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Abstract We present an analysis of the general b-c system (including the β-y
system) on a compact Riemann surface of arbitrary genus g ̂  0 by postulating that
its correlation functions should only have the singularities imposed by the
operator product expansion (OPE) of the system. Studying a very (in fact
optimally) general form of the b-c system, we prove rigorously that the standard
practice of eliminating zero modes, and even the standard lagrangian, follow from
the analyticity structure dictated by the OPE alone. We extend the analysis to
consider the most general case of the presence of twist (e.g. spin) fields. We then
determine all the possible correlation functions of the b-c system, with statistics
unspecified, compatible with the OPE. On imposing Fermi and Bose statistics, we
obtain the correlation functions of the fermionic b-c and β-y systems, respectively.

1. Introduction

We consider a system consisting of a pair of quantum fields b, c on a compact,
connected Riemann surface M of genus g^O. Our aim is to study the correlation
functions, written symbolically as

C(m,n) = <6(β1) ... b(Qm)c(PJ ... c(PJ> , (1.1)

where the Q's and P's are arbitrary (but distinct) points on M , by postulating the
operator product expansion (OPE)

(1.2).

Here Q,PeM while /, on the right-hand side of (1.2), is the identity operator.
Equation (1.2) is to be understood as holding inside a correlation function C(m, n).
An immediate consequence of (1 .2) is that a general correlation function C(m, n) has
a pole when the arguments of a b field and a c field coincide. We shall study the
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consequences of the physical assumption that the C(m, ή) have no poles other than
those implied by the OPE (1.2). This can be viewed as a kind of principle of maximal
analyticity.

The full specification of the system requires precise hypotheses on the fields b, c.
These will be stated in Sect. 2, but let us note that they will be such as to include
both the usual fermionic spin (1— J\J b-c system [1], as well as its bosonic
counterpart, known as the β-y system [1]. In fact, we shall not specify any statistics
in advance. An important feature is that, since we start from the OPE and not from
a lagrangian or equation of motion, we have no definition of a "zero mode" from
the present point of view. Hence we have no means of identifying "zero modes" and
no reason to eliminate them as is conventional [2-10]. One of our aims is to study
whether the elimination of "zero modes" is required by the OPE and maximal
analyticity alone.

The fermionic b-c system, as well as the β-y system, were discussed over the
complex plane in the classic paper of Friedan, Martinec, and Shenker [1].
Subsequently, a lot of interesting work has been done on the fermionic b-c system
over a compact Riemann surface. A partial list of the techniques that have been
used would be bosonization, both chiral [2] and nonchiral with holomorphic
factorization [3], the grassmannian approach [4], multiplicative Ward identities
[5], the stress tensor method [6, 7], Krichever-Novikov expansions [8], operatorial
Baker-Akhiezer method [9]. There has also been considerable work on the β-y
system [6, 7,10], mostly based on the bosonization formulae of [1].

In the present work we show that there is a very simple physical viewpoint for
understanding this system, which is obscured by the field theoretic machinery used
in earlier discussions [2-10], viz. the principle that the OPE (1.2) should determine
the singularity structure of the correlation functions. This viewpoint has the
advantage that it can be immediately translated into precise mathematics. In
addition, one can raise and answer questions which are important for understand-
ing the system, but cannot even be formulated by previous methods. In a recent
series of papers [11-14] we have shown that this viewpoint leads to a satisfactory
analysis of the fermionic b-c system with zero modes excluded. We showed that the
principle of the singularities being determined by the OPE leads rigorously to the
result that C(w, n) = 0 for m Φ n, which is consistent with the standard argument of
charge conservation, and that the 2n-point function C(n, n) is a determinant of two
point functions, i.e. that Wick's theorem holds. The proofs of these results in
[11-13] actually hold for all. genera g^O. (They even hold if the ground field C is
replaced by any algebraically closed field.) We then showed [11,13,14] how to
obtain an explicit expression for the 2n-point function of the fermionic b-c system
for g^2. This led to a new, purely algebraic geometry, proof of Fay's identity [15].
In Appendix A and Appendix B of the present paper we develop the methods
necessary to write down the 2n-point function of the fermionic b-c system for g = 0
and 1, respectively. As a result, we get an identity due to Cauchy [16] for the case of
g = 0 and an identity due to Frobenius [17] for the case g = l.

In Sects. 2 and 3 we discuss only the two point function C(l,l) and so the
discussion there does not involve the question of statistics, which we come to in
Sect. 4. In Sect. 2 we start with a generalized b-c system, which encompasses the
usual spin (1 — J\ j system, and allows the widest possibilities for the appearance of
"zero modes" (in the language of [1-10]). Theorem 2.2 states that the criterion that
the system should have a nonvanishing two point function, with singularity
structure determined by the OPE, uniquely picks out the (twisted) spin \ b-c
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system with zero modes excluded which was discussed by us in [11-13]. This has
important implications which are discussed immediately after the statement of
Theorem 2.2. The rest of Sect. 2 is devoted to the proof. In Sect. 3 we discuss the
situation when there are a number of distinguished points on the Riemann surface
around which the b and c fields have a specified, rational monodromy. We consider
the most general problem of this kind from the same viewpoint as before, viz. that
the singularities of the two point function should be determined by the OPE and
the additional data. A complete solution is obtained in Theorem 3.2 by showing
how the problem can be reduced to the problem considered in Sect. 2. In Sect. 4 we
convert the conditions imposed by the OPE on the correlation functions into
precisely stated postulates and determine all the possible 2n-point functions
compatible with these conditions. Our postulates contain the constraints implied
by the OPE only in a very weak form. As a result, although the imposition of Fermi
or Bose statistics leads to the expected results for the fermionic b-c and β-y
systems, these two cases do not exhaust all possibilities. Throughout this paper we
demonstrate, as in our earlier papers [11-14], the advantages of an abstract
analysis, using algebraic geometry, over detailed computations involving theta
functions and prime forms [2-10]. Nothing is lost in the process of abstraction and
we can finally write down the results explicitly. The requisite machinery was
developed in our earlier papers [11,13,14] for g^2. We complete this in
Appendix A and Appendix B of the present paper by taking up explicitly the cases
g = 0 and g=l, respectively.

Our notations are standard and we refer to Griffiths and Harris [18] and
Hartshorne [19] for basic definitions and results in algebraic geometry. We denote
by Pic(M) the Pίcard group of holomorphic line bundles on M, while Picd(M) is the
subset of degree (or Chern class) deZ. For y e Pic(M), deg(y) denotes its degree. We
denote by Θ the canonical theta divisor, i.e. the subset of Pic^~ 1(M) of line bundles
with at least one nonzero holomorphic section, and by K the holomorphic
cotangent bundle of M. If D is a divisor of a compact, connected complex manifold
X, then Θ(D) denotes the holomorphic line bundle canonically associated to D. We
denote by Θx the structure sheaf of X, by H\X, J^) the ith cohomology group of X
with coefficients in the sheaf J^ and by ti(X, J^) its dimension.

This paper has been written for mathematicians, interested in seeing how
algebraic geometry can be applied in physics, as well as for physicists, interested in
conformal field theory, but unfamiliar with the techniques we use. In order to
enhance readability, we have tried to avoid burdening the text with excessive
details of a routine nature in the proofs, while giving all the steps as well as
references to standard textbooks for all the techniques used. The results are,
however, discussed extensively and the proofs can be omitted by those interested
only in the results.

2. The Two Point Function, Zero Modes and Algebraic Geometry

We shall consider a generalised b-c system, which we define to consist of a pair of
quantum fields ft, c on a compact, connected Riemann surface M of genus g ̂  0. We
suppose that c (respectively b) is an "operator-valued section" of a holomorphic
line bundle α (respectively β) of degree p (respectively q), where p -f q = 2g — 2 (in fact
the condition p + q ̂  2g — 2 suffices). By specifying only the Chern class of the
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holomorphic line bundles α and β, note that in each case we have the freedom to
choose any element out of a g-dimensional compact complex manifold. We shall
have in mind that the fields b ana c obey the OPE (1.2), but since quantum fields are
mathematically complicated objects to deal with, we shall deal directly only with
the correlation functions (1.1). The basic correlation function is the two point
function <fe(0c(P)>. Our aim in this section is to investigate the conditions for our
system to have a nonvanishing two point function, which will be our criterion for
the system to be nontrivial.

The following definition is motivated by the OPE (1.2) and the criterion of
maximal analyticity:

Definition 2.1. Let pt: M x M-+M (z = 1,2) be the canonical projections onto the
first and second factors of M x M. The generalised b-c system will be said to have a
two point function (not necessarily unique), denoted <fr(β)c(P)>, if there is at least
one meromorphic section (not identically zero) of p*(/0®P*(α) wh°se only
singularity is a simple pole along the diagonal A of M x M (i.e. for Q = P).

The principal result of this section is the following theorem:

Theorem 2.2. Necessary and sufficient conditions for the generalised b-c system to
have a two point function in the sense of Definition 2.1 are that p = q = g — l,
β = K(x)α~*, and α (hence also β) is in the complement of the canonical theta divisor
Θ in Picg~1(M). Under these conditions the two point function is also unique.

Before discussing the proof, let us consider the significance of Theorem 2.2. This
theorem is the key to understanding the structure of the b-c system. It says that,
apart from the question of statistics which is relevant only for higher point
functions, there is really only one b-c system, viz. the twisted spin \ b-c system with
zero modes (viz. holomorphic sections of α) excluded, which was discussed by us
earlier [11-13]. Thus if we want to discuss e.g. the spin (1 — J), J b-c system, in
which case p = 2J(g — 1) and q = 2(1 — J) (g — 1), Theorem 2.2 tells us that we must
introduce new singularities not contained in the OPE (1.2). If we restrict the new
singularities to poles, then Theorem 2.2 tells us precisely how to introduce them,
viz. in such a way as to obtain a new system satisfying Theorem 2.2 (in this
connection, see [14]). In order to do this we find that if we introduce points on M at
which e.g. the b field has poles, then the c field must have zeros at those points, and
vice versa. Thus, in a sense,Theorem 2.2 is telling us that b and c are conjugate fields
even though we are not dealing directly with the fields. Moreover, while the
generalised b-c system we started with has no action principle, Theorem 2.2 leads
us to a system with the action

j bdc,
M

where cΠs the usual δ-operator on M. Of course Theorem 2.2 does not insist on the
use of poles to eliminate zero modes and it will be clear from our discussion in
Sect. 3 that branch point singularities, introduced through twist fields, could also
be used. Theorem 2.2 tells us precisely how this can be achieved. We shall also see
in Sect. 3 how the generalized b-c system arises even when we start with the usual
b-c system.

We shall prove Theorem 2.2 using methods of algebraic geometry, particularly
sheaf cohomology. As a first step we shall have to convert the question of the
existence of a meromorphic section, viz. the two point function, into one concerning
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holomorphic sections. One concept that figures throughout our work is the concept
of the prime form, which we now define.

Definition 2.3. Let Δ be the diagonal of M x M and G(Δ) the holomorphic line
bundle on M x M associated to the divisor Δ. The prime form E(Q,P] is the
holomorphic section of (9(Δ) with divisor Δ.

In fact Θ(Δ) has a one dimensional space of holomorphic sections for g^ 1, as
shown in Proposition B.I of Appendix B for g = 1 and in Proposition 5.3 of [11]
for g^2. In Proposition 6.3 of [11] we have discussed how this definition of the
prime form is related to the standard one [15, 20] for g^2. In Theorems A.2 and
B.4 we discuss the case of g = 0 and g = 1, respectively. We shall, therefore, use the
symbol E(Q, P) for all genera g ̂  0.

The diagonal A of M x M is a closed subscheme and hence [19] we have the
canonical short exact sequence

Q-+Θ(-A)-*Θ-*Φ\A-*Q (2.1)

between the structure sheaf θ of MxM, the ideal sheaf &( — Δ) of Δ, and the
quotient sheaf &\A, which is the structure sheaf of A. Tensoring (2.1) by &(Δ)
(exactness is preserved) we get another useful form of (2.1):

Q-*0-+β(A)-+Kϊ1-+Q, (2.2)

where KΛ is the holomorphic cotangent bundle of Δ (which is isomorphic to M)
and we have used Lemma 5.1 of [11], which holds for all g^O.

Let ̂ aβ =p*(β)®p*(a) and JίΛβ = ̂ β®Φ(Δ). Tensoring the exact sequence (2.1)
by Jί^ we get the exact sequence

0^&aβ-*J(Λβ^Jlaβ\A-+0. (2.3)

Since the global section functor H°(M x M, ) is left exact [19] we get:

0-+#°(M x M, yΛβ) -U H°(M x M, Jttf) . (2.4)

The implication of the exact sequence (2.4) is that, while every two point
function in the sense of Definition 2.1 gives rise to a holomorphic section oίJ?^ by
multiplying it by the prime form, the converse is not necessarily true. If we have a
holomorphic section of Jί^ and divide it by the prime form, we may merely get a
holomorphic section of J .̂ We have thus proved:

Proposition 2.4. A necessary and sufficient condition for the generalized b-c system
to have a nonzero two point function, in the sense of Definition 2.1, is for the quotient
vector space

H°(M x M, Jtaβ)/H°(M x M, ̂ ) (2.5)

to have strictly positive dimension, where the denominator in (2.5) denotes the image
under the injective map i of (2.4).

We can now state Theorem 2.2 in the equivalent form:

Theorem 2.5. Necessary and sufficient conditions for the quotient vector space (2.5)
to have strictly positive dimension are that p = q = g — 1, β = K®a~1 and that α lies
in the complement of the canonical theta divisor Θ in Pic9~ l(M). If these conditions
hold, the dimension of the quotient vector space (2.5) is one.
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Proof. To understand what has to be proved, note that (2.4) is a part of the long
cohomology exact sequence

0->#°(M x M, &Λβ) -U H°(M x M, JfΛβ)

H\MxM,^β)^.... (2.6)

It is clear from (2.6) that the quotient vector space (2.5) will have dimension zero if
and only if the connecting homomorphism δ in (2.6) is injective. The investigation of
such a question is somewhat delicate, in general. The following key lemma enables
us to resolve this problem.

Lemma 2.6. Let ξePicr(M), ηePics(M) (with r and s arbitrary integers). Let
d = dimH°(M, ξ). Denote pΐ(η)®pξ(ξ) by J% and &ξη®Φ(A) by Jίξn. Then H°(M
x M , ̂ ξη) and H°(M x M, J?ξη) are isomorphic (under i) and hence have the same

dimension if either (a) r < g — 1 and d is arbitrary, o r ( b ) ί f r = g — l and dή=Q.In both
cases s is arbitrary. The roles of ξ and η can, of course, be interchanged.

Proof. We shall find it convenient to rearrange the two cases (a) and (b) of the
statement of the lemma to (i) d = 0 and r<g — 1, and (ii) dφO and r^g — 1.

Case (i): d = 0 and r<g-l. If d = Q then, by the Kϋnneth formula, H°(M
x M , J^) = 0, and hence we have to prove that H°(M x M, J^ξη) = 0. The following
simple argument enables us to deal with this case rapidly.

Assume the contrary and let σ be a nonzero element of H°(M x M, J^ξη).
Restricting σ to {P} x M for general P e M, we get a nonzero holomorphic section
of ξ®Θ(P). However, it is easily seen from the Riemann-Roch theorem that for
general P we have h°(M,ξ®&(P)) = Q if deg(£)<g-l. This settles case (i).

Case (ii): dφO and r^g — 1. This case is considerably more subtle. We now have

h°(M x M, jy - d x h°(M, η)

by the Kϋnneth formula and so we have to prove that

/ι°(M x M, J(ξη) = dx h°(M, η) . (2.7)

Now note that p1? the canonical projection from M x M to its first factor, has
associated with it the direct image functor pί ^ which is left exact [19]. Applying px ̂
to the short exact sequence (2.3) (with α, β replaced by ξ, η) we get the associated
long exact sequence [19] of higher direct image sheaves

O^P!*(^HP1H^ (2.8)

Since p^ is proper, surjective and with range a curve, it follows that the first three
terms of (2.8) are vector bundles over M. Computing the first few terms (using the
projection formula [19]) we get

Q^η®<£d^p^(Jίξn)^η®ξ®K-1 -+.... (2.9)

Now the first term of (2.9) is a trivial rank d vector bundle and the third term has
rank one. If we can prove that the second term in (2.9) has rank d, this will mean
that the image of δ in (2.9) is the zero sheaf, and so
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We are then through, since

h°(M x M, Jfξη) = /ι°(M, puM^))

= h°(M,η®Cd)

= dxh°(M,η),

which is what we set out to prove.
To prove that Pι*(^ξη) indeed has rank d, note that as a consequence of

Grothendieck's semicontinuity theorem (see Theorem 12.1 1 (a) of [19]), we have that
if P denotes a generic point of M,

= dimtf V \P\ ̂ ξη\P
x M,Jlξη\{P} x M)

It is now an elementary exercise to show, using the Riemann-Roch theorem, that
for generic P we have dim/f°(M, ξ®&(P)) = d. This completes the proof of
Lemma 2.6.

Completion of the Proof of Theorems 2.2 and 2.5. If we put ξ = a,η = β,r = p,s =
Lemma 2.6, where p + q = 2g — 2, we see immediately that if p Φ q then either p or g
is less than g — 1. Lemma 2.6(a) then shows that the two point function is
identically zero. Hence we must have p = q = g — 1 . Lemma 2.6 (b) then shows that
the two point function is identically zero unless both α and β lie in the complement
of Θ in Pic^ ~ * (M). What remains to be proved is that a further necessary condition
for the two point function to be not identically zero is that j? = X®α~ 1, and that,
once this is satisfied, it is then also unique. The last step, viz. uniqueness, is actually
Theorem 5.8 of [11], which holds for all g ̂  0, but a different proof will emerge out
of the present argument.

Consider the exact sequence (2.8) with ξ = a,η = β and α, β e Pice " 1(M) — Θ. It is
easy to check that, since α is in the complement of <9, we have

(2-10)

Hence we get
Pι*( *Λβ) = β®a®K-1. (2.11)

Now, under our conditions on α and β, the denominator of (2.5) is zero
dimensional. Hence, to have a nonzero two point function, it is sufficient that JίΛβ

should have a nonzero holomorphic section. But

H°(M x M,JtΛβ) = H°(M,Pί*(Jΐaβ))

= H°(M,j8®α®K"1), (2.12)

by (2.11). The line bundle jS®α(x)K"1 is of zero degree and so has a nonzero
holomorphic section if and only if it is the trivial line bundle. In that case
β = K®%-1 and

h°(M x M, Λς,) = Λ°(M, 0M) = 1 . (2.13)

This completes the proof of Theorem 2.5 and hence of Theorem 2.2.

Remark 2.7. It is easy to check that the hypotheses of cases (a) and (b) of Lemma 2.6
are optimal. As a result we need only assume p + q ̂ 2g — 2, but no further
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weakening of the hypotheses of Theorems 2.2 and 2.5 is possible if we want to
retain the conclusions.

We have shown in Theorem 6.5 of [11] that, when the conditions of
Theorem 2.2 are satisfied, the two point function is given by the Szegδ kernel
Sα(Q, P) for g ̂  2. In Theorem A.3 of Appendix A and Theorem B.6 of Appendix B
of the present paper we have computed the two point function for genus 0 and 1,
respectively. We shall continue to use the same symbol Sα(<2, P) for these cases as
well, just as we have agreed to denote the prime form by E(Q, P) for all genera. The
reader can put the appropriate expression according to the genus.

Remark 2.8. It is interesting to consider the case of the fermionic b-c system with
odd spin structure (see Verlinde-Verlinde [2]), where we must necessarily have
g ̂  1. By Theorem 2.2 this system does not have a two point function in the sense of
Definition 2.1, i.e. given by the OPE (1.2). Nevertheless, we can show that this
system does have a 4-point and higher 2n-point functions, defined uniquely by the
OPE's (1.2) and (A.I 1), just as in the no zero mode case [11,13]. In this way we can
give a direct proof of a theta function identity, which was obtained by Fay [15] as a
corollary to his famous identity.

3. "Twist Structures" on M

A generalization of the b-c system that has been studied in the literature is when
we are given a distinguished set of points on M around which the b field and c
field have a given (rational) monodromy. Such problems arise when there are so-
called twist fields in the problem, a special case being that of spin fields, or when
dealing with orbifolds. Some of the relevant references, which are known to us, are
[6, 7, 21].

We shall show in this section how our methods can be generalized to deal
rigorously with the most general problem of this kind. We give a complete solution
to this problem for the b-c system. We thereby not only give a precise meaning to
formal expressions appearing in the literature, but also give a rigorous proof that
certain correlation functions which are usually not considered, or ruled out on
heuristic grounds, indeed do not occur. Our analysis is based, as in Sect. 2 and
throughout this paper, on the OPE (1.2) and maximal analyticity.

We define a twist structure on M to be an assignment of N+ positive rational
numbers μi(ί^i^N+) to N+ distinct distinguished points xl9...9xN+ of M and
N- negative rational numbers (— Vj)(l ^j^N-) to N_ points yl9 ...,yN_ of M
(where the /s are distinct from each other as well as from the x's) such that

N+ N-

Σ ft- Σ v;=/, (3.1)
i=ι j=ι

where / is a (positive or negative) integer called the total twist (cf. Zucchini [21]).
The b field and c field are required to have the following behaviour in the
neighbourhood of these points:

_ ' ( }

c(z)~(z-xy (lίi^N+)
'
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As in the case of the basic OPE (1.2), Eqs. (3.2a, b) must be taken to refer to the
behaviour of the correlation functions C(w, n) in the neighbourhood of such points.
We shall regard (3.2a, b) as being, along with (1.2), the basic defining relations of
our system.

The problem we shall now consider is that of obtaining the two point function
<b(<2)c(P)> in the presence of a given twist structure, our system being defined by
(1.2) and (3.2a, b). It will be evident to the reader that the problem is not posed
precisely. All sources of ambiguity will be spelled out as we proceed.

If we want maximum generality, we should start once again with the generalised
b-c system of Sect. 2. This would make our exposition tedious and is unnecessary
since our aim is to make contact with the existing literature. One possible use of
greater generality would be if a treatment of the spin (1 — J), J system were required
in which zero modes were to be eliminated by a twist structure, rather than by
poles as is conventional [14]. The modifications that would have to be made to the
discussion below are obvious (put l = (2J — 1) (g — 1) in Theorem 3.2 below).

We shall, therefore, take c (respectively b) to be a section of α (respectively
K®u~l\ where deg(α) = g- 1. We put no further restrictions on α at present. We
expect the two point function <i>(g)c(P)> to be, in some sense, a multi-valued
section of pf(K®α~1)®pf(α), and so we must determine a covering space M from
the given data on which we can interpret it as a meromorphic section of a line
bundle over M x M.

In the following we shall write E(z, x) for the unique holomorphic section of the
line bundle (9(x) over M, with divisor x, for any xeM. This is consistent with
Definition 2.3 of the prime form when we freeze the second variable. It is then easy
to see that our problem of making precise the behaviour of the two point function
near the xί9 yp as given by (3.2a, b), is really one of making sense of the formal
expression

(E(z,yffi». (3.3)
1

For if (3.3) were defined, <b(Q)c(P)yE(Q,P)ξ(Q)/ξ(P) would be holomorphic in
each variable and we could hope to use algebraic geometry methods to count the
number of such sections.

Now, we can certainly write μt = pjd(\ ^i^N+),Vj = qj/d(l ^j^N_ ), where the
pb qj9 d are positive integers. Then ξ(z) is the "dth root" of

[z,yW, (3.4)

which is the canonical meromorphic section of the line bundle associated to the
divisor

N+ N-

Σ Pixί- Σ 4/X/ (3.5)

Our problem is to construct a covering space M of M on which the dth root of
(3.4) can be interpreted as a meromorphic section of a line bundle pulled up
from M. Our solution to this problem is based on the following lemma, which we
have adapted from Lemma 1 of [22], where the basic idea of the construction is
attributed to Mumford.
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Lemma 3.1. Let ζbea holomorphic line bundle over a compact, connected Rίemann
surface M and D an effective (i.e. positive) divisor on M such that ζd = &(D) for some
positive integer d. Let σ denote the canonical holomorphic section of Θ(D) with divisor
D. Then there is a d-fold cyclic covering π:M-»M, ramified precisely over the
support of D, such that π*(Q admits a holomorphic section τ satisfying

τd = π*(σ) in #°(M, π*(0(D))). (3.6)

k
Let D=Σ mfi> where the Pt are distinct points of M and the mi are positive integers.

_ i
Then M is irreducible if and only if the greatest common divisor of (d, m{\ 1 5s i^ k) is
unity and nonsingular if and only if mt = 1 for l^i^k.

Proof. We explain the construction of M in some detail, since this method may be
useful in other problems of mathematical physics and [22] is rather brief.

Let proj: £->M be the projection map for the line bundle ζ. We can also look at
proj as a surjective holomorphic map from the total space \ζ\ of ζ, which is two
dimensional. We shall construct M as a subvariety of the total space \ζ\. A point
ze\ζ\ is a pair (x, v\ where xeM and v belongs to the fibre of ζ over x. Thus
zd = (x, v®d) and proj (z) = x. We define M to be the subvariety of the total space of ζ
defined by

M={(x,v)e\ζ\\(x,v®d) = (x,σ(x))}. (3.7)

We define π to be the restriction of proj to M.
By the interpretation of proj as a surjective holomorphic map from the total

space of ζ to M, proj can be used to pull back line bundles over M to |ζ|. Thus
proj*(ζ) is the pullback of the line bundle ζ over M to the total space |ζ|. The fibre of
proj* (ζ) over z = (x, v)e\ζ\ is the fibre of ζ at proj (z) = x. Since v belongs to the fibre
of ζ over x, we see that proj*(£) has a tautological section, viz. z = (x,ι?)->ι?. Let τ
denote the restriction of this tautological section to M. Then τ is a holomorphic
section of the line bundle π*(£) over M. By (3.7), τd maps z = (x,v)eM to
υ*' = π*(σ(x)). Thus τd = π*(σ\

Clearly π is ramified at z e M such that τd(z) = 0. From (3.7) we see that such z lie
over the support of D. The nonsingularity condition follows by inspection from
(3.7) by writing the local equation in the neighbourhood of a point of ramification.
The irreducibility criterion follows from the same local equations and standard
Galois theory. This completes the proof of Lemma 3.1.

Lemma 3.1 is not directly applicable to our situation since (3.5) is not a positive
divisor. We can, however, add a suitable positive divisor to (3.5) and subtract it
later. The freedom in choosing the divisor to be added to (3.5) introduces a certain
arbitrariness in the construction of M, which is intrinsic to the problem since
physics only gives us the nonpositive divisor (3.5). Since M has merely an auxiliary
role, this is of no importance. So choose positive integers n^ such that n j — v7 is
positive (1 gjίg]V_) and consider the effective divisor

D= Σ Pi*ι+ Σ (n/d-qjyj. (3.8)
i=l .7=1

In view of Lemma 3.1, if we want M to be irreducible we must require the g.c.d.
of d and the integer coefficients in (3.8) to be unity. While irreducibility is not
strictly essential, it is reasonable to say that, if this is not satisfied, then the original
problem has been badly posed. The fact that by Lemma 3.1 the covering space M
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will be a singular curve unless the coefficients appearing in (3.8) are all unity is of no
importance: M can always be replaced by its canonical normalization if desired,
but this step is not necessary to interpret our formula for the two point function. In
the case of spin fields each pt = 1 , each qj=ί,d = 2 and we can choose each HJ = 1 .
Then the integer coefficients in (3.8) are all unity and M is nonsingular as well as
irreducible.

The line bundle (9(D) has a canonical holomorphic section σ(z) with divisor D,
which can be written as a product of prime forms:

σ(z)= Π (E(z,xW* Π (E(z9yj))W-**. (3.9)
i = l 7 = 1

Now note that

deg(0(D)) = d(/ + Σ A (3.10)
\ 7=1 /

i.e. a multiple of d. Hence, by the divisibility of the group Pic°(M) for g ̂  1 [24] and
the fact that Pic(M)=Z for g = 0, we can find a line bundle ζ such that

(3.11)

In fact, there are d29 such line bundles and so we have to make a choice if g ̂  1 . The
choice of ζ plays no role in the present abstract discussion, but should be kept in
mind when interpreting the final formula for the two point function. It reflects the
fact that our original problem was not well posed and so there is an ambiguity in
the answer.

We now have the data, viz. (ζ, d, (9(D\ σ\ to apply Lemma 3.1. We can thus give
a rigorous meaning to

ΠίBMΓ Π (E(z9y$*-** (3.12)
i= l J = l

as a multi- valued section of ζ, which is properly defined as a holomorphic section
of the pullback of ζ to the covering space M. Now, defining

y=C®0(- Σ nA (3.13)
\ 7=1 /

we see that we have given a precise meaning to ξ(z) of (3.3) as a multi-valued section
of γ, which is properly defined as a meromorphic section of π*(y) over M. Note that

deg(y) = / = "total twist ." (3.14)

Then from the OPE (1.2), (3.2) and maximal analyticity, we see that

<b(Q)c(P)yE(Q9P)ξ(Q)/ξ(P) (3.15)

is the pullback to M x M of a holomorphic section of the following line bundle over
MxM:

), where α = α®y~ 1 . (3.16)

Since
l + / = 2g-2, (3.17)
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we see that we are dealing with the generalized b-c system of Sect. 2. Thus the
generalized system we discussed in Sect. 2 is precisely necessary to deal with the
ordinary b-c system in the presence of a twist structure. We can then apply
Theorem 2.2 to conclude that to have a nonzero two point function we must have
αePic^'^M) — Θ. As a consequence the total twist I of the twist structure must be
zero. We have thus proved:

Theorem 3.2. Given a twist structure on M defined by the data (D, y, /), the twisted
spin -|b-c system over M (i.e. c is a section of αePic^" 1(M), b of K(x)α~ l ) has a
nonzero two point function if and only if the total twist I is zero and α = α(x)y ~~ * lies in
the complement of the theta divisor Θ. When these conditions are satisfied the two
point function is unique and given by

*(β'P) (3.18)

In (3.18) the Szego kernel has to be interpreted for g = Q and 1 as the two point
function of Appendix A and Appendix B respectively, with corresponding ex-
pressions for the prime form in the definition of ξ(z) in (3.3).

Atick and Sen have computed the correlation function of the b-c system in the
presence of spin fields S+(x, ), S~(y/) over the torus [6] and for higher genus [7]
using the stress tensor method. Formula (3.18) agrees with their results for
correlators containing pairs of spin fields S+(xi)S~(yi) in both cases, but we are also
able to show that other correlators containing unequal numbers of the two kinds
of spin fields must vanish. This was expected, but not proved, by them. In the genus
0 case, the Ramond sector two point function written down by Dixon et al. [21] is a
symmetrised form of (3.18) in the g = 0 case with spin fields at 0 and oo.

The methods of this section can be easily combined with those of Sect. 4 to
obtain higher point functions in the presence of a twist structure (see Remark 4.5).
We can also consider the fermionic b-c system as discussed by us in [11-14] in the
presence of a twist structure of zero total twist. It is easy to see that the theorem
proved there [11-14] that the 2rc-ρoint function is a determinant of two point
functions remains valid in the presence of such a twist structure. This leads to an
identity which reduces, after cancelling common factors, to Fay's identity for g ̂  2
and to Cauchy's and Frobenius' identities for g = 0 and 1, respectively.

4. The b-c System with Arbitrary Statistics

In this section we shall discuss the general correlation function C(m, n\ which was
written symbolically in (1.1) as

Let {M , 1 ̂  i ̂  m -f n] be m + n copies of M and form the product manifold M
m + n

ΞΞ Π M^ Let

denote the projection to the ith factor. Then, if we consider the (twisted) spin ^ b-c
system of Theorem 2.2, C(m, n) is a meromorphic section of the holomorphic line



Algebraic Geometry Study of the b-c System 385

bundle

over Mm + ", with α e Picg ~ 1 (M) — Θ. The poles of C(w, n) occur at coincident points
of certain of its arguments, viz. when zt = zj for some ij such that 1 ̂  i ̂  w, w -f 1 ^j
^m + n. Denoting by Δ tj the diagonal of Mt x Mp we see that the equation zt = Zj in
Mm+n defines the divisor (in this case a subvariety)

Dyspry^y), (4.3)

where prfj- denotes the projection

ρr£,:Mm + f l-*Af ίxM,13 J (4.4)
(zl9 . . ., zί5 . . ., zj9 . . ., zm+ J-Kzi, zj) .

Giving the divisor D/7 is equivalent to giving a holomorphic line bundle &(Dtj)
on Mm + w along with a canonical holomorphic section having Dtj as its zero divisor.
Since Φ(Dίj) is the pullback to Mm+n by ρr/7 of the line bundle Θ(ΔiJ) on M,. x Mp it is
consistent with Definition 2.3 to refer to this holomorphic section as the prime
form and to denote it by E(zi9 zj).

The higher order correlation functions of the b-c system depend both on the
analyticity properties determined by the OPE and on the specification of particle
type, or statistics. Thus the correlation functions of the fermionic b-c system and
the β-γ system must be different beyond their two point functions, even though
both are governed by the same OPE (1.2).

It seems natural to separate these two aspects of the problem. Our approach
will be, therefore, to first determine the vector space of all the meromorphic
sections of ̂ (w, n) which are allowed by the OPE (1.2), which we shall denote by
F(w, rc), and to see then how the specification of particle type picks out a particular
correlation function C(m, n) for the system in question. Not every element of
F(w, n) need correspond to the correlation function of a particular b-c system,
since our specification of particle type may be more restrictive than analyticity
considerations permit.

We must now express the constraints imposed by the OPE (1.2) and maximal
analyticity as precise postulates that must be satisfied by an arbitrary element v of
F(m, n). These constraints should be expressed as statements regarding holo-
morphic sections of line bundles in order to be able to use algebraic geometry
methods. Now a correlation function C(m, n) e V(m, n) has a polar divisor

Dp(m,n)= Σ DtJ (4.5a)

by the OPE and maximal analyticity. The canonical section of Θ(Dp(m, n)) with
divisor Dp(m, n) will be denoted by Ep(m, n\ where

£>,n)= Π E(Zi,Zj). (4.5b)

Thus we must require that vEp(m,n) be a holomorphic section of
^(m,n)®Θ(Dp(m,n)}. Since ^Λ(m,n) has no nonzero holomorphic sections, this
condition means that if v Φ 0 the polar divisor of v is nonempty and contained in

The OPE (1 .2) imposes a further constraint, which comes from the fact that (1 .2)
is an operator relation and the / on the right-hand side is the identity operator.
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Consider an arbitrary nonzero element υ e V(m, n) and let Dtj belong to its polar
divisor. Note that

Dί7 = J l V xM w + n ~ 2 , Mm+n~2= mγ{ Mk. (4.6)
k φ i , j

Then the OPE (1.2) says that

ΌE(zi9Zj)\Mm+n-2eV(m-l,n-ί). (4.7)

We shall now formulate our postulates for F(w,rc). It turns out to be
notationally convenient to state them either for m ̂  n or m ̂  n. We shall choose to
state them for m ̂  n. This is of no consequence since it turns out that there are only
two cases to consider, when m ή= n and m = n, and whatever we prove for m > n
applies immediately for m < n.

Let Sm denote the group of permutations of {1, ..., w}, where m^n. For each
σe Sm we define the divisor

,m + ί. (4.8)
i= 1

m + "Thus Dσ(m, n) C Dp(m, n) for each σ e © w. The line bundle $(Dσ(w, n)) on Mm + " has a
canonical holomorphic section Eσ(w, n), where

Eσ(m,n)= Π^fcrw^m+J. (4-9)

We shall denote the intersection of the Dtj appearing on the right-hand side of (4.8)
by nDσ(w, n); note that forn> 1 it is not of codimension one in Mm+n and hence is
not a divisor of Mm+n.

We state our postulates as follows. Every element ve V(m,n) must satisfy:

v is a meromorphίc section of ^a(m,n) such that vEp(m,ri) is a holomorphic
section of ^Λ(m,n)®Θ(Dp(m,n)).
0*2) For each σe ®m the restriction of vEσ(m, n) to nDσ(m, ή) is an element of the
vector space

Uσ(m, n) = #°(nDσ(m, n\ ^α(m, n}®G(Dσ(m, n))\ nD^m, n)) . (4.10)

Moreover, the only element for which this restriction is the zero vector of Uσ(m, n) for
every σ e Sm is the zero vector of V(m, n).

Postulate 1̂ is an evident requirement that we have already discussed, while
postulate ^2 is simply condition (4.7) applied repeatedly until all possible poles are
removed. Note that condition (4.7) does not prescribe the lower order correlation
functions of the system when statistics are specified: in Theorem 4.6 below that is
indeed satisfied, while that is not necessarily the case for the examples of
generalized statistics discussed following Theorem 4.6 below.

We must now determine the dimension of V(m, ή).

Proposition 4.1. // m φ n, dim V(m, n) = 0.

Proof. For each σeSm(m>n),

vEσ(m, «)|nZ)ff(m, n) e JFα(m, n)®G(Dσ(m, rc))|nDσ(m, n)

*
X ••• X ^σ(n),m + n

(4.11)
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and so by the Kϋnneth formula

t/σ(m,n) = 0.

The proposition follows from the second part of ^2.

Proposition 4.2. Let m = n. Then there exist linear maps i, r andj = 0 jσ such that
the following is a commutative diagram of linear isomorphisms: σe(5n

W(n,n)

V(n,n) - >U(n,n)

where U(n,ri) = 0 I7σ(n,n), W(n,n) = 0 Wσ(n,n), with Uσ(n,n) as defined in
(4.10), σes" σes»

Wσ(n, n) = H°(M2", jFα(n, n)®&(Dσ(n, n))) , (4.12)

andjσ:Wσ(n,n)-*Uσ(n,n).

Proof. The map;,, is defined by restriction of each element of Wσ(n, n) to c\Dσ(n, n).
To prove that it is a linear isomorphism, observe that, by the Kunneth formula,

i= 1

n+^ (4.13)

where to get (4.1 3) we used Proposition 5.5 of [1 1], which is easily seen to hold for
all genera gΐϊO. This proves that j= φ jσ is a linear isomorphism.

The map r is defined by σs<s"

r:V(n,n)-*U(n,n)

»-» 0 t;£σ(n,n)|nZ)σ(n,n). (4.14)
σe6n

To define the map z', take an arbitrary element w = 0 wσ e W(n, n) and define
σe@n

i:W(n,n)->V(n,ri)

w= 0 wσ^ Σ wJEJfan). (4.15)
σe<5n σe®n

It is clear that the right-hand side of (4.15) satisfies ̂ 1. The fact that it also satisfies
^2 and hence lies in V(n, n) emerges from the proof that the diagram commutes,
which we now give. Take 0 φ w e W(n, n\ then

i(w)= £ wσ/J5σ(n,n),
σe®n

W

σ,a'ε<3n
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We must now prove that i and r are isomorphisms. The very definition of i
shows that it is injective, while the fact that r is injective is the second part of &1.
To show that r is surjective, take a nonzero element u e U(n, n). Then by the
isomorphism j we can find a nonzero element w e W(n, n) such that j (w) = u. Since i
is injective, i(w) is a nonzero element of V(n, n) and, since the diagram commutes,
r(i(w)) = u. Hence r is surjective. Since j and r are isomorphisms, i is also an
isomorphism. This completes the proof of Proposition 4.2.

Theorem 4.3. The dimension of the vector space V(n,n) is n\

Proof. By Proposition 4.2 we have

dim V(n, n) = dim U(n, n) = dim W(n, n) ,

where W(n,n)= © WJ(n9n). Using (4.13) and the conclusion of Theorem 2.2
<re<3n

(more explicitly stated in Theorem 5.8 of [1 1] which holds for all g ̂  0) we see that

Hence

dimW(n,ri)= £ l = n ! ,
σe<3n

which proves the theorem.
The isomorphism i between W(n,n) and V(n,n) also gives us:

Theorem 4.4. yl basis for V(n, n) is provided by products of Szegδ kernels

u=ι

where we interpret Sα(β, P) for g = 0by Theorem A3 and for g = lby Theorem B.6.

Proof. An immediate consequence of the definition of the isomorphism z, Eq. (4.13),
Proposition 6.1 of [11] for g^2, Theorem A.3 for g = 0, Theorem B.6 for g = 1.

Remark 4.5. The above analysis extends immediately to, e.g., the spin (1 — J), J
system by simply replacing the Szegό kernel Sα(β, P) in Theorem 4.4 by the
corresponding two point function written down in [14]. If there is also a twist
structure with total twist zero, simply multiply the two point function by ξ(P)/ξ(Q)
as in (3.18).

A b-c system will be completely specified if we can associate to it a unique set of
correlation functions {C(n, n); n e N}. Thus for each n e N we must pick out a one
dimensional subspace of F(n, n) for a given b-c system. We can do this by specifying
the particle type or statistics.

To study the possibilities, we must define an action of the symmetric group Sn

on F(n, n). We can define the action on a basis element given by Theorem 4.4 and
extend by linearity. Since we have two kinds of particles, viz. the b fields labelled by
Qi, β2,... and the c fields labelled by P l5 P2,... we can define a natural action of Qn

on the labels {1,..., n} of Ql9..., Qn and of P l5..., Pn separately. Thus V(n, n) is an
&„ x Sw-module. Considered as an Sw-module, V(n, n) is simply the regular
representation of ®Λ. Then we know that V(n, n) is a multiplicity free direct sum of
irreducible Sn x 2>n modules Vλ®Vλ, where Vλ is the irreducible representation of
£>„ corresponding to the partition λ of n. The only one dimensional representations
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are the alternating and symmetric representations, corresponding to Fermi and
Bose statistics, respectively. We thus get:

Theorem 4.6. (a) In the case of Fermi statistics the 2n-point function
<ί?(2ι) . . - b(Qn) c(P1) . . . c(Pn)y is antisymmetric in the Q-variables and separately in
the P-variables and, as a result,

ί,PjmJ=ί, (4.16)

where det denotes the determinant.

(b) In the case of Bose statistics, where it is conventional to write β for b and y for c,
the 2n-point function </?(<2i) . . . β(Q^y(Pι) ?(Λι)) is symmetric in the Q-variables
and separately in the P-variables and, as a result,

i,Pj))\lJ=1, (4.17)

where perm denotes the permanent.

While Theorem 4.6 exhausts the possibilities of choosing one dimensional
subspaces of V(n, n) by the usual notions of the connection between permutation
symmetry and particle statistics, we can investigate whether other possibilities
exist under less restrictive conditions. A condition which appears quite natural
is to simply demand the invariance of the 2n-ρoint function
<fc(βι) ... b(Qn)c(Pΐ) ... c(Pn)y when the β's and P's are simultaneously permuted
in like fashion, i.e.

. . . c(Pn)y = <Z>(βσ(1)) . . . b(Qσ(n))c(Pσ(ί)) . . . c(Pσ(w))> (4.18)

for each σ e ®π. This clearly means that we must restrict the ®n x ®π representation
in V(n, ri) to the diagonally embedded subgroup SB. It is obvious that the regular
representation V(n, ri) decomposes so as to give a one dimensional representation
of ®n for each conjugacy class of @w, i.e. for each partition λ of n. We thus obtain:

Theorem 4.7. For each partition λ of n, there is a unique 2n-point function, satisfying
postulates 0*1, &2 and the invariance condition (4.18), given by

J.))|?>y=1 , (4.19)

where immλ denotes the immanant. This is defined [23] for annxn matrix (Atj) by

χλ(σ) f[ Aa(i)Λ, (4.20)

where χλ is the character corresponding to the irreducible representation of ®Λ

labelled by the partition λ of n.

Theorem 4.7 includes the case of Fermi and Bose statistics discussed in
Theorem 4.6, while including other cases. Other possibilities, not covered by
Theorem 4.7, abound, since the ®M x ®n-module V(n, ri) is, of course, a G x G-
module for any subgroup G of ®π. In that case simply put Aij = SΛ(Qi,PJ) and
restrict the sum in (4.20) to σ 6 G. For example, we could consider G=Zn, viewed as
the group of n cyclic permutations of (1, . . ., n}. Then the coefficients in (4.20) are
1, ω, . . ., ωn~ \ where ω is a primitive nih root of unity and the sum in (4.20) is over
the n cyclic permutations. It is in this sense that the term "arbitrary statistics"
in the title is justified.



390 A. K. Raina

Appendix A: The Case 0 = 0

In this appendix we discuss the concept of the prime form, the two point function of
the b-c system and the full fermionic b-c system (discussed earlier for g^2 in
[11-13]) for the case when M is a compact, connected Riemann surface of genus
zero. Our analysis of the fermionic b-c system in this appendix leads to a proof of
the genus zero analogue of Fay's identity, viz. an identity for rational functions due
to Cauchy [16].

We first consider the concept of the prime form for genus zero. A discussion of
this has been given by Mumford [20], but his treatment is not suitable for our
needs. We shall give a completely independent discussion, in which we follow
Definition 2.3, thereby extending the treatment of the prime form that we gave in

Since g = 0 we can, and from this point shall, identify M with the complex
projective line P1. Then, as is well known [19], M has an open covering by two
copies of the afϊine line A1: t/0=A1, with affine coordinate x, and U^ = A1, with
affine coordinate y, which are glued along open subsets 70 = {xeί70 — (0)} and
F00 = {};6ί/00-(0)}bythemap

xeVn. (A.I)

We are interested in line bundles over P1. As is well known [18, 19],
=Z, so that a line bundle is determined up to isomorphism by its degree or Chern
class. From the Riemann-Roch theorem (or directly) we see that the line bundle of
degree 1 has a two dimensional space of holomorphic sections. We choose a special
basis [3? 9S} for the space of sections, which we now define:

for xel/o, #(x) = x, -/(*) = 1,
(A.2)

The transition function g^o was defined in (A.I).
In the genus zero case the line bundle

(α), since deg(K) = —2, deg(α)= —1 and so α =

Proposition A.I. $(J)=/rf(α 1)®p*(α *)•

Proof. An easy application of the seesaw principle [24, 25]. Alternatively, note that
Pic(P1 xP x )=ZxZ and hence the statement of the proposition is simply the
obvious equality

in Έ x ΊL.
From Proposition A.I and (2.2) we get the short exact sequence

0^0MχM^Pί(O®P!(O^α~2^0 (A.3)

Passing to cohomology,

M,α-2)-^.... (A.4)

By the Kϋnneth formula the four dimensional space H°(M x M, p*(α~ ̂ (x)/?*^" L))
is spanned by vectors of the form p*(ui)®P*(uj)> where the ut (i= 1, 2) are a basis of
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if^Λ^α"1). Under δ we have

Pi (MI)® PΪ(uj) -ϊ-> u&Uj . (A.5)

Since α~ l is of degree 1, we can use {jίf9 «/} as the basis. From Definition 2.3, we see
that the prime form is simply the kernel of the map δ, which is one dimensional as
we can see from (A.4). It is obvious from (A.5) that the kernel of δ is spanned by

We have thus proved:

Theorem A.2. The unique holomorphίc section of &(Δ) with divisor A, called the
prime form, is given for genus zero by

£(β> P) = Pί C*n® P!(-*) - Pί W® p!C*n - (A.6)
From (A.2) we have:

)\Uo*Uo = (Q-P). (A.7)

Note that our result is consistent with Mumford's definition [20].
By the OPE (1.2), the two point function of the b-c system for g = 0 is the

meromorphic section of ^α(M) = Pί(α)®P*(α) with polar divisor Δ. Note that
since α has negative degree, (̂1, 1) has no holomorphic sections and so the two
point function is defined by a holomorphic section of J^l, 1)® Θ(Δ}. However, by
Proposition A.I, $(zl) = J^l,!)"1, and so

^α(l,l)®^(zl) = ̂ MxM, (A.8)

where the right-hand side is the trivial line bundle on M x M. Hence there is a one
dimensional space of holomorphic sections, viz. <C. We have thus proved:

Theorem A.3. The two point function <b(β)c(P)> is unique and given by

<6(β)c(F)> = l/JE(β,P), (A.9)

where (A.9) is to be interpreted in the sense of (A.8). Moreover, from (A.7),

In [1 1-1 3] we discussed the fermionic b-c system by adding to the OPE (1 .2) the
additional OPE's

,

c(0c(P)~0(β-P). ( ' }

Then the correlation functions C(m, n) are defined by a holomorphic section of

<Jfα(m, n) = J^m, ri)®Θ(-D(m, n)), (A.12)

where J^(m,«) is the line bundle on Mm+n defined in (4.2), while

Z)(m, n) = Dz(m, n) - Dp(m, n) , (A. 1 3a)

Dz(myn)=ΣDij+Σ'Dij) (A.13b)
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where £' (respectively £") runs over 1 ̂  i <j ̂  m (respectively m + 1 ̂  ί < j ̂  m + n),
and Z)p(w, n) was defined in (4.5a).

Theorem A.4. Let M be a compact, connected Riemann surface of any genus g^
and let JtΛ(m, n) be as defined above. Then

(i) ί

(ii) if m = n, dim#°(M2M, ̂ rβ(n, n)) = 1 .

Proof. This a restatement for g^O of Theorems 5.1, 5.5 in [13], whose proofs are
easily seen to hold without any change for all genera g^O.

Thus in the g = 0 case under discussion, we see that for the fermionic b-c system
we have C(w,n) = 0 for m=t=n, while the 2n-point function C(n,ri) is unique (after
normalisation). As we argued earlier [11-13], this implies that C(n,n) is the
determinant of its two point functions, i.e. Wick's theorem holds. We showed
earlier [11, 13] that for g^2 this gives Fay's identity [15]. To see what we get for
g = 0, we must be able to write down C(n, ή) explicitly.

Proposition A.5. For g = 0, J?a(n, n) is the trivial line bundle on M2n.

Proof. This can, of course, be proved by the seesaw principle [24, 25]. An amusing
alternative way to prove it is to note that for g = 0, Pic(M2n)=Z2n and then note
that as elements of Z2n we have

while the trivial line bundle on M2n is, of course, the neutral element of Z2n. Then
the statement of the proposition is a simple equality in Z2n.

Proposition A. 5 shows that the 2n-point function C(n,n) is simply the
meromorphic section of Θ(D(n, n)) with divisor D(n, n). This can easily be written
down in terms of the prime form. Writing this on the domain (t/0)

2w, we find:

Π (Q,
CM= """ - (AJ4)

l^i j^n

However, the determinant of two point functions

is a meromorphic section of ̂ (n, ή) satisfying the same properties as C(n, ή). By the
uniqueness theorem, we must have (also on (£/0)

2"):

n, ή) = const x det
1

(A.15)

It is easily seen that the constant in (A. 15) is unity and so we have proved:

Theorem A.6 (Cauchy's identity [16]).

Π (Qi
=_ϋ ΛPf

Π (Qt-Pj) \Qt-P,
(A.16)
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Appendix B: The Case g = 1

In this appendix we discuss the concept of the prime form, the two point function of
the b-c system (or Szegδ kernel), and the full fermionic b-c system for the case when
M is a compact, connected Riemann surface of genus g = 1. Our analysis of the
fermionic b-c system leads, via a proof of the validity of the Wick representation of
the 2n-point function, to the g = 1 case of Fay's identity, which seems to be
originally due to Frobenius [17].

For g = l, M and Pic°(M) are isomorphic under the Abel map. We shall,
therefore, identify the two when convenient. The holomorphic cotangent bundle K
is now the trivial line bundle on M. The canonical theta divisor Θ is now a subset of
Pic°(M) consisting of just one element, viz. the neutral element of the group
Pic°(M) since it corresponds to the trivial line bundle on M.

By Definition 2.3 the prime form is the holomorphic section of &(A) with divisor
Δ. In fact Θ(Δ) has a one dimensional space of holomorphic sections for g^ 1. This
was proved in Proposition 5.3 of [1 1] for g ̂  2. The proof for g = 1 is more subtle.

Proposition B.l. Let Mbea compact, connected Riemann surface of genus one. The
line bundle Φ(Δ) on M xM has a one dimensional space of holomorphic sections.

Proof. We start with the exact sequence (2.2) and note that KA is the trivial line
bundle on Δ. We now apply the left exact direct image functor p± ̂  on (2.2) to get the
long exact sequence of higher direct image sheaves

0^&M^pίi,(G(Δ))^&M^Rίpl(&MXM)^.... (B.I)

For the same reason as for (2.8), (B.I) is an exact sequence of vector bundles. As in
the proof of Lemma 2.6(ii), we conclude from Grothendieck's semicontinuity
theorem that for a generic PeM,

= dim H°(pΓ l(
= dίmH°({P} x M, Θ(Δ)\{P} x M)

Thus pι#(β(Δ)) in (B.I) is a line bundle sandwiched in an exact sequence between
two copies of the trivial line bundle on M. This is only possible if the image of the
map; in (B.I) is the zero sheaf, i.e. if

0M (B.2)

Then
dim #°(M x M, Θ(Δ)) = dim #°(M, p

This proves the proposition.

Proposition B.2. Let ξ be an arbitrary element of Pic°(M) and let φ\ denote the map

Then,
(B.3)
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Proof. A straightforward application of the seesaw principle [24, 25].

Corollary B.3. Let φl denote the map

Then,

0(Δ) = φl*(G(θ)). (B.4)

Proof. Put ξ as the trivial line bundle in (B.3).

Theorem B.4. The prime form E(Q,P) can be identified with a theta function:

>

Proof. The theta function convention followed in (B.5) is that of [26]. The
argument of 0t in (B.5) makes sense because of the isomorphism between M and
Pic°(M) referred to earlier. The result follows from Proposition B.I, Eq. (B.4) and
the fact that the line bundle (9(0) over Pic°(M) can be trivialised over the covering
space C of Pic°(M) and its unique holomorphic section can be identified with the
0-function, for which we refer to [1 8]. The fact that θl appears in (B.5) is because θ
is identified with the zero element of the group Pic°(M).

Remark B.5. Note that the expression for the prime form E(Q, P) in Theorem B.4 is
the same as the one written down by Hejhal [27] starting from a different
defϊnitioivviz. Klein's jprime form. It also_agrees with Ih&onejusedin the physics
literature, e.g. see [6].

By definition the two point function is a meromorphic section of
pίCKφα"1)®^*^) with only a simple pole on the diagonal, where α lies in the
complement of Θ. Since Θ is the neutral element of Pic°(M), the only constraint on
α is that α φO. Thus the two point function is defined by the unique holomorphic
section of ̂ α(l, 1), uniqueness being a consequence of Theorem 2.2. This section
can be identified with a translate of θ± by — α by Proposition B.2. Then using
Theorem B.4 we get

Theorem B.6. The two point function <b(β)c(P)> is given by the Szego kernel: for α
ΦO,

where E(Q,P) is given by (B.5).

Remark B.7. The expression (B.6) is consistent with HejhaΓs definition of the Szego
kernel for 02, 03, Θ4 [27]. Note that we have used the isomorphism of M and
Pic°(M) under the Abel map in writing (B.6).

Let us now consider the fermionic b-c system on M. A brief summary of our
earlier work [1 1-1 3] is given in Appendix A after Theorem A.3. Thus in the case of
g = l as well, C(w,n) = 0 for m=t=n while C(n,n) is unique. Consequently Wick's
theorem holds, so that C(n, n) can be expressed as a determinant of two point
functions. To get an identity, we must identify the unique holomorphic section of
JiΛ(n,n\ which we did in Appendix A for g = 0 and in [11, 13] for g^2.
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Proposition B.8. Let ξ be any element of Pic°(M) and let φn

ξ denote the map

Then

Jίξ(n,n) = φn*(&(Θ)). (B.7)

Proof. A straightforward application of the seesaw principle [24, 25].
When ξ = α e Pic°(M) - <9, then Proposition B.8 and Theorem A.4(ii) show that

n,ri) has the unique holomorphic section θί I £ Qt— £ Pf — α 1. Thus

Σ Gi - Σ Pt ~ « Π

Π

But we have shown that C(n, n) is also a determinant of Iwo point functions, so. that

= const x det (B.9)

Comparing (B.8) and (B.9), it is easy to see that the constant is unity and so we have
proved:

Theorem B.9 (Frobenius' identity [17]). For αφO,

i- Σ Λ + « Π 0ι(β|

(B.10)

«ι(«) Π

Remark B.ίO. In our notation, what Frobenius [17] actually writes (after
correcting a small error in [17] in going from Eq. (11) to Eq. (12)) is the identity:

π

U=ι

where σ is the Weiers trass function [26]. Using the well known relation between σ
and #! [26], it is easy to see that (B.ll) is equivalent to (B.10).

Acknowledgements. I thank N. Mohan Kumar, M.S. Narasimhan, and D.N. Verma for many
useful discussions.
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