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Abstract. We consider the Schrόdinger operator P(h) for a polyatomic molecule in
the semiclassical limit where the mass ratio h2 of electronic to nuclear mass tends
to zero. We obtain WKB-type expansions of eigenvalues and eigenfunctions of
P(h) to all orders in h. This allows to treat the splitting of the ground state energy of
a non-planar molecule. Our class of potentials covers the physical case of thp
Coulomb interaction. We use methods of /ι-pseudodifferential operators with
operator valued symbols, which by use of appropriate coordinate changes in local
coordinate patches covering the classically accessible region become applicable
even to our class of singular potentials.

0. Introduction

Molecular systems are described by the many body Hamiltonian

P(h):=-h2Ax + h2p(dy) + Q(x),

Q(x)=-Ay+V(x,y)+W(x)9

 ( '

where x e Rw denotes the nuclear and y e Rp the electronic coordinate; p(dy) stands
for the isotopic term and Q is the electronic Hamiltonian. It is formally P(h = 0).
The potential V denotes the electron-electron and nuclei-electron interaction and
the potential Wihe nuclei-nuclei interaction. They are typically of Coulomb type.
h2 stands for the ratio of electronic and nuclear mass. The isotopic term p(dy) is of
second order in dy and a result of the non-canonical coordinate system
traditionally used in this context: The so-called center of mass of the nuclei system.
It is not of the Jacobi type. Figure 1 shows the coordinates used for the case of 2
nuclei A, B and 3 electrons a, b, c.CNM stands for center of mass of the nuclei and
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Fig. 1. The molecular coordinate system

The electronic Hamiltonian as well as the isotopic term commute with the
nuclear position operator x. This makes it possible to introduce the following
geometrical picture: Think of the molecular state space Jtif as the space of square
integrable sections in the trivial fiber bundle IR" x L2(R£). In this picture the
operator P(h) decomposes into two terms. The first one (the nuclear kinetic energy)
acts in the base space. The second one (the isotopic term and the electronic
Hamiltonian) operates on the fiber only,

Q = S d x Q ( x ) . (0.2)

Q(x) can be interpreted as the Hamiltonian for the electrons in the external field of
the nuclei positioned at x s R". Its spectrum is typically discrete in the low energy
region and continuous above a threshold energy.

In molecular Hamiltonians there is a natural small and dimensionless
parameter: the mass ratio h2. It is typically of the order 10 ~4. This suggests a
perturbative computation of physically interesting quantities like the spectrum of
P(h) or scattering cross sections.

The main challenge in molecular physics in the twenties was to explain the
phenomenologically observed 3 scales in the spectra. Born and Oppenheimer -
after a futile attempt by Born and Heisenberg in the area before the Schrόdinger
equation - solved the problem. In their seminal paper of 1927 [BO] they
developed a formal perturbation theory in k = ]/h and argued that the zeroth,
second and fourth order explains the qualitative picture of molecular spectra.
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Fig. 2. Discrete and essential spectrum of Q(x)

A mathematical justification of the Born-Oppenheimer method started to
develop much later. In 1981 the diatomic case with rotationally invariant
potentials could be treated using methods of functional analysis [CDS]. Some
years later, a discussion of the full asymptotic expansion in h was given by
Hagedorn [Hal, Ha2], using separation of variables and the method of multiple
scales. This was generalized to the case of many nuclei for smooth potentials only
[Ma2], where WKB-type expansions were given for non-radially symmetric
potentials supposed to admit nondegenerate point wells of the effective potential.
In this article we shall justify the Born-Oppenheimer expansion for polyatomic
molecules and a class of potentials which includes the physically interesting case of
Coulomb interactions. The method relies in an essential manner on a technique
introduced by Hunziker [Hu]. Hence, in some way, this work is a realization of
Remark 6 in the article by Hagedorn [Ha2].

The mathematical analysis of the Born-Oppenheimer method faces two main
obstacles which we want to describe now in general terms. They are related to the
semiclassical nature of the problem and in part to the main technical tool for
treating such problems: the pseudodifferential calculus.

In the classical setting the operator to be discussed is of the type — h2A + V9

where V is the multiplication operator by a smooth potential function. In the
molecular case the corresponding object is Q. Yet Q is neither a multiplication
operator nor smooth (the latter only for non-smooth potentials).

Since Q is really an operator and not just a potential function it becomes
necessary to use a pseudodifferential operator calculus with operator valued
symbols. Furthermore for the application of pseudodifferential operator techni-
ques, it is useful to translate the eigenvalue problem

P(h)ψ(h) = λ(h)\p(h) (0.3)

by Grushin's method into the problem of inverting a 2 x 2 matrix operator.
Let us describe the structure of this method in slightly more detail. Let Π(x) be

the spectral projection of Q(x) projecting onto the lowest N eigenvectors. Hence

Π= f dxΠ(x)
Θ

(0.4)

is a projection on the molecular state space ffl. Π is a natural object in the context
of the semiclassical limit since it is expected (and in certain cases even proved) that
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the spectrum and eigenfunctions of P are well approximated by the spectrum and
eigenfunctions of ΠPΠ.

The Grushin operator is defined by

and acts on $f@Πtff. i denotes the immersion Π3tf-*3tf. Its inverse is formally
given by

R(λ) Π-R(λ)ΠPΠΊ

Π-ΠPR(λ) λ-F(λ) _ | ' ( j

where R(λ) denotes the restriction of the resolvent Π(P — λ}~1 to the range of
77 = 1 — 77. F(λ) is the Feshbach operator and defined by

F(λ) = ΠPΠ - ΠPR(λ)ΠPΠ . (0.7)

On a formal level it is easily seen that the eigenvalue problem (0.3) is equivalent to
the generalized eigenvalue problem for F(λ\

F(λ)ψ = λψ. (0.8)

This program can be implemented in the framework of pseudodifferential
operators under appropriate conditions. In particular it is important that 77
defines a continuous trivial vector bundle over R" (or at least over a convenient
open subset Ω\ which is smooth in x after conjugation by a unitary which
preserves the fiber structure. More explicitly, there exist global continuous sections
Ψi(x), ί = l , . . . , Λ f such that

Π(χ)φ(χ) = Σ vfc)<n<x),<p(x)>y, (0.9)
i = 1

where the scalar product refers to the Hubert space structure in the fiber. The local
smoothness refers to the existence of unitary operators C7(x), defined locally in x,
acting on the fiber over x such that

ψl{x): = U(x)ψi(x) (0.10)

is smooth. This can be summarized by saying: There exists a differentiable
structure on the trivial continuous vector bundle defined by 77 which turns it into a
smooth bundle. The origin of this structure is explained in the following
paragraph.

The second obstacle mentioned previously is the non-smoothness of Q. Let us
explain this looking at the following example. The electronic operator for an
electron in the field of two nuclei acting in the fiber x e R" is given by

The singularity in y is x-dependent. Hence differentiation of β(x) gives rise to
singularities in y which are getting worse with increasing |α|:

+ ΓΓ + (0-12)
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In the diatomic case with rotationally invariant potentials this problem could be
removed by a simple dilation technique [CDS]. In the general case this is much
more subtle. It can however be overcome by a technique introduced by Hunziker
[Hu] and is similar in spirit to the method used in the diatomic case: In each
coordinate patch ω CR", P(h) is replaced by a unitarily conjugated operator, where
the unitary U(x) implements a diffeomorphism in y space so that the singularities
get x-independent. For geometrical reasons this diffeomorphism can only be
constructed locally in x-space. So a cutting and pasting procedure is needed.

Finally one heuristic word about the singularity introduced by the nuclear-

nuclear interaction — in the electronic Hamiltonian Q(x). Its presence is rather
\x\

harmless because of its repulsive nature (positivity). In the limit h J,0 the wave
functions are localized in x-space around minima of inf Sp(Q(x)). So they avoid any
point of nuclear collision.

Let us now come to an exposition of the structure of this article. In the first
section a framework is developed which is large enough to incorporate physically
interesting Hamiltonians. The main goal of this section is the construction of the
inverse of the Grushin N x N matrix operator as a pseudodifferential operator for
all λ in a certain energy range /. The energy range which is considered determines
the number N. The potentials are assumed to be Kato small, and W must be
positive as in the example just mentioned (Hypothesis 1). The function λ±(x)
= inf Sp(Q(x)) plays the role of an effective potential function which defines a
decomposition of R" into a classically allowed region Ω and the classically
forbidden region R"\Ω (depending of course on the energy range / = [— oo,fe)
considered, λ~i(I)CΩ). Since most of the interesting phenomena happen in the
classically accessible region the relevant assumptions concern Ω only. In
particular, for every x in a neighborhood of Ω a diffeomorphism F^.R^-^R^
(locally in x) is defined such that V(x, ) is smooth in x as a map from H2(JRξ) to
L2(R£) after conjugation by F (Hypothesis 2). In Hypothesis 3 an assumption is
introduced which makes the reduction to the N x N Grushin matrix operator
possible.

As mentioned previously, to realize the Grushin operator as a pseudodifferent-
ial operator on a manifold, it is crucial to have the triviality of the vector bundle
defined by Π, at least over the classically accessible region. This is ensured by
Hypothesis 4. Furthermore, since eigenfunctions are localized in the classically
allowed region, it is possible to replace the Grushin operator in the classically
forbidden region by a smooth one modulo a small controllable error. In fact we
replace Q by an operator βζ, which differs from Q in the classically forbidden part
of R" only. By an argument involving the Agmon inequalities for eigenfunctions of
P (see [A], and [HS1] for the semiclassical version) one can show that the
substitution of Q by βζ does not change eigenvalues up to an exponentially small
term in h. It leads to the main result, the existence of the inverse of the Grushin
operator as a pseudodifferential operator (Theorem 1.2). As an application
(Proposition 1.5) it is shown that the operator P and the operator ΠPΠ have the
same spectrum in a vicinity of λΌ = inf Sp(Q(x)) of typical size h up to a correction
term of order h5'2. x

In the second section it is shown that for molecular Hamiltonians the
assumptions of the first chapter are met. So the results can be applied. The
eigenvalue problem for P can be replaced by the generalized one for the Feshbach
operator.
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In the third section the diatomic case is considered. It is shown that the first N
eigenfunctions possess asymptotic expansions in h of the WKB type.

In the fourth chapter the corresponding results are derived for a polyatomic
molecule in the ground state. A non-planar polyatomic molecule is shown to
display the Jahn-Teller effect, i.e. the minimal set of /^(x) in R" is disconnected.
The situation is therefore very close to a multiple well problem. In the last section
the eigenvalue splitting for this generalized multiple well problem is computed
along the lines of the article by Helffer and Sjόstrand [HS1].

1. Reduction to an Effective Hamiltonian

We consider the Schrόdinger operator

P=-h2Ax + h2p(dy) + Q(x); Q(x)=-Ay+V(x9y)+W(x) (1.1)

on L2(R" x R£), where p(dy) is a symmetric differential operator of degree 2 with
real coefficients and the potentials V(x,y\ W(x] satisfy hypothesis (HI), (H2)
below.

In the physical application we have in mind we think of x e R" as Jacobi
coordinates for the position of (m+ 1) nuclei in R3 with the center of mass of all
nuclei and electrons removed and of y eRp as representing the configuration of q
electrons (measured from the center of mass of the nuclei alone). We shall see in
Sect. 2 that a typical molecular Schrodinger operator is of the form (1.1), where
V(x,y) contains the nucleon-electron and the electron-electron interaction, and
W(x) contains the nucleon-nucleon interaction.

In this section we shall show that, although V and W in general possess
singularities, complete information on the low lying part of the spectrum Sp(P) is
contained in a certain /ι-admissible (i.e. pseudodifferential up to O(/ι°°)) operator
E_+(λ\ which is defined by constructing an inverse of an appropriate Grushin
problem for P. It is essential for this result that the nuclei-nuclei interaction W
is repulsive, and that after a suitable x-dependent change of coordinates the real
multiplication operator F(x, y) depends smoothly on x as an operator with fixed
singularities. More precisely, we assume (HI) and (H2) below.

(HI) For all x e R" V(x, ) is ^-bounded with relative bound a < 1, uniformly in x,
and W^O is zl^-bounded with relative bound zero.

In particular, for h sufficiently small P is realized as a selfadjoint operator in
L2(R" + P) with domain @(P) = H2(ΊRn+p) which satisfies P^-y for some y>0
uniformly in h.

Remark 1.1. We assume W to be ^-bounded with relative bound zero only to
avoid technical domain questions unrelated to the problems considered here. In
fact, since W^O, we could roughly speaking treat any positive singularities of W
compatible with selfadjointness as long as W is smooth in a region Ω satisfying
(H3).

(H2) There exists a finite family of open sets (Ω_/)5=ι in R" with compact closure
and an associated family of mappings FjECco(Ωj x Rp; Rp) such that for all
xeΩy, 1 ̂ 7^r, F7 (x, •) is a diffeomorphism of Rp, which equals the identity
for \y\ sufficiently large and satisfies

F(x, F/x, y)) ( - Δy + 1 ) ~ * e C°°(Ω7, J^(L2(R'))) . (1 .2)
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Furthermore

W(x)eC"(Ωj,K). (1.3)

Next, for any M, we shall denote by λί(x)^...^λM(x) the M first values (not
necessarily eigenvalues) given by the Mini-Max principle for the semibounded
operator Q(x) on L2(]R£), i.e. its first M eigenvalues or possibly Inf Spess(Q(x)). Due
to possible positive singularities of W outside uΩ, we allow oo as a value of λjf By
adding a constant we may assume lim-mϊλi(x) = Q. We are interested in the

|*|-* oo

spectrum of P in an interval / = ( — oo, fc] with λ0 = Inf λ± < b< 0, and we assume
R»

(H3) There exists an open set ΩCC \J Ω, such that λϊl(I)CCΩ and
j=ι

b< Inf Sp(Q(x))\{λί(x\ ..., λM(x)} for some MeN.
Ω

To study just a small neighborhood of λ0 it suffices to take M = 1 however in order
to study a larger range / of energy we shall as well treat the case of several
electronic levels λfa). Note, however, that for M = 1 the groundstate u^x, •) of Q(x)
can be chosen positive for x E Ω; thus it is globally defined as a continuous function
of x e Ω. Since for M > 1 this may fail for the eigenfunctions of Q(x) associated with
λfa)9j>ί, we shall in addition assume

~ r ~
(H4) There exists a contractible open set Ω containing (J Ω such that for x e Ω

J=ι
the M real numbers λt(x) = λfa) — W(x\ 1 ̂  i ̂  M, are discrete eigenvalues of
β(x)— Hφc), which are separated by a gap from the rest of its spectrum.
Furthermore the orthogonal projection Π(x) on the associated eigenspace
belongs to C(Ω, J5?(L2(R£))).

We remark that if P is a molecular Schrόdinger operator as in (H mol) of Sect. 2,
the projection Π(x) is automatically C2 in x as long as the gap condition in (H4) is
satisfied (see [CS]). Furthermore, by standard arguments it follows from (H2) that

Ujx)Π(x) V] \x) E C»(ΩP JS?(L2(R£), #2(R£))) , (1 .4)

where Ufa) denotes the unitary transformation

faίy)\V2
 (1.5)

induced by Ffa, •) on L2(Iφ for xeΩj. In fact, setting Qfa)=Ufa)Q(x)U]~l(x)9

showing (1.4) reduces to proving existence of

ίQfa) -λT1 SΛ

xQfa) LQfa) - λ-\ - 1 e ̂ (L2(R )̂, H2(R$) (1 .6)

for xeΩp αeN" and λ in the resolvent set of Q(x). This follows from (H2).
Since in view of (H2) Ufa) is bounded in #2(R£), we get

IQfa) - A] ~ 1 e JέP(L2(RJ), #2(Iφ), and using (1 .2) in (H2), (1 .6) can be read off the
explicit formula

Qfa)= -((dyGJ)
τ(x,Ffa,y))dy + H(x,y))2 + V(x,Ffa,y))+W(x), (1.7)

where Gfa, •) denotes the inverse diffeomorphism of Ffa, •), T stands for the
transposition, and
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The main point of (H4) is to assume Ω contractible (which a priori could be
violated by eigenvalue crossing and absorption of eigenvalues into the essential
spectrum of Q(x) — W(xJ).

Due to the homotopy property of vector bundles ([BT, Hus]) this ensures that
the vector bundle EcΩx L2(R£) over Ω defined by Π(x) is trivial. More precisely,
we have

Lemma 1.1. Assume H1-H4. Then there exist M functions ι/z(x, y) e C(Ω, H2(R£)),
r

/=!, ...,M, such that V x e (J Ωj
7=1

Π(x)= Σ < ,ul(x)yyul(x); <Mι(x\uk(xf>y = δlk9 (1.8)

where < , )y denotes the scalar product in L2(RJ), and in addition the sections ut(x)
of E become smooth after the coordinate change induced by FJ9 i.e.

Uj(x)Ul(x, .)eC°°(%#2(R£)) (1 ̂ M, 1 ̂ r). (1.9)

Furthermore, for all xeR", there is an orthonormal set (with respect to the
L2-scalar-product) of functions w t(x),..., WM(X) in #2(R£) which coincides with the
Mj(x) /or xeλj^COccΩ, satisfies (1.9) αwd

wz(x, OeC"(R^Ω,H2(Iφ). (1.10)

Proo/ The triviality of the vector bundle E induced by Π over Ω is equivalent to the
existence of M continuous sections wz(x) of £ which span the fiber Ran/7(x) at each
x e Ω. Taking χ E CQ({Z E R"+ p, |z| < 1}) with J χ(z)dz = 1 we introduce the mollifϊer

MJ(z)= J ε-"-M - f ( z } d z .
R^P \ ε J

Setting // = //2(R^) and letting yicR" be a bounded open set, we claim that for
fεC0(Λ9H)

HM e/-/| |Loo ( y l f J f )-^o (40). (i.ii)
In fact it follows from Young's inequality that

thus, in view of the Sobolev imbedding theorem and Hs

0(Λ,H)πC0(Λ,H) being

dense in C0(A9H) for s>-5 it suffices to show (1.11) for f<=Hs

0(Λ,H) with

convergence in || \\H^Λ,HY For s integer this is an immediate consequence of the
well known convergence in L2(Λ, L2(R£)).

Thus, for ε sufficiently small, Π(x)(Mεύl)(x, •) span Ran/7(x) for xe (j ΩJ9 and
7

by Gram-Schmidt we obtain from these functions an orthonormal basis MZ(X) of
Ran/7(x). This basis clearly satisfies (1.8), and (1.9) follows from (1.4) since
Uj(x)(Mβl)(x,')eCGO(ΩpH

2(]^p

y)). To modify the ut(x) outside λ^(I) we fix a
smooth partition of unity £, Co subordinate to Ω, R^Af^/). Since u^x) is
continuous on the compact set Ω9 we find for each ε>0 a cover {£j}f= i of Ω by
small open sets, points x7 e τ3j, and a partition of unity /y subordinate to Bp such
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that

N

^ ε, (x E Ω).
N

Σ

615

(1.12)

Choosing M orthonormal functions gt e #2(R£) in the orthogonal complement of
Span (Ufa); \ ̂  I gM, 1 £j£N} we set

(1.13)

Then it follows from (1.12) that

and orthonormalizing these functions (for ε sufficiently small) yields

which verifies all the assertions of the lemma. Π

Next we fix ζ e C?(Ω) with 0 ̂  ζ ̂  1 and £ = 1 in a neighbourhood Jί ofλΐ *(/) as
in the proof of Lemma 1.1 and set

βC(x)= _j y + C(x){κ(χ,);)+^M}. (1.14)

Then βζ(x) = β(x) on λΓ1(/ = (-oo,fe]) and

βζ(x)>6, (xeRVΓ'W)- (1-15)

In fact, for φe#2(Rp) with ||φ|| = 1 we have

<β«(x)φ, φ> ̂  C(x) <β(x)φ, φ> ̂ min {<β(x)φ, φ>, 0} ̂ min μ^x), 0} ,

proving (1.15). In particular, using (H3) and Lemma 1.1 this ensures that

Π(x)Qζ(x)Π(x)-λ>0, (Ae/,xeRπ), (1.16)

where l?(x) = l — 77(x) and 77(x) denotes the orthogonal projection on
Spanjw^x), ..., wM(x)}. This will be crucial for inverting the following Grushin
operator associated with Pζ= —

... wM

vM/y 0 0

(1.17)

M

which is selfadjoint as an operator in L2(RM+p)φ 0 L2(RW)^L2(RΠ;

L2(Rp)0CM) = :^f. Here Wj denotes multiplication by Wj as an operator
from L2(RΠ) to L2(RM+P) and <• , w^y its adjoint.

Before stating the main result of this section, let us recall the following
notational convention: A family of bounded operators A(h) from ^(R",̂ ) to
L2(R",#2), where Hi9 H2 are Hubert spaces and /ze(0, /ι0] with Λ0 sufficiently
small, is called h-admissible of order k, if for JV sufficiently large

A(h)=
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where RN is uniformly bounded from L2(R";HX) to L2(R"; H 2) for
with ||3«αχx,£)||^(HlfH2)^Cβ<O* for all αeN2" uni-

formly in (X £)eΓ*Rn, and Op(α/x, £)) denotes the pseudodifferential operator
which for <p e C^(R", //J is defined by the oscillatory integral

Op(α/x, ξ))φ = (2πhΓn/2 J ei(χ-*'™haj(x, ξ)φ(x')dx'dξ .

A slight generalization of the Calderon-Vaillancourt theorem then yields that
Op(flj) extends uniquely to a bounded map from Hk(R", ii\) to L2(R", H2) (see e.g.
[GMS, BK]).

We shall call the formal series

7 = 0

which is uniquely determined by the /z-admissible operator, the symbol σ(A(h)) of
A(h). Composition of /ι-admissible operators A(h), B(h) induces the product of
symbols

which by the usual symbolic calculus is given by [BK, GMS]

(aΦb)(x9ξ9h)= Σ d f r ( x 9 ξ 9 h ) P x b ( x 9 ξ 9 h ) 9 (1.18)

assuming of course that the image of B matches the domain of A.
We are now ready to state the main result of this section as

Theorem 1.2. Assume H1-H4. Let Ω0cR" be open and disjoint from Ω such that
{Ωj}5=o cover R". Then the Grushίn operator &λ is invertible for all λel, and
mod$(/2°°) its inverse is given by

r

<$ = 0>-^= £ % r l X j £ f i i j X j 9 (1.19)
j = o

M

where $j is an h-admissible operator which is bounded from L2(JRn+p)φ 0 #2(R")

M

to #2(R"+P)Θ 0 L2(R"), χjEC^Ωj) with suppχ^ C^ and
k= 1

i
where Uj acts on L2(R" xR£) according to (1.5) and U0 = ΐ .

Furthermore, writing £= \ , E_+(λ) is h-admίssible, its prin-
\_E_(λ) L_+(λ)_\

cipal symbol is the M x M matrix

B(x9 ξ'9λ) = λl- «w,(x), (ξ2 + Qζ(x))wk(x)yy) , 1 ̂  fc, / ̂  M , (1.20)

/zai e Vie/ :

+(λ)). (1.21)

Remark 1.2. i) Without loss of generality we may assume that the set Jί on which
ζ = \ satisfies hypothesis (H3) with Ω replaced by M. One may then use the
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arguments of [HS1] to show that both Sp(P) and Sp(Pζ) coincide in / = (— oo,b]
with the spectrum Sp(PM) of the Dirichlet realization of P on M up to Θ(e~δfh) as
/ϊj,0, where Q<δ<d(λΐ1(I)ίdJ?) and d denotes the distance in the Agmon metric
ds2 = max{λ1(x)-b,Q}dx2.

This follows by combining a rough estimate on the number of eigenvalues of P
in / with the Agmon type estimate

\\7(^l-Λ)dlhφ)\\ + \\e(l'Λ)d/hφ\\=β(ί) as AJO(β>0),

where d(x) = d(x9λϊ1(l)) and φ is any eigenfunction of PM (or P or Pζ in the
respective domain) with eigenvalue in /.

In order to study Sp(P)n/ it thus suffices to study Pζ, which has the advantage of
leading to the Grushin problem (1.17) depending - at least after local coordinate
transformations - smoothly on x. If, for instance, Q(x) depends smoothly on x
globally in R" [or does so after a finite number of coordinate changes as in (H2)],
then Theorem 1.2 remains true for the initial operator P replacing the smoothed
out operator Pζ in (1.17).
ii) One could also have worked with /(P) instead of Pζ, where /e C°°(R), f(λ) = λ

on(— oo, b],/ = const on [6', oo)for some br>b. Then the operator E_ +(Λ)in(1.21)
would have been replaced by a bounded operator E_+(λ) which also is
Ji-admissible, but less pleasant to work with than £_ +(λ). In particular, it does not
via its symbol connect in any obvious way with the WKB constructions of
Sect. 3.
iii) It follows from (1.20) that

where A(x) is a symmetric matrix satisfying A(x)>bl for xeRΪI\Λj~1(/).

Proof. The idea of the proof is in localizing 0*λ by means of a partition of unity to
the coordinate patches Ωj, where conjugation by ̂  yields a pseudodifferential
operator with a smooth operator valued symbol. Inverting its principal symbol
defines an approximate inverse which then can be corrected to yield &ϊ 1 in the

form (1.19). We choose χjeC^Ω.) fory^l, ^eC00^) with # = 1 and set

(1.22)

where

J(x,y) = (dxGy(x,y = Fj(X,y)),

K(x, y) = (detail 1/2/),|det dy,G}(x, y' = F/x, y))\ l>2 ,

and Gj{x, •) is the inverse diffeomorphism of Fj(x, •). Clearly Pj is selfadjoint in
L2(RΠ+P) with domain containing @ι(P) and semibounded from below uniformly in
h; in fact, we have Pζ^—y for some y>0, and thus

^
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We shall now consider the localized Grushin operator

(1.23)

where w Z j J = U w^
In view of (H2) and Lemma 1.1 ̂  is a pseudodifferential operator with

an J2?(#2(IRP)Θ(CM; L2(RP)0(CM)-valued symbol, bounded from

H2(Rn+p)® 0 L2(JR") to L2(R" + /7)0 0 #2(R"), and by (1.22) its /z-principal
fc=l k=l

symbol is given by

/x,f). (1.24)

w l f/χ) ...

0

Using (1.16) one readily verifies that for all λ e /, (x, (J) 6 T*Ωy, p; (x, <J) is invertible
with inverse

X(x9ξ)

B ( x , ξ ; λ )

, ξ) - Πj(x] (Πj(x) (ξ2

(1.25)

(1.26)

where the M x M matrix 5(x, ξ; λ) is given by (1.20) - independently of j l - and
777 (x) = Uj(x)Π(x) VJ l(x) denotes the projection on the orthogonal complement of
Span{w l f/x),...,wM f j(x)}.

Setting

Q= Σ VΓ

one has

(1.27)

(1.28)

JVZ

Note that β, is bounded as a map from @(Qj): = L2(1Rn + p)® 0 #2(R") to
k= 1

M

J) L2(R") = @(0*λ) as follows by inspection of each matrix element of

QJ. Thus the composition ̂  β7 is well defined as a bounded operator in ̂ (β; ) (vice
versa β^ is bounded on ̂ (̂ ;J), and we shall now apply the pseudodifferential
calculus for operator valued symbols separately to each matrix element of ^/βy to
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get that

where χjt 1 e C°°(Ωy) with χ7 1 = 1 on supp χjy supp χjt ί C ΩJ9 and Rj is an /i-admissible
operator which on &}(Qj) is uniformly bounded in h. In fact, with X(x9 ξ) as in (1.26)
we have for m = 0,1,2

(1.30)

while a short calculation gives the principal symbol of Rj as

2 " ί ^ . R7 £{#*>)_ 0

A.HΊ.; -. ^WM,;!
0 J

0 0

M

Thus Rjt0: = Op(σpί(RJ)) is even bounded from L2(RW+P)0 0 /^(R") to
k=l

and one readily checks using the symbolic calculus that

where the pseudodifferential operator R} x(/z) is uniformly bounded from
M

L2(RW;L2(RP)ΘCM)^L2(RΠ+P)0 0 L2(R") to ®(Qt). This proves (1.29).
k=l

Since furthermore the pseudodifferential operator

0~x

is of the same type as the principal part Rj 0 of RJ9 the operator %[̂ A, χj % 1χJ Q>/

- corresponding to the second member on the right-hand side of (1.28) - also is of
the form hχjtίRj9 where χjtί and Rj have the same properties as χ j f ί and Rj.

Redefining χjt ^ and Rj we thus have

, where Λ= Σ %"1XΛiΛ/*rΛ i (132)
7 = 0

In order to compute 0*ϊ 1 from a geometric series, we essentially have to compute a
change of local coordinates in the overlap regions Ω^Ω^ and use the fact that the
/z-pseudodifferential operators Rj are still pseudolocal in the base space R". We
need

Lemma 1.3. For all fceN one has mod0(/ι°°)

^= Σ VΓ'Xj.iΛj.kVjXj.k, (1.33)

) equals 1 0w supp^ fc_! (setting χ; = χΛoλ U
feeN

A: k is an h-admissible operator which is uniformly bounded in h on
M

= L2(Rn+p)® 0 #2(R").
k = l

Proof of Lemma 1.3. It follows readily from (1.25) that

%- \*) = qfa ξ) (x e fi/ϊfl,, 0 ̂ /, / ̂  r) , (1 .34)
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and similarly for pj(x, ξ). Thus, using the symbolic calculus, one easily verifies that

^^ ^^^^Γ^Λ^M^^M^i (0^,/^r,/ceN) (1.35)

is /z-admissible and uniformly bounded in h. This gives

^2 = Σ {%" lu iRjRnxj. 2 + %" ̂  i/Wf 'ft, A A(i - x* 2) <%,. i ,
7,ί = 0

(1.36)

where the last term is $(/z°°) since suppχ^! is disjoint from supp(l — χ?2).
We then obtain (1.33) by induction on k with

j.*= Σ RjRfL...^. D (1.37)

To complete the proof of Theorem 1.2, we derive from (1.32),

N
k k N

+ Σ (-h)k@k>+Φ(hN)
k=l }

Σ ^-^f Σ (-^ ,Λ ,Λ ,fc)%4 + ̂ *) 0-38)
j = o \ f c = ι / J

where χ^eC00^-) with suppχyCΏ/ equals 1 on (J suppχ^ fe.
fceN

Inserting (1.27) on the right-hand side we have represented ^/l~
1 in the form

(1.19), since irA^-^G^) and

is /z-admissible in view of (1.37) and (1.35). By construction, one has a natural
bijection between Ker(P — λ) and Ker£_+(A), which completes the proof of
Theorem 1.2. Π

In order to relate Theorem 1.2 to the WKB expansions of Sect. 3, it is
convenient to state separately a few consequences of Theorem 1.2 and its proof.
They essentially regard the behavior of $ = ̂ A~ * under coordinate changes in the
overlap region Ω^Ω^

Corollary 1.4. For each ^eCg^Q,.),

is an h-admissible operator. Now fix XQ elRΛ Letting IXQ = {/; x0 e Ω7 }, we choose for
7*e/Xo cut-off functions χ, χjeQ^Ωj ) w/ί/z χ, χj =l ^βr x0

 απ^ Z supported in the
interior of {χ7 =l}. T/ze/7

2jPjX = X + &(h*) = 0>fy + ^(/i00) , (1.39)

where ̂  denotes the pseudodifferential operator ό^jχj^
>χlό^j~

1χj. In particular, we
have

(ty) (x, ξ, h) = lH2(^P)@(Cm (1 .40)

for all jε!XQ and x sufficiently close to x0.



Born-Oppenheimer Expansion for Polyatomic Molecules 621

Proof. Since

<?,-= Σ VjXflΓ'XifiVafllf'Xj+W0), (1.41)
1 = 0

one has to check that each individual term on the right-hand side of (1.41) is
ft-admissible. This follows combining the representation of δ^ given by (1.38) with
(1.37) and the crucial result (1.35) on conjugation of all remainder terms Rjtl by

~1. Furthermore

(1.42)

and the same for <?̂  χ, which proves (1.39) in view of the disjoint support of (1 — χ?)
and χ.

Finally (1.40) follows from (1.39), since σ(£^χ) (x, f, ft) = σ(J .̂) (x, ξ, ft) for x
close to x0> if X = 1 near *o Π

As the first application of Theorem 1.2, we shall prove that the eigenvalues of P
can be approximated by those of the effective Hamiltonian.

Proposition 1.5. Assume that the conditions of Theorem i.2 are satisfied with
M = l. Let P0(h) denote the Dirichlet realization of

over Ω. Put /=( — oo,#(ft)], where a(h)>λ0 is a function of h such that

a(h)^λ0 + ch and dist(a(ft), Sp(P0(h)))^c-lh2 , for some c>0. (1.43)

Then for h>0 small enough there exists a bijection b : Sp(P)rd-^Sp(P0)nIsuch that

\b(λ) -λ\ = G(h512} , Mλ e Sp(P(ft))π / .

Proof. According to the Remark following Theorem 1.2, λeSp(P)r\I if there is
μ = χ + Q(e " εo/Λ) such that 0 e Sp(E _ + (μ)). In addition the symbol of E _ + (λ) can be
computed:

l(x, ),Wl(x, •)>, .

(1.44)

where C / , •; A) is holomorphic in λel and |5"??c;j{x, ξ; A)|^cα<(J)~2. Put F(λ)

Since βζ(x) = Q(x\ w^x, ) = u^(x, ) for x e Ω, the eigenvalues of F in / are equal to
those of PO modulo an error of order O(e~εolh) for some ε0>0. In addition, we
deduce from (1.44) that

F-^F(λ)^F+, where F± =F±ch2(-h2Δ + h\ for some c>l . (1.45)

Now if u is a normalized eigenfunction of F with eigenvalue E(h)εl, we have:

||(F± -E(h))u\\ ̂
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Here II(X) = <G?(X)W I(X),W I(A:)>. Let φ(x) denote the Agmon distance of x to
{Iί = λ0} in the metric (IΊ(x) — λ0)dx2. In the domain X^x) — λ0 ̂  c/z1/2, we can then
easily estimate:

φ(x) ^ δ0h
314 , for some £0 > 0 .

Consequently, by the exponential decay of the eigenfunctions,

J I^W-Aol2^-^1-^^^1-^^!2^!1/2

This proves:

Similarly if i; is a normalized eigenfunction of F + or F_ with eigenvalue E(h) e /, we
also have:

By the min-max principle and the above estimates, we deduce that for h > 0 small
enough, F(λ) and F have the same number of eigenvalues in / and there is a
bijection bλ:Sp(F(λ))nI^>Sp(F)nI such that

\bλ(μ)-μ\ = β(h5'2) for μeSp(F(λ))nI .

Let {Vj{λ)} be the eigenvalues oΐF(λ) in / arranged in increasing order. As in [Ma2,
Sect. 4], we have:

and for each j, the equation λ = Vj(λ) has exactly one solution in /. This ends the
proof of Proposition 1.5. Π

2. Application to Molecular Schrodinger Operators

We shall now write x = (x l5 ...,xm)eIR3m for the (Jacobi coordinates of) (m+1)-
nucleiin the center of mass frame; y = (yι, ...,yq)eJR.p, p = 3q, for the position of q
electrons, and consider a molecular potential of the form

V(x,y)= Σ ViJ{\Ajx-yi\)+ Σ

^W= Σ
l ^ i < j ^ m + l

where the constant 3 x 3m matrices Aj of the form

m

AJX= Σ flj,Λ' β

are due to the removal of the center of mass motion, and we assume that the 2-body
central potentials ^/|s|), ^/|s|), J^/|s|) are zls-compact in IR3 and verify (writing V
for any of the Vtj or Vip and W for any W^
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(H mol) V, ^eC°°(R3\{0}), W^O and for all fceN one has

rk\V(k}(r\\
sup I V*\r)\ + sup ' ^ Ck < ao . (2.2)
r^l r^l l+|K(r) |

Furthermore we assume that the "isotopic operator" p(dy) in (1.1) commutes with
rotations in each R3^ (this is the case in the physical situation, where it is generated
by removal of the center of mass motion).

We remark that the above assumption of rotational invariance covers the case
of physical potentials, but is not essential for our methods to work. We can obtain
the same type of results as long as the potential wells are nondegenerate.

We denote by (& = {xe'R3m',Ajx = Aix for some iφj} the set of points
corresponding to collisions of the m + 1 nuclei (which is a finite union of planes of
codimension 3), and we shall show that in R3m\<^ there exist local coordinate
transformations as in (H2).

For x0 = (*?, ...,*£) e R3m\^ fixed, there exist fj e Q>(R3, R) with fj{Akx0) = δjk

(1 gy, k^m + 1), and we set

Fxo(x,s) = s+ ™Σ Λ/X-XO)//*), (seR3, XER3™). (2.3)
7=1

This is similar to the transformation introduced by Hunziker [Hu]. For x in a
sufficiently small neighborhood ΩXo of x0 it verifies

FXQ(x, •) is a diffeomorphism of R3 which depends analytically on x,

FXQ(x,s) = s for \s\ sufficiently large and

Fxo(x, AjXQ) = Ajx , (1 ̂  m + 1) . (2.4)

In particular, the transformation

F0(x, y) : = (Fxo(x, yj,..., FXo(x, yq)) , (x e ΩXo, y e R3ίz) (2.5)

is in C°°(ΩXO x Rp; Rp) and satisfies the estimate

(2.6)

We shall use (2.6) to verify (1.2) in hypothesis (H2) which is the essential point in
applying the result of Sect. 1 to molecular Schrόdinger operators of the form
(H mol). Note that F(x, F0(x, y)) is a sum of terms of the form

a) W^AtX-AjxtieC^W,

b) Vtj{\FXo(x, yι) - Fxo(x, yj)\) = g(x, y) ,

which verifies

l^g] ̂  \dx(FXo(x,yί)-FXo(x,y:))\ .\FlftFXo(x,yd-FxJίx,yjyM£coΏSt(ί + |g|),

where we have combined (2.6), boundedness of Bx(FXo(x, y)) uniformly in ys and
(2.2).
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By induction this gives

Kg(*, 301 ̂  Cβ(l + |g(x, jOI) , (α e N3m, x e Ω ,̂ j; e Rp) . (2.7)

c) .̂(IΛ * - ^(x, >-)|) = ̂ /IF^x, Λ *o) - Fxo(x, yi)\) = g(x, y)

which using the same arguments also verifies the estimate (2.7).
It follows from this estimate that 7(x, F0(x, y))(- Δy + 1)~ 1 eCco(ΩXo,L

2(W));
thus hypothesis (H2) is verified in some small neighborhood of any point

We shall now consider an interval / of energy values such that

/l1~
1(/)ClR3m is compact and disjoint from #. (2.8)

Then λϊ 1(I) can be covered by finitely many open sets Ωj = Ω^ of the above form. If
in addition the separation conditions (H3) (H4) on Sp(P) are satisfied, Theorem 1.2
is applicable and we have (with analogous notations):

Theorem 2.1. Assume (H mol), (H3) (H4). Then one has for λel,

M

where E_ +(λ) is an h-admissible operator on @ L2(R3m) which depends analytically
z = ι

on λ, with principal symbol given by (1 .20). Furthermore, for M = 1 , one can choose ζ
such that the scalar operator E _ + ( λ ) corresponding to the groundstate of Q(x) is
0(3)-invariant, i.e. denoting by

URφ(x) = φ(R x ) , R x = (Rxl9 ...,KxJ, (xeR3w) (2.9)

the unitary operator on L2(IR3m) representing the orthogonal matrix R e 0(3), we
have

[£_+(A),l7 j R]=0. (2.10)

Proof. In view of Theorem 1.2, it remains to prove (2.10). We define by

URφ(x, y) = φ ( R ' X , R - y ) , URφ(y) = φ(R y)

two representations of 0(3) on L2(R3m x R3*) and L2(R3^) respectively, and set

Since all potentials are radial, we deduce that
1 x ) , (2.11)

and in view of the nondegeneracy of the groundstate u^x) of Q(x) we get from (2.1 1)
that

u i ( R ' X 9 R - y ) = u 1 ( x 9 y ) 9 λ1(R-x) = λ 1 ( x ) . (2.12)

Choosing ζ and all cut-off functions in the proof of Lemma 1.1 0(3)-invariant (and
also the function gί eH2(R£)), one gets v^ί(Rx9Ry) = ̂ ί(x9y) for all (x,y)eR3(m+^
and £e 0(3).

It follows readily that ̂  commutes with <%R, hence does $ = &^ 1, and this gives
(2.10). D
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Remark 2.2. In the case M = 1 assumption (H4) can be deleted in Theorem 2.1. In
fact, it then follows from (H3) that for x in some neighborhood Jt of λ~ *(/), λv(x)
= Inf Sp(Q(x)) is a discrete eigenvalue. Since the range of the associated projection
Π(x) is spanned by a positive function of yeR/, one readily gets a global
continuous section uv(x, •) trivializing the line bundle E induced by Π(x) over Jt,
regardless of the topology of M. Modifying w^x, •) as before we obtain a Grushin
problem of the form (1.17) and thus Theorem 2.1.

3. WKB Constructions for a Diatomic Molecule

In this section we shall consider WKB expansions for eigenfunctions and
eigenvalues of a diatomic molecule with q electrons near the bottom of the
potential well formed by the electronic groundstate w^x, •) of the operator Q(x)
acting in L2(R£), p = 3q. Thus we assume (H mol) with m = 1 and (H3) for M = 1 and
some interval / = (— oo, b] containing λ0= inf λ^x).

xeR3

The set <g of nuclear collisions then simply equals the origin {0} in R3 (with the
implicit condition A1ή=A2), and we assume that the bottom of the potential well
Γ = λϊ 1(λ0) satisfies

(H5) Γ = {xeR3; |x| = r0 for some r0>0, and 5Γ

2A1 |Γ>0,

where dr denotes the radial derivative in R3. In view of (2.12) we shall denote (with
the usual abuse of notation) the constant value oϊd^λ^ on Γ also by λf[(r0). We write
ψ(x) for the distance of xeR3 to Γ in the degenerate metric (λ^x) — λ0)dx2, and
since ψ only depends on the radial variable r = |x|, one immediately sees that ψ is
C00 in a neighborhood of Γ of the form Ω = {xeR3; |x|eΩ'}, where
Ω' = (r0 — ε, r0 + ε) for some ε > 0, and satisfies

(Pφ)2(x) = A1(x)-A0 (xeΩ).

We remark that the only obstruction to ψ being in C°°(R3) is a possible absorption
of λι(x) into Spess(β(x)) or λ^x^co.

Choosing Ω sufficiently small, we may assume that (H3) holds on Ω. Next we fix
some (arbitrarily large) C0 > 0 and denote by el9 . . ., eNo the eigenvalues in [0, C0] of
the 1 -dimensional harmonic oscillator

i.e. ej = \p"(r0)(2j+ 1). Then we first have the following formal result:

Theorem 3.1. Under the above assumptions (H mol), (H3), (H5) there are approxi-
mate eigenvalues λlj{h) e R and approximate eigenfunctions wj' m(h) e H2(Ω x R/) such
that one has for y'e{l, ...9N0}9 /e{0, 1,2, ...}, m= — /, . . . ,/ and /ι>0 sufficiently
small

(3.1)

, y)hk/2\ (3.2)2\
j

as h[0, where w^eC°°(Ω), wJ J e H2(Ω x IR"), wij-elR, mί = ̂ and the asymptotic
expansion holds in H2(Ω x 1RP),

(3-3)
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and

\\e^ι\P-λ](h))^mm (3.4)

The main idea of the proof is to use a simplified "formal" version of Theorem 2.1
to relate the construction of WKB functions for P modulo coordinate transform-
ations to the construction of the kernel of a formal pseudodifferential operator
E-+(λ) which is naturally induced by the symbol of the /z-admissible operator
£_+(!) in Theorem 2.1 . This can then be accomplished as in [Ma2], and is actually
much simplified by the 0(3)-invariance which leads to absence of half-integer
powers of h in the eigenvalue expansion (3.1).

Before turning to the proof of Theorem 3.1, we shall therefore recall some basic
facts on formal pseudodifferential operators with operator valued symbol. If Ω is
an open set in R", H a Hubert space and meIR, we introduce the space

(3.5)
k*0

of formal power series. For ψ£C°°(Ω,ΊR) and y being a (sufficiently small)
neighborhood of 0 in IR" we then set

β* = ί2* - {(x, ξ) e Ω x <C"; ξ - iVιp(x) e V } ,

and

S°(Ω*ι ^(HίyH2))= ί Σ kkpk(x,ξ);pkeC*(Ω*ι &(H19H2))\, (3.6)

where HΪ9 H2 denote Hubert spaces. For any symbol
a = a(x9ξ9h)eS°(Ω* 9 £P(Hί9H2)) one then defines an operator a(x,hDx,h) on
e~ψ(x)/hSm(β,fί1) (which we shall call a formal pseudodifferential operator) by
setting for seS^^HJ,

a(x9hDx9h)(e~ψ(x)/hs(x9h))

)e«^ (3.7)
α e Nn I OC I

where

Formula (3.7) coincides with a formal stationary phase expansion, if the usual
(mathematical) quantization convention is used for a(x9 hDx). We remark that as a
trivial consequence 0(rc)-invariance of the symbol, i.e. a(Rx, Rξ, h) •= a(x9 ξ, h) for all
R E 0(n\ implies [α(x, hDx, h), UR~] = 0. Next one verifies as in [Ma2] that

eψ(x)/ha(x, hDx, h)e~ψ(x)lhs(x, h) e SW(Ω, HJ . (3.8)

Furthermore such operators can be composed if domain and range of the
operator-valued symbols match, and one has

a(x, hDx, h) o b(x, hDx, h) = (aΦ b) (x, hDx, h)

with aφb given by the usual formula (1.18).
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Proof of Theorem 3.1. As in Sect. 2, we cover Ω by finitely many open sets Ωj=ΩXj

containing the point x7 6R3, j = l, ...,r, such that the transformation

FJ{x9y) = (FXj(xίy1)ί ...9FXj(x,yq))9 (xeΩ,,

satisfies (H2); here Fx. is defined by (2.3).
We set

P~λ - (3.9)

and recall that

*-\U' °13 L O i j
is a well defined unitary map on L2(Ωy,L2(Rp)0C). Using formula (1.22) one
readily sees that UfUJ1 induces a formal pseudodifferential operator with
symbol Pj{x,ξ)eS°(Ωf,&(H2(Rp), L2(RP))), where Ωf is defined as in (3.6) with
ψ(x) being the Agmon distance; hence ̂  = ̂ -^}$ίj~1 is a formal PDO with symbol

,•*!./*)>, o
where w^/x) = t/,{x) Wl(x) 6 C°°(Ω,, #2(RP)).

We shall now relate the construction of an inverse $j = &j~* to the construction
in the proof of Theorem 1.2. Without loss of generality we may assume that the
cut-off function ζ equals 1 on the set Ω considered here, and that M^ = ul on Ω. Then
2Pλ given by (1.17) coincides with ̂ λ given by (3.9) on Ω, and for any x0 e Ωj there is
Xj E C$(Ωj) such that the symbol σ(0> ) of %χ̂ %~ 1χj coincides with the symbol of
&j in some neighborhood of x0. Furthermore both σ(^) and σ(^) are analytic in
£e(C3; it follows readily from the symbolic calculus that the symbol of
^j = ̂ jχjg^rlχj extends analytically in ξ to Ω*.

Thus, setting <f^(x, ξ, h) = σ(J}) (x, ξ, h) for x close to x0 and χ, as above, we have
determined a unique symbol in S°(Ωf, ^f(H2(Rp)eC, L2(RP)0C)), which in view
of (1.40) satisfies

r^ 1 1 ^x, ξ, h) =

for all (x, ξ) e ΩJ. We remark that {̂x, ξ, h) can of course be constructed directly
from (3.10), and since the calculus of formal PDO is completely local in x, this in
fact is easier than the construction in the proof of Theorem 1.2. Anyhow, writing

E+,Ί
-J

for the associated formal PDO, we have

ί^qiβj-igfU/MΓ* in Ω n^ (3.12)

since ^A = Φί%"1^%Φf1; it follows that

E_ = E_+ in
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and thus all £-+,_/, 7 = l,...,r, patch together to define a global formal PDO
£-+(λ) of class S°(Ω* JS?((C, <C)) with principal symbol A - £2 - ^(x). By construc-
tion of $j the symbol of fi-+(λ) coincides with the symbol of the /i-admissible
operator E_+(λ) in Theorem 2.1 (using analytic continuation in ξ\ which gives

lE_+(λ),UR~]=0 on e-v(x}/hSm(Ω,<C) for all R e 0(3) . (3.13)

Denoting by Y™ (a real choice of) the spherical harmonics, ^fl = Sp3.n{Yl

mι — 1
^ m ̂  /} carries an irreducible representation of 0(3). It follows from (3. 1 3) that one
has the decomposition

E_+(λ)= @El-+(λ)®l#l9 (3.14)
ι = o

where for any symbol α ee~ψ(r)/hSm(Ω', <C) depending only on the radial variable r

EL+(λ)*δm.1Λ, = <£-+(λ)*yr9 IΓ'W) (3.15)

(use Schur's lemma). Furthermore the principal symbol of El_ +(λ) isλ — ρ2 — λ1(r),
where ρ denotes the dual variable for r.

We shall now construct the formal solutions of E_ +(λ)u = Q, which will then
lead to the WKB functions of Theorem 3.1 for P. Since EL+(λ) is formally
selfadjoint for the measure r2dr and λ^ as a function of r admits a nondegenerate
minimum in r0, the construction of Helffer and Sjόstrand in [HS1] Sect. 3 gives N0

formal series of the form

(αjtfc(. A)6C°°(fi',R),

associated with the formal eigenvalues

such that

))α}(r,Λ;A) in e"^lh^(O)9 (3.18)

( . , Λ ; λ ) > = <5y/, (3.19)

where (3.19) holds in the sense of formal power series in h with complex coefficients
and the inner product < , > is defined by a formal stationary phase expansion at
ro

We remark that since the eigenvalues βjh of the harmonic approximation are
simple, half-integer powers of h are absent in (3.17) and, furthermore, the
coefficients μl

jtk(λ) - and αj f f c(r; λ) - depend analytically on λ (write the spectral
projection in terms of the resolvent of EL +(λ) — λ). Thus the zeroes of

in the space of formal power series are simply given by the Lagrange inversion
formula

λQ+ Σ hk~dk

λ-
ί\ej+ Σ μl

jιn(λ)hn-1}k(λ = λ0) = λ0 + ejh+ Σ 4^
fc^l K\ ( n^2 } k^2

(3.20)
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Thus, setting

(3.21)

and using analyticity of αJ>fc(r,Λ,) in λ, we have found formal series which satisfy

£L+(A}(Λ))α5(r,Λ) = 0 in e~^lhSm^Ω'). (3.22)

In view of (3.14)

(3.23)
\I**Ί/

then solve

E_+(λlj(h))βlfm = 0 in e-**)lhST'(Q)9 (3.24)

and

<Pim>fr*>ixm=Wn*~« (3-25)
with a formal inner product as in (3.19). Since it follows from (3.11) that

^0^ = 1 in e-*w/*Sm(Ωt,L
2(]Rp)Φθ, (3.26)

Eq. (3.24) yields by definition of &k, /k that the formal symbol

kv
l

i

 m=E+<k(λ'j(h))βlfm in e-fMSFWt, &(*?)) (3.27)

solves

(UkPU^-μl

](h))kv
ljm = Q in e-«'>'*S"{βtoL

2(RJ')). (3.28)

Since

£+,t(A) = C/)t(x)Ml(x,.) + ̂ ) and <Ul(x),Uί(x)yy = l, (3.29)

we get

<kv'jm, ,$>m'>L><Ωfc xRP) = ̂ M-.' + <W) (3-30)

In view of (3.12) we have
rr-l rr/,m_ rr-l ~ί,m :n O r\O
Ui ivj ~Uk kvj m "ini^k

for l^z*,fc^r, l^/^Λ/o,/eN,-/^w^/. (3.31)

Thus the Uk V;m patch together to define globally in x e Ω a formal symbol w}m

with coefficients in H2(Ω x K/). Resumming the formal series kϋ
l/m, w}m (and λ]{h))

with the same Borel-procedure, we obtain functions kv
l/m(h)eCΌO(Ωk9H

2(JSLp))9

\vljm(h)eH2(ΩxJSίp) which depend smoothly on h and are related by

, - h) = kv
ljm(x, - Λ), (xeflj. (3.32)

The wj 'm(x,};) now yield functions verifying all assertions of Theorem 3.1:
The asymptotic form (3.2) is an immediate consequence of (3.29), (3.27) and the

smoothness of βl/m in xeΩ, and (3.4) follows combining (3.32) and (3.28) with a
remainder estimate on the stationary phase expansion.

To prove (3.3), note that in view of (3.30),

XRP) + (9(h) (3.33)
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and

) - μl

f(h)) <w*' m, wJ>M'>L2(β x PP) = 0(fc«>) , (3.34)

since P is self-adjoint. Equation (3.34) shows that eigenfunctions associated with
different eigenvalues already are orthonormalized mod^/z00), while (3.33) allows
to orthonormalize those eigenfunctions which correspond to the same formal
eigenvalue λ](h). Since this orthonormalization neither changes (3.4) nor the first
term in the asymptotic form (3.2), the proof of Theorem 3.1 is complete. Π

Now, we are going to give a justification of the formal constructions above, in
the following Theorem 3.2. First of all, let us state some basic facts. By
Proposition 1.5, if one takes cί >0 arbitrarily large such that:

9 (3.35)

one can see that the number:

is independent of h>0 small enough, due also to the explicit expansions of the low
eigenvalues of P0 under the assumption of Theorem 3.1. Then we have:

Theorem 3.2. Under the assumptions of Theorem 3 J, the eigenvalues
E^(h\ ...,£Nl(/z) of P in (— co.λQ + e^h + c^h2^ admit asymptotic expansions:

Ej(h) = eιh + Σ ejtkh
k (A->oo), (3.36)

k^2

and if Ej(h) is asymptotically simple (in the sense that the expansion (3.36) determines
Ej(h) in a unique way), the associated normalized eigenfunction ΌJ satisfies:

w/iere vjf 0 e C°°(Ω), vjtk(x9 y) e H2(Ω x Rp), and ίfce expansion holds in H\Q\ L2(IR/)).

Proo/ Thanks to Proposition 1.5, we see that there is a gap of order of magnitude
h2 between the eigenvalues of P in I(h) = (—oo,λQ + elh + c±h2] and the other ones.
Now, let χeC^(Ω), χ=l near Γ, and let $ be the space generated by all the
χ(x)wl{m(x,y;h) such that λ\(h)el(h) (cf. Theorem 3.1). Let also ^ be the
eigenspace of P associated to the eigenvalues in I(h). We can then apply
Proposition 2.5 of [HS1], and we obtain:

sup d(v,3F) = (9(hc0}, (3.37)
ϋ e^

where d(v,^)= inf ||z; — w||L2(]R3χRp). This proposition also proves the fact that

the eigenvalues of P admit the asymptotic expansions given in (3.1) with 7 = !.
Then, using the Agmon-type inequality:

/ ) U ) / hw,w>^/ί2 | |Pxw|| + <(A1(x)-(P(/))2w,w>, (3.38)

and following the proof of [HS1, Theorem 5.8], we see that the estimate (3.37) can
be improved far from the well, and gives:

\\e^'h(Vj-υJ )\\Hl(K,L^ = (9(h") (3.39)
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with K = {χ = l} and vf= £ cjtk(h)^l9 where (cjtk)ί^jtk^Nl is an orthogonal

matrix, and w* stands for w('m constructed in Theorem 3.1. The estimate (3.39)
permits to end the proof easily. Π

4. Polyatomic Molecules

In this section we shall derive WKB expansions for more than 3 nuclei, i.e. we
assume (Hmol) with m^2, and suppose in addition that λ^x) is a discrete
eigenvalue of g(x) in a neighborhood of A 0= Inf /^(x). We only discuss the

xeR3m

groundstate and, in the case of a non-planar molecule (to be defined below), the
splitting of the groundstate due to tunneling. We remark that our methods can be
generalized to yield results on higher eigenvalues also.

We shall assume in analogy to Sect. 3, that the bottom of the potential well
Γ = λϊ1(λ0) of the effective Hamiltonian is minimal in the following sense

(H6) Γ = {R-xQι Re 0(3)} for some x0 = (x?, ...,

where

More precisely, we see that Γ prescribes the shape of the molecule. In fact, its
geometric structure is determined by the vectorspace E = Span{x?, ...,x°}cR3.
Recalling that x0 corresponds to Jacobi-coordinates for m + 1 nuclei in the center
of mass frame, we distinguish the following three cases

Proposition 4.1. The molecule is called linear, planar, non-planar, if dimE equals 1,
2, 3 respectively. Then the potential well Γ is diffeomorphic to S2, S0(3) and 0(3)
respectively.

Proof. If the molecule is linear, then there is ω0 e S2 such that x° = c7 ω0 for some
Cj eR, ;' = !,. ..,w. Thus

S*ωt-+(ciω9...9cmω)eΓ

gives the required diffeomorphism. If the molecule is planar, we may suppose that
x? and x2

 are linearly independent. Denoting by I j = {Re 0(3); #x° = x°} the
isotropy subgroup of x°, we have /ιΠ/2 = {1, R0} where R0 is the reflection with
respect to the hyperplane spanned by x? and x°. Since det R0 = — 1, 0(3)/{1, R0} is
diffeomorphic to S0(3) and, furthermore, it acts freely on x0: If R1 - x0 = R2 x0 f°

r

some Rl9 R2eO(3), then R1x? = R2x
<j (J=192)9 which gives R^1R2El^nI2

= {1,R0}
 τhis Yields Γ^O(3)/(l,R0}-SO(3). Finally, if the molecule is non-

planar, we suppose x^, 7'= 1,2, 3, to be linearly independent and get /ιΠ/2

n/3 = {1} for the intersection of all isotropy subgroups. Thus 0(3) acts freely on x0,
proving Γ ~ 0(3). Π

We remark that, since 0(3) consists of two connected components
0 ±(3) = {R e 0(3); det jR = ± 1 }, the potential well Γ of a non-planar molecule is a
C°° -manifold consisting of two connected components which are interchanged by
the reflection x h-> — x in R3m. Since for 4 or more nuclei there certainly exist many
non-planar physical molecules, one is in a physically natural way lead to the
problem of estimating the splitting between the eigenvalues of the initial molecular
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Hamiltonian P. We set v = dimΓ and denote by Γ1 one of the connected
components (Γ1 = Γ for a linear or planar molecule). We assume that the
transversal Hessian of λ^x) is of maximal rank 3m — v; on /\. Denoting by ψ(x) the
distance between a point xelR3 m and /\ in the Agmon metric (λί(x) — λ0)dx2

9 it is
then known that there is a neighborhood Ω of Γ1 such that ip e C°°(£2) (see [HS2]).
In our situation one can choose Ω to be invariant under the action of the group
SΌ(3) = O+(3). Then the O(3)-in variance of the effective potential gives

(ReSO(3),XEΩ). (4.1)

Since Γ is a minimal well in the sense of (H6), it follows from (4.1) that

Aψ(x) is a constant μv on Γί . (4.2)

Thus the submanifold Γl is a uniformly degenerate potential well for the effective
Hamiltonian in the sense of Helffer-Sjόstrand [HS2]. One can therefore apply
their results to construct the first eigenfunction. We shall, however, describe in the
following a construction which we think is more direct and profits from rotational
invariance. As a first step we have in analogy to Theorem 3.1

Theorem 4.2. Under the above assumptions there is an approximate eigenvalue
μ(Λ)eR and an approximate eigenfunction w(h) such that

μ(h}~ £ μfii μQ = λQ9μ1 = Δψ(x)\Γl9 (4.3)
j*o

eψ(x)lhw(x,y; Λ)~/r ( 3 w~v ) / 4 Σ aj(x9y)hj (4.4)
j

ash |0, where α,e#2(Ω x Rp), the expansion holds in H2(Ω x JR.P)9 and

\\eψ(x)l\P-λ(h))w(h)\\=Φ(h">). (4.5)

Furthermore we obtain for the first terms in the asymptotic expansion:

a0(x9y) = b0(x)uί(x9y)9 (4.6)

where bQ e CCO(Ω) is the solution of the Cauchy problem

n- ( }

and

μ2 = <(-Λx + p(dy))u1(x, .),Uί(x, )>y\Γl+cΓ9 (4.8)

where

cr= -Abϋ\Γι = -L A2ψ\Γί - -*- |F3φ|rι|
2 . (4.9)

^μί L\II

Remark 4.3. i) By <SO(3)-invariance of AX9 p(dy)uί(x9 •) and φ, μ2 is well defined by
(4.8). The second equality in (4.9) follows from the first by twice differentiating (4.7)
and using V\p = Q on /"\. We remark that the methods of Helffer-Sjόstrand
naturally lead to an (identical) representation of cr in the form
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where c solves

2VιpVc-A\p + μ1=Q, c|Γl=0.

ii) For a non-planar molecule (exhibiting a symmetric double well), the reflected
function vv(x,j; /ι) = w(— x, — y; /i) gives a different approximate eigenfunction
with energy μ(h\ concentrated in the well Γ2= — /\.
iii) The factor ^~(3w-v>/4 in (4.4) is just a normalizing constant, ensuring that

Proof of Theorem 4.2. This is almost identical with the proof of Theorem 3.1. We
again cover Ω by r sufficiently small open sets Ω} such that on each Ωp the
coordinate transformation Uj(x) introduced in Sect. 2 is well defined. Without loss
we may assume that the groundstate u^x, •) of Q(x) is well defined in uΩ^ , and thus
we consider the formal Grushin operator

"ι,/*)= W"ι(*> ') (4 10)

which maps formal symbols of class e-ψ(x)/hSm(ΩpH
2(TRp)®€) into

e-^'hSm(ΩpL
2(Rp)®(S:) (for each roeR). Here the symbol space Sm(ΩpH), H a

Hubert space, is defined by dropping all half-integer powers of h in definition (3.5).
For notational convenience we henceforth drop the superscript "*' which we

used in Sect. 3 to distinguish formal from /i-admissible operators. As in Sect. 3 we
then get in the above symbol spaces a formal inverse

of 0>j by constructing its symbol which satisfies (3.11).
It follows from the compatibility condition

in Ωj nΩj, (4.11)

that the EJ +(λ) patch together to define a global formal PDO £_ +(λ) which is
S0(3)-invariant.

By construction of <f//l), £/(>!) and JBj~+W are formal /z-pseudodifferential
operators with symbols being analytic in ξ near — iV\p(x) and in λ near Λ,0; a
straightforward calculation gives

(4.12)

where

and

is a symbol of order —2inξ.
To terminate the proof, we need
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Proposition 4.4. There is a formal eigenvalue μ(h) as in Theorem 4.2 and a formal
symbol

with bjECM(Ω) and b0 given by (4.7) such that

E.+(μ(h))β(x9h) = 0 in e-
ψ(x)/hS(3m-v}l4(Ω}, \\β(- , h)\\ = \ . (4.14)

Setting

(4.15)

and using (4.11), Theorem 4.2 follows from Proposition 4.4 as in the proof of
Theorem 3.2 for a diatomic molecule, after resumming the formal series for μ(h)
and w(/z). Π

We remark that one can show Proposition 4.4 with the method of Helffer-
Sjόstrand [HS2]. We shall, however, profit from rotational invariance to give a
different

Proof of Proposition 4.4. It suffices to prove that there are μ7 eR, bjECco(Ω) for
7 = 0, 1, ..., with μ0, μ l 5 μ2, b0 given by Theorem 4.2, such that for all NeN,

(4.16)

bj(R - x) = bj(x) (R e 50(3), x e Ω) , (4. 1 7)

where

μN(h)= £ μfi, βN(x,h) = e-ψ(x}/h £ bj{x)hj and rNES~N-\Ω).
j=o j=o

We shall show (4.16) by induction on N, profiting from the fact that E_ +(λ) maps
the class of S0(3)-invariant symbols uee~ψ(x)/hS(Ω) into itself. For JV = 1, we
choose μ0 = λθ9 μx = Aψ(x)\Γί as in (4.3) and b0 as the (unique and therefore 50(3)-
invariant) solution of (4.7). In view of (4.13), a straightforward calculation then
gives (4. 1 6) for N = 1 . Assuming (4. 1 6) for N e N with bθ9 . . . , bN _ ί S0(3)-invariant,
we have to determine μN+ ί and bN. Denoting by hN+ίrN 1 the highest order term in
the expansion oίrN(h), it clearly is constant on /\ by 5O(3)-invariance ofrN(h), and
we can take

μN+ι=rN,ι(x)\Γί> (4 18)

and bN as the (unique and 5Ό(3)-invariant) solution of

in Ω

=

Since by telescoping

(4.20)
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Eq. (4.16) for JV-h 1 follows in view of the choice (4.18) and (4.19) for μN+ ^ and bN.
This proves Proposition 4.4. Π

Finally, we shall associate the quasimode of Theorem 4.2 with the true
eigenvalues and eigenfunctions of P. Setting / = ( — oo, λ0 + hμ1 + h2μ2 + ε/ι5/2], we
know from the general stability result Proposition 1.5, that if ε, h > 0 is sufficiently
small, P has exactly 1 eigenvalue in / in the case of a linear or planar molecule and
exactly 2 eigenvalues in the case of a non-planar molecule. One then proceeds as in
the proof of Theorem 3.2 for the diatomic case to show that μ(h) constructed in
Theorem 4.2 gives an asymptotic expansion of these eigenvalues of P.

More precisely, one finds

Theorem 4.5. Let χ e C£(Ω) be an S0(3)-invarίant cut-off function and Π denote the
spectral projection of P associated with the interval I.

Then, with w(h) given by Theorem 4.2, the function

u(h)=\\Πχw(h)\\-lΠχw(h) (4.21)

verifies for all ε > 0,

u(x, y; h) = c(h)χ(x)w(x, y; h) + &(e~(ί -«>«><*)/* fc°°) ιn #
2(R3m

 x RP) , (4.22)

where

Furthermore, for a linear or planar molecule, the unique eigenvalue E(h) of P in I
satisfies

E(h) = μ(h) + Θ(hΛ), (4.23)

and u(h) is the associated normalized eigenfunction. For a non-planar molecule, the
two eigenvalues Eί(h)<E2(h) of P in I satisfy

(/=1,2), (4-24)

and the associated normalized eigenfunctions are

v2(h)=-===(l-τ)u(h), (4.25)
1/2(1

where τ denotes the reflection in R3 wxRp, i.e. τu(x,y) = u( — x, —y).. Thus the
asymptotic form of Vj{h) is given by inserting (4.22) into (4.25).

We leave it to the reader to deduce the form (4.25) of the eigenfunctions of P
from global 0(3)-invariance of P. The normalizing constant c(h) in (4.22) has an
asymptotic expansion in h which can be calculated by the stationary phase method
since w(x, y; h) becomes smooth in x after our standard coordinate change. In fact,
letting {Xj} be a partition of unity subordinate to the cover {Ωj} of Ω, we get using
(4-15),

J

= Σ <*2XjEΪ(μ(h))β(h), XkUjU; ^(μ(h))β(h}y , (4.26)
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where the formal pseudodifferential operator UjU^E^(μ(h)} coincides with
E/(μ(Λ)) in ΩjΓιΩk in view of (4.11). Thus

||χw(/z)||2~ £ eft, (4.27)
7 = 0

where c0Φθ, noting that bQ defined by (4.7) is positive in Ω and using (4.12). It
follows that c(h) admits an asymptotic expansion of the same form.

5. Eigenvalue Splitting

In view of Proposition 4.1, a non-planar molecule leads to a symmetric double well
problem. In this final section we shall estimate the splitting between the two first
eigenvalues E^h) < E2(h) oiP(h) for such a molecule, assuming (H6). Letting Γ1? Γ2

be the two disjoint connected components of the potential well Γ, we denote by
dj(x) = d(x,Γj) the distance of a point xeR3 m to Γj in the Agmon metric
(/II(Λ ) — λ0)dx2 and set

S0=mm(dί(x) + d2(x)).
X

We assume in addition that λ±(x) is a discrete eigenvalue of Q(x) for all x satisfying
d1(x) + d2(x)<S0 + £0 for some fixed ε0>0. For η>0 being sufficiently small, we
consider the regions

and denote by Pj the Dirichlet realization of P in Ωj x KΛ One then has with μ(h) as
in Theorem 4.2

Proposition 5.1. Choosing ε>0 sufficiently small, there is exactly one eigenvalue
Ef(h) of PJ in I = ( - oo, λ0 + hμ1 + h2(μ2 + β)). It verifies

(5.1)

and the associated normalized eigenfunction uf of Pj satisfies

\\Vx,y(ed^lhu°}\\L^ (5.2)

for some N0 > 0.

In view of Theorem 4.2, a proof of this proposition is given by combining
hypothesis (HI) with the arguments in Sect. 5 of [HS1] which we shall not
reproduce here. Note that (5.2) is an improved version of the energy inequality.

We shall now use the well known method of the interaction matrix to compute
the splitting AE = E2 — Elm terms of the Dirichlet eigenfunctions uf. We choose
XjEC^Ωj) with χ/x) = l if d/x)gS0-!^7 = l92, and set

Denoting by 77 the spectral projection of P(h) on the energy range ( — oo, A0 + hμ1

-}-/z2(μ2 + ε)], the functions Πv^ Πv2 form a basis of Ran/7 for h>0 sufficiently
small. Orthonormalizing this basis, P\^anΠ is then represented by the matrix

+*->>
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where ED =£? = £f and

ί'=«^ι f7X^2> + <^^2 '7,"f> + i<|Pχ1|
2M?,l;2> + i<r1,|Fχ2|

2u?»
(5.4)

(see [HS1] for the calculation). We recall that our notation for the remainder terms
means that for any ε>0 there is η>0 such that the remainder in (5.3) is of order
Θε(e~(2S°~ε)/h). The representation (5.3) then leads to

Theorem 5.2. Let E± <E2 be the first eigenvalues of P. Then

Eι=ED-\b\ + Θ(e-2SQlh], E2 = ED + \b\ + &(e-2So/h), (5.5)

and the splitting ΔE = E2—E1 satisfies

Q<ΔE^Ch-Nie-s°/h (5.6)

for some N1>Q, if h>0 is sufficiently small.

Proof. Equation (5.5) being a trivial consequence of (5.3), we only prove (5.6). Note
that (5.2) implies

IÎ FXIW (5.7)
for some JV > 0. In fact

||^/*Pxuf || ̂  II P,( A?)|| +/ι- 1 IKMX'XII , (5-8)

and using IF^x)]2^^*) — λ0 a.e. in xe]R3m, one gets

ttf||2 . (5.9)

The last estimate follows from hypothesis (HI), which in particular implies that
V(x,y)+W(x) is — Δx-Δy-{oτm bounded with relative bound <1. Thus (5.7)
follows from (5.2) combining (5.8) and (5.9). Since ΔE = 2\b\ + &(e~2Solh), one gets
(5.6) by use of (5.4) and (5.7). Π

To obtain an asymptotic expansion of the splitting ΔE, we are forced to make
additional hypotheses on the geometry of the minimal geodesies connecting the
two wells 7\ and Γ2. In particular we have to exclude the possibility that some
geodesic meets the set # of nuclear collisions. Even in the physical case of repulsive
Coulomb interactions between the nuclei, this might a priori be possible since dj{x)
stays bounded on #. Thus we assume

rf1(x) + d2(x)>S0, (xeV), (5.10)

which implies that {xeR3m; d1(x) + d2(*)^<S'o + εo} — ̂ ε0

 and # are disjoint for
ε0>0 sufficiently small. We choose a region ΩCCΩ1 with C°° -boundary dΩ such
that /\ CΩ, and set L=dΩnJfεo. As in [HS1] one computes

b = 2/ι2J J (uζd^uζ-υξd^ftdSJy + 0(e-Wh«). (5.11)
L RP

To get an asymptotic expansion of b by stationary phase, we assume
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The minimal geodesies connecting Γl and Γ2 (with endpoints removed) form a
4-dimensional C^-manifold M which intersects L transversally, and

(xeL) (5.12)

for some c0 > 0.

Theorem 5.2. Assuming (5.10) and (5.12), the splitting ΔE = E2 — Eί admits a
complete asymptotic expansion

AE~e~So/hh £ <Xjhj

9 with α 0 Φ θ . (5.13)
; = o

Proof. In view, of (5.10) there is an open neighborhood of Γ^ uMJ = 1, 2, where λ^x)
is a discrete eigenvalue of Q(x) and hence is C°° in x. Thus, according to [HS2],
there is an open neighborhood Wj of ΓyuM, such that djeCco(Wj) and A x 6 C00(PF1

u W2). Applying Theorem 4.2 to each well Γ, we obtain approximate eigenfunc-
tions w7 (/z) near ΓJ9 and using the transport equations we can extend w//z) to Wj
such that

n

jk(ajk(x9y)hk

9 (5.14)

where fl</O(x5}
;) = fci;O(x)Mi(:x:>};) w^h bj0(x)>0 in W^ and bjQ\Γ =1. It follows from

(4.27) that the normalized approximate eigenfunctions which we still denote by
Wj{h) admit a similar asymptotic expansion, and in view of (5.2) we find that for
each compact set K C WJ9

II edj/h VXt y(u° - w7 ) || L2(K x RP) + || ̂ h(uf - w;) || L2(K x RP) = 0(fc°°) . (5.15)

Since P(h)(u?-w]) = G(h">e-d>lh) in K xRp, one gets from (5.15) that

D*(u° - w7 ) || L2(X x RP) = ̂ (/z00) . (5.1 0)
| j3| + |α| = 2

It follows that in (5.11) we may replace uf by w7 to get

b = 2h2\ J (w2dnχwί-wldnχw2)dydSx + (9(hcoe-Solh). (5.17)

A priori w/x,y) is only in C2(F^ ,L2(RP)). But one can then use our standard
coordinate change as in the remark ending Sect. 4 to show that

ί (w25Π χw1-w laB χw2)d3;6CG O(L).
IRί>

Hypothesis (5.12) then allows to calculate the asymptotic expansion of b by the
stationary phase method. We leave it to the reader to fill in the straightforward
details and thus complete the proof of Theorem 5.2. Π

Finally we remark that dropping assumption (5.12) and keeping assumption
(5.10), one can still derive precise upper and lower bounds on the splitting, using
the methods of [Mai]. Although we don't offer a proof, we think that (5.10) is
generic since λ^x) tends to infinity as x approaches the set # of nuclear collisions.
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