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Abstract. We study the holomorphic structure of certain complex manifolds
associated with W^ algebras, namely, the flag manifolds WJT^ and
^ i + JTι + oo9 and the spaces WJSL{oo,R) and PF1 + oo/GL(oo,K), where Γ*, and
T1 + o0 are the maximal tori in W^ and W1 + oo. We compute their Ricci curvature
and show how the results are related to the anomaly-freedom conditions for W^
and l^n-oo. We discuss the relation of these manifolds with extensions of
universal Teichmϋller space.

1. Introduction

An important problem in string theory is the search for a better understanding of
its geometrical underpinnings, in the spirit of the beautiful interpretation of
general relativity in terms of Riemannian geometry. It has been argued that a
natural arena for addressing such geometrical issues is provided by the study of
the manifold Jt = diff (S1)/^1 of complex structures on loop space related by
reparametrisations [1]. This remarkable manifold proves to possess a natural
Kahler structure [1], and it has been found that many statements concerning the
consistency of string theory can be reformulated in terms of geometric data for
Jt or related structures [1-5]. For example, the condition of nilpotency for the
BRST charge Q (required for quantisation in the BRST formalism) is replaced
by the requirement that a certain vector bundle over J( have vanishing Ricci
curvature [1,2].

In this paper, we show that this geometrical formalism admits very natural
extensions when one replaces the algebra difϊXS1) (essentially the centreless
Virasoro algebra) by certain higher-spin extended algebras which have been
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explicitly constructed recently. As obtained in [6,7], the W^ and W1 + oo algebras
involve (quasi-) conformal fields Vι(z) of spin (ΐ + 2), where the index i ranges over
the integers ί^O and i^ - 1 , respectively. In either case, the commutation
relations between Fourier modes Vι

m take the form

, Vti = Σ θUw^J^' + CiinήδVδ^o, (1)
O

where the form of the structure constants g^r(m,ή) guarantees that the summation
only involves generators in the algebra, and the central terms take the form

cί(m) = m ( m 2 - l ) ( m 2 - ( i + l ) 2 ) c ι , (2)

where the central charges cί are all fixed up to an overall scale, determined by the
Virasoro central charge c=12c 0 . Explicit expressions for the structure constants
and central charges can be found in [6] for W^ and [7] for W1 + O0.

In the following section, we briefly review the results of recent investigations
of the condition Q2 = 0 for the W^ and Wί + ao algebras [8,9]. In Sect. 3, we
introduce several manifolds which are the natural ^-extensions of diff'(S1)/^1

and diff(S1)/5L(2,R), discuss their Kahler structure, and compute their Ricci
curvature. In the case of the Virasoro algebra, the Kahler metric on difΓίS1)/^1

has been shown to induce the Weil-Petersson metric on the universal
Teichmϋller space, parametrised by Beltrami differentials [10]. In Sect. 4, we
show how some of these results may be extended to the higher-spin algebras.

2. Review of BRST

For an arbitrary Lie algebra G, with generators Ta satisfying the commutation
relations [T\Tb~]=fab

cT\ one can define the BRST charge β = β Γ + β g h , where
Qτ = caT

a and Q g h = -%fab

ccacbb\ with ca and ba being anticommuting ghost
operators satisfying the anticommutation relations {cωbc} = δb

a. For W^ or
W1 + o0, the BRST charge for the "matter" sector is given by

- m C (3)

allowing for a general intercept α0, and for the ghost sector

δgh= ~\ Σ gi(m,ή):cίmcLnbW;2':. (4)
ij

Because the algebra is infinite dimensional, one has to adopt some appropriate
normal-ordering convention for the ghost modes. The customary choice,
extended to the W^ or W1 + O0 algebras, is to define a vacuum state |0> by

*4|0> = 0, m>0, (5)

and to normal order with respect to the corresponding decomposition into
creation and annihilation operators.
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The nilpotency condition β 2 = 0 becomes β r + βgh = 0> where

Q2τ=Σ Σ Wm)-αo^>,-m)}cLm<i (6)
i m>0

and

g2=ΠJ!W-,i (7)
5 i,k m > 0

The coefficients Rik{m) in (7) are given by

(i+k)/2 oo ίm-1 ")

R*(m) = Σ Σ i Σ ^>,-«)^+i2r 2 r(-m,m-n)i (8)
r = 0 j = max(0,2r-i) (̂  n = 0 J

when i + fc is even, and zero otherwise.
In the case of the Virasoro algebra, the normal-ordering procedure described

above would be sufficient to render the expression for βgh finite. However, here
the corresponding expression (8) involves a sum over j , reflecting the fact that
there are contributions coming from anticommutators of ghost operators for all
the higher-spin generators in the algebra. This summation over j is naively
divergent. However, as was discussed in [8,9], one can introduce a regularisation
of the divergent sum, by viewing it as being formally equivalent to a set of
summations whose analytic continuations define generalised zeta functions. A
priori, one would expect that such a re-interpretation would be fraught with
ambiguities. Remarkably, however, as was shown in [9], there is a well-defined
and easily specifiable prescription under which all the coefficients Rik(m) given by
(8) are regularised in a self-consistent way to give

Rik(m) = δikcUgh(m\ (9)

where cUgh is precisely the central term of (1), (2) corresponding to central charge
c g h = 2 for W^, and c g h = 0 for W1 + ao< Such a result must necessarily occur if the
regularisation procedure is a sensible one1. This follows from the fact that the
operators K^(gh) defined by Vi

m(gh)={Q,bi

m} yield a ghostly realisation of the
algebra. Since β g h can be written as ^c^ Vlnigh), it follows that (9) must be of the
same form as (2), since the form of the central terms in W^ or W1 + ao algebras
are uniquely determined, up to one overall scale factor, by the Jacobi identities [6].
Thus requiring β 2 = 0 leads to the anomaly-freedom conditions for the central
charge in the matter sector c = — 2 and c = 0, for W^ and W1 + O0 respectively. The
ground-state energy α 0 is determined to vanish in both cases.

As we shall now show, the above BRST-anomaly expressions admit an
elegant reinterpretation, in which they can be viewed as Ricci curvatures of
certain Kahler manifolds. These results generalise ones that were obtained
previously for the Virasoro algebra.

1 One might hope that the existence of a simple, consistent regularisation scheme indicates that
there is some underlying deeper structure to the algebras, such as a higher-dimensional
interpretation, from which standpoint the regularisation would be seen to be natural [9]
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3. Curvature Calculations

In this section we compute the Ricci curvature for the Kahler manifold WJH,
where H is either the maximal torus T^ generated by the VQ, or the subalgebra
SL{co,R) generated by the Pm for | m | ^ i + 1. (The calculations for the manifolds
PF1 + 00/Γ1 + 00 and Wι + aΰ/GL(co,R) proceed quite similarly, so for those cases we
shall only give the final results.) For convenience, we define the function σ(f) by

this will allow us to treat both choices of H simultaneously throughout the
calculations.

The W^ algebra naturally decomposes into the direct sum of the three
subalgebras

WO0=W+®W.®H, (11)

where W+ is generated by the Vι

m for m>σ(ί), W_ is generated by the V*m for
m<— σ(ι), and H is generated by the Vι

m for \m\^σ(i). The coset manifold
WJH is Kahler, and one can think of the generators in W+ as spanning the
space of (1,0) forms, whilst the generators in W_ span the space of (0,1) forms.
There is a natural Kahler metric on WJH, given by

^ (12)
where c^m) is as in (2).

Following [11,1], we introduce the Toeplitz operator

(13)

for each generator XeWm9 where <£x is the Lie derivative with respect to X. As
in [11,11 one finds

CadX, XeH;
φ{X)=\ π+oadX, XeW.\ (14)

{-Φ(X)\ XeW+,
where π + is the projector onto W+9 and the operator adX acting on any vector
field Yis defined by (adX) Y=[X,Y]. The Riemann curvature operator is then
given by

R(X, Y) EE l<p(X),φ(Y)l - φ(lX, 7]). (15)

In order to calculate specific components of the curvature tensor, we first
apply (14) to determine the explicit action of the Toeplitz operator φ(V(

m) upon
V{, for any given W^ generators Vι

m and V{. If Vι

m is a generator of H, (14) is
simply the adjoint action of the algebra as determined by (1) (without the central
terms):

κi= Σ gUmriKV;2'. (16)
O

When VLm is a generator of M _̂, according to (14) one must project its adjoint
action onto the subspace W+. This may be written as

φ(V'-m)Vl = Σ θ(n-m-σ(i+j-2r))gU-m,n)Vi+J-2', (17)
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since θ(m — σ(ί)) is 1 for Vι

meW+, and 0 otherwise. (We define 0(x)=l for x > 0 ,
0(x) = O otherwise.)

In order to determine the action of φ(K^) when V{

m is a generator of W+9 we
require consistency with the Kahler metric (12). This is done by imposing the
condition

0 = φ(ViJg(Vk

p,Vi)
j k ) i ) ( k ( i ) i ) (18)

g
k

p.
for arbitrary V{ and Vk

p. The first term on the last line may be evaluated using
(17), while the second term is essentially the "projection" of φ(Vι

m)Vj

n onto Vk

p

Since (18) must hold for arbitrary Vk

p, this allows us to solve completely for
til The result is

inΊ:2'. (19)

Note that unlike (16) and (17), which terminate due to the properties of the
structure constants g2

j

r(m,n), this expression contains an indefinite number of
terms for given Vi and Vs. However, for any particular values of the Fourier
indices m and n, after a certain point (specifically, for 2r>m + n + i— j+ 1) the
Cj_i + 2r(m + ή) in the denominator of (19) and the g2i~

i+2r(-m,m + ri) in the
numerator both vanish (the former statement is obvious from the form of the
Ci(m); the latter is easy to demonstrate from the forms of the structure constants
given in [6,7].) This means that the coefficient of VJ

n^+

i*2r in φiV^Vl is not
determined by (18). As we shall see (after Eq. (26)), the correct definition of
φiVΪnJVi is to restrict the summation (19) to 2r<m + n + i-j + 2, for which the
denominator of the summand is well-defined.

For studying the complex geometry of the manifold WJH, one considers the
Riemann curvature operator R{X,Y) with X=VLmeW- and Y=VJ

neW+ (that
is, m>σ(i) and n>σ(j)). The definition (15) becomes

R(Vlm9 V{) ^ φ(VLm)φ(Vί) ~ φ(Vi)φ(VLm)

Σ (20)

where specific components Rimjn,kplq of the curvature are defined by the action of
R upon an arbitrary generator Vρ, according to

We are interested in computing the Ricci curvature, obtained by tracing over the
indices (jή) and (Iq) of the Riemann tensor:

Rim,kp = Rim,jn,kpJn (22)

Given the explicit actions (16,17,19) of the Toeplitz operators, it is straight-
forward to write down a formal expression for the Ricci curvature. The first term
in (20) gives, upon taking the trace (22),

r,r'j,n
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where the sum runs over r , r '^0 with 2r — 2r' = 2j—i — k. Here and in the sequel,
the summation over n runs over n>σ(j\ so the factor θ(n — σ(j)) in (23) is
identically 1. The second term gives

C>>^®, (24)

>
where 2r' — 2r = 2j — i — k; one immediately sees that (24) vanishes identically. For
the third term, one must distinguish two cases: for n — m^σ(i+j — 2r) one obtains

-K Σ i7£(-m,n)i7£J-2'>-m,m) (25)
r,r',n,j

with 2r + 2r' = i + /c, while for n — m>σ(i+j — 2r) one has

~δmp Σ gi(-™,n)g^-^(m-n,n)C-^ (26)
r,r',n,j cj\n)

with 2r + 2r' = 2j+i-k.
By relabelling the summation variables, it is straightforward to see that the

summand in (23) precisely cancels that appearing in (26). Furthermore, one can
verify that the ranges of summation then coincide; in the case σ(ΐ) = i+ 1 (that is,
H = SL(oo9R)\ this fact relies crucially upon the proper definition of the Toeplitz
action (19) with the proper range of summation. Thus, for both choices for //, the
Ricci tensor is given by simply (25), where n is summed over σ(j)<n^
m + σ(ί+j — 2r). In fact, the expressions given here all involve divergent sum-
mations. We expect that any sensible regularisation should respect the formal
manipulations described here.

With the explicit ranges of all summations displayed, the result reads

(i + k)/2 oo

Rirh,kp= 2 J . L
r = 0 7 = max(0,2r-ι)

Σ fl#M " n)gm^r(- m,m - n) \, (27)
j=l+σ(j) )

for i + k even, and zero otherwise. When / / = Γ 0 0 (in which case σ(i) = O), (27) is
precisely

Ritn,kP = δmpR
ik(m)9 (28)

where Rik{m) is the result (9) of the BRST calculation.
For H = SL(cc,R) (σ(i) = i + l ) , the expression (27) is in fact the result of a

modified BRST calculation in which the normal ordering of the ghost modes
corresponds to the SL(oo,R) vacuum |0> defined by

ί4|0> = 0, m>σ(0, (29)

extending the SL(2,R) vacuum discussed in [2,4]. Upon regularising the sum-
mations over j as described in [9], one in fact obtains the same result,

Rirή,kP = Smpδ
ikci(m) (30)

with c= - 2 , for both choices of H; this fact corresponds to the observation in
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[9] that the vacuum is automatically SL(co,R)-invariant without the need of
shifting the ground-state energy.

For W1 + ao/T1 + ao and Wί + O0/GL(co,R) the corresponding (regularised) Ricci
curvatures vanish identically. These results are a reflection of the fact, first found
in [9], that the regularised ghost central charge for W1 + a0 is zero.

4. The Weil-Petersson Metric and Teichmϋller Space

In [10] it was shown that the manifold diKiS^/SLQR) can be naturally
embedded in the classical universal Teichmuller space and, furthermore, that the
homogeneous Kahler metric on diff(S1)/SL(2,Λ) induces the Weil-Petersson
metric on Teichmuller space. We shall briefly review these results and then
discuss how they may be generalised to the case of W^/SLico^R).

The Kahler metric (12) for the special case diϊϊ(S1)/SL{2,R) takes the form

g(X,Y)= £ * m r_ m (m 3 -m) + c.α, (31)
m = 2

where X and Yare two vectors of the form X = ΣmXmLm and 7= £ m YmLm. The
complex conjugate of Xm is given by Xm = X_m. Under the Virasoro
transformation generated by Ln, we have δnX = [Ln,X29 and thus

δ{n)Xm = (2n-rn)Xm-n. (32)

One can easily check that the Kahler metric (31) is invariant under the SL(2,R)
subalgebra generated by L-ί9 Lo and Lι.

On the other hand the Weil-Petersson metric on the Teichmuller space T(G)
of a Riemann surface is given by

W-P(μ,v)= J ^ j ^ ^ M O ( 3
Λ/G A (1-zζf

where A is a unit disk; G is the Fuchsian group that characterises the Riemann
surface; and μ(z) and v(ζ) are Beltrami differentials. The universal Teichmuller
space Γ(l) corresponds to the case when G is taken to be identity group. One
can understand the Weil-Petersson metric as the pairing of the holomorphic
quadratic differential φ[v](z) and the Beltrami differential μ(z),

<μ,<p>= J d2zμ(z)φ[v-](z% (34)
Λ/G

where the φ[v](z) is given by

φ [ v ] ( z ) Ξ μ 2 ζ — ^ . (35)

The Beltrami differential parametrises the general class of metrics ~\dz + μdz\2

and satisfies the Beltrami equation Wz = μwz. Thus one can think of μ as a two-
index tensor of the form μf. Since (1-zζ)'2 is a metric on the upper half plane, it
follows from (35) that φ(z) is a tensor of the form φzz. One can easily check that
the Weil-Petersson metric (33) is invariant under the fractional linear group (i.e.
under SL(2,R)).
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The connection between the two metrics (31) and (33) can be established by
defining

Xm = -$d2zμ(z)zm-2. (36)
π A

In [10], it was shown that the Xm parametrise vector fields on the unit circle (the
boundary of Δ) describing the diffeomorphism induced by the Beltrami
parameter μ(z). It follows that (31) can be interpreted as the Weil-Petersson
metric (33) on the universal Teichmϋller space Γ(l).

Much of the above discussion can be extended to the higher-spin case.

Defining components Xl

m for a vector X =YJX
i

mVi

m the Kahler metric (12) on

WJSL{oo,R) can be written as

g(X,Y)=Σ Σ *U-,Λ(m) + c.c., (37)

where cf(m) are the central-charge terms appearing in (2). Under V{ transforma-
tions, we have δUn)X=[y{,X~\. This co-adjoint transformation on Xι

m is
somewhat complicated, and we shall not give the result explicitly here; it may be
found in [12]. This metric is invariant under the SL(oo9R) subalgebra of W^.
Under the SL(2,R) subalgebra generated by V±ί9 V°o and V°ί9 the
transformations of Xι

m take the simple form

where n= -1, 0 or 1.
The metric (37) may be cast into the Weil-Petersson form by generalising (36)

and writing

Xj

m = -[ d2zμj(z)zm-j-2. (39)
π A

Here, the quantities μj(z) are higher-spin generalisations of the Beltrami
differentials. From the transformation rules for the XJ

m9 it follows that these
generalised Beltrami differentials transform just like the spin (j + 2) gauge fields
of W^ gravity, which were introduced in [12]. In fact, the Beltrami differential
μj

m has the tensorial structure /*§ " z , with ( j+1) contravariant holomorphic
indices, and one can think of it as parametrising deformations of a (j + 2)-index
traceless symmetric tensor δAϊ...ϊ = gzϊ' -gzϊμ^"z. Substituting (39) into the
metric (37), and using the identity that follows from differentiating

]Γ xm = (l—x)~1 repeatedly, one obtains the corresponding analogue of the

Weil-Petersson metric,

A\G A (1 — Z ζ ) 2 l + 4

One can think of this as giving a measure on the space of deformations of
higher-spin gauge fields.
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5. Discussion

In this paper we have shown how some of the geometrical ideas introduced in
[1] may be generalised to the case of the W^ and W1 + oo algebras. In particular,
we have shown how the Ricci curvatures of the W manifolds, obtained as cosets
of W^ or W1 + ao factored by certain subalgebras, are related to the regularised
anomalies of the corresponding ghostly BRST algebras.

We have also shown how one may relate the Kahler metrics on
WJSL(co,R) and W1 + JGL(oo,R) to generalisations of the Weil-Petersson
metric on the modulus space of higher-spin gauge fields for W^ or Wί + O0

gravity. What is lacking in our understanding so far is some geometrical
interpretation of the higher-spin symmetries. For example, one can interpret the
Virasoro symmetry as diffeomorphisms on the S1 boundary of the disk A
discussed in Sect. 4. We do not yet have an equivalent interpretation of the
higher-spin generators of the W^ and lVί + ao algebras. On the other hand, we
know that the contraction of W1 + aD to w1 + 00 can be viewed as the algebra of
area-preserving diffeomorphisms of an infinite cylinder, which suggests that, at
least in this limit, a higher-dimensional interpretation would be appropriate2.
Presumably the uncontracted W1 + oo algebra could also be expected to admit a
higher-dimensional interpretation, and one may hope that this may provide the
natural arena for understanding the geometric issues raised in this paper.
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