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Abstract. LSZ reduction formulae for Euclidean Lattice Theories are presented.

1. Introduction

There is an increasing interest in the physics literature in the study of scattering
processes in Euclidean Lattice Field Theories (see f.i. [4,5]). The existence of multi-
particle states and of a well defined 5-matrix for these theories has been established
in [1] (see also [10]). An important question which rises in this context is the
question of the existence of LSZ reduction formulae for the computation of
S-matrix elements. This work is devoted to the rigorous derivation of these
formulae. For relativistic quantum field theories they were first obtained by
Lehmann, Symanzik, and Zimmermann in [3] under special assumptions
concerning weak asymptotic limits of the fields. The first rigorous proof in the
context of Wightman Quantum Field Theories was given by Hepp in [2]. Here we
will follow essentially Hepp's ideas but some adaptations to our case are necessary
due to the following two facts. First, [2] makes use of locality (Einstein causality) in
a strong sense, a property which is generally not available for Lattice Theories.
Second, the clustering of the Wightman functions obtained in [1] (see Theorem 2
below), which is an essential property for the construction of the scattering theory,
is not uniform in the whole region of space-like separated points.

In Sect. 2 the notation used and the results of [1] which will be needed are
introduced. Section 3 presents a smoothness theorem on suitably smeared
expectations of time-ordered products of fields which leads directly to the
reduction formulae in Sect. 4. The problems mentioned in the last paragraph
manifest in the proof of this smoothness theorem, given in Subsects. 3.1 and 3.2.
In this last subsection we show how to compensate the lack of locality with the use
of the clustering property.

* Partially supported by CNPq
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2. Definitions and Previous Results

The results of this work are valid in the framework of Euclidean Lattice Theories
described in [1]. We consider a classical statistical mechanical spin system on a
d-\-1-dimensional Euclidean cubic lattice %d+l (d^. 1) provided with a translation
invariant and reflection positive equilibrium state, which we call the vacuum state.
As in [1] we denote by 3ίf the Hubert space of finite energy states and by ffl(1) the
closed one-particle subspace of ffl (whose existence is assumed), on which the
relation (e~H-e~ω(p))l^f(1}=0 holds. Here P is the momentum operator, i.e., the
infinitesimal generator of space translations, el-'- = U(x\ sp(P)c( — π, π]d, where
U(x) is the unitary generator of space translations by x E TLd and H = — In T is the
Hamilton operator, T being the infinite volume transfer matrix. Above ω is the
dispersion relation of the particle, which will be assumed to be smooth with
co(p) §; m, p e (— π, π]d, m being the mass gap. We assume m > 0. We will also denote
by $$ the *-algebra generated by the quasi-local observables with finite energy
transfer (see [1]). As discussed in [1] a dense subspace ^(1) of Jf(1) is created from
the vacuum by almost local operators Atstf for which we may also require
A*Ω = Q, Ω being the vacuum vector.

We call /(x, ί): TLά x R->C a wave function if for its Fourier transform

7(p,Po):(-*,π]dxR->C

one has

supp/nsp(#, P) = supp/n W+ 0,

where W={(p,ω(p)\ pe( —π,π]d} is the "one-particle shell."
Like Hepp [2] consider for a wave function / with JΈ &(( — π, π]d x R) the wave

packet f(s\x,t\ parametrized by seIR, defined as the Fourier transform of
ei(Po - ωto),^ po)? with (p? po) e ( _ π? πγ x JR.

Set, ΐo

and

for the space-time translated operators B(t,x) = eiHtU(x)Be~lHtU( — x). If A e j/ is
such that AfΩe@(1\ then Af(s)Ω = AfΩ.

Let A be a closed set in ( —π, π]d. Then the velocity content V(Δ] of the set of
momenta A is

(3)

We define also for a wave function /

Δ(f) = {p G (- π, π]d I (p, ω(p)) e supp/n P^}. (4)

The following proposition summarises the relevant behavior of the functions
/(s)(x, ί). For a proof see [6].



Proposition 1. For f(s) as above with /e^(Rd+1) we have:
a) For all N e N there are constants CN > 0 so that
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(5)

J Λ|/«fc,ί)|^C(l + |s|)*2. (6)
oo

c) For all L, N e N there is a positive constant CL N so that,

(l -f |s-ί|ΓL(l +dist(x,sV(A(f)))ΓN. (7)

uniformly in x.
b) There exists a positive constant C so that for every s,

Now let φl9 ...,φne@}(ί} such that F(spC7φί)nF(spl7φ/) = 0 for iΦj, sp^ is the
momentum spectrum of φeS>(1\ Choose Ae<$/ with AfιΩ = φi9 AJ.Ω = 0 and
^e^((— π,π]dxlR) with non-overlapping velocities:

V(A(fύ)nV(A(fj)) = φ (8)

for iφ .
To simplify we will often denote Afi by A{.
The Haag-Ruelle approximant on the scattering state of particles with single

particle states </>1? ...,(/>„ is defined by

Φi ..... Jίs) = A1(s)...AJ(s)Ω. (9)

The following theorem on the existence of asymptotic multi-particle states [here
denoted by (φ± x ... x 0Λ)out] and their statistics has been proven in [1] *, according

in
to the methods of the Haag-Ruelle Scattering Theory:

Theorem 1. (i) The Haag-Ruelle approximants φ±t ...>M(s) in (9) converge for t-* ± oo.
The limits (φ± x . . . x </>n)out depend only on the single particle states φt e ̂

(1), and for

. (10)

(ii) Lei ψl,...,ψke@(ί} with V(spuψi)nV(spuψJ) = ̂  iή=j. Then

(ψ x ... x ipfc)out, (0t x . . . x

where the sum is over elements σ of the permutation group of {!,...,«}.

This is a consequence of the sufficiently strong clustering property for the
Wightman functions that has been established in [1] for the systems in question in
the following form:

Theorem 2. Let B^ ...,Bn€£/, n^2. Then for the Wightman functions

-r<M)(x, ί ! . . . xπ, O : = (Q, ̂ (ί 1? x) . . . βπ(ίn, xJΩ) (12)

1 The fields ̂ (s) used in the Haag-Ruelle approximants in [1] actually differ slightly from (2).
This does not change the result
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the following clustering property holds: for each ε, 0 < ε < 1 and for each q e N, there
is a positive constant Cqt£9 depending on the B^s, so that

ί\ _L \ \ t \ \ \ 9

=r, (13)

where \\t\\ : = max |ί f+1 — ί f | am/ ||x|| : = max \Xi-Xj\- ^r0 are ίne truncated
l^ i^/ι-1 i,je{l ..... «}

n-point Wightman functions.

We will also make use of the following result:

Proposition 2. Lei s e R, s < — 1 . Hence for allNeN there exists a positive constant
CM so that

MΛs)^ x ... x Φn)ίn-(Φl x ... x 0nU ίCM\sΓM (14)
,4ft analogous result holds for out states for s> 1.

Proo/. According with (6) \\A(s)\\ ^C(l + |s|)d/2. We have

^lOO(</>2 X ••• X Φn)in-(Φί X ••• X 0n)in

= ̂ 1(S)((^2 X - X Win-^>2,...,n(s))-((01 X ... X Φn)in ~ Φl,.,n(s)) , (15)

where φ2 ,...,„($) = A2(s) ... An(s)Ω. Hence,

\\A,(s)(φ2 X ... X φn)[n-(φί X ... X ΦJinll

^ M i W I I ll(02 χ...χΦJ i n-02 f...»ll
+ 11(0! x...x« in-(/>ι,...,w(5)||^CM |srM (16)

for s< — 1 for all M eN, according with Theorem 1. Π

We will use the following definition for the time-ordering of products of fields.2

Definition. Let σαι αb be the permutation group of (α1? ...,α f c}c{l, ...,n}, n^l.
Define the time-ordering operation on products of fields A by

Tβ Γ Π A(taι9 xa)] : = Σ bΠ θβ(tπ(ai} - tπ(ai + 1}) Π ̂ (ej), W , (1 7)
|_ i=l J πeσ α i ; . . . _ αb i= 1 j= 1

with θβ = θ*β, where j8 e ̂ (R),3 with j jS(s')ds' = 1 and β(x) = β(-x) and where
— 00

a .
Another definition that will be used is:

Definition 2. For α, b e N, fc ̂  α, define

Γa,b= Σ ί {Λ(}f=βΠ/j(I j )(¥/.ί;)
xa,...,xbeZd ΊRh-a+ί j = a _

with {dtt}
b^a = dta...dtb. Above /<s>= — /<s>. Note that Γ f l > b depends on sfl, ...,sb.

tίS

2 The same results can be obtained with more general time-ordering prescriptions [11]
3 The case β e ̂ (R) can also be treated but involves irrelevant technical complications
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3. The Main Theorem

Following Hepp [2] (see also [7] for a brief account) we will establish the following
smoothness theorem, which is the central tool for the derivation of the LSZ
reduction formulae performed in Sect. 4. Below {7i}?=ι> for n> 1, will be a set of
wave functions in @f(( — π9 π]d x R) satisfying (8) (non-overlapping velocities) with

Theorem 3. For {7j?=ι as above and 0^

((φi x ... x φk)out, Γk+ltm(φm+1 x ... x φn)in) (20)

belongs to ^(Rm~fc) as function of sk+1, ...,sm.

Remark. Above, for k = 0, (φ1 x . . . x φk)oui has to be replaced by Ω, and the same for
(φm+lx...xφn)iniϊm = n.

The next two subsections present the proof of this theorem, which will be
finished with the proof of Propositions 5 and 6 below. The LSZ reduction formulae
follow directly from Theorem 3 in Sect. 4.

3.1. Proof of Theorem 3. The First Step

First we note that we just have to prove the fast decay of (20) since the same
dn

argumentation given below holds for the derivatives, because -3— /(s) satisfy
as

Proposition 1 for all n.
Due to symmetry, we may restrict to the sector

sm^sm-1^...^sk+2^sk+ί. (21)

We also restrict to the case in which s: = — sm^\sk+ί\. The argumentation in the
case Sfc+ι^|sJ is analogous.

For some fixed <5, ε > 0, y i O ^ y ^ l , two successive variables sb sf _ 15 m ̂  i ̂  k + 2
have to satisfy one of the two conditions below:

2. Si-i^ —
In his analysis [2] Hepp takes y = l. In our, case, due to the non-uniform

clustering of the Wightman functions for space-like separated points we shall need
y < 1, as will be clear at the end of the proof of Theorem 3. This is the reason to
consider this more general situation from the beginning.

We write s^^ηf^ st if 1 is valid and s, _ ! ~ sf if 2 is valid. In the first case we say that
$;_! and st are "connected" and in the second case "disconnected."

There are two possible situations we have to consider:
A) For some p, l^p^m — k—\9

B) For some q, l^q^m — k — l, {sw, ...,sm_J is an isolated cluster of connected
variables, i.e., si-ί—sί^εsy + δ for m^i^m — q + ί and sm-q,1^sm^φ i.e.,

The next two propositions show two convenient approximations for (20) under
the cases A and B above.
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Proposition 3. Under condition A, expression (20) may be approximated by

i(φl x ... x0k)out, (/i+ι,m-ι)-τ-A f m(sm)(φm + l x ... x</>J i n j , (22)
\ m /

ith an error which falls faster than any power in s.

Proposition 4. Under condition B, holding for some g, I r g g r g m — fc — 1, (20) may be
approximated by

((φl x ... xφk)ouv Γk + 1,m_q_1Γm._,> m((/)m + 1 x ... x0J i n), (23)

vviί/2 an error which falls faster than any power in s.

Remark. Using Proposition 3 we can show that Theorem 3 follows for case A since

by Proposition 2, -Γ-Af(sm)(φm+1 x ... x φn)ίn approximates,
ds

-— Φm

faster than any power in |sj = s. The case B is more involving and will be treated in
Subsect. 3.2.

00

3.1.1. Proof of Proposition 3. First we restrict the integration j ( - )dtm in (20) to
— 00

an integration on the interval [— oo,fc(s)] with b(s): =sm + ε'sy' + δ', for ε', δf>0,
O^/^l. This introduces an error which is majorized using Proposition 1 by

[ m Π αo Λ υ Γ m ~1

Π d + N)d/2 J — ̂ ^Qisr π (i + N)d / 2L (24)
i = k + ι Jε's y' + δ' (1+m) [_i = k+i J

for any M e N for some P e N depending on M, for 5 ̂  1 . Since |sj = 5 ̂  [s^, V/, the
last expression has CQ\S\~Q as upper bound for any βeN, s>l, by choosing P
large enough.

00

Now, for all /, i Φ m we restrict the integrations J ( )dίt to the interval [φ), oo],
00

where φ) : = 5m + ε V' + δ" for ε", <5" > 0, 0 ̂  y' ̂  1 . This introduces an error which is
bounded by

" Π (l + N)d/2, V M e N . (25)

z

Above the integral can be written as J dy(l + \y\) ~ M. Now, since s^sm^^ (i Φ m)
— oo

we have

φ) - Si ̂  sm - sm _ i + ε"sy' + (5/; < - εsy - (5 + εr/5y' + (5r/ , (26)

where in the last inequality we made use of condition A. We see that, choosing
Y <y or y' = y but ε>ε" (25) becomes bounded by

Π ( l + S j \ Y 1 2 ^Qs-C, (27)
= fc+ι /

for any βeN for some positive constant CQ, by choosing M large enough.
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Now choose s" ̂  ε' and δ" — δ'> dβ, where dβ is the diameter of supp/?. With this
choice, under the restrictions on the integrations given above, we have for the
integration variables ti — tm^c(s) — b(s)>dβ, fφm. Due to this inequality we may
split A(tm, xm) to the right side in the time-ordered product of (20) and replace it by

f ... J Λ4+1 ...*„_! 7 Λ» Π
c(s) c(s) -oo i = k+

( Γ m ~ 1 Ί \
x ((φv x . . . x 0fc)out, Tβ Π A(tp xj) A(tm, xm)(φm+1 x ... x φn\nV lj=k+ι J /

(28)

with an error which falls faster than any power in s. Returning to full integrations,
what costs again an error falling faster than any power in s, we complete the proof
of Proposition 3. Π

3 .1.2. Proof of Proposition 4. The proof is analogous to the proof of Proposit-
00

ion 3. We first consider the integrations J ( )dth m — q^i^m. We restrict them to
— oo

the interval [— oo,d(s)], where d(s): = sm-q + ε'sy ' + δ'. As before, the error is
oo

majorized by CM J dy(\ + |y|)~M, for all MeN, for constants CM. Now, since
d(s)-Si

Si^sm-q (for m — q^i^m) we have d(s) — si = sm-q — si + ε's7 +δ'^ε'sy +δf and so
the last integral has

(29)

as upper bound for a constant CN > 0, where N can be made arbitrarily large by
making M large.

On the other hand, we restrict the integrations J ( )dtj9 k+
- oo

the interval [φ), oo], where φ) : = sm_q + εV + δ" with an error which is bounded
by

Now, note that, since sj ̂ sm_ ί_1 for fc + l^ j^m — q — 1, we have

^-δ (31)

(the last inequality coming from condition B) and taking / < γ or / = γ but ε > β' we
get for (30) a bound like (29) for s large enough.

Under the restrictions on the integrations given above, for/c + l^ j^w— q — 1
and m—q^i^m we have

tj-ti>e(s)-d(s)^2bβ (32)

by choosing ε'>ε and, as before, δ" — δ'>dβ. So we get for this case

\ Π
L« = k+

(33)
b = m-q
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The reduction of σfc + 1> ...,mtoσ f c + 1 ^.^.i x σ m _ g m is due to the inequality (32)
which implies the vanishing of the theta functions involving permutations mixing
the groups of variables (ίk + 1, . . .,ίm_ β_ 1} and {f m _ e , . . . ,f m }.

Returning to full integrations, what costs an error which again falls faster than
any power in 5, we conclude the proof of the Proposition 4. Π

3.2. Proof of Theorem 3. The Last Step

Now we complete the proof of Theorem 3 by treating (20) for case B using
Proposition 4. Our analysis will differ from that of [2] since Hepp makes there use
of locality (Einstein locality) to get rid of the time-ordering operation on the fields
associated with the connected s variables. Since this property is not available in the
systems considered here we have to make use of the clustering of the Wightman
functions in a suitable way.

First, one has

\((φ1 x ... x</> fc)out, /i + l f m_ 1Γm> ί > m(0m + 1 x ... x0J in)|

m (34)

by the Schwarz inequality and Proposition 1. Next we need an upper bound for
\\Γm-q, m(Φm + 1 x . - . x Φ Jin I I - Then we replace (φm + 1 x . . . x φ Λ)in by its Haag-Ruelle
approximant at time sm and define

Λ = Γm_q,mAm+1(sm)...An(sm). (35)

By Theorem 1, \\Γm.9tm(φm+l x ... x φn\J ^ \\AQ\\ + R(s\ where R(s) falls faster
than any power in s. We concentrate our attention on \\ΛΩ\\ whose fast decay will
follow directly from the clustering property. After writing | |ΛΏ| | 2 explicitly and
making convenient changes of variables (see below) it can be written as

2r r-ί

Σ ί {dμb}b=l Π gαVα)fe»/U Σ Π θ/ΛV(ρ(fc))-/V(ρ(/c+l)))
(?α)αr=ι R2r α = l π'eσn-m+ι,...,r k = n-m+l

πeσr+ι> ,.,r + q+ι
r + q

X Π θM(0-^(^l))^(2r)(^(l)^π(l); ;?π(2r)?^(2^ (36)
l = r + 1

with r: = n — m + q + i, where ρ e σn _ m + 1 ^ 9t. is the permutation inverting the order
of (n — m + l,...,r): ρ(z') = r + (n — m+1) — I Above the Wightman functions are
defined by

fl A(μb9zb)Ω\ (37)
b=r+ί J

and there we used following definitions: for π' εσn_m+ί ί r and πeσ r + 1 r + g+1,

α, if l ^ f l ^ n — m,

π'(fl) , if n —
(38)

π(fl), if ' A ' ' ' ' A

fl, if
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and

(v
1?
 ...,v

n
_
m
, v

w
_

m+1
, ...,v

r
, v

r+1
, ..., v

r+q+1
, v

r+q+2)
 ..., v

2r
)'.

(Sm, . . ., SOT, Sm, . . ., Sm-q9 Sm-q9 . . ., Sw, Sm, . . ., Sm) (39)

and also

= UπJ ••">Jm+ 1? Jm> •••'Jm-q'Jm-qy ••"> Jim Jm + 1? •••? Λi)

Our objective is to show that ||ΛΩ|| falls faster than any power in 5. To do this
we apply the results on the clustering properties of the Wightman functions to
expression (36). First, we write the Wightman functions of (36) as a sum over
products of truncated vacuum expectation values. In order to consider each
relevant case separately one has to split the sum over partitions & of (1, . . ., 2r} into
two sums:

1. A sum S1 over partitions of {1, ...,2r} in sub-sets of two elements,
and
2. A sum S2 over partitions where at least one sub-set contains more than two
elements.

Note that the set {1, . . ., 2r} contains an even number of elements. The sum S{ is
given by

Σ π ̂ fe^ ^ftJ. (41)
where ̂ 2

 = {«Ί> •> Λ} ig a partition of (π(l), . . ., π(2r)} in sets of two elements in
increasing order, i.e., for each J e ̂ 2 we have J = ( j l 9 ;2) = (π(α), π(b)) with a < b. We
split the sum S1 in two pieces, which we call, respectively, SΊ and S'[:

1 a. A sum S\ over all partitions ^'2 = {J^...,Jr} so that each J e 0^, is °f ^e f°rm

J = (jl9 j2) = (π(a\ π(b)) with 1 ̂  a ̂  r and r + 1 ̂  b ̂  2r,
and
1 b. A sum S'[ over the rest.

With the next two propositions we complete the proof of Theorem 3.

Proposition 5. The contribution of S\ to (36) is zero.

Proposition 6. The contributions of S'ί and S2 to (36) fall faster than any power in s.

3.2. i. Proof of Proposition 5. The sum S\ is explicitly given by

Π /^Γ fer(fl)5^7t(a)5 £πf(ft(<ι + r))> ̂  (π(a + r))) (42)

After the transformation rf-*π* °(π~l\(r + \, ...,2r)) expression (42) becomes
independent of πeσ r + 1 ,..Mr+β+ι [see (38)]. Hence, inserting S\ into (36), the
expectation values factorize from the sum over πeσ r + l f . .M P + β + 1 and one can
isolate the factor

(43)

which turns out to be independent of the variables {μ, } ̂ ί ?+ } due to the symmetry
of the function β.
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To complete the proof of Proposition 5 we perform the sums and integrations
over {zj9μjYjtr + l, taking into account that (43) is constant. The expression to
compute is therefore

r + q+ 1

Σ ί {dμbYb=q

r+l Π giVα)feα>AU

x Σ Π ^2>(z,(fl),μ,(fl);zπt(fl+r),μπt(fl+r)), (44)
πteσ r + i , . ., 2r «= 1

which equals

Σ Π (A(μ*(a)>Z*(a))Ω>(Φβn1(a + r)?J = 0 > (45)
π t e σ r + ι ...,2r a=ί

since, after (40), forr + l ^ / ^ r + g + 1 one has (φa )
in = 0 because these vectors areyj out

of the form -—φ — O^m — q^i^m. This completes the proof of Proposition 5. Π

Remark. For the sums S'ί and S2 there will be for each term at least one factor, a
truncated expectation value, smeared with wave functions {gi^J^i, v^2, with
the property

ή ^(gfll))=0, (46)
i = l

i.e., there are at least two wave functions in {g^βί}"=ι whose velocities do not
overlap. Note that this is not the case for the sum S\ since there we may have
partitions like ̂  = {(!> 2r), (2, 2r — 1), . . ., (r, r + 1)} coupling pairs of wave functions
C/m>/m)> •••> (Twfn) to tne same 2-point truncated vacuum expectation value. This is
the reason why Proposition 5 is needed.

3.2.2. Proof of Proposition 6. According with the last remark we consider for v^.2
expressions of the form

dμaί... dμav Π Ig^fe,,, /Ol \1Tp\zaι9 μβι; ... z0v, μαJ|, (47)
. . ,Zα υ Rυ ϊ = l

with {αl5 . . . jα jc j l , ...,2r}5 {gfll}^ι satisfying (46). First, we restrict the sums
zα. eTLd to sums over zα. e vflιF(^(gflι)). This introduces for each at an error which is
majorized, according with Proposition I, by

Qvίl + KIΓ" Π (i + l^2, V A Γ e N . (48)

But from condition B and from (39) for any al we have va. — sm^ q(εsγ + δ) and so for
s large enough

|vαj^|s-g(εsy + <5)|, (49)

implying that (48) falls faster than any power in 5, by taking ε small. Using
Theorem 2 and Proposition 1, (47) becomes for any p, JVeN,

Γ ? ... J
L-CO -0

(50)
i = l
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where || z || = max \za . - zaj\, \\μ\\= max \μa. -μaι+ί\,CptNisa constant and where £' is
a sum over za.eva.V(A(ga)), l^ί^v.

For each μa. we proceed the change of variables μflί-»μfl. + v f l. and use the
inequality (1 + \x - y\)p ̂  (1 + \x\)p(l + \y\)p, Vp ^ 0, to get for the integrals above the
bound const(l + ||v||)p. Now, by condition B and (39)

||v||=max|vαί-vαίJ^(εsy + <5). (51)

To find an upper bound for the sums in (50) we use for za. e va.V(A(ga)), Vι, the
inequality ||z|| ^mm\va.va. — va.va.\, where the minimum is taken over all
Uai e V(Δ(ga)\ va. e V(Δ(ga)\ for soάe pair (gβ|, gaj) with V(A(ga))n V(Δ(ga)) = 0. But

lt?βΛi - vajvaj\ = \vat(vaι - va .) - (vaj - va)va.\

^KlK-vJ-^-^UvJ. (52)

From condition B |vα. — va.\ ̂  q(εsy + δ) and using (49) we conclude that, choosing s
large enough, we will get

^ (s - q(^ + δ)) \v_ai - υ_aj\ - \vai\q(ss? + δ) ̂  K(\ + s) (53)

for some constant K, by choosing ε small enough. The sums in (50) are then
bounded by

const [1 (l + kj)d/2 (l+s)"(p"1"β). (54)

We conclude from (51) and (54) that (50) has for all peN the upper bound

C'ps
dv/2(l +sT(l +sΓp+1+ε (55)

Taking γ < 1 we see that (50) falls faster than any power in s. This completes the
proof of Proposition 6 and consequently of Theorem 3. Π

Remark. Note that (55) is the point where the condition y < 1 becomes necessary.
Its need is a consequence of the fact that in Theorem 2 the clustering property of
the Wightman functions was proven for a region smaller than the usual region of
space-like separated points.

4. The Reduction Formulae

We are able now to derive the LSZ reduction formulae. Using Theorem 3 and the
same kind of argument used in the proof of Proposition 3 one shows straightfor-
wardly that

Q~> T ΠJ> λβ\ 11

Π ^out(/«)*Ω, Π Ain(fb)Ω}, (56)

where ds = dsί... dsnί dt = dti... dtn and where ^4ίn/out(/) are creation operators of
in/out one-particle states with wave function /.
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Since supp^ contain only the one-particle shell of sp(H, P) and since the f?s are
assumed to have non-overlapping velocities, what implies non-overlapping
momenta, we conclude the following identity:

•-
x f ώ Σ f * ΠFl)fe^) Π #'}(Mj)

IRn xι,...,ϊn Rn '

x f l , τ π A^Xfc)* Π A^x (57)
V |_*=ι ι = ™+ι J /

The integrand in s may be written after Fourier transformation as

«

Π e-^W-
= m + l

χ-Pl,..^ (58)

where dn(d+1)p = dd+1p1 ... dd + lpn, and where τ^ is the distributional Fourier
transform of

Ω, Tf Π Λ(ί,,x,)*^ Π+1 A(t,,x,)\Ω\. (59)

Note that Theorem 3 tells that

n

Π [ω(Pk)-rf]^(-Pl? ? - P m > P m + l > >Aι ) (60)

is C°° around the mass shell. Interpreting (58) as a Fourier transformation on the
variables qf =pf — o}(pi) the integrations on ds give

((^X . . . X 0 J o u t > W > m + l X • • - Xφj in )

x Π [(ωίpJ-pMωίpJ-pίflτX-pi, ..., -pm,pm+1, ...,pM). (61)
fc=l

The validity of this relation is obvious in the case where the distribution (60) is an
element of 5^(Rπ(ίί+1)). The general case follows from this one since <¥* is weakly
dense in ^', the dual of ,̂ and since the Fourier transformation is weakly
continuous on &" (see also [8, Sect. IX.l]). Expressions (61) are the LSZ reduction
formulae in momentum space. _

Write pj^<pj) = (iθv/i)(P7) and ω(pj)J/pj)-(£/j)(pJ ), where '7' denotes Fourier
transform and the E is defined by

*, ί) : = (2πΓn/2 f ω(p)7(p)^^-^dd+ ̂  , (62)
(-π,π] d xR

and define the distribution A(x,t) so that J(p,p0) = <5(cφ)-p0), explicitly:

zj(x,ί)-(2π)-(d+1)/2 j ^^-"W^p. (63)
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Then we get

Σ ί {dta}"a=l(Ω,Tβ\ γ[ A(tk,xk)* Π ^(i(,x(
i,...,Sn Rn \ Lfc = l Z = m+l

Π (A*((E-idtW(xJ,tj)\9 (64)
ro+i J

which are the LSZ reduction formulae in coordinate space.
The main distinction between these formulae and the corresponding ones in

relativistic quantum field theories is the use of almost local fields with finite energy
transfer in the Wightman functions. This comes from the need to cut out the high
energy component of the fields in order to get control on the clustering properties
of Wightman functions, as described in [1], Since in our basic setting no special
assumption on the high energy behavior of the theory was made, it is probably not
possible in general to eliminate this restriction on the high energy of the fields
without violating our basic results. Additional assumptions on the locality
properties of the high energy of the fields are then necessary.

An additional remark concerns the time-ordered functions occurring in (61)
and (64). In continuum theories, time-ordered functions can be obtained, at least
formally, through analytical continuation of Euclidean expectation values (for an
analysis in the framework of the Osterwalder-Schrader axioms see [9]). This
possibility was studied by Lύscher [4] in the context of Euclidean lattice models of
scalar fields, with the result that, for these lattice models, the formally defined time-
ordered functions and the functions obtained by analytical continuation of
Euclidean expectation values differ at asymptotic times by exponentially falling
factors. It is presently not clear, whether Lύscher's results may be reproduced for
our reduction formulae, since the restriction on the high energy component of the
fields is essential in our analysis.

Acknowledgement. I am indebted to Klaus Fredenhagen for the suggestion of this work and for
valuable discussions.
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