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Abstract. We describe the halfcomplex structure on non-orientable two-
dimensional surfaces and calculate chiral determinants and Laplacians necessary
for construction of the Polyakov measure.

Introduction

Most considerations in Polyakov's string theory [1] are confined to the case of
two-dimensional compact orientable Riemannian surfaces, or (due to cancellation
of conformal anomaly) to one-dimensional compact complex manifolds. The
number of works devoted to other logical possibilities, namely to open and non-
orientable strings is smaller [2-8]. Partly this is connected with the well-known
reduction of open and non-orientable surfaces (so-called Klein surfaces) to
orientable and closed ones. More precisely, the category of orientable Riemannian
surfaces with antiholomorphic involution is equivalent to the category of Klein
surfaces. Factorization of this surface (called double) under the involution gives an
open surface if the involution has fixed points and a non-orientable one if it has not.
(Open non-orientable strings correspond to orientable surfaces with two
involutions.)

In this work, devoted to the non-orientable^case only, we tried (when it was
possible) to treat all objects (/-differentials, ^-operators and so on) without
reference to double.

Thinking in this direction we have rediscovered a notion of semicomplex
structure (known as dianalytical structure in mathematical works [9]), and have
reached a rather unusual generalization of holomorphic bundles. The number of
fermion bundles on a non-orientable surface K is two times more than this number
for its double X (Sect. 1). An explanation is easy. There is a nontrivial bundle ε on
K, called the orientation bundle, which becomes trivial when lifted on X. Fermions
on K can be divided in two classes: obtained from the fermion bundle ̂  on X
or having the form n
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In Sect. 2 we discuss moduli space of non-orientable surfaces, then establish
various relations between determinants on Klein surfaces and on their doubles
(these relations were partly known earlier [5-7]) and get as a result an expression
for Polyakov's measure.

1. Klein Surfaces. Semiholomorphic Structure.
Haltholomorphic Bundles. ^-Operator

The topological facts we use below can be found in [10], halfcomplex (dianalytical)
structures were introduced in [9].

We start from topology. It is well-known that every orientable two-
dimensional surface Xg can be represented as a sphere S2 with g handles. The
projective plane RP2 being S2 with opposite points identified presents the simplest
example of non-orientable surface. Every non-orientable surface K has two
canonical decompositions:

(1)

or J^#RP 2#RP 2,g=~. (2)

Here Yί # Y2 denotes the connected sum of surfaces Y^ and Y2 obtained in the
following manner. One should remove small disks Dί and D2 from Yλ and Y2 and
then glue remainders over the boundaries. (Strictly speaking this procedure
requires a homeomorphism h of the boundaries, but one can prove that the
connected sums defined with different choices of h and disks D^ D2 are
homeomorphic.) Taking the connected sum is a commutative operation. Here are
some examples. Let T2 be the two-dimensional torus. Then, for an orientable
surface Xa one hasy

Xg=T2ΦT2φ...φT2 g^l . (3)

g

Applying the relation

(4)

one can deduce (2) from (1).
Non-orientable surfaces can be classified by their Euler characteristic

χ(Kn) = rank#0(KΛ) - rankff^XJ + rankH2(Kn) = 2-n. (5)

We write down homology groups of Kn with integer coefficients for completeness:

H0(Kn)=Z, H1(XII)=Z"-1ΘZ/2Z, H2(Kn) = 0. (6)

A non-orientable surface Kn can be represented as a factor-space of orientable
surface Xg under an action of involution σ without fixed points, changing the
orientation:

Kn9 g = n-l. (7)
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Now we turn to conformal geometry. The conformal class of metrics on two-
dimensional surfaces enables us to define angles in tangent space and hence to
define rotation to π/2 equivalent to complex structure J, J2 = — 1. But this rotation
J is defined up to the sign : if Jα is chosen in every Ua (u Ua = K\ then Ja=±Jβ in UΛ

n Uβ. In the orientable case this ambiguity can be removed and a global complex
structure can be defined.

In the non-orientable case a nontrivial bundle s (called an orientation bundle)
can be defined by its transition functions:

if J=J

Another equivalent definition of ε is

£«β } _Λ :f 7 _
JL 11 «/ „ —

Iaβ being the Jacobi transition matrix between coordinates in l/α and Uβ. So we can
define a holomorphic coordinate zα, corresponding to a particular choice of { Jα},
but the transition functions should be

za = faβ(zβ) if Ja=-Jβ,

for some holomorphic functions faβ.
We propose to call this structure on K halfholomorphic. (It was called

dianalytical in [9].)
Halfholomorphic structure on K can be lifted to X (see (7)) giving rise to two

opposite complex structures (the bundle π*ε becomes trivial), and the involution σ
becomes antiholomorphic isometry.

The question of which bundles on K may be called halfholomorphic is not
completely trivial. A simple idea to take σ-invariant holomorphic bundles on X
(automatically being bundles on K) gives bundles with constant transition
functions only. (Indeed, σ being antiholomorphic makes holomorphic transition
functions for L into antiholomorphic ones for σ*L, hence they should be
constant). This is a rather small class of bundles. For example, the bundle Ω^K of
complex-valued 1 -forms does not belong to it, but we wish to call it half-
holomorphic. Obviously the local decomposition

is not invariant globally: an antiholomorphic change of coordinates interchanges
β1'0 and β°' 1, but leaves fixed their set-theoretical union. These properties can be
formalized in the definition of cross.

We shall say that a bundle £ on a halfcomplex manifold K has a cross if the
following holds. Let {t/α,zα} be an atlas for K, zα being the corresponding
coordinates. For every C7α, zα there should exist a decomposition

(10)

into the sum of subbundles, satisfying the condition on Uxr\Uβ,

Vι..++Vι.β and F2ια~F2j/! if z , = f ( z f ) ,

Vίt,^V2ιβ and VϊtΛ~Vltf if z.=f(zβ). ( '
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Note that the union F1>αu F2>α in £ does not depend on the choice of coordinates, is
defined globally and resembles a cross. Only the order of VitΛ depends on the choice
of coordinates.

When lifted to X a bundle E with a cross decomposes into a direct sum

for some L1 on X. The bundle Lx depends on the cross and the orientation of X,
and is defined by

for π

, for π

Let us explain the notations. We assume UΛ to be small enough for π~ l(UΛ) being
two disjoint sets, and the function z α oπ is holomorphic on the first set (called
7C~1(^«)fc) and antiholomorphic on the second (π~1(ΐ/α)J one.

Reversing this procedure we can construct bundles with crosses: consider a
bundle L t on X and π^Li on K. We recall that a fiber of n^Lv in k e K is equal to a
sum of fibers of Lx in π-1(/c):

MΊ)*= Θ (ί-i),.
π(x) = Ac

The cross in π^Lj is defined by

There are bundles with crosses different from π^LJ, for example a bundle
πJLJφε cannot be represented as πJM) for some M, but possesses a cross. (We
recall that ε is the orientation bundle, see (8)).

The tensor product of bundles with crosses decomposes into a direct sum

E1®E2 = Eί®hE2®E1®aE2, (13)

where El®hE2 and El®aE2 are defined as follows: Let El\ϋaZ =V1φV2 and
£2k,zα = Wi Θ W2

 τhen

? defining

(14)

(15)

we get two bundles with crosses. (Subscripts h and a near (x) symbolize the words
holomorphic and antiholomorphic; we shall demonstrate later that (χ)h preserves
"halfholomorphic" bundles on K). It is easy to see that

π*(E1 ®hE2] = LI ®L2 + σ*(Lx ®L2) , (1 6)

π*(£! ®α£2) = L! ®σ*L2 + (σ^J® L2 (1 7)

(see (12) for definition of Lt).
Now we are ready to define halfholomorphic bundles on K with nonconstant

transition functions. Namely, a bundle E is called halfholomorphic if two
conditions are satisfied:

(i) E possesses a cross,
(ii) π*£ = L1φσ*L1 with holomorphic bundle Lv on X.
We emphasize that the definition of halfholomorphic bundles depends on the

orientation on X.
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A bundle Ώ1 with the cross Ώ^ + Ώ0'1 is obviously halfholomorphic. From
(16) one sees that halfholomorphic bundles are preserved under the ®h product.
Now it is clear how to define complex-valued ^-differentials,

(18)

(Ω1 coincides with Ω^ in these notations.) Truej-differentials are real subbundles of
these complex bundles on K. We postpone this discussion until Sect. 2 (see (33) and
below).

We define 1/2-differentials as solutions to the equation

Ωι/2®*0ι/2 = flι (19)

Two solutions may differ by a tensor product on a bundle δ satisfying the
following condition: δ®δ is the trivial bundle. The group of δ's coincides with
H^(K 17 \~77n

n {A.n,/L2) — /L2.
The group H\Xg, Z2)^%9

2 classifying 1/2-differentials on Xg is 2 times smaller.
The explanation is that the orientation bundle ε becomes trivial on Xg, but
contributes to HV(K,Z2). Another approach to 1/2-differentials based on "0(2)-
spinor representations" is discussed in [8, 11].

Halfholomorphic bundles admit an action of the D operator:

° ° ™

v2,

converting into the action of d on L1 and d on σ*Lj.
_ The D operator enables us to define halfholomorphic sections Γh(E) as solutions

2. Moduli Space of Non-Orientable Surfaces, and Determinants

We begin with moduli space of non-orientable surfaces. The antiholomorphic
involution σ acting on double X (see (7)) maps its period matrix as follows:

*:τy->-τy. (21)

Some clarifications are needed here. Of course period matrix and σ-action
depend on the basis in H^X.Έ). One can prove that the following choice of
canonical basis with σ-action is possible:

σ: A^Aϊ Bj^ - Bj; (A* Bj) = δtj. (22)

(Here (A,B) denotes the intersection index.) The formula (21) is written in a such
basis. Moreover, it is easy to see that

ώi(z^ = ωί(z). (23)

(Here z* = σz and (ωj are canonical holomorphic 1-differentials.) The relation (23)
implies that only pure imaginary period matrices are possible

(24)
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The subgroup of the modular group commuting with σ consists of
transformations

τh->cτc', ceGLg(Z). (25)

Now we are ready to start computation of determinants on K. More precisely,
we will express them in terms of determinants on X, which are well-known [12] to
be constructed from 0-functions and bases in y-differentials.

At first we φscribe the correspondence of zero modes when/ φ 0. Holomorphic
j-differentials Γhol(Ωp X) can be transformed into solutions of Dfj = Q, fj€Ωj(K) or
fj € Ωj®ε(K) via the following local rule. Let w 6 K; z, z* e X, π(z) = π(z*) = w. We
denote by the same letters local coordinates near these points chosen so that z = w,
z* = w. Let φj(z)GΓhoί(Ωj9X). We define

/» = φj(z) - φj(z*) E Γ(Ωj®s, K) . (26)

It is easy to check that Dfj = Dff = 0. An inverse correspondence and a slight
generalization for the case of the arbitrary holomorphic bundle E are straightfor-
ward. So we have the established isomorphisms,

Γhol(£, X) * iiKE, K) ~ Γh(π*E® ε, K) . (27)

In the same way one can obtain the following relations between determinants:

dGtA(E9X) = detA(π^E9K) = dGtA(π4tE®ε9K)9 (28)

detδ(E, X) = detD(πχE, K) = detD^E® ε, K) . (29)

It remains to find A0(K). Formulas (28), (29) are useless because

π*^o = ̂ oθε. (30)

The point is that the involution σ maps ^Q into itself (it differs from the case of
j-differentials, when σ*J^ > 0 = ̂ Ό.j) and ^oW decomposes into two subspaces via
the eigenvalues of σ = ± 1 :

And ^0

+(X) corresponds to ^Q(K\ ^0~(X) corresponds to Γ(ε,X). The construc-
tions below literally repeat the constructions for open strings [5-7], and we
present them in a shortened form. The idea is to compute the variation of detzl ±

along moduli space using the corresponding Green functions,

G±(z,w) = i(G(z,w)±G(z*,w)±G(z,w*) + G(z*,w*)). (31)

Here G(z, w) is the Green function for Δ0(X). An explicit formula for G(z, w) enables
one to get the relation

+

 ί32)
l '

det/T det(ty)'

Before writing down the formulas for the measure we return to a postponed
(Sect. 1) discussion of reality conditions fory'-differentials. Recall that the bundles
Ωj(K) (see (18)) are complexifications of true ./-differentials,

(33)
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Real bundles Σj can be obtained as follows. There is an antilinear (over <C)
involution on Γ(Ωp X\

τ:/χz)->#z*), (34)

and multiplying on i = j/— 1 we get an isomorphism of eigenspaces for τ:

i:Γ+(ΩpXg)~Γ-(ΩpXg), (35)

Γ* are sections of real bundle, and

Γ(Σj9K)^Γ+(ΩpX). (36)

So (using the reality of Laplacians) we have

detAj(X) = det A (Ωp K) = det2 A (Σp K) . (37)

It is worth mentioning that the square root of dεtA^X) is equal to detfyX). Indeed,
we can choose a basis for ^'-differentials satisfying the condition

fj(z)=fj(z*), (38)

(it is possible via (35)) and represent det 3} as a correlator (or as a ratio of two
sections of the determinant bundle)

(39)det(/κ(z,))

The right-hand side of (39) does not depend on z,. In particular, one can transform
z, into zf. Then

Hence we get that chiral determinants are real:

drt 3X^0 = det d/X) = det fyX). (41)

And

detA(Σp Kπ) = detϊ(Ωj, X) x (NjN, _ //2

xexp(-c7SI/24π). (42)

Using (32) we get

det J0(X) = det51(JO x exp(-c,.SL/24π) (43)

is computed in the canonical basis of 1 -differentials).
And finally, as for open strings [5],

d(g)

1
dy., (44)

where d(g) = 3g — 3 if g^2, d(l) = l, d(0) = 0. We do not discuss the problem of
cosmological constant cancellation for non-oriented strings. We only point out
that this question can be reduced to the same statement for oriented strings [8]
from one side, and from the other side using the relations (28), (29) one can achieve
a "silly" cancellation, simply taking contributions from Σ1/2 and Σ1/2®ε with
opposite signs.
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