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Abstract. Unitarity is proved for a class of solutions of quantum stochastic
differential equations with unbounded coefficients. The resulting processes are then
used to construct algebraic quantum diffusions. Applications include an existence
proof for a class of diffusions on the non-commutative two-torus and a geometric
interpretation for diffusions driven by the classical Poisson process.

1. Introduction

Let AQ be a complex, separable Hubert space and Γ be boson Fock space over
L2([0, oo)). A major role in the development of quantum stochastic calculus has
been played by processes U = {U(t)9 t ^ 0) which arise as the solutions of the
following linear stochastic differential equation on i0® Γ:

dU = U{Lx®dA^ + L2®dΛ + L3®dA + L4®Idt),

1/(0) = /, (1.1)

where LjeB(40) ( l ^ j ^ 4 ) and A\Λ and A are the processes of creation,
conservation and annihilation in Γ (respectively) ([13,18]). We note that the
coefficients Lj(l :g j'^4) do not here depend on time.

Of particular importance are the sub-class of solutions to (1.1) where the
algebraic relations between the L/s are such that U is unitary operator valued.
These unitary processes have found many applications including the construction
of Markov dilations of quantum dynamical semigroups ([13,14]), the description
of quantum processes with stationary and independent increments over graded
*-bialgebras [1] and the representation of time-ordered stochastic product integrals
[11].

To the extent that these unitary processes may be regarded as solutions of a
"Schrόdinger equation in the presence of noise" [18], it is clear that the case where
the L/s are no longer bounded will be of great practical interest. So far, however,
although existence of solutions to (1.1) was established in [13] there has been no
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rigorous analysis of the conditions under which these solutions are unitary except
in the special case where the L/s are linear combinations of the raising and lowering
operators for the harmonic oscillator ([8]). The main purpose of the present paper
is to provide such an analysis.

The motivation for this work has been the attempts by M. E. Evans and R.
L. Hudson (e.g. [12,10]) and the present author [4] to obtain algebraic
generalisations of the notion of a diffusion process on a smooth manifold. If such
a manifold M possesses an affine connection, the required diffusion may be obtained
by the method of horizontal lifts which involves constructing an appropriate
process on the tangent bundle over M and extracting the diffusion from the induced
motion on M [16]. Motivated by the non-commutative differential geometry of
A. Connes [6], an algebraic generalisation of the above procedure was outlined
in [2] wherein it was argued that the tangent bundle should be replaced by an
appropriate projective module 3f over the algebra of interest. In many cases 2
may be realised as a dense linear manifold in a Hubert space on which the
connections will act as unbounded linear operators which preserve 2. Our
horizontal lifts are then driven by a "quantum stochastic parallel transport process"
of the form (1.1), where the L/s are not all bounded but still satisfy the algebraic
conditions which guarantee unitarity in the bounded case.

Having demonstrated unitarity of our parallel transport process, we obtain as
a corollary an existence proof for a large class of algebraic diffusions with
unbounded coefficients. (The only previous result in this direction required
boundedness [9].) In particular we obtain the first rigorous construction of the
[A, ^-diffusions which were introduced in [4] to overcome the cohomological
obstructions that limited the scope of the theory described in [12].

A field theoretic interpretation of quantum stochastic parallel transport is given
in [3] and an application of quantum diffusions on the non-commutative two-torus
to solid state physics is described in [19].

It should be noted that the definition of quantum stochastic parallel transport
given below (Eq. 5.19) only agrees with the definition [2] when the "dΛ term" is
absent. With hindsight it is clear that the author was suffering in [2] from the
disease of "Gaussian prejudice" of which he hopes he may now declare himself
cured!

Notation. If 2 and $ are dense linear manifolds in Hubert spaces Aγ and A2

(respectively) we denote their algebraic tensor product by 2 ® $.
For T a linear operator on Aλ we denote its domain by_Dom(T) and its range

by Ran(Γ). When T is closeable, we denote its closure by T. The ampliation of T
in AX®A2 is the operator T®1 with domain Dom(T)®A2. Note that if T is
closeable then so is T® / with T®I^T(g)L When there is no room for ambiguity,
we will abuse notation and identify T with its ampliation. L(29 S) will denote the
linear space of closeable linear operators from Aγ into A2 for which TeL(2,S>)^>
Dom(T) = 2 and Ran(T) g δ. We will use L(2) for the case where A2 = d1 and
δ = &.

Consider the subspace 0(2) of L(2) comprising those TeL(2) for which
2 £ Dom (T*) and T*2 g 2.

0(2) is a *-algebra under the involution Γ-> T\ where T t is the restriction of
T* to 2, In fact, 0(2) is the maximal Op*-algebra on 2 in the sense of [17].
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Let A be a *-algebra and deN. Ad (respectively Md(A)) will denote the linear
space A®<Ld (respectively the *-algebra A®Md(<£)). Note that Ad (respectively
Md(A)) is a two-sided /1-module where the module multiplication is pointwise on
components (respectively matrix entries).

If X is a vector or matrix then Xτ denotes its transpose. Now let A and B be
*-algebras and F a linear space such that F is both a right v4-module and a left
β-module. Let σ be a *-homomorphism from A into B.

A σ-derivation is a linear map δ\A-+F satisfying

δ{ab) = σ(a)δ(b) + δ{a)b (1.2)

for all a,beA.
Derσ (A, F) will denote the linear space of all such σ-derivations.
Z(A) will denote the centre of the *-algebra A.
If C g 0{β) then

C f = ( X G O ( ^ ) X - Γ 1 for some TeC).

Preliminaries-Quantum Stochastic Integrals

The main purpose of this section is to establish our notation and to state the main
results of quantum stochastic calculus which we will use in the sequel. Proofs of
these, in a form close to that given below may be found in [8] (see also the seminal
paper [13]).

Fix deN and let H denote the complex separable Hubert space L2(R+,<Cd)
which is naturally isomorphic to L 2(R+)®(C d . Γ(H) will denote boson Fock space
over H.

F o r / e i ί , let φ(f) denote the corresponding exponential vector (coherent state)
in Γ{H). Note that for all f9geH, we have

e<'-°\ (2.1)

Let S be a dense linear manifold in fί, then the set E(S) which is the linear span
of {ψ(f),feS} is dense in Γ(H). We will here take 5 to consist of locally bounded
functions.

We denote by {ej91 ^ j^d} the natural basis for C d so that e, is the vector
with 1 in the / h entry and zeroes elsewhere. The dual basis will be denoted by
{e*> 1 ^ 7 ^ d}. {Iij91 ίg /, j S d) will be the natural basis in Md(<E) and its dual
basis will be denoted by {/*.; 1 <Ξ i, j ^ d}.

For ί e R + , l^ij^d and /eS, we define

£ = 0

dε

Note that the pairs of operators A^it) and ^ ( ί ) and (as the notation suggests),
Oy(i) and α](ί) are mutually adjoint on the domain E(S).
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Now let
d

A\t)= Σ a)(t)®e*9

d

Λ(t) = Σ
d

Λ(t)= Σ
j=ι

A* = {A*(t)9 t^O),Λ = (Λ{t), t i> 0) and A = (A(t\ t ^ 0) are the processes of creation,
conservation and annihilation (respectively) in Γ(H).

Now let Ao be a complex separable Hubert space and Q) be a dense linear
manifold in Ao. We write A = AQ® Γ(H) and for l^iJ^dj^O let Eβ\ F..(t\ G/ί)
and H(t) be linear operators on A, each with domain @®E(S) such that the
processes (Eft), t ^ 0), ( F 0 (ί), ί ^ 0), (G/ί), ί ^ 0) and (if(ί), t ^ 0) are adapted and
square-integrable in the sense of [13].

For each t ^ 0, define

E(t)=

Let E = (E(t\ t Z 0), F = (F(ί), ί ̂  0) and G = (G(ί), ί ^ 0).
Following [8] and [13] we may define stochastic integrals with respect to the

ampliations of the integrators onto the whole of A to be processes M = (M(ί), t ^ 0)
wherein each M(ί) is a linear operator on A with domain Q) (g) E(S) given by

M(ί) = M(0) + j ( d ^ ^ + dΛF + Gd^l + Hdt), (2.2)
o

which may be written in component form

M(t) = M(0) + } ( Σ
o \ j = i

M is itself adapted and square-integrable.
For f,geS, define the adapted square-integrable process Kfg = (Kf g(t), t ^ 0)

by

fβ £(ί) + f(t)τF(t)g(t)

For u9ve@,t ^ 0 we have the following basic formula:

, (M(ί) - M(0))(v ® <A(3)) > = ί <« ® "/'(/X K/lβ(s)(» ®Φ(9))> ds. (2.4)
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For Xj{\ Sjύn) operators on 4 with domain 3>®E(S) let
n

X=Σ Xj®ej.

For φe2®E{S\ define Xφeid by
n

Xφ = £ Xjφ®ej.
j=ι

Now let Mi and M2 be stochastic integrals with

dMp = d/4% + d/lFp + Gpd/l + //p (p=l,2).

Our second fundamental result is the quantum Itό formula:

i{(M1(s)(u®φ(f)),K2

fJs)(v®φ(g))}
0

<Kι

βJ(s)(u ® φ(f)), M2(s)(v ® φ(g)) >

[E2(s) + F2(%(5)](y® ψ(g)))}ds, (2.5)

where (,) denotes the inner product in Λd.
From (2.5), we obtain the estimate ([8]),

|| M(t)(u ® φ(f)) | |2 ^ j α(ί, rf, / ; r)zl(u, / ; r)^r, (2.6)
0

where

and

Δ(u, / ; r) = max {|| E{r)u ® ψ(f) ||2, || Fu(r)u ® φ{f) \\ \

3. Construction of Right Processes

Let {Mip0 ^ i, 7 ̂  ί/} E L(^) and define
d

M i = Σ

• = Σ ««®V
»J = i

d

l3=ΣMi0®e*,
i= 1

M4 = oo
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In this section we will establish the conditions under which we can construct
extensions Mtj of each M i ;.® / (0 :§ i9 j g d) so that there exists a unique solution
to the stochastic differential equation.

V(0) = L (3.1)

The solution V = (K(ί), ί ̂  0) to (3.1) (when it exists) will be called a right process
to distinguish it from the left processes discussed in Sect. 6 of [13].

We will say that an operator Y with domain ^ ® £ ( 5 ) is tensorially finite if
there exists p e N with

y= Σck®γk,
fc=l

where for 1 ̂  k g p, each Ck( Yfc) is an operator on A0(Γ(H)) with domain @(E(S)).

Lemma 3.1. There exists a sequence (Vm neIN) of stochastic integrals given by the
recursion F0(ί) = J,

n n 1 n 1 + M4Vn_1dt) (3.2)
o

for each ί^O, wftere each Vn(t) is tensorially finite.

Proof We proceed by induction, noting that each V0(t) is (trivially) tensorially
finite. Assume that there exists p(n)eN such that for each t ^ 0 there exist adapted
square-integrable processes Y£°(ί) (1 ^ k ^ p(w)) such that

fc=l

where each C(^eL(β) and is independent of t By (3.5) we obtain

p(n)

+ Σ M, o clw ) ® ί ί
J = l 0 0

and since each stochastic integral is again adapted and square-integrable we see
that Vn+ί(t) is tensorially finite and of the same form as Vn(t). •

Let V = {/, M ι 7; 0 ^ i, j ^ d}. For any Ne%, we write

To avoid notational complexity, it is common practice in quantum stochastic
calculus to write the ampliation X (x) / to the whole of A of an operator X in Άo

simply as X. Although this is harmless when X is bounded, it is misleading in the
unbounded case since, for closeable N9N®I £ iV ® /. We will consequently find
it useful to employ the notation

^® = {XelXβ® Γ{H),Λ);X = X0®I for some Xoe<£}.
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By Lemma 3.1 we can, for each JVe^7®, form the sequence of stochastic integrals
(NVn9 neN), where for each t ^ 0,

n_1dt). (3.3)
o

Lemma 3.2. (cf. [13]). For each Ne^Θ,ue^,feS,neM andt^O we have

where

\\(NVn(ή- NVn_1(t))(uQ(>φ(f)n2 ύeuvC(t)^An(N,u)\ (3.4)

C(t) = exp 11 + (d2 + Id) ί || f(u) ||2 du I

sup

Proof is by induction.
The case n = 1 follows immediately from (2.6).

To establish the general case, assume (3.7) is valid for some n, then (2.6) yields

\\(NVn + 1(t)- NVn(t))(u®Ψ(f))\\2

o

and the result follows from the observation that

ΐ + 1s n.
J

(1 + ||/(s)||2)iφ)"^Γ sup (1 + | |/(s)| |2)ΐ sn. D

For each rceN, ueQ) let An(u) = max {Δn(N, u); NeΉ}, and define a linear manifold
% in i0 by

L Σ T ϊ̂Ti A*M < °° for a11 P >

By (3.4) we have for each ue@0, feS, Ne%®, t ^ 0

Y12

hence each sequence (NVn(t)(u® ^(/)))πέiN converges in A and the convergence is
uniform on bounded intervals of R + .

In particular, let N = I and define a process V = (V(t), t ^ 0) by

V(t)(u ® φ(f)) = lim Vn(t)(u ® (A(/)) (3.5)

for ue@0,feS. It is not difficult to verify that V is adapted and square-integrable.
From now on we will assume that ^ 0 is dense in Ao so that each V(t\ for

t ^ 0 is densely defined. Our next task is to obtain suitable extensions N of each
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so that we may establish (3.1). Since each Ne%>® is closeable, we have
V(t){u®ψ{f))eΌom(N) for each t^0,ue@o,fsS with

NV(t)(u®ψ(f))= lim NVn(t)(u®Φ(f)) (3.6)
n —• o o

Define a dense linear manifold J* in /I to be the linear span of
(i^®/χ?ί))u{K(ί)(w(χ)^(/));ί ^0,we^o> /e^}» a n d l e t N be the restriction of N
to 3F so that we have

JV g JV g JV. (3.7)

We are now ready to establish our main result

Theorem 3.3. There exists a unique solution to the stochastic differential equation

dV = dA1[Ml V + dΛM2 V + M3dAV + M4V dt9

V(0) = I.

Proof To see that (3.5) defines a solution of (3.1) use (2.5), the Schwarz inequality
and the uniformity of convergence in finite intervals of (3.6) to show that for each

lim

+ M3dA(V- Vn) + M4{V- Vn)dt \(u®φ(f)) = 0 .

Uniqueness follows by a similar argument to that of [13]. •

Now let LiSsΘ{β) (0 ^ /, j ^ d). We will take

iί — ΐί \ ^= 9 J ^= ^/?

iV/ == / (1 ̂ ^ / ̂ ^ rf^

M = ί t

For each ue@, neN, we define

BB(M) = max {^n(iι), max {|| LiίJι9...,Lin .u || 0 ^ i l 9 ;\, . . . , /„, j n ^ d}.

Σ ~^Ί7iBn(u) < °° f o r all p > 0 >.

Clearly 3)x £ ^ 0 . From now on we will assume that 3)γ is dense in /l0. Consider
the left process given by the stochastic differential equation

dU = UidA^L, + dΛL2 +L3dA + L4dt)9

1/(0) = /. (3.8)

It follows from [13] that there exists a unique solution to (3.8) with each U(t)
(t ^ 0) densely defined on the domain 3)X®E{S).
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Corollary 3.4. For each t ^ 0, U(t) is closeable with

Furthermore writing U(tγ = 1/(0*1^ ®E<S> w e have

L\dA U^ + L\UUt9

U\0) = I. (3.9)

Proof. It follows from [13] that for each ί^O, U(t) is the strong limit on 3)x of
the sequence of iterates defined by

Un+1(t) = I + f UΠ(<L4 + Li + dΛL2 + L3dA + L4Λ).
o

A straightforward inductive argument shows that for each u9ve2u f,geS, neltϊ

< vn(t)(u ® ̂ (/)),» ® ιAto) > = <w ® ̂ (/), l/Λ(ί)(i? ® Φ(g) >

and the required result follows upon taking limits. •

4. Conditions for Unitarity

In this section we will, writing Li=L, take L2 = W — I,L3 = -UW and
L4 = iif — yL^L, where H is symmetric in Ao and W extends to a unitary operator
o n < .

With this choice of coefficients we obtain the following

Lemma 4.1. For each t ^ 0, U(t) extends to a co-isometry in A.

Proof. Using (3.9) in (2.5) we obtain for ί ̂  0, w, ve@l9f9geS

so that, by linearity, W{t) is isometric on 91®E{S), and thus extends to an
isometry on the whole of A.

Since each U(ή is co-isometric, U\t)U{t) is bounded thus for each t ^ 0, fgeS,
we may define an operator Tf g(t)GB(A0) by the prescription

(u, TfJt)v) = (U(t)(u®φ(f)\ U(t)(v®φ(g))y (4.1)

for u,veA0. NOW put u = Tf g(t)v in (4.1) and use the Schwarz inequality, the fact
that || t/t(ί)|| = || (7(ί)|| = 1 and (2.1) to obtain the estimate

so that

\\Tftg(t)\\^eMI + M (4.2)

for all t ^ 0. Let Z denote the convex set of all maps from R + into B(A0) which
satisfy (4.2).
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Theorem 4.2. For each t ^ 0, U(t) extends to an isometry in A.

Proof. Our strategy will be to prove that for each t ^ 0, f.geS,

Tf,g(t) = <φ(nψ(g)}I. (4.3)

By (2.5) we have for each

= <u®φ(f),v®φ(g)> + ί {<l/(s)(«®ψ(f)), U(s)(f(s)τLv®φ(g)))
0

- <U(s)(U Wf(s)u ® φ(f)), U(s)(v ® φ(g))>
τ ), U(s

(W- I)g(s)v® φ(g))}

W - I)gjs)u®ψ(f)), U(s)(v®ψ(g))y

+ (U(s)(f(s)τ(W- I)u®ψ(f)), U(s)((W - I)g(s)υ ® ̂ (fif)))

- <U(s)(u® φ(f)), U(s)(U Wg(s)v®ψ(g))>

+ <U(s)(g(s)τLu ® φ(f)), U(s)(v ® ψ(g)) >

+ (U(s)(Lu® φ(f)), l/(s)((W - l)g(s)v® φ{g)))

+ <U(s)((iH - \UL)u®φ(f), U(s)v®ψ(g))}

+ (U(s)(u®ψ(f)), U(s)((iH-ίUL)v®ψ(g))}

+ (U(s)(Lu®ψ(f)), U(s)(Lv®φ(g)))}ds.

Substituting (4.1) into this expression and simplifying yields
r

<u, TfJt)v) = <u,v}<φ(f),φ(g)> + I {(f(s)τWu, TfJs)Lυ)
0

- 0Wf(s)u, TfJs)v) + (f(s)τWu, Tf/s)Wg(s)v)

- (f(s)τu, TfJs)g(s)v) + (Lu, TfJs)Wg(s)v)

M, Tj g(s)LJWf(s)v) + <M, Tf g{s)(ιH — \vL)v)

+ i(iH - \UL)υ, TfJs)v) + (Lii, Γ/iβ(5)Li;)}ώ. (4.4)

Clearly (4.3) is a solution of (4.4). We aim to show that it is the unique solution in Z.
Let Tf g(t) be another such solution and define

Xfg{t) = Tfg(t) - T'fg{t) for all t ^ 0.

By making use of estimates of the type

\(f(s)τWu,Xftg(s)Lv)\= £ JfaKWijU,.

d / d

Σ Σ
S d3/21| f(s) || M max^ | <MX u, XfJs)M2v) |

(by the Schwarz inequality), a straightforward inductive argument in (4.4)
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establishes that

\ ( X ( t ) } \ ^ ^ t n sup max
ftg

n\

XfJs)Mkι--Mknv}\;MJp,Mkte<g\ 1 gp,<? g n} (4.5)

for all n ̂  1, ί ^ 0, w, ve3)u where

CfJt) = sup {2d3 '2( || /(s) || + || 0(s) | |) + (d2 +1) || /(s) || || g{s) \\+d + 2}.

Now by the Schwarz inequality and (4.2) we obtain

sup max | (Mh Mjnu, XfJs)Mki Mknv} |

g sup HX

^ ( s u p II TfJs) || + jmp || T'fJs) || 1 max {Bn(u)\ Bn(v)2}

<; 2eW f il+ II β II max {£n(M)2,£w(ι>)2 }. (4.6)

Combining (4.5) and (4.6) yields

Cf g(tf
f'9 = n\

since u,ve<2>1.
Hence we deduce that each Xfyg(ή = 0 and our required result follows. •

Theorem 4.3. For each t ^ 0, the operator U(t) in the solution of (3.15) has a unitary
extension if and only if

1 — W — 1 1 — — T ^ W 1 — iH — i ί t r

where H is a symmetric operator in Λo and W extends to a unitary operator on άd

0.

Proof. Lemma 4.1 and Theorem 4.2 taken together establish sufficiency. Necessity
is proved along similar lines to the corresponding result of [13] noting that since
our coefficients are unbounded we must use (2.5) in place of the bounded version
of the quantum Ito formula. •

Note. It is easily verified that the domain 3)x is a set of analytic vectors for L4,
so that if, for example, H = 0, then by Nelson's theorem, — \UL, is essentially self
adjoint on 2X.

5. The Construction of Quantum Diffusions

Let si be a unital *-subalgebra of B(A0)nΘ(@) and @ be a two sided j/-module
such that
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An [si9 ^-diffusion [4] is a family {7,, t ^ 0} of injective linear maps from 3 into
L{3)®E{S\ή) satisfying

(i)
(ii) For each t^0,xestf,ye&, jt(y) has an extension j~(y) with Ran(j t(x))

Dom (j~(y)) and

(5.1)

(iii) For each ί ^ 0 , x e ^ ,

ΛW SΛί^)- (5.2)

(iv) j 0 = Ϊ ® J, where * is the natural embedding of J* into
(v) For each XGJ^, (jt(x), ί ^ 0) is adapted and square-integrable.
(vi) There exist linear maps α:si -> Λ/ ® C , A:Λ/ -> Md(s/)9 oί\£/-+jtf® (C d)* and
τ\stf ^> ffl such that for each X G J / and ί ̂  0,

djt(x) = dAijMx)) + dAjt(λ{x)) + JMx))dA + Λ(τ(x))Λ. (5.3)

α, A, α and τ are called the structure maps of the diffusion. {jt91 ^ 0} will be called
an $4-diffusion when & = «s/.

From (i), (ii) and (iii) we observe that each j t \ ^ is a *-homomorphism into
An extensive study of ^/-diffusions with Q) — Λo has been carried out by R. L.
Hudson and M. E. Evans (see e.g. [12,8,9] and [10]).

Proposition 5.1. (cf. [12]). If{jt9t ^ 0 } is an (sί9£) diffusion then

(a) α(/) = λ(J) = α(/) = τ(/) = 0. (5.4)

(b) For each xestf,

λ(x)* = λ(x*)

α(x)* = α(x*) (5.5)

τ(x)*2τ(x*)

(c) λ = σ-ιd (5.6)

σ is a unital *-homomorphismfrom $4 into MJ^st) and ιd identifies srf with the
*-subalgebra srfl of Md(s/).

(5.7)

ότ = η, (5.8)

where 6- is the Hothschild coboundary operator for the complex formed by multilinear
maps from stf into J* and the 2-coboundary η is given by

η(x, y)= - α(x) a(y) for x9yes/. (5.9)

Proof. To establish (c), the definition of {jt9t^0} implies that for all x9yes/9

<u®ψ(f)Jt(xy)(v®ψ(g))} = <jt(x)*{u®ψ(f))9 jt
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Now use (2.5), (5.1), (2.4) and the independence oϊdA\dA,dA and dt ([13,22]) to
obtain (5.6) to (5.8).

(a) and (b) are obtained similarly from djt(I) = 0 and (5.2) (respectively) •

Equations (5.4) to (5.8) are called the structure equations of the diffusion.
Before we give our construction of (s/, @) diffusions we need to introduce a new

concept. Let δ be a linear subspace of Der^ (Λ/, stfά). A σ-connection driven by δ
on Q} is a linear map

V: δ -» Se{β, @d) satisfying

) + α(α)(A (5.11)

for all oceδ, aestf,ψeί$. Notice that if we take σ = ιd then (5.11) is essentially the
notion of connection given in [7]. For a non-trivial example take xes/,
σ(x) = WxW\ where W is a unitary operator in M£st) acting on A%, fix zeZ(jtf)d

and put α(x) = (σ(x) - x)z [10].
If we take δ to be the linear span of α then (W — I)z is easily seen to be a

σ-connection.
From now on, we will abuse notation and write S/w =W—I even though V^

is not strictly a σ-connection (unless d = 1). A σ-connection V is said to be
semi-balanced if Vj

aeΘ(@) for each oceδ (1 ^ j ^ d) and balanced if it is semi-balanced
and there exists a *-homomorphism σj from $$ into Md(stf\ a linear subspace ^ t

of D e r ^ ^ , j/ d ) and a σ^connection V driven by <ft on ® such that for each aeS,
there exists cfleδ^ for which

Vβt = (Vί)Γ. (5.12)

It is easily verified that every semi-balanced connection is balanced with V being
itself a connection and each

α t = - α τ . (5.13)

The σ-connection Vwz discussed above is balanced with σ\x) = W^xW and
oc\χ) = (σ\x) — x)z for each xest.

Lemma 5.2. Put d=\, and let σ be invertible, then every semi-balanced σ-connection
is balanced with

σ t = σ - i and α t = _ α o σ - i . (5.14)

Proof. Taking adjoints in (5.17) and restricting to 2 yields

) -f φ ) *

by (5.5). Now replace a by — σ - 1(α*) to get the required result. •

We are now ready to construct a class of (j/, J*)-diffusions.
Let $ = stftβ, where the operators in <€ are chosen to satisfy the conditions of

Theorem 4.3 which guarantee unitarity of (l/(ί), t ^ 0). Let L in Sect. 4 be a
semi-balanced σ-connection which we denote Vα for some αeDer(,ja/, j/ d ) and
assume that /f is such that [//,x]e^ for each x e ^ . These conditions ensure that

so that J^ is indeed a 2-sided ^-module as is required.
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For aes/, Ne%>, ί ^ O w e define

jt(aN)=U(t)άNU(tγ (5.15)

and takejt{X)=jt{X) for Xe@. We obtain the following

Theorem 5.3. {jt, t ^ 0} is an (s/9 ^-diffusion with structure maps

σ{x)=WxWϊ (5.16)

α(x) = Vαx-σ(x)Vα (5.17)

τ(x) = HH, x] - \V\Vax + Vlσ(x)Vα - IχVjVβ (5.18)

for each xesrf.

Proof. The properties of Vα and H ensure that j t makes sense on each of the
structure maps. Equations (5.16) to (5.18) are obtained by applying (2.5) to

(U(t)\u®ψ(f)),xU(t)\v®ψ(g)))

^0. D

Observe that when L and H extend to bounded operators on Λo and si = B(A0)
then {Jtj^0} is the diffusion of B(A0) into B(4) first described in [13].

We note that the unitary process (U(t% t ^ 0) which induces the diffusion of
Theorem 5.3 satisfies

dU = U(dA*Va + dAVw - ΨjSw + I)dA ^

(7(0) = /. (5.19)

It is not difficult to see that this form is canonical in the sense that any unitary
process which induces an (si, ^-diffusion by conjugation must satisfy an equation
of the form (5.19). Clearly the diffusion {jt, ί^O} will be an j/-diffusion if and
only if R a n ( τ ) g ^ ( c f . [4]).

The practical application of Theorem 5.2 to construct (s/9 ^-diffusions is
critically dependent upon the existence of semi-balanced σ-connections. An
interesting class of examples where these always exist is obtained by taking si to
be a norm dense *-subalgebra of a C*-algebra. If ω is a faithful state on Λ/, we
may realise si as a *-subalgebra of B{A0)9 where Ao = L 2 (J/ , ω) and take Θ = <srfψ0,
where ω{.) = (ψo, φo}. Let σ = ιd and assume that α e D e r ^ , ^ ) is such that
each ajeΘ(@)\ l-^j^dΛi is easily verified that Vα = α defines a balanced connection
on 3) with oc^ as given by (5.13). The general set-up is discussed in greater detail
in [4] for the case where d= 1. A specific example will be described in the next
section.

By analogy with the case where 2) is the space of smooth sections of a complex
vector bundle over a compact smooth manifold [2], we call the solution U = (U(t),
ί^O) of (5.19) a quantum stochastic parallel transport process. Equation (5.3) is
then called the underlying diffusion of the horizontal lift induced by U.
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6. Examples of Quantum Diffusions

We will give explicit examples of diffusions which can be constructed using the
horizontal lift procedure of Theorem 5.3:

a) Poisson Diffusions ([10,73]). Fix zeZ(Ad). Then the Poisson process of intensity
z is given by

πz= Σ

where

Π* = AtJ + ztA] + z*At + z*ztdt, (6.1)

where zf is the ιth component of z (1 ^ i g d).
Now suppose that z is such that WzjW^ = zj(\^j^d) and take α(x) = λ(x)z

for xejrf and Vα = Vwz; then the j/-diffusion

underlies the horizontal lift induced by

dU = dΠzUVw. (6.2)

Since V^ extends to a bounded operator on ά0, the unitarity of solutions to (6.2)
is guaranteed by the theory of [13] and there are no domain conditions to check.

b) Diffusions on the Non-Commutative Two-Torus ([12,15,2,3,4]). Fix # e R and
let ^ β denote the universal C*-algebra generated by two unitaries S and T satisfying

ST = e2πiθTS. (6.3)

s/θ will be the norm dense *-subalgebra of ^θ for which Xes/Θ=>

X= Σ Cm,nSmT\ (6.4)
m,nejZ

where £ m2pn2q\cmj2 < oo for all m,neM ([6,7]).
m,neΈ

The two canonical outer derivatives on stfθ are (5X and δ2, where

j / θ possesses a trace ω 0 for which

ωo(X*X)= Σ \cmj2 (6.6)
m,neΊί

for X as in (6.4)

Take 40 = L2(^θ, ω0) and ® = J / ^ 0 as described at the end of Sect. 5. For a,
let α = α<5i -f bδ2S^d = 1 and put W = I. a and o^ as given by (5.13) are mutually
adjoint ([4]), hence closeable linear operators on Λo with domain <& thus we can
take Vα = α. We aim to show that for each a,be<C, there is an {srf, $) - diffusion
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satisfying, for each

djt(x) =JMx))dAi +jt(oί(x))dA +jt(τ(x))dt (6.7)

for some τ:ja/->0b. This will follow immediately from Theorem (5.3) with

τ(x) = ±αfαx - a^xoL - ^x^a (6.8)

if we can establish the unitarity of solutions to

dU = U(<xdAi _ α t d i 4 _ i α t α r f ί ) 9

£7(0) = /. (6.9)

Let s/F denote the *-subalgebra of sί9 comprising those operators for which the
sum in (6.4) is finite. stfF is also norm-dense in °U [5] thus £#Fψ0 a<3is dense in Λo.

The unitarity of solutions to (6.9) will follow immediately if we can show that
s/Fφ0 is a suitable candidate to be the set 3)^ of Sect. 3. To see this let
Lx = α, L 2 = κ\ L 3 = - ^α fα and note that, by (6.5), [Li9 L J = 0 (1 ^ i, j ^ 3) on 9.
Without loss of generality, take

*= Σ c^srr
m , n = — ί

and observe that

α ( X ) = Σ 2πi Z m ; Π c m > B S m T", (6.10)
m,n= — /

where zm Π = am + bn. We must show that for all p ^ 0,

^ L | ; l ^ j 1 , . . . , 7 N ^ 3 } < o o (6.11)

for Le{I,LuL2,L3}. Taking L = /, we find that

max

max

l\N-p-q
( * >

i)2N~p~qz N~qz

where

Λl2

α,fc)= max
0

Σ I^Γ

and we have used (6.10), (6.6) and the fact that

\\Yψo\\2 = ωo(Y*Y) for
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Now there exist subsets P, and Q^ of {neZ9\n\ ^ / } 2 such that | z m j < 1 for

all (m, ri)eQf and \zm J ^ 1 for all (m, ή)eP^. (Of course, it may be that one of these

subsets is empty.) Hence, by (6.6),

M J V > 6 ) = max (

\Zm,n\

l/2
|2 \

\(m,n)ePs (m,n)eQs

l/2

ύ Σ

Now

< oo as required. The general result (6.11) is established similarly.

An analysis of the conditions under which (6.9) yields an jtfθ diffusion driven

by connections minimising the Yang-Mills functional of [7] were studied in [2]

and [3]. A rigorous proof of the unitarity of the parallel transport processes for

these diffusions was given in [8] using a different, (less general) technique to that

described here (see also [21]).

Acknowledgement. I would like to thank Robin Hudson for pointing out several errors in an
earlier version of part of this paper and the referee for many helpful suggestions.

Note. Since this paper was completed, I have received the preprint [20] in which a similar result
to Theorem 4.3 below is established using different techniques, for the case of one-dimensional
noise. More recently [21] has appeared which gives another proof of this theorem, again for
one-dimensional noise, with an improved estimate.
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