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Abstract. Within the ferromagnetic g-state Potts model we discuss the wetting of
the interface between two ordered phases a and b by the disordered phase / at
the transition temperature. In two or more dimensions and for q large we establish
the validity of the Antonov's rule, σab = σaf + σ/b, where σ denotes the surface
tension between the considered phases. We also prove that at this temperature,
in three or more dimensions the interface between any ordered phase and the
disordered one is rigid.

1. Introduction

In recent years considerable progress has been achieved on the study of the physical
properties of the interfaces between two coexisting phases. When three or more
phases coexist new physical phenomena appear whose understanding requires the
study of several interacting interfaces.

A simple model in which this situation occurs in the ferromagnetic g-state
Potts model in dimension d^2. This model exhibits q ordered phases at low
temperatures and one disordered phase at high temperatures. For q large enough,
the order-disorder transition is first order, and all the previous phases coexist and
are distinct at some unique transition inverse temperature βt. For rigorous results,
see [1-6].

In the first part of this work [6] we have presented an analysis of the
order-disorder transition for large q based on an adaptation of the theory of
Pirogov and Sinaϊ to the Fortuin-Kasteleyn representation of the Potts model.
In the present paper we develop this approach, and apply it to study the behaviour

* On leave from Institute for Problems of Information Transmission of the Academy of Sciences
of USSR, Moscow, USSR
** Laboratoire Propre du CNRS: LP 7061



276 A. Messager, S. Miracle-Sole, J. Ruiz and S. Shlosman

of the different interfaces which occur at the transition point. Different aspects of
this problem have also been discussed in [7-11].

For this purpose we shall, as usually, enforce two phases, say α and /?, to
coexist, by considering an asymmetric boundary condition, i.e. the condition
corresponding to α on the top half and the condition corresponding to β on the
lower half of a large rectangular box.

The surface tension σα/?, that is the residual free energy associated to the
presence of an interface between the phases α and β, is then defined by taking the
difference between the free energy of the above described system and the average
of the free energies corresponding to the homogeneous boundary conditions α and

β
Due to the symmetry of the model, all ordered phases may be regarded as

equivalent and we are lead to consider two kinds of phase coexistence: the
coexistence between an ordered phase and the disordered phase and the coexistence
between two ordered phases; previous results on these surface tensions were
obtained in [4-5].

In the first case, as a result of our analysis, we obtain a description of the
interface very close, for q large enough, to that of the plus-minus interface for the
Ising ferromagnet at low temperature [12]. Namely, the order disorder interface
may be expressed as a gas of elementary excitations with small activities. These
elementary excitations are the components of the deformations with respect to the
interface of the ground state. As an application of this result we prove the rigidity
of the order disorder interface in dimension d ̂  3 for q large enough.

In the second case, we show that the boundary between the two ordered phases
is described by two interacting interfaces. In the region between these interfaces
the system is submitted to the boundary conditions associated to the disordered
phase. If we consider each of them separately, these interfaces admit a representa-
tion very similar to that described in the previous paragraph, but they strongly
interfact if they are at short distances.

Using these representations of the interfaces and the mathematical definition
of the surface tensions given above we are then able to prove, at the transition
temperature /?„ the following relation

where α, b and / denote two different ordered and the disordered phases. Such a
relation among surface tensions is known as Antonov's rule. We notice that an
essential step in the proof, the inequality σab ̂  σaf -f σfb, was already derived in
[10]. This inequality reflects the specific features of the Potts model. On the other
hand, the inequality, σαy ̂  ocΛβ + σβγ, where α, /?, γ are any three different coexisting
phases of the system seems to be of a very general nature. We pass now to give
the rough idea of why it is so.

To estimate the surface tension σαy from above we have to estimate from below
the partition function Z£y in a volume of size L with mixed α-y boundary conditions.
We do this by restricting the summation to the configurations which have the
strip of intermediate phase j3, inserted between α and y, of thickness Lp. If p is less
than 1, then the boundary effects of interacting of β phase with spins α or γ along
the boundary of our volume, does not contribute to the surface term. On the other
hand, if the size of fluctuations of the a-β and β-y interfaces are of order Lq with
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q<p, then these surfaces essentially do not interact, and so their surface free
energies per unit area is σaβ, σβy, so the total contribution to the free energy of
the α-y interface is at least σ*β + σβy. Below we prove exactly that kind of statement
for the 2-dimensional Potts model with p = 2/3, q = 1/2 4- ε, and for the
3-dimensional Potts model with q arbitrary small and p > q.

Since in the Potts model at the transition temperature the ordered phases α,
b and the disordered phase / are in equilibrium, Antonov's rule implies that there
is no variation of the free energy to prevent a layer of the disordered phase, between
two ordered phases, for becoming macroscopic. This is the (perfect or complete)
wetting phenomenon. Thus we conclude that the thermodynamic condition for
wetting is fulfilled in our case.

In order to complete the theory, an interesting effort would be to study the
width of the intermediate layer using statistical mechanical arguments. One believes
that this layer is macroscopic (in other words, that the width tends to infinity with
the size of the box) as a result of an "entropic repulsion" between the two interfaces.
Distant interfaces, having more freedom to fluctuate, should be more likely. Instead,
for β>βt, a macroscopic layer of disordered phase cannot exist and the
intermediate region should have a finite thickness. Then the question arises of
how does this thickness grow when β approaches βt. The thickness is expected to
diverge, as predicted by mean field theory or numerical experiments, and for d ̂  3
(rigid interfaces) this occurs through an infinite sequence of layering transitions.
We notice that entropic repulsion and layering have indeed been proved in the
case of an SOS surface on a wall [13]. For more details and references concerning
these phenomena we refer the reader to [11], especially to Chap. VI.

2. Convergent Expansions

We consider the ^-dimensional cubic lattice Zd and denote by J* the set of bonds
of the lattice (pairs of nearest neighbours). In the Potts model spin variables σ{

which take values on a discrete set {l,2,...g} are associated with each site i of
the lattice. The interaction energy is

where the sum runs over pairs of nearest neighbours and δ is the Kronecker symbol
(we take the interaction potential equal to 1).

We shall use in the present work an alternative representation of this model,
due to Fortuin and Kasteleyn, where the configurations of the system are associated
to subsets X a $ of occupied bonds. The Boltzmann factors and the partition
functions take then the form which will be given below, and q may be real valued.

Two bonds are called adjacent if they have an endpoint in common. Two
bonds are called co-adjacent if there exists a d-cell containing these two bonds
(d-cells are plaquettes for d = 2, cubes for d = 3, etc.). A set of bonds X c Jf, is
connected (respectively co-connected) if for any b and V in X, there is a sequence
b = b^ , b2, . . . , bn = b' of bonds in X such that bf and bt + 1 are adjacent (respectively
co-adjacent) for all i = 1, . . . , n — 1.

For any set of bonds X c Jf, we define the boundary dX as the set of bonds
which belong to X and are co-connected to the complementary Xc = 3U/X. We
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define the co-boundary δX as the set of bonds which belong to Xc and are
connected to X. We denote by S(X) the set of sites which belong to some bond
in X. Then, δX = δlXvδ2X, where δnX = {beXcl\S(b)r\S(X)\ = n}9 w = l,2.
Hereafter |£| denotes the cardinality of the set E.

A co-connected subset y of $ is called a contour if it is the co-boundary of
some set X c Jf, such that either X or Xc is a finite set. In the first case we say
that y is a contour of the free class, or a /-contour, in the second case we say that
y is a contour of the wired class, or a w-contour. The unique infinite component
of Λ\y is denoted by Ext y and we define the sets V(γ) = #\Ext y, and Int y = F(y)\y
and the length of the contour

|| y || = I δ{ Int y | + 2 1 δ 2 Int y |, if y is a /-contour,

||y|| = I^Extyl + 2|<52Exty|, if y is a w-contour.

Two contours yι,y2 are called mutually compatible if y ιuy 2 is not co-connected.
We introduce the partition functions with free and wired boundary conditions

Z"(F)= £ (ί*
XcV,X^dV

where KG & and CV(X) denotes the number of connected components of X,
counting each site of S^JΌXSpQ, where S/(F) = S(V)\S(VC\ as a component. The
following limits (independent of the boundary conditions):

f(β) = lim (I/I K|)logZ'(F) = lim (1/| K|)logZw(K),

exist and give the free energy per bond: —(l/β)f(β).
We shall express the partition functions Zw and Zf in terms of two contour

models associated with the functionals φw and φf defined respectively on the set
of w-contours and the set of /-contours. The partition function, in a volume
V(V c $\ of a contour model with contour weights φ(y) is given by

= Σ

where the sum is over all admissible families d of contours in V: this will mean
that dw is a set of mutually compatible w-contours included in V\dVand df is a
set of mutually compatible /-contours included in V.

To have a good control on contour models one relief and their "τ-functionality."
A contour functional φ is said to be a τ-functional if it satisfies the estimate

for some τ > 0 and every contour y. This ensures, in particular, the existence of
the limit

/(φ)=ϋm

Proposition 1. Assume that q is large enough and that β is equal to βt = βt(q, d)
the inverse transition temperature. Then two τ-functionals on the set of contour, φw
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and φf exist, such that:
Z™(V) = qc(v\eβ -

with τw = —logq-9q~ 1/2d and τf = d~~1 log q - 6q ~ [(d ~ 1)/(4d ~ 2}d]. Moreover
2d d(4d — 2)

f(βt) = log(^ - 1) + f(φw) = UAQlogβ +/«.,).

We refer the reader to [6] for the proof.
We now introduce clusters of contours in order to write the logarithm of the

partition functions as a sum over these clusters. Let C = {yl9 y2, . . . , yn} be a set of
contours (of the same class) where yι,y29...9yn

 are not necessarily mutually
compatible. We say that the family C is incompatible with the contour γ and
write Ciy, if there exists some / in C such that γ is not compatible with /. The
family C is called a cluster if it can not be decomposed into two non-empty subsets
Cί uC2 such that all pairs yί9y2 with y^eC^ and y2eC29 are compatible contours.
According to Kotecky and Preiss [14] we define on the set of clusters the truncated
functional associated to a contour functional φ by

BcC

where B and C are arbitrary sets of contours, N(Q and ΛΓ(£) the number of
contours and d are admissible families of compatible contours (then φ J(C) = 0
whenever C is not a cluster). Let 5(C) be the set of bonds y ι u y 2 u u}V The
definitions above say that a set of contours C is a cluster if B(C) is a co-connected
set and Ciy means that #(C)uγ is co-connected. It will be convenient in the
following to consider a cluster just as a set of bonds and to change the definitions
according to this point of view. We shall say therefore from now on, that C is a
cluster if Cc=^ and it happens that C = yvy2V'-vyn9 where C = {7ι,72» >7«}
is a cluster in the sense of the old definition. We shall define || C || = || γ 1 \\ + — h || yn \\
and the corresponding truncated functionals by

ΦT(Q= Σ Φl(c')
C':B(C') = C

Using these definitions, we obtain as a consequence of Proposition 1 and
Theorem 1 in [14]:

Proposition 2. Assume that q is large enough and that β is equal to βt. Then two
truncated functionals φ^ and φτ

f exist, such that

φτ

f(C,)
CfdV

They satisfy, for some ίc> 0, the estimates

for all clusters.
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3. Interfaces and Surface Tensions

In order to define the interfaces and the surface tensions between the different
phases we consider the following rectangular boxes:

and introduce mixed boundary conditions with respect to an hyperplane Pn passing
through the origin and orthogonal to a d- vector n (to take into account the angular
dependence of the surface tensions). Let &+ be the set of bonds having their two
endpoints above the plane, i.e. on the set ilnl + — h ίdnd ^ 0, and let JL be the
set of bonds having their two endpoints below it, i.e. on the set ilnl + — h idnd < 0.
We denote by V the set of bonds having their two endpoints inside A and write

> _ , δ.Vc = δVc

The partition function with mixed wired-free boundary condition is:

Z<™ f *\V) = £ (eβ- i)\x\qcvwm

X^V,X ^d+V,Xnδ-Vc = 0

The partition function with mixed wired boundary condition is:

where the * means that we restrict the sum over sets of bonds such that the
connected subset which contains d + Vis not connected with the connected subset
which contains d _ K

The corresponding surface tensions are defined by

1 r^'f'^iv}
σ^f(n) = -(1/β) lim —— lim log-

lim — lim

where SΛ(n) is the area of the portion inside A of the hyperplane Pn. To simplify
the notations we introduce

σ

w'/ = σ

w'/(n) for n = (0,...,0,l),

σ™>f(θ) = σ™>f(n) for n = (0,...,0, -sin0,cos0),

and the analogous notations for σw'w'.

3.1. Description of the Order-Disorder Interface. Consider a configuration which
contributes to Z(w*f'n\V). Let X± be the connected component of X which contains
d + V. The co-boundary δXv of X{ splits into co-connected components. One of
them, let it be Γ', contains the set δ + V, the others (if they exist) are contours of
the wired class. We denote 0 the unique region whose coboundary is Γ'. We
define the order-disorder interface Γ, associated to the configuration X, as the
co-connected set Γ= Γ'\δ+ V, and we define its length as || Γ \\ = \Γ\ + Γ(2)|, where
Γ(2) are the bonds of Γ which contain two endpoints in 0. The interface Γ divides
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the volume V in two regions: the region 0 above JΓ corresponding to the ordered
phase and the region D = V\0 below Γ corresponding to the disordered phase.

Proposition 3. The ratio of partition functions entering in the definition of the surface
tension σWjf(n\ may be written as a sum over all interfaces Γ of the following weights',

y ώr(o|Cn011 y ώr(o|CnZ)|

L.^ ' \V ^ ' I x ^ I ίm^ i \V ^ ' j s~ι I

Σ ^CiΓ,Cnd-V=0 |M Cid-V

Σ Φτ(cF^-1- ΣΔJ VivV^/ i^i ~ L^

where it is understood that the arguments C of φ^ and φτ

f are respectively clusters
of w-contours and clusters of /-contours.

Proof. We first notice that for φτ equal to φ^ or φτ

f and for any V c J1, Proposi-
tion 2 implies

beC

From the definitions of the sets 0, D and Γ it follows that

r

and therefore (taking again into account Proposition 2)

logpκ(Γ) = logZw(0) + logZ'φ)

= I O I [log (e* - 1) + f(φM + ( I Sfφ) | + 1) log q + \ D \ f(φf)

-i|F|[log(e"'-l) + /(φJ] -i(|S,(F)| + l)\ogq-$\V\f(φf)

- Σ «Q^^- Σ tf(Q^!
cwb * |C| elk y |C|

^ ] V ΛΓ^I^^^I
+ ~ Σ WC)^^T2ci^κ |C|

By applying the identity between free energies stated in Proposition 1, and since
V = 0 u D, we see that the contribution of the first six terms in the above expression
is

where the last equality follows from the corresponding definitions and the fact
that 2d bonds meet at every lattice site. It remains to examine the contribution
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of the last four terms and to show that it coincides with the expression inside the
exponential stated in the proposition. This is done by rewriting the different
contributions according to appropriated and natural decompositions of the sets
over which the sums take place and by collecting analogous terms. This ends the
proof of the proposition.

3.2. Description of the Order-Order Interface. Consider now a configuration X
which contributes to Z(w'w''n)(K). Then X has at least two different connected
components X± and X2 such that X± =>d+V and X2^d-V. The co-boundary
δXίoϊX1 splits into co-connected components. One of them, let it be Γ'ί9 contains
the set δ + V, the others (if they exist) are contours of the wired class. In the same
way, the co-boundary δX2 of X2 has one co-connected component Γ'2, which
contains the set <5_ V. We denote O = Ox uO2 the unique configuration such that
the coboundary of 0± is Γ\ and the coboundary of 02 is Γ'2. We define the
order-order interfaces Γl9Γ2, associated to the configuration X, as the co-connected
sets Λ = Γ; \<5 + V and Γ2 = Γ'2\<5 _ V. We define their lengths as || Γn \\ = \ Γn \ + \ Γ™ |,
where Γ™ are the bonds of Γn which contain two endpoints in On and n = 1,2.

The interfaces Γί9Γ2 divide the volume V in three regions. The regions 01

and 02 respectively above Γί and below Γ2 correspond to the ordered phases,
the region D = V\(01u02) between them corresponds to the disordered phase.

Proposition 4. The ratio of partition functions entering in the definition of the surface
tension σw'w'(n), may be written as a sum over all interfaces Γi9Γ2 of the following
weights:

Σ J.:Γ//^\l^' l ι y ι l v j.τ//
^w( ̂ "iri ^ *»(t' inci/ΐ.ceK I<-Ί cίΓ2,ccF |C|

V ΛΓ^ ^r- Σ <Mc)-rτη — Σ ^/(cm |t-Ί an

Σ
CiVc 1^1 CίΓι,CiΓ2 |C| )

where it is understood that the arguments C of φ^ and φτ

f are respectively clusters
ofw-contours and clusters off-contours.

Proof. From the definitions of the sets Oi9O2,D,Γ1 and Γ2 we see that

z<w,>v'.n)(κ)= £ ZW(01)ZW(02)Z/(D).
Γι,Γ2

Then, by arguing as in the proof of Proposition 3, we get

logpv(Γl9Γ2) = logZw(01) + logZw(02) + logZ^B) - logZw(K)

- Σ * * - Σ
CidO i |C| CidO2
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We use the geometric remark

S,(D)--ID\= -^(IIΛU + IIA ||).
a 2a

Then, the proof of the Proposition follows from similar arguments to those used
in the proof of Proposition 3.

4. Rigidity of the Order-Disorder Interface

Once one has expressed the weight of the order-disorder interface as in Proposi-
tion 3, its rigidity in three or more dimension and for horizontal boundary conditions
can be shown in a (rather) standard way, following the method of Dobrushin
[15, 16] and its generalizations [17-19]. Since there is only a slight difference in
the geometry of the interface, compared with the Ising model, we shall only precise
how to define the so-called walls and ceilings.

Let π denotes the projection parallel to the vertical axis on the horizontal
plane: π({x1,...,xd}) = {x1,...,xd~1}, and for any bond be@ let x(b) and y(b)
denote its endpoints. A bond b of Γ is called a ceiling-bond if π(x(b)) = π(y(b)) and
if there is no other bond b' of Γ such that π(x(b')) = π(X&')) = Φ(&)) The bonds
of Γ which are not ceiling-bonds are called wall-bonds and the set of wall-bonds
W(Γ) = Γ\u(b/b is ceiling-bond) is divided in co-connected components called
walls.

Then we can follow [15, 17 or 19] to obtain the result. To state it let us
introduce some notations. We denote < >w>/ the expectation of the (infinite volume)
Gibbs state with the (horizontal) mixed wired-free boundary conditions and for a
fixed bond ft, we denote nb the occupation number: nb(X) = 1 if b belongs to X and 0
otherwise. We also denote xd(b) and y\b) the ^-coordinates of the endpoints of b
and &+ denotes the set of bonds b such that xd(b) ^ 0 and yd(b) ^ 0, while JL
denotes the set of bonds b such that xd(b) < 0 or yd(b) < 0. Under the above
notations we get ([15, 17]).

Theorem 1. Assume that d^39 then there exists a function g(q) (#(<?) -»0 as q ^ oo)
such that

if

= ProbK = 1) ̂

Moreover one can obtain information about the height of the interface (see
[16, 18 or 19]): for any bond b,

where c(g)->oo as g->oo. On the other hand, the state < >Wί/ is extremal and
invariant with respect to horizontal translations.

5. Restricted Interfaces

In this section we consider the order-disorder surface tension σw>/ which according
to Proposition 3 is obtained from the contributions of all order-disorder interfaces
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Γ with the associated weights pv(Γ). We shall show that only the interfaces having
a height less than L2/3, where L denotes their horizontal size, have a non-negligible
contribution to the surface tension.

We first restrict our discussion to the 2-dimensional case. We denote by
77= 77(L) the vertical strip

and by Q = Q(L) ci 77(L) the cigar-shape region

For simplicity of notation we hereafter denote V the box of Sect. 3 translated
along the direction orthogonal to the vector n in such a way that V is included
in 77(L), and we denote pπ the limit of pv when M goes to infinity.

Main Lemma. Assume that q is large enough and β = βt. Then, for any angle θ such
that \θ\ _̂  π/3, we have

=0.
L-ooL £ pπ(Γ)

ΓcΠ

Before proving the lemma we introduce a slightly more general problem. For
each L, let N(L) be the integer part of Ltg θ. We denote by XL the point (L, N(L))eZ2.
We denote by ΩΘ

L the set of all trajectories Γ of random lines from 0 to XL, which
lie entirely inside the strip 77(L).

Suppose that for each connected set C of bonds in TL2 and for each ΓeΠ(L)
the function φ(C, 7") is given, such that:

1.
2.

where λ ̂  0 and d(C) is the length of the shortest connected graph which pass
through all boundary bonds of C,

3. φ(C9Γi) = φ(C9Γ2) if Λ n 77C = Γ2 n 77C,

where 77C = {(x,y)eR2:for each x the point (x,y(x))eC for some y(x)}.

4.

for any t = (0, ί(2))eZ2, provided Γ1 n 77C = (Γ n 77C) + t.
Let us consider the weight

n / rx ι-ιn+ Σ rtcn
PL(1 ) = A CnΓ*0 ,

and let ̂  = 0>L be the corresponding probability distribution on ΩΘ

L. We are going
to show that:

Proposition 5. Under the above hypothesis, we have
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when L-> oo, provided the constant λ is large enough.

To show that the Proposition 5 implies the main lemma, we put for any cluster
C which intersects Γ,

1

\c\
{-φl(C)\CnO\-φJ(Q\CnD\}if

if

and Cn/V0

and

if , Cnd_77=0 and

Then it is enough to note that the sum of \φτ(C)\ over those C's, which contribute
to one exponent but not to the other, is uniformly bounded in Γ and L.

The proof of Proposition 5 is contained in the paper [20] Sect. 4, modulo
some minor modifications. For the benefit of the reader we shall give here an
outline of it.

The first step is to go from the "canonical ensemble" to the "grand canonical
ensemble" Ωh

L which is the set of all trajectories Γ, starting at 0, living inside ΠL

and terminating on the line x = L. We shall denote this endpoint by Γ(L). The
statistical weight of a trajectory is given, by definition, by:

Όh(Γ\— 2- l Γ l+ Σ <p(C,Γ) + hΓ(Λϊ
ΓLλλ / ~~ Λ 0. ΓΦ 0 •>

where h is some constant, which will depend in some special way on θ. We denote
by 0>h

L the corresponding probability distribution. The connection between the
distributions 0*h

L and 0>L is the following: for any h the conditional distribution
0>h

L{Γ(L) = N(L)} coincide with ^L{ }. The choice of h = h(θ) is made according
to the following rule: the difference between N(L) and the expected value of Γ(L)
according to the distribution *̂ , is uniformly bounded in L. It is possible to show
the existence and uniqueness of such h(θ).

Let us denote by <2'(L), β"(L) the "semi-cigars":

β'(L) = {(x, j;)eR2:0 ̂  x ̂  L and \y - x tg θ| ̂  ̂ x2/3},

Then Q'(L) n Q"(L) c= Q(L). Proposition 5 clearly follows from the two statements:

(i) 0>h

L{ΓeQ'(L)} = 0>h

L{ΓeQ"(L)} ^ 1 - cLexp {-cL1/3}

for some constant c> 0. Indeed,
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= N(L)}

£l-2(-^J cLexp{-cL'/3}
' Ju/

which implies Proposition 5.
The statement (ii) is a corollary of the central local limit theorem for the random

variable Γ(L), which states that

lim sup Γvar (Γ(L))l'20>h

L{Γ(L) = k} —exp { - - ̂ "N(L))2|1 = 0
L-^taίL Ll ,/2π 1 2Var(Γ(L))JJ

while Var(Γ(L)) ̂  c1 y/L with ̂  > 0.
To study the probability (i) we consider the random variables Γ±(x\ where

xe[0,L], defined by

Γ+(x) = sup {ί-xtg0}, Γ~(x) = inf {ί-xtgβ}.
(*,r)eΓ U,ί)eΓ

It turns out that for the random variables Γ±(x\ the central local limit theorem
again holds, as x-»oo. Moreover one can get the estimates on the probabilities
for large deviations of Γ±(x). The standard idea is the following: it is clear that
one has the local limit theorem for Γ±(x) not only for h = h(θ\ but for other values
of h as well, provided \h\ < 1. Note the following evident relation:

^(Γ±(x) = X} = 0>h

L{Γ±(κ) = X} exp {(h - h')X}

Now we have

= X}^ inf eκp{(h-h')X}
h':\h'\ 3s 1

which implies the following bounds:

for any x ̂  L such that x ̂  XQ(h\ where X0(h) is large enough. Here c = c(h) and
the value XQ(h) are given by the property that for x ̂  X0(h) the random variable
Γ+(x) is already well described by normal approximation. The remaining region
of finite values of x can be treated by using the simple observation that the curve
Γ can have stairs in the vicinity of a fixed point, with very small probability.

The proof of the central local limit theorem for Γ(L) as well as the estimates
on the probabilities of large deviations are based on the fact that the logarithm
of the characteristic function χh

Γ(L)(t) of the variable /XL) is analytic in a certain
strip around the real axis. This analyticity in turn is derived from the representation
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of the line Γ as a "regular" line with "defects." Representations of that kind were
used by Gallavotti [21], Bricmont and Frόhlich [22] and others (see references
in [22]). The details can be found in [20].

The analogous result for the 3-dimensional case is limited to the "horizontal"
boundary conditions (i.e., θ = 0). This is because the behaviour of the interface for
other boundary conditions is still not known sufficiently well due to the occurrence
in that case of infinitely extended defects (see [12]).

The case of horizontal boundary conditions for the 3-dimensional case is in a
sense even easier than that of the 2-dimensional case, because here, according with
Sect. 4, we know that for large q, the interface at the transition point exhibits only
finite fluctuations.

6. Antonov's Rule

We are now able to prove that Antonov's rule is satisfied at the transition
temperature.

Theorem 2. Assume that q is large enough and that β is equal to βt. Then, in two
dimensions and for any angle θ such that \θ\^ π/3, we have

and, in three or more dimensions

σw,w = 2σ™>f > o

/or 0 = 0.

Proof. As we already mentioned the inequality σw w (n) ̂  2σw>/(n) was proved in
[10]. This result is a consequence of the following corrόlation inequalities:

δ(σh α)Π δ(σh &) W Π δ(σ» *)V Π ̂
Λ ieB / \ ieA / \ieB

where free boundary conditions are understood and A and B are finite sets of sites.
See [10, 23 and 24] for proofs. The Fortuin-Kasteleyn representation is used in
the second reference and the result is valid for real values of q.

Let us now prove the converse inequality σw'w '(θ) ^ 2σw'f(θ) at the transition
point in the two-dimensional case. We consider the vertical strip Π(L) and the
cigar-shape region β(L) introduced in the preceeding section and denote by
Z(w>w >β)(L, M) the partition function for the appropriate boundary conditions
defined by θ inside the box Λ = ΛL>M. From Sect. 3 we know that

Γι;Γ2

Let us restrict the summation to the following set of curves Γί,Γ2'.
i) The part of the curve Γl9 lying outside the region Ql = Q(L - 2) + (1,L3/4),

coincides with the two vertical segments:

and [(L-
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ii) The part of the curve Γ2, lying outside the region Q2 = Q(L - 2) + (1, - L3/4),
coincides with the two vertical segments:

[(iθ),(i-L3/4)] and [(L-iLtg0),(L-iLtg0-L3'4)].

We suppose here that M ̂  2L(1 + tg0). Let us denote this restricted sum by:

Z(w'w''β)(L,M|β)

ZW(L,M)

Clearly,

Z(wX,0)(L? M I β)

ZW(L,M) = ZW(L,M)

Let Γ't, Γ2 be the parts of the curves Γl9Γ2 which lie inside the corresponding
cigars, and ̂  = /Ί\Γ'19 /2 = Γ2\Γ'2. Applying now the Proposition 4, we have

Z"(L,M)
= -(l/2d)(4L2/3) y -(l/2d) || Γ; || + 1/2; || + 1/2 -(l/2d) ||Γ^|| + 1/2

- Σ * ? Q - Σ

Because in the exponent we are interested only in terms of order L, we can in the
above formula, suppress all segments / l 5/ 2, all the clusters C which intersects both
Γ\ and the lower half of F, or Γ'2 and the upper half of V9 and the last term inside
the exponential.

After that, the sum Σ factorizes, which means that there is no interaction
Γ [ ; Γ 2

between Γ\ and Γ'2.
Let us compare now the sum of the remaining terms, corresponding to Γ\9 with

the six terms in the exponent in Proposition 3. Their difference is

CiΓ,Cid-V \C\

v ^τ^ n . vΣ . >w(Q-̂ - + ̂ _ . _ Σ
\C\

modulo some corrections that come because we discarded the contributions of
exceptionally long clusters (of the length at least cL3/2, with some c> 0 uniformly
in L). But those corrections are uniformly bounded because the functions </>^(C),
φ J(C) decay exponentially in C. We claim that each summand in that last sum is
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uniformly bounded. To see it for the first term we have to note that if a cluster
C contributes to it, then it must interesect both the boundary dV and the boundary
dQ of the "cigar" β(L). Because the two lines diverge (as y3/2

9 where y is the
distance from the origin), and φτ(C) decays exponentially, the statement follows.
The same reasoning applies as well to second and third terms. Also the lines
d+V, d_Kdiverge, which gives the bounds for the fourth and last terms.

So, up to terms exp {o(L)}, we have:

Z"(L,M)
_Γ Σ

LΓcιQ(L)

= Γ Σ PιΛΓ)ΐxexp{o(L)},
\_ Γc Π(L) J

where in the last step we used the main lemma. From this the result follows.
For the 3-dimensional case, we can repeat the same arguments as in the

preceding case. Moreover, we have the freedom of choosing whatever exponents
α,7 we wish in the definitions of the boxes Ql and β2> with the only restriction
that 0 < α < 7 < 1. This is because

^π{Γ:\Γ±(x)\ >U for some xe[-L,L] x [-L,L]} ^L2exp(-cLα),

and therefore tends to zero when L-> oo.
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