C, (E)) with principal symbol 4 — &2 — 1,(x). By construc-
tlon of é” the symbol of E__(J) coincides with the symbol of the h-admissible
operator E +(4) in Theorem 2.1 (using analytic continuation in &), which gives

[E_.(A),Ugl=0 on e ¥/tS™Q C) for all ReO(3). (3.13)

Denoting by Y™ (a real choice of) the spherical harmonics, #;=Span {¥"; —1
<m<l} carries an irreducible representation of O(3). It follows from (3.13) that one
has the decomposition

ROE @ EL . ()®Ly,, (3.14)

where for any symbol o€ e ~¥""* §™(()', ) depending only on the radial variable r
EL ()00 =B s (X", G s (3.15)

(use Schur’s lemma). Furthermore the principal symbol of EL (1) is A — g% — A,(7),
where ¢ denotes the dual variable for r.

We shall now construct the formal solutions of E_ , (1)u=0, which will then
lead to the WKB functions of Theorem 3.1 for P. Since E' ,(J) is formally
selfadjoint for the measure r?dr and 4, as a function of r admits a nondegenerate
minimum in r,, the construction of Helffer and Sjéstrand in [HS1] Sect. 3 gives N,
formal series of the form

air, by A)y=e VO Z o (s AYRME T
(@ 4+ s eC(Q, ),ijIR>1§j§N0) (3.16)

associated with the formal eigenvalues
ih; A)=Ao+eh+ k‘éz s () (3.17)

such that
E’_+(/1)oc’{r h; 2)=(A— yj(h i))oc(r h;A) in e YORSmI(QY), (3.18)
<<xj(- L h; i),oc (-, h; A))=0; (3.19)

where (3.19) holds in the sense of formal power series in h with complex coefficients
and the inner product (-, - ) is defined by a formal stationary phase expansion at
Fo-

We remark that since the eigenvalues e;h of the harmonic approximation are
simple, half~1ntegcr powcrs of h are absent in (3.17) and, furthermore, the
coefficients ,uj «(7) — and o, (r; 1) — depend analytically on 4 (write the spectral
projection in terms of the resolvent of E* ,(4)— ). Thus the zeroes of

in the space of formal power series are simply given by the Lagrange inversion
formula

Ji'»

k)= + I h" s 1{ S, Ml 1} (i=lo)=lo+efrt T .
) C(3.20)
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Thus, setting

ai(r, h)=ol(r, h; A= A{h)) (3.21)
and using analyticity of «} ,(r, 1) in A, we have found formal series which satisfy
L (Aih)oir,)=0 in e~vORSm(Q). (322
In view of (3.14)
B ™(x, h) = e[, h) Y, <l |> (=l=mzl), (3.23)
then solve
E_.(h)Bs™=0 in e v@Irgm(Q), (3.24)
and
<.3§ ™ ﬁj‘l"m,>L2(Q)=5jj’5ll’5mm' (3:25)
with a formal inner product as in (3.19). Since it follows from (3.11) that
Pob,=1 in e vWhs™Q 12RY)DCT), (3.26)
Eq. (3.24) yields by definition of #,, &, that the formal symbol
Ty =E AT in e”vRS™Q,, H(RP)) (3.27)
solves
(U LU —pi(m)d5m=0 in e v™@"rS™Q,, L*(RP)). (3.28)
Since
E. (A)=UX)u,(x, )+ 0h) and {uy(x),uy(x)),=1, (3.29)
we get
3™ 5™ D L2 x Rey = 05501 Oy + O(R). (3.30)

In view of (3.12) we have
U Laym=U W™ in QinQ,
for 1<, k=r,1<j<N,,leN, -I<mZl. (3.31)

Thus the U, !, ™ patch together to define globally in x € Q a formal symbol W™

with coefficients in H ?(2 x R?). Resumming the formal series ,7;™, W)™ (and l’(h))

with the same Borel-procedure, we obtain functions ,v% "‘(h) € C°°(Qk, H 2(]R”))
w}"(h)e H¥(Q x R?) which depend smoothly on h and are related by

U)Wy ™(x, - s B)=05™(x, - 5 h),  (xe9Q,). (3.32)

The w)™(x,y) now yield functions verifying all assertions of Theorem 3.1:

The asymptotic form (3.2) is an immediate consequence of (3.29), (3.27) and the
smoothness of 4™ in x € Q, and (3.4) follows combining (3.32) and (3.28) with a
remainder estimate on the stationary phase expansion.

To prove (3.3), note that in view of (3.30),

<W5" " W?” ml>L2(.Q xRP) = 51‘1"511’5»""’ +0(h) (3.33)
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and
(ui(h) — () W™ W™ o oy = O(R), (3.34)

since P is self-adjoint. Equation (3.34) shows that eigenfunctions associated with
different eigenvalues already are orthonormalized mod @O(h*), while (3.33) allows
to orthonormalize those eigenfunctions which correspond to the same formal
eigenvalue lﬁ(h). Since this orthonormalization neither changes (3.4) nor the first
term in the asymptotic form (3.2), the proof of Theorem 3.1 is complete. []

Now, we are going to give a justification of the formal constructions above, in
the following Theorem 3.2. First of all, let us state some basic facts. By
Proposition 1.5, if one takes ¢, >0 arbitrarily large such that:

Jo+eh+c h*¢Sp(Py), (3.35)
one can see that the number:
N, = #Sp(P)n(— 0, Ag+e h+c h*]= 4 Sp(Po)N(— 00, Ao+ e h+c h?]
is independent of h >0 small enough, due also to the explicit expansions of the low
cigenvalues of P, under the assumption of Theorem 3.1. Then we have:
Theorem 3.2. Under the assumptions of Theorem 3.1, the eigenvalues
E,(h),....Ey (h) of P in(—oc0,ly+esh+c,h*] admit asymptotic expansions:

Efh)=e h+ kgz ej i (h—o0), (3.36)
and if E (h) is asymptotically simple (in the sense that the expansion (3.36) determines
E(h) in a unique way ), the associated normalized eigenfunction v; satisfies:

ewx)/hvj(x’y; h)Nh_ v (vj,o(x)ul(x, y)+ kZﬁ vj,k(x’ Y)hkﬂ)w

wherev; o€ C*(Q),v; ,(x,y)€ HX(Q x RP), and the expansion holds in H'(Q; L*(IRP)).

Proof. Thanks to Proposition 1.5, we see that there is a gap of order of magnitude
h? between the eigenvalues of P in I(h)=(— o0, Ao+ e,h+ ¢;h*] and the other ones.
Now, let yeC2(Q), y=1 near I', and let & be the space generated by all the
x(x)wi™x, y; ) such that A (h)el(h) (cf. Theorem 3.1). Let also # be the
eigenspace of P associated to the eigenvalues in I(h). We can then apply
Proposition 2.5 of [HS1], and we obtain:

sup d(v, #)=0(h*), (3.37)

veF

[lvll=1
where d(v, #)= inf ||v—wl||;2rs«rey This proposition also proves the fact that
Z

the eigenvalues of P admit the asymptotic expansions given in (3.1) with j=1.
Then, using the Agmon-type inequality:

(PP e My iy = 2 |Vl + < (24(X) — (V) u,u, (3.38)

and following the proof of [HS1, Theorem 5.8], we see that the estimate (3.37) can
be improved far from the well, and gives:

¥, — %) g1k L2roy = Oh™) (3.39)
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with K={y=1} and v}= ch W(M)W5, where (c;;)1<jr<n, is an orthogonal

matrix, and w% stands for wl'” constructed in Theorem 3.1. The estimate (3.39)
permits to end the proof easily. []

4. Polyatomic Molecules

In this section we shall derive WKB expansions for more than 3 nuclei, i.e. we
assume (H mol) with m=2, and suppose in addition that A,(x) is a discrete
eigenvalue of Q(x) in a neighborhood of A,= Ilrgmll(x). We only discuss the

groundstate and, in the case of a non-planar molecule (to be defined below), the
splitting of the groundstate due to tunneling. We remark that our methods can be
generalized to yield results on higher eigenvalues also.

We shall assume in analogy to Sect. 3, that the bottom of the potential well
=27 *(4,) of the effective Hamiltonian is minimal in the following sense

(H6) I'={R-x,; ReO0(3)} for some xo=(x},...,x)e R*™\¥,
where
R-xy=(Rx?,...,Rx2).

More precisely, we see that I' prescribes the shape of the molecule. In fact, its
geometric structure is determined by the vectorspace E=Span{x?,...,x%} CR3.
Recalling that x, corresponds to Jacobi-coordinates for m + 1 nuclei in the center
of mass frame, we distinguish the following three cases

Proposition 4.1. The molecule is called linear, planar, non-planar, if dim E equals 1,
2, 3 respectively. Then the potential well T is diffeomorphic to S%, SO(3) and O(3)
respectively.

Proof. If the molecule is linear, then there is w, € S? such that x) = c;w, for some
cieR, j=1,...,m. Thus

S2w(c,w,...,c0)el

glves the requlred difftfomorphism. If the molecule is planar, we may suppose that
x? and x9 are linearly mdependent Denoting by I; —{ReO(3) Rx)=xJ} the
isotropy subgroup of xJ, we have I 1mI ,={1, RO} where R, is the reflection with
respect to the hyperplane spanned by x? and x3. Since det Ry = —1, O(3)/{1, R, } is
diffeomorphic to SO(3) and, furthermore, it acts freely on x,: If R - x, —R2 X, for
some R;, R,€0(3), then R;x?=R,x? (j=1,2), which gives R; Rzellnl2
={1,R,}. This yields '~ 0(3)/{1 R} ~SO(3). Finally, if the molecule is non-
planar, we suppose xJ, j=1,2,3, to be linearly independent and get I,NI,
nI;={1}for the 1ntersect1on of all isotropy subgroups. Thus O(3) acts freely on x,,
proving '~0(3). O

We remark that, since O(3) consists of two connected components
0*(3)={Re0(3); det R= £ 1}, the potential well I' of a non-planar molecule is a
C*-manifold consisting of two connected components which are interchanged by
the reflection x +— — x in R3™, Since for 4 or more nuclei there certainly exist many
non-planar physical molecules, one is in a physically natural way lead to the
problem of estimating the splitting between the eigenvalues of the initial molecular
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Hamiltonian P. We set v=dimI" and denote by Iy one of the connected
components (I';=I" for a linear or planar molecule) We assume that the
transversal Hessian of 4,(x) is of maximal rank 3m—v; on I';. Denoting by 1p(x) the
distance between a point x e R3™ and I'; in the Agmon metric (4,(x)— A,)dx?, it is
then known that there is a neighborhood Q of I'; such that y e C*(Q) (see [HS2]).
In our situation one can choose 2 to be invariant under the action of the group
SO(3)=07"(3). Then the O(3)-invariance of the effective potential gives

PR -x)=y(x), (ReSO(3),xeQ). 4.1)
Since I' is a minimal well in the sense of (H6), it follows from (4.1) that
Ap(x) is a constant u; on I';. 4.2)

Thus the submanifold I'; is a uniformly degenerate potential well for the effective
Hamiltonian in the sense of Helffer-Sjostrand [HS2]. One can therefore apply
their results to construct the first eigenfunction. We shall, however, describe in the
following a construction which we think is more direct and profits from rotational
invariance. As a first step we have in analogy to Theorem 3.1

Theorem 4.2. Under the above assumptions there is an approximate eigenvalue
u(h)eR and an approximate eigenfunction w(h) such that

p(h)~ j;o /ljth to=4os ft1=ApX)Ir, , (4.3)
eVhy(x, y; hy~h~Bm—v/4 zj: ajx, y)n (4.4)
as h|0, where a;e H*(Q x IRP), the expansion holds in H*(Q xRP?), and
le?™MP — A(R) w(h)|| = O(h™). (4.5)
Furthermore we obtain for the first terms in the asymptotic expansion:
ao(x, y)=bo(X)uy(x, ), (4.6)

where bye C®(Q) is the solution of the Cauchy problem

{2V1p-Vb0+(Aw~,u1)bo=0 in Q’ 47
bo’rl =1
and
2 =L(= A+ p@)uy(x, ), uy(x, ,lr, +cr, (4.8)
where
r= = Mbolr, = 5 A%plr, — 5~ 173plr . 9)
by b2 '

Remark 4.3.1) By SO(3)-invariance of 4,, p(0,)u,(x, -) and , u, is well defined by
(4.8). The second equality in (4.9) follows from the first by twice differentiating (4.7)
and using Fy=0 on I';. We remark that the methods of Helffer-Sjostrand
naturally lead to an (identical) representation of ¢ in the form

cr=(=|Vel*+ 4e)r, ,
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where ¢ solves
2ypVe—Ap+pu, =0, ¢l =0.

ii) For a non-planar molecule (exhibiting a symmetric double well), the reflected
function w(x,y; h)=w(—x, —y; h) gives a different approximate eigenfunction
with energy u(h), concentrated in the well I',=—1T7.

iii) The factor h~®™~"* in (4.4) is just a normalizing constant, ensuring that
lw(h)| =const + O(h'/?).

Proof of Theorem 4.2. This is almost identical with the proof of Theorem 3.1. We
again cover Q by r sufficiently small open sets 2; such that on each Q; the
coordinate transformation U (x) introduced in Sect. 2 is well defined. Without loss
we may assume that the groundstate u,(x, -) of Q(x) is well defined in UQ;, and thus
we consider the formal Grushin operator

_[UpU; =2 ul,j]
gj(l) [ < s ul,j>y 0
which maps formal symbols of class e *™*$™Q, H*IR?)@CT) into
e YR s™ Q. LH(RP)@C) (for each meR). Here the symbol space S"(Q;, H), H a
Hilbert space, is defined by dropping all half-integer powers of 4 in definition (3.5).

For notational convenience we henceforth drop the superscript “*” which we
used in Sect. 3 to distinguish formal from h-admissible operators. As in Sect. 3 we
then get in the above symbol spaces a formal inverse

_[E® EO
=[5 5wl

of 2; by constructing its symbol which satisfies (3.11).
It follows from the compatibility condition

é”l=%l%j~1£j%j%l_1 in angl’ (4.11)

that the E; *(4) patch together to define a global formal PDO E _ ,(4) which is
SO(3)-invariant.

By construction of &{4), Ef(4) and Ej *(4) are formal h-pseudodifferential
operators with symbols being analytic in ¢ near —iFyp(x) and in A near 4,; a
straightforward calculation gives

3o Uy )=U x)uy(x, ) (4.10)

j=1,..,r,

o(Ej (M)=u, j(x, ")+ OM), (4.12)
o(E_ 4(A)=A—¢2 _Al(x)—hZ {Cl(x) + e .Z<3 éiéjci,(x, é)} + (Q(h3) . (413
where
cl(x)=<(_Ax+p(ay))u1(xs ), uy(x, ')>y’
and

Cifx, §) =05, X(x, §) 0 uy (x, ), us(x, - )y

is a symbol of order —2 in &
To terminate the proof, we need
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Proposition 4.4. There is a formal eigenvalue u(h) as in Theorem 4.2 and a formal
symbol
B(x, h) = WXhp—(@m=v)/4 Z bj(x) W ,

jZo

with b;e C*(Q) and b, given by (4.7) such that

E_(uh)Ble,h)=0 in e vOIRSEm=IYQ) |IB(-, B)|=1. (4.14)
Setting
w(h)=Uj " (x) E; (u(h) B(h), (4.15)

and using (4.11), Theorem 4.2 follows from Proposition 4.4 as in the proof of
Theorem 3.2 for a diatomic molecule, after resumming the formal series for u(h)
and w(h). [

We remark that one can show Proposition 4.4 with the method of Helffer-
Sjostrand [HS2]. We shall, however, profit from rotational invariance to give a
different

Proof of Proposition 4.4. 1t suffices to prove that there are y;eR, b;e C*(Q) for
j=0,1, ..., with ug, iy, li,, bo given by Theorem 4.2, such that for all NeIN,

E_ (uN(h) BN =e= " ry(h), (4.16)
b{R-x)=b(x) (ReSO(3),xeQ), 4.17)

where
N . N—-1 .
wNhy=Y wh', B, h)y=e " Y b(x)k’ and ryeS VTHQ).
j=0 j=0

We shall show (4.16) by induction on N, profiting from the fact that E_ . (1) maps
the class of SO(3)-invariant symbols uee™ ™" S(Q) into itself. For N=1, we
choose py= Ao, uy = Ap(x)|r, as in (4.3) and b, as the (unique and therefore SO(3)-
invariant) solution of (4.7). In view of (4.13), a straightforward calculation then
gives (4.16) for N =1. Assuming (4.16) for N € N with b,, ..., by_, SO(3)-invariant,
we have to determine py , ; and by. Denoting by h" " 'ry | the highest order term in
the expansion of ry(h), it clearly is constant on I'; by SO(3)-invariance of ry(h), and
we can take

py+ 1=y 1Xr, (4.18)
and by as the (unique and SO(3)-invariant) solution of
{2V1P’VbN""(AW_,Ul)bN:_MN+1bo_”N,1 in Q. 4.19)
bN|r, =0

Since by telescoping
E_ (@ )Nt =E_ (WM )BT =M H(E- (W) —E_ (M)

+E_(uM)p"
=e VRPN Py Vhy+(Ap —py)by+ iy 1bo+7y 1 mode ¥"§™N72,
(4.20)
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Eq. (4.16) for N+ 1 follows in view of the choice (4.18) and (4.19) for uy ., and by.
This proves Proposition 4.4. [

Finally, we shall associate the quasimode of Theorem 4.2 with the true
eigenvalues and eigenfunctions of P. Setting I =(— 00, Ao+ hu, +hu, +&h*?], we
know from the general stability result Proposition 1.5, that if ¢, h > 0 is sufficiently
small, P has exactly 1 eigenvalue in I in the case of a linear or planar molecule and
exactly 2 eigenvalues in the case of a non-planar molecule. One then proceeds as in
the proof of Theorem 3.2 for the diatomic case to show that u(h) constructed in
Theorem 4.2 gives an asymptotic expansion of these eigenvalues of P.

More precisely, one finds

Theorem 4.5. Let y € C3(Q) be an SO(3)-invariant cut-off function and II denote the
spectral projection of P associated with the interval I.
Then, with w(h) given by Theorem 4.2, the function

u(h)= [ ITyw(h)||~* M xw(h) (4.21)
verifies for all ¢>0,
u(x, y; )=c(h) x(x)w(x, y; h)+ O(e~ 1 ~9*@/kpoy  in H*(R3™ x R?), (4.22)
where
ch)=llxwh)| "'~ Y c;h!,  co#0.

Furthermore, for a linear or planar molecule, the unique eigenvalue E(h) of P inI
satisfies

E(h) = u(h)+ O(h™), (4.23)

and u(h) is the associated normalized eigenfunction. For a non-planar molecule, the
two eigenvalues E (h)<E,(h) of P in I satisfy

Eh)=uh)+0h>) (j=1,2), (4.24)

and the associated normalized eigenfunctions are

1 1
1 h = 1 h 5 h - 1 _ , 4'
vy(h) T (I+7)u(h), vy(h) 0 Ca ) (1—7)u(h), (4.25)

where t denotes the reflection in R3™ xR?, i.e. tu(x,y)=u(—x, —y). Thus the
asymptotic form of v{h) is given by inserting (4.22) into (4.25).

We leave it to the reader to deduce the form (4.25) of the eigenfunctions of P
from global O(3)-invariance of P. The normalizing constant c(h) in (4.22) has an
asymptotic expansion in h which can be calculated by the stationary phase method
since w(x, y; h) becomes smooth in x after our standard coordinate change. In fact,
letting {y;} be a partition of unity subordinate to the cover {Q;} of Q, we get using

b

2

lxw(h)[? ~ HX ; ;U Ej (u(h) B(h)

= ,Zk CC1GE; () B, U U E (u(h) BB (4.26)
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where the formal pseudodifferential operator U,;U, 'Ef(u(h)) coincides with
Ef (u(h) in Q;nQ, in view of (4.11). Thus

v~ T g, 4.27)

where &, +0, noting that b, defined by (4.7) is positive in Q and using (4.12). It
follows that c(h) admits an asymptotic expansion of the same form.

5. Eigenvalue Splitting

In view of Proposition 4.1, a non-planar molecule leads to a symmetric double well
problem. In this final section we shall estimate the splitting between the two first
eigenvalues E,(h) < E,(h) of P(h) for such a molecule, assuming (H6). Letting I',, I',
be the two disjoint connected components of the potential well I, we denote by
d{x)=d(x,I;) the distance of a point xeR*" to I; in the Agmon metric
(A,(x)— Ag)dx? and set

So=min (d,(x)+d,(x)).
We assume in addition that A,(x) is a discrete eigenvalue of Q(x) for all x satisfying

d,(x)+dy(x)< Sy + ¢, for some fixed ¢,>0. For #>0 being sufficiently small, we
consider the regions

Q;={xeR>; d(x)<So—n}, Jj=1,2,

and denote by P, the Dirichlet realization of P in Q; x R?. One then has with p(h) as
in Theorem 4.2

Proposition 5.1. Choosing ¢>0 sufficiently small, there is exactly one eigenvalue
E2(h) of P;in l=(— 00, Ao+ hu, +h*(u,+e)). It verifies

EP(h)=E3(h)=p(h)+O(h*) as h|0, (5.1)
and the associated normalized eigenfunction u? of P; satisfies
lI Vx,y(edj(x)/hu?) H L2, X R) + ”edj(x)/huf HLZ(.QJ R?) < Ch~ No (5.2)

for some N> 0.

In view of Theorem 4.2, a proof of this proposition is given by combining
hypothesis (H1) with the arguments in Sect. 5 of [HS1] which we shall not
reproduce here. Note that (5.2) is an improved version of the energy inequality.

We shall now use the well known method of the interaction matrix to compute
the splitting AE=E, —E, in terms of the Dirichlet eigenfunctions u?. We choose
7€ CF(Q)) with yx(x)=1if d(x)<S,—3#n, j=1,2, and set

VX, y) =1 (X)up(x, ).

Denoting by I1 the spectral projection of P(h) on the energy range (— o0, 4o+ hy,
+ h*(u, +¢)], the functions Iv,, ITv, form a basis of Ran IT for h> 0 sufficiently
small. Orthonormalizing this basis, P|g,, is then represented by the matrix

E> 07 [0 b, ~
- N g 7(»—2Solh
4 [0 ED} [b O}W(e ). (5.3)
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where E°P=E?=E? and
b=(<VxX1 * qu?7 v2> + <vls VxXZ : Vx u12)> +%<IVX1121/{11), U2> + %(vl’ IVXZIZug>)
(5.4

(see [HS1] for the calculation). We recall that our notation for the remainder terms
means that for any ¢> 0 there is # >0 such that the remainder in (5.3) is of order
0 (e~ ?S0~*/") The representation (5.3) then leads to

Theorem 5.2. Let E, <E, be the first eigenvalues of P. Then

E,=EP—|b|+0(e~>"), E,=EP+|b|+0(e™>5M), (5.5)
and the splitting AE=E, —E, satisfies
0<AEZCh™Nig=Soh (5.6)

for some N >0, if h>0 is sufficiently small.

Proof. Equation (5.5) being a trivial consequence of (5.3), we only prove (5.6). Note
that (5.2) implies

||edj/h qu}) l L2Q; xRp) T I edj/h“?”Lz(Q,- xRp) S Ch™V (5.7
for some N>0. In fact
eV | S|V Le®™ud)ll +h™ 1 |(V.de’™u?|, (5.8)
and using |V, d{x)|> £4,(x)— 1, a.e. in xe R>", one gets
1(7.d)e " u |2 < {(A4(x) — Ao)e™™u?, el
S QM) ~ Ao)e!uf, eiu?

2|V, eV ud) |2+ C e mu)|?. (59
The last estimate follows from hypothesis (H1), which in particular implies that
V(x,y)+W(x) is —A4,—4,form bounded with relative bound <1. Thus (5.7)

follows from (5.2) combmlng (5.8) and (5.9). Since AE =2|b|+ 0(e 25", one gets
(5.6) by use of (5.4) and (5.7). O

To obtain an asymptotic expansion of the splitting AE, we are forced to make
additional hypotheses on the geometry of the minimal geodesics connecting the
two wells I'; and I',. In particular we have to exclude the possibility that some
geodesic meets the set € of nuclear collisions. Even in the physical case of repulsive
Coulomb interactions between the nuclei, this might a priori be possible since d (x)
stays bounded on %. Thus we assume

di(x)+dy(x)>S,, (x€9), (5.10

which implies that {x e R*"; 1(x)+d2(x)<S0 +é&0} =M, and € are disjoint for
&9 >0 sufficiently small. We choose a region QCC&, w1th C*-boundary 022 such
that I'; CQ, and set L=0Qn .4, As in [HS1] one computes

b=2h{ [ (uB0, u—uPd, uB)dS.dy+0(e”"h"). (5.11)

To get an asymptotic expansion of b by stationary phase, we assume
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The minimal geodesics connecting I'; and I', (with endpoints removed) form a
4-dimensional C*-manifold M which intersects L transversally, and

d;(x)+d,(x)=So+cod*(x, LAnM), (xel) (5.12)
for some c,>0.

Theorem 5.2. Assuming (5.10) and (5.12), the splitting AE=E,—E, admits a
complete asymptotic expansion

AE~e ™ 5M"p S b/, with o,#0. (5.13)

j=0
Proof. In view.of (5.10) there is an open neighborhood of I';UM, j=1, 2, where 4,(x)
is a discrete eigenvalue of Q(x) and hence is C® in x. Thus, according to [HS2],
there is an open neighborhood W of I';uM, such that d;e C*(W)) and 4, e C*(W,
UW,). Applying Theorem 4.2 to each well I'; we obtain approximate eigenfunc-
tions wj(h) near I';, and using the transport equations we can extend wj(h) to W,
such that

(P(R)— p(W)w ()= O(h= e~ %) i W],
Wx, y1 By~ e~ WIRTBm I S g () (5.14)

k=0
where a;(x, y)=b;o(x)u;(x,y) with b;o(x)>0 in W; and bj,|r,=1. It follows from
(4.27) that the normalized approximate eigenfunctions which we still denote by
wj(h) admit a similar asymptotic expansion, and in view of (5.2) we find that for
each compact set KC W,

|| e Vx,y(uf') - Wj) [ L2k xRe) T l edj/h(“}) - Wj) L2k RP) = O(h*). (5.15)
Since P(h)(u} —w)=0(h”e” %) in K xR?, one gets from (5.15) that
" +|ZI _, le®™(hD Y Di(u? —w )|l L2k x mey = O(h*). (5.10)

It follows that in (5.11) we may replace u? by w; to get
b=2h*{ [ (wy0, w,—w.0, w,)dydS + O(h* e 5"). (5.17)

L Rr
A priori wix,y) is only in CZ(WJ-, L2(IR?)). But one can then use our standard
coordinate change as in the remark ending Sect. 4 to show that

mjp (WZaanI - W16an2)dy eC?(L).

Hypothesis (5.12) then allows to calculate the asymptotic expansion of b by the
stationary phase method. We leave it to the reader to fill in the straightforward
details and thus complete the proof of Theorem 5.2. [

Finally we remark that dropping assumption (5.12) and keeping assumption
(5.10), one can still derive precise upper and lower bounds on the splitting, using
the methods of [Ma1l]. Although we don’t offer a proof, we think that (5.10) is
generic since 4,(x) tends to infinity as x approaches the set € of nuclear collisions.
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