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Abstract. We analyse the relation between the exchange algebra and the separation
of the chiralities in classical Toda field theory. We show that there exists a
conformally covariant Bloch wave basis such that the two chiralities commute. In
terms of this basis we then reconstruct the periodic and local solution of Toda
field theory.

1. Introduction

Toda field theories are simultaneously conformal field theories and integrable
models. A basic tool in the study of these theories is the exchange algebra [1,2].
Since we have a conformal theory, we expect the dynamics to split into a right
moving sector and a left moving sector. However it so happens that the simplest
choice for the exchange algebra coming from the integrable structure does not
completely split the chiralities due to the zero mode problem. The aim of this
paper is to analyse the relation between the exchange algebra and the separation
of the chiralities in classical Toda field theory. In this first section we illustrate
the problem more precisely, introduce the notation and outline the solution. The
rest of the paper is devoted to the proofs of the various propositions.

Let ^ be a simple finite dimensional Lie algebra of rank n, equipped with an
invariant scalar product denoted by (,). We choose a Cartan subalgebra Jf with
an orthonormal basis {ίfj. We also need the Cartan decomposition of #,

We recall the following commutation relations in a Cartan-Weyl basis:

lH9E±a]=±a(H)E+a9
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Toda field theories are defined by means of a linear system.

(BZ± + AZ±)T=O,

where z+ = x ± t are the light cone coordinates, dz+ = \{dx ± dt\

A =-d Φ+έ?~adφ<f_. (2)
Z- Z- ^ /

The field Φ takes values in the Cartan subalgebra and

(D ±. —- / J-J

α simple

0 ^^ y J^J .

α simple

The zero curvature condition

yields the equations of motion
Z + Z - r\ Lmjί Λ* V /

^ αsimple

Given a highest weight vector | λ{£ΛX >, we define

where T(x) is the transport matrix

/ x \
= Pexp -$Axdx

\ o /

and i4x = Az+ + Ar_. Notice that T(x) is the solution of the equation (dx + AX)T = 0
with boundary condition T(0) = 1 .

Using the explicit form of Az+ and Az_ one can easily show that ξ and ξ are
chiral objects, i.e.

d,_ξ = o, dz+ξ=o.

The conformal structure of Toda field theory is encoded in the exchange algebra [2],

{ξir\χ)® ξir'\y)} = ξir)(χ)® ξir'\y)ίθ(χ - y)r+ + θ(y - x)r~l

{f ( r )W® ξ{rΊ(y)} = ίθ(x - y)r' + θ(y - x)r+]ξ{r)(x)® ξ{r'\yl

{ξ{r)(χ) ® ξ( f f )(y)} = - ξir)(χ) (8) l r " l ® ξ"(r/)(^),

l " φ - 1 ®ξ ( Γ / )W r+ ξ ( r )(χ)® l, (5)

wher r* are the solutions of the classical Yang^Baxter equation given in
Eq. (31,32). If the Toda field Φ(x) is periodic, the ξ, ξ fields have the monodromy
properties

(6)
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where T = T(2π). We also recall the following Poisson brackets [3]:

{T®T} =-

\x)®T'r-,

(7)

Finally, from Eq. (4), we see that the fields of Toda theory are reconstructed by
means of the formula [4]

e - 2λfe>ax(Φ) = ξ{r). ξ (r) βj

These fields are obviously periodic and one can check that they are local. Equation
(8) would yield a solution of the Toda field equation (3) if one could
directly construct explicit realizations of Eqs. (5,6,7) in terms of free fields.

Although ξ and ξ are chiral objects and therefore split the dynamics into right
and left moving sectors, there is a non-trivial coupling between them as can be
seen from Eq. (5); this coupling can only occur through the zero modes and their
conjugate variables. The purpose of this work is to disentangle this zero mode
problem. The solution we propose will be obtained in two steps. First we construct
a basis η,ή with the following diagonal monodromy:

and with the additional property

{ηir)(x)®ή{rΊ(y)} = 0.

The full exchange algebra of η, ή is given in Eqs. (43,44). Moreover, we show that
there exists a suitable diagonal matrix p ( r ) such that the local and periodic solutions
of the Toda theory are given by

Equation (9) provides a complete solution to our problem of splitting the chiralities
in Toda field theory. However it has a drawback. This appears when we analyse
the conformal properties of the fields η and ή. It is shown in Eq. (49) that they
behave almost like covariant operators but not quite. We overcome this difficulty
in the second step of our construction by enlargingthe phase space. We consider
the zero modes of the left and right movers, P o and Po respectively, as independent
dynamical variables. We also introduce their independent conjugate variables q +

and g_:

{ P o , 4 + } = - - , {P o ,4_}=0,
2π

{Po,g + } = 0 , { P O , 4 _ } = 1 (10)

2π

Then we define

ψ(r) = η(r)p(r)^ ψ(r) = p(r)^(r)? (j j)

where p(£ are introduced in Eq. (24). The fields φ and φ are covariant objects,
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they have diagonal monodromy

They satisfy

0 (12)

and their exchange algebra is given in Eq. (51,52).
Moreover the expression

admits a restriction to the original phase space, i.e. it has vanishing Poisson bracket
with the constraint Po - P o = 0:

Furthermore this restriction is periodic and local. It is therefore a satisfactory
solution to our problem.

Let us now describe in more detail our construction. First we consider separately
the two chiral halves of the theory. They are described by the so-called Drinfeld-
Sokolov linear systems [4,5]

d+Q+=(P-£+)Q+, (14)

3-β- = - β - ( P - * _ ) , (15)

where P and P are periodic fields which take values in the Cartan subalgebra and
have the Poisson brackets

{P(x)®P(y)}=^(dx-dy)δ(x-y)ΣHi®Hi, (16)

{P(x)®P(y)}=0, (17)

{P(x)®P(y)} = -1-(dx-dy)δ(x-y)ΣHi®Hi. (18)
^ i

From the solution Q + (x) and Q-(x) of Eqs. (14,15) normalised by
Q+(0) = l,Q_(0) = 1 we define a basis σ,σ,

σ"(x) = (λ%JQΛx), (19)

ί("W = δ-WlC) (2°)
This basis has a Poisson bracket algebra similar to Eq. (5), see Eqs. (38,41), but with

{σ(r>(x)®σ(r'>(3θ}=0.

However σ and σ still have a non-trivial monodromy

σ(r)(x + 2π) = σ(r)(x)S,

σ(r\x + 2π) = Sσ(r)(x),

where Seexp(Jf + Jf+) is upper triangular, and Seexppf + J^_) is lower
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triangular. In the second step we diagonalize the matrices S and 5,

where geexp(Jf+) is strictly upper triangular and geexppF_) is strictly lower
triangular. Remark that g and g are uniquely determined by these conditions. Next
we define

These quantities have a diagonal monodromy and they Poisson commute

{ηir)(x)®ή{rΊ(y)}=0

because they do not depend on the conjugate variable of P o . This variable is then
introduced into the theory by means of the constant p ( r ) in Eq. (9):

pC) = e-κ+θeκ-9 θ = eq (21)

The constants X ± are defined in Eqs. (29,30); their role is to remove all explicit
dependence on the normalisation point x = 0. The diagonal matrix q is the
conjugate variable of P o :

{Po,<l}=^-ΣHi®Hi. (22)
2π i

Next_we enlarge the phase space by considering the left and right zero modes
Po and Po as independent variables, together with their conjugate variables q +

and q_. We may write

q = q++q- (23)

The constants entering Eq. (11) are simply

p^ = e-
κ + eq+, pirj = eq-eκ~. (24)

The functions which admit a restriction to the original phase space are those

depending only on q+ + g_, as is the case for the field e~λi™)ax(φ\ see Eq. (13).

2. The Drinfeld-Sokolov Linear System

The Drinfeld-Sokolov linear system reads [5]

dQ = {b-£+)Q, (25)

where beJfφJ^^. The form of this system is invariant under the gauge
transformations

(26)

»b - S+ = n'l(b - S+)n - n~ιdn. (27)

Choosing a gauge where b = PeJ^, we recover Eq. (14). For a derivation of
Eq. (14) from Eqs. (1,2), see [4].
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We have already pointed out in the introduction that to reconstruct the Toda
fields, we only need the projections of Q+(x) on highest weight vectors, Eq. (19).
It is important to notice that the vectors σir)(x) are invariant under transformations,
Eq. (26),

* ( r ) M = <^ }aχie + (x) = <^Jn-iQ + (x).

The matrix elements of the vector σ{r)(x) are just the first line of the matrix Q(x)
in the representation π ( r ) with highest weight λ^. From Eq. (25), we can write for
these matrix elements a single higher order differential equation of order dim π ( r ),

i \ " (28)

The coefficients u^x) are local functions of b and are invariant under Eq. (27)
because the matrix elements of σ(r)(x) are themselves invariant. In fact they generate
all such functions.

In principle, one should be able to work only with the invariant objects σ(r)(x)
and Eq. (28) [1,6]. However the linear systems Eqs. (25,14) are very powerful tools
and we will use them systematically in this paper.

Our first task is to find the expression of the energy momentum tensor °ll — T+ +

in terms of the field P. Recall that the Poisson bracket algebra of the coefficients
Uι in Eq. (28) is known [5]. They generate a VF-algebra which is the conformal
symmetry algebra underlying the theory. In particular it contains the Virasoro
algebra as a subalgebra. To construct its generator, we only have to look at local
gauge invariant functions of b.

Proposition 2.1. Let Hp be the element in tf such that

lHp,£+-] = <?+.

Then the function

is invariant under the action Eq. (27).

Proof. It suffices to consider an infinitesimal transformation

n = l+X, XeJ\r_.

We then have

Using the in variance of (,) and the fact that {Jί^JίJ) = 0 we get

m = (*+9X')-(Hp,l*+9X']).

Using the invariance again, the last term is

(Hp,l£+,XΊ)

which ends the proof. •
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Evaluating the function °lί in the gauge where b = P we find

We recognize the Virasoro generator.
In the following we will be interested in the solution of Eq. (14) normalized to

one at x = 0,

Since P(x) is a periodic field we introduce its Fourier expansion

P{x) = ΣPnJn\
n

where Pn take values in the Cartan subalgebra, and satisfy the Poisson brackets

The solution Q + (x) depends only on the field

We have

+ {x) = K++Pox+ Σ ~einx>
in

where the constant K+ is given by

Kt = - Σ r (29)
ΠΦO in

In particular, we see that Q + (x) does not contain the variable θ conjugate to P o .
We have also

Another important object is the monodromy matrix

We have of course S = Q+(2π). Notice that it is an upper triangular matrix. Its
diagonal part is

k = e2πPo.

It is convenient at this point to introduce the second chirality. As we have seen
Q_ is characterized by the differential equation

dQ_ = -Q_{P-£_)

together with the boundary condition

β-(0) = l.
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We assume that P is periodic and takes values in the Cartan subalgebra,

We will impose

The matrix β_ depends only on the field

Σ — *"•*>
ΠΦO in

~- (30)
in

We will have

where S = Q_(2π). It is a lower triangular matrix, its diagonal part is k i . The

Poisson bracket is defined by

- ί n Y J

We have also

)Σ

3. Normalized Chiral Exchange Algebra

Our aim is to compute the Poisson brackets {Q + (x)<8)Q + (y)}9{Q + {x)®S} and

{SOS} as well as the analogous objects for the other chi'rality. Using the definition

Eq.'(16) of the Poisson brackets we first prove a preliminary result.

Lemma 3.1.

0 0

where r is either r + or r~, the classical r-matrices of Toda field theory,

Σ ~ ^ Ϋ (3D
a positive (U α , U _ α j

- 2 Σ ^ Γ Ύ ( 3 2 )

αpositive \^a-)^'—ιχ)
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Proof. From Eq. (14) we get

101

and we are left with

0 0

= $dzθ(y-z)Q-+

1

0

But we have (see e.g. [7,8])

where r is the classical r-matrix of Toda theory. As usual, r can be either r+ or
r~. The result follows from the formula

where we have used that r commutes with if;® 1 + 1 ®Hj. •

Proposition 3.2. // 0 < x, y < 2π we have

- x ) - ®HήQ+(x)®Q + (x)V>. (33)

If 0 < x < 2π and y = 2π we ware

1

(34)

If x = 2π and y = 2π we have

i-Hi®S-1HiS}. (35)
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Proof. Since Q+(x) is given by a path ordered exponential we may write

{Q+(χ)®QΛy)}

= QΛ^)®QΛy)ldz\dtQl\z)®Ql\t){P{z)®P(t)}Q + {z)®QΛtl
0 0

Using Eq. (16), integrating by parts and writing all the terms explicitly we get

0 0

Since the field P{x) is periodic, also the delta function in Eq. (16) is. So it is
consistent to set

V if 0<y<2π

if y = 0 (36)

if j = 2π

Using this definition, and the previous proposition we get the desired result. In
Eq. (33) the symbol 0(0) must be understood as \. •

The definition in Eq. (36) may look somewhat arbitrary. In fact one could
introduce an arbitrary parameter α such that

ία/(0) if 0 < y < 2 π

μtδ(t)f(t) = lθ if y = 0 (37)

[ if y = 2π

One easily sees that the results in Proposition 3.2 do not depend on α. Only the
intermediate results of Sects. 7,8 and 9 depend on α, but this dependence disappears
in the results of all the other sections.

Define now

Projecting out on highest weight vectors, we get (0 < x, y < 2π).
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Corollary 3.3.

{σ{r)(x) ® σ(rΊ(y)} = - \σ{r\x) ® σ{r\y) {r+θ{x-y) + r~ θ(y - x)}, (38)

{σ(r)(x) ® 5} = - - \ σir)(x) ® Sr~ + £ σ

(r)(x)Ht ® H t S i, (39)

{S® 5} = - | [r, S® 5] + X // t5® SHt - SHt® H4S >. (40)

Similarly, we define

and get

Corollary 3.4.

{5® 5}= - - | [ r , S ® S ] + χSHi(g)HiS--HI.S(8)SHii. (41)
2 ( i J

4. Poisson Brackets {#®#}

As we have seen in the introduction, we need to diagonalize the triangular matrix
5. This is done explicitly in the appendix, but we will not use in the following the
detailed form of the diagonalization matrix g. We only need

S = g'1kg9 k = e2πPo. (42)

Notice that g is uniquely defined if we require it to be strictly upper triangular.
We wish to compute the Poisson brackets of the matrix elements of g. Using that
k Poisson commutes with everything and inserting Eq. (42) into Eq. (40) we get

4sh(πad 1 P o )sh(πad 2 P o ){0®0}0~ 1 ®0~ 1

= - < — 2sh(π ad! P o + π ad2 P0)g ® grg ~x ® g ~x

where

a d 1 P 0 = a d P 0 ® l , a d 2 P 0 = l ® a d P 0 .

Since

( a d 1 P 0 + a d 2 P 0 ) r = 0,

(ad1P0-ad2P0)Hi®Hi = 0,
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we may write also

This equation determines {g®g}g~1 ®g~1 since this matrix is in Jf+ ® Jί+ and
the set

Kersh(πad1P0)sh(πad2P0) = Jf(x)^ + ^(x)Jf

has no component on Jf+ ® Jί+. So we find modulo Ker sh(π adi P0)sh(π ad2 Po)>

= -^coth(πad 2 P 0 ) g®g(r^H

The element of Ker sh(π adi P0)sh(π ad2 Po) to be added is determined by requiring
the right-hand side of this equation to be in Jί\ ® Jί\. Let us consider the
expression

In this expression r can be either r+ or r". Setting r = r~ we see that
In particular, this shows that the action of coth(πad2 Po) is well defined on E since
adP 0 does not vanish on Jί+. Setting r = r+ we see that Ee&+®y, where

+ . The component of E on 3^®$ is equal to

This is indeed in Ker sh(π adx P0)sh(π ad2 Po). We must subtract this term to obtain
something in Jί\ ® Jί\. Proceeding in an analogous way for the other term, we
finally get

Proposition 4.1.

- £ Ht ® Ht - 2 X (H,® gHi9-
 ι-Ht® H,

i i

— coth(πadxP0) g®gl r — J]//,-® Hf ig
4 L \ ί /

+ Σ H, ® H, + 2 Σ (gHtg -' ® Ht - Ht® H
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Similarly, setting

we obtain

Proposition 4.2.

J g®g(r + £/j.®if. V 1 ® ^ " 1 -r

5. Poisson Brackets {<r(x)®g}

With the same method as in the previous section, starting from Eq. (39), we get

modulo Kerad 2P 0>

{σ{x)®g}\®g~1 = --coth(π2Ld2P0)σ{x)®g(r-
4 \

— σ(x)®
4

The result must be in X ® J^+. The first term is all right. The second term is in
X ® &+. Its component in Ker ad2 P o = X ® J"f is

~Σ
I i

we must substract this term. Thus we have proved

Proposition 5.1.

~1 = —coth(πad 2i>

0)σ( χ)®^( r~ +YJHi®Hi\l®g~1

4 \ i J

jσ(x)®g(r- -ΣHiΘH
4 \ i

For the other chirality, we find

Proposition 5.2.
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6. Poisson Brackets {η(x)® η(y)}

Let us define

As a consequence of the definition of g, this η basis has already a diagonal
monodromy

η(x + 2π) = η(x)k.

Using the previous results it is straightforward to derive the following

Proposition 6.1.

{η{x)®η{y)} = V(x)®rί{y)(r+ — r~)ε(x — y)

+ ̂ (x)®^)ίcoth(πad1P0)Γr+ - £ H f4 I Lt

+ coth(πad2P0)Γr- +χH i®H ί

i

We have used that

g®g(r+ -r~)g~

Next, defining

/7(x) = gσ{x),

we get in an analogous way

Proposition 6.2.

(r

+ coth(π ad2 P0)
ϊr+ - Σ H,

i P o ) -

- [coth(πad2 Po) -

i (43)

[
J

(44)
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Remark. In this Bloch wave type basis the two chiralities commute

{η(x)®ή(y)}=0.

7. The Constant p

Following our experience with LiouviUe we set

p = e-κ+eκ~θ, (45)

where K+ is the constant defined in Eq. (29) and K_ is defined in Eq. (30). The
constant θ is the conjugate variable of P o ,

2π f

{p®p}=0.

Then we have

and also

Therefore

so that finally we find

Proposition 7.1.

{σ(x)®p}=-l-σ(x)®pΣHi®Hh

^ i

2

Similarly for the other chirality, we have

Proposition 7.2.

{σ(x)®p} =-[ΣHi®Hi W
2 \ i /
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8. Poisson Brackets {g®p}

We start from

Setting

we find

2sh(πadίP0){g®p}g-1®l-ΣHi®pHi= -
i

so that

Proposition 8.1.

{g®p}g~ι®l = --coth(πad 1

For the other chirality we have similarly

9. Poisson Brackets {η(x)®ρ}

Recall that

ή(x) = gσ{x).

Then we find

Proposition 9.1.

-η(x)®pΣcoth(πad1P0)[JgHig-1®Hi-Hi®Hil
2. i

- - Σ coth(π ad!
2

10. Application to Toda Field Theory

Theorem 10.1. The fields
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1) Satisfy the Toda field equations,
2) are periodic,
3) are local

Proof.
1) Recall the relation

The fundamental highest weights satisfy

A«(HβJ) =

Using this property, the equations of motion of Toda field theory, Eq. (3), become

It is well known that

( 4 7 )

where atj is the Cartan matrix. Therefore

J

and the equations of motion become

(αI,

Our reconstruction formula Eq. (46) may be written

or

It follows that

d d λ{i)(Φ)=
2 In^ovi^)

Checking the equations of motion thus reduces to proving

det I . . J = — α?

This relation should be a consequence of the equations we have on Q±9 Eq. (14,15).
Let us set

then
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But this can be rewritten as

where

Now the vectors | Ψ(ι) > are highest weight vectors. To see this we must show that

(Ea®I + I®EΛ)\Ψ{ϊ>} = 0 Vα positive.

It is enough to consider α simple. We have

(JE. ® / + / ® Ea) I ψ{i) > = μ ( 0 > ® EJ_ μ ( 0 > - EJ_ \λ{i)

But

and the statement follows.
The next step is to show that

*o> = (α ί,α ί)
1 / 2 (X)(μ U ) >)®"^. (48)

To see this we must prove that | Ψ{i)} is an eigenstate of Ha®I + / ® Ha and find
the eigenvalue. We have

{Ha® / + / ® Ha)I Ψ®> = Ha\λ(i)>® g. \λ(i)> - HJ_ \λ(i)> ® \λ(i)>

+ μ ( 0 > ® H α ^_ μ(/) > - $_ \λ{i) > ® H α μ ( ί ) >.

Next we notice that

This may be seen by computing the norm of the vector E_Λ\λ(i)}. We find

<l<i>|£a£_Jl<i»> = A<i

which vanishes if α is not equal to α;. Therefore

I fc>> = μ(f)>® E_ jaw) - £_

Using this remark, we obtain

(H,®I + / ® / / J | f ( ί ) > = [2Aω(/ί.

Equation (47) allows us to rewrite the eigenvalue as

Finally, to find the proportionality factor in Eq. (48), it is enough to compute the
norm of | Ψ(i)},

This ends the proof of the first part of the proposition.
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2) The second statement is obvious.
3) The third follows from the relations

cothίπadi P0)(r+ + r " ) = 2 £ coth(πα(P0))[£α®£_α + £ _ α ® £ J ,
α positive

coth(πad 2P 0)(r++r-)=-2 £ coth(πα(P0))[£(,®£_(1 + £_β®£«]. D
α positive

11. Conformaϊ Properties of the Field η(x) and ψ(x)

Recall that the energy momentum tensor reads

For any periodic function / we define

/(*)= Jdx/(x)*(x).
0

It is straightforward to show that

{/(«), P(x)} = - d(f(x)P(x)) + d2f(x)Hp.

Using the same techniques as the ones developed in this paper one can show

Proposition 11.1.

inn e+w} = - /we; w + / W.G+M+e+wc/(θ)β'+(θ) - /'(0)//p],
inn s}=[s, /(O)β'+(o> - f(0)HPι

From this we immediately obtain

(49)

The first term in this formula shows that η behaves almost as a conformal field
of weight λ%JHp).

To get a covariant object we define

ψ{x) = η(x)p+,

where p + is introduced in Eq. (24). Using that

+ } = [/(0)P(0)-/'(0)/ip]-f f
2π o

we find

which shows that ^(r)(x) is a covariant operator. A similar analysis holds for φ.
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12. The ψ(x), ij/(x) Basis

The covariant basis φ, φ enjoys the following additional properties:

1) It has diagonal monodromy.

2) It has a vanishing Poisson brackets

{φ(x\φ(y)} = 0. (50)

3) The exchange algebra reads

Proposition 12.1.

^ + -r-)ε(x-y)

* L

+ coth(πad2P0)

= -(r+ -r~ )ε(x - y)φ(x) ® φ(y)

+ coth(πad2P0)(V -

Proof. It is a straightforward consequence of the previous results. •

These relations are the same as the ones obtained in [11].
In this basis the reconstruction theorem takes the form

Theorem 12.2.

1) The field

is a solution to the equation of motions.
2) It admits a restriction to the original phase space, i.e.

( 5 4 )

3) The restriction of e~λ&>ax(φ) is periodic.
4) This restriction is local.

Proof. It is straightforward. •

It is evident that there are infinitely many choices of bases, each one of them
having its own virtue depending on the problem one deals with [12-15,18]. A
noticeable merit of our construction is that it works uniformly for any simple Lie
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algebra, and lends itself naturally to the extension to the affine Lie algebra case
[9] and to the supersymmetric case as well [10].

13. Appendix: Diagonalization

We have determined in the text the Poisson brackets of the matrix g which
diagonalizes the monodromy matrix S,

S = g'ιkg,

where

k = e2πPo.

We stress again that for this we did not need the explicit form of g. In this appendix
we construct explicitly the matrix g for the An case. One way to do this is to
perform a gauge transformation on the Drinfeld-Sokolov linear system. Set

{B - A)v = 0.

Performing a gauge transformation means
gv = g υ,

(d - gA)9v = 0,

°A = dg g-1+gAg-1.

The transport matrix is defined by

»Ό(x) = °Q + (x)9v(0)9

so that

Setting x — 2π we get

The diagonalization of S is equivalent to finding a periodic gauge transformation
such that 9A is diagonal. So we will look for a triangular g such that

9A = P
or

dg-g-'+giP-fi^g-^P, (55)

together with the boundary condition

g(2π) = g(0).

Proposition 13.1. Equation (55) admits a unique solution which is periodic and strictly
upper triangular.

Proof. Rewrite Eq. (55) in the form

£+)-Pg = 0. (56)



114 O. Babelon, F. Toppan and L. Bonora

Its general solution is

We have

^(

Imposing that g(x) is periodic gives

g(0) = kg(0)S~1

or

This last equation has a unique strictly upper triangular solution g(0). We see here
again that finding the periodic solution of Eq. (55) is equivalent to the
diagonalization of S. •

13.1. The Case An. We will construct explicitly the solution of Eq. (56) in the case
sl(n + 1). Let α l 9 <x2,..., ocn be the simple roots. The positive roots are

and there is no gap in the integers between i and j .
We are going to find a gauge transformation gt such that

i.e. βlA is analogous to A but a1 does not appear any more. Repeating the
construction n times and setting

g = 9n9n-l'~920U ( 5 7 )

we will have

9A = P

as desired. We first prove a preliminary result

Proposition 13.2. Let Xβ be a periodic function. The periodic solution of the
differential equation

is

Xx(x) = Y.(x) f dykJix,y)Xβ(y)Y; Hy),
0

where

Lo

is the solution of the homogeneous equation, and ka(x, y) is the kernel

k (x \i\ = θ(γ — v\
KAX>y) V\X y) 1_e-2πa(PoV

Proof. It is straightforward. Π
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Proposition 13.3. Let

where

2π In 2π

*α i + α 2 + . ( x ) = 7 α i + α 2 + . (x) f dyp J rfyp_Γ J
0 0

T/zen setting

9l ~daί+a2 + an9aι+a2 + ' an-i'"da^ (58)

w e Z

i = 2

Proof. Let

then

Obviously

but also

This is because in sl(n + 1) there is no positive root of the form 2a1 + •••. Thus

In sl{n + 1) we have

So that finally

We choose Xα i as the periodic solution of the equation

3 X β l -

that is to say

With this choice we have

= P - Y JE - Z [£ , £
i-U CL\ < X l L O t l ' 0L2

i = 2
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Next we set

and

0 = 0α1+α20α1

We get

i = 2

or

α i + α 2 - * β i } [ £ β i , EJ

i 2

We choose Xaι+(X2 as the periodic solution of

or explicitly

0 0

With this choice we have

ί = 2

Clearly one can repeat the procedure and obtain in this way the announced
result. •

It is remarkable that the order of the factors in Eqs. (57,58) is exactly the same
as the one appearing in the universal quantum K-matrix of Wq(sln), as found by
M. Rosso [16]. For other Lie algebras we expect that this order is the one obtained
from the longest element of the Weyl group [17,18].
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